管理运筹学课件第13章对策论共32页
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜硬币游戏属于矩阵对策,儿童甲的策略有出正面向上(α1)
和出反面向上(α2),儿童乙的策略有猜正面向上(β1)和猜反
面向上(β2)。
m in
1
A
1
1 1
1
1
m ax
1
m ax 1{ 1
m in 1
m jinm a ixaij m jinm a ixaij
27.03.2020
课件
12
13.3.1 混合策略的概念
1 1 6
A1 3 5
4 1
0 4 2 1 3
第1列优超于 第5列,第4列 优超于第2列
1
1 6
A2
3
5
3 5 1 .5
4 1 3
4
4
4
第1行优于 2、3行
0
A3 1
2 3 4 5
4 5 4 6.5
5 1.5 4
9
3 3 0 8
1
2
3
6 4 5
27.03.2020
最优纯策略(α1,β2)
max 514 21 434
min1
27.03.2020
课件
10
13.2.2 最大最小原则
1 L n min
A 1 M
a11
M
L O
m am1 L
a1n M
max
ars
amn
max 1 44 2 4 43
min ahk
【例13.4】
m in
如果ars ahk,则该值所对 应的策略为最优纯策略
27.03.2020
课件
4
13.1.1 对策模型的基本要素
1.局中人
局中人(players)是指参与竞争的各方,每方必须有独立的决策能力和承 担风险的能力。(如:田忌、齐王)
2.策略集
在对策问题中,局中人为了应对其他局中人的行动而采取的方案和手段 称为该局中人的一个策略(strategy)。
3.赢得及赢得函数
课件
9
【例13.3】 某地区有甲、乙两家企业生产同种产品,采取相同的价格
出售,为了提高市场份额,均采取做广告的方式扩大自己的销售量。
甲和乙均有三种广告策略。甲企业所占的市场份额增加的百分数如下
面矩阵A所示。 1 2 3 m in
A 1 2
3
5
1 6
4 1
1
6
m
ax
1
3 4 2 3 3
课件
7
13.2 矩阵对策的纯策略
为求出对策模型的解,首先需要对双方的对策条 件作如下的假设。
(1) 对策双方的行为是理智的,对策略的选择不存 在任何侥幸心理。
(2) 局中人选取策略的目标是收益最大或损失最小。 (3) 局中人同时选取各自的行动策略,且不知道对
方选取哪一个策略。 (4) 对策中的有关规定和要求,局中人是知道的。
2 3 4 4 4
A
6
4
2
4 3 3
2 3 2
5
2
4
5
2
4
m
ax
2
max 61 4432 44 432
27.03.2020
min2
课件
最 优 纯 策 略 (3,4)
பைடு நூலகம்11
13.3.1 混合策略的概念
【例13.5】 猜硬币游戏:甲、乙两个儿童玩猜硬币游戏, 甲手中拿着一枚硬币,把硬币盖在桌子上,让儿童乙猜是 正面向上还是反面向上。如若猜对甲给乙1元钱,猜错乙给 甲1元钱。
27.03.2020
课件
8
13.2.1超优原则
1.对 r , s 若恒有arj asj 则称 r 超优于 s 2.对 h , k 若恒有aih aik 则称 h 超优于 k
【例13.2】
第3行优超
6
1
A5
1
4 2 5 3
5 0 1.5 3
4 3 4 0
6 .5
7
9
8
于第2行, 第1行优超 于第5行
(中上下) 1,-1 1,-1 3,-3 1,-1 1,-1 -1,1
(中下上) 1,-1 1,-1 1,-1 3,-3 -1,1 1,-1
(下上中) -1,1 1,-1 1,-1 1,-1 3,-3 1,-1
(下中上) 1,-1 -1,1 1,-1 1,-1 1,-1 3,-3
27.03.2020
教学目标与要求
【教学目标】 1. 理解下列基本概念: 矩阵对策,矩阵对策三要素,最优纯策略与最优混合策略,鞍点和对策值 2. 算法要求: (1) 会用“超优原则”和“最大最小”原则求矩阵对策的最优纯策略 (2) 会用“线性规划”方法求矩阵对策的最优混合策略 (3) 了解纯策略和混合策略的纳什均衡求取。 【知识结构】
课件
5
13.1.2 对策问题的分类
局中人之
间是否允 许合作?
策略选择
是否与时 间有关?
合作对策 对 策 论
非合作对策
静态对策 动态对策
二人对策 多人对策
27.03.2020
局中人多 寡?
课件
零和对策 常和对策 变和对策
赢得值代 数和是否 为0?
6
13.1.2 对策问题的分类
27.03.2020
课件
3
本章主要内容
13.1 对策论的基本概念 13.1.1 对策模型的基本要素 13.1.2 对策问题的分类 13.2 矩阵对策的纯策略 13.2.1优超原则 13.2.2最大最小原则 13.3 矩阵对策的混合策略 13.3.1 混合策略的概念 13.3.2 图解法 13.3.3 线性规划法 13.4 纳什均衡 13.4.1 纯策略纳什均衡的划线法 13.4.2 混合策略纳什均衡的LP方法 13.4 应用举例 案例13-1 市场竞争策略 案例13-2 对抗赛项目确定 本章小结
基本概念:三要素,分类
对
二人零和纯策略:超优原则、maxmin 和 minmax 原则
策
论
二人零和混合策略:图解法(2 行或 2 列收益矩阵)
LP 方法(一般情况)
27.03.2020
纳什均衡(非零和):纯策略(划线法) 混合策略(LP 方法)
课件
1
27.03.2020
课件
2
27.03.2020
局中人采用不同策略对策时,各方总是有得或有失,统称赢得(payoff)或
得益。
1
2
3
4
5
6
(1 上中下) (2 上下中) (3 中上下) (4 中下上) (5 下上中) (6 下中上)
(上中下) 3,-3 1,-1 1,-1 -1,1 1,-1 1,-1
(上下中) 1,-1 3,-3 -1,1 1,-1 1,-1 1,-1
设甲出正面(α1)的概率x,出反面(α2)的概率1-x;乙猜正面(β1)的概率y,猜反 面(β2)的概率1-y。则乙两个策略的期望值分别为:
E 1 1 x ( 1 )(1 x) 2 x 1 E 2 ( 1 ) x 1 (1 x ) 1 2 x
令 E1 E2,可 得 x0.5
(1) 当x<0.5时,E1 E2,理性的儿童乙会选择猜反面;