初中数学函数练习题(大集合)
初中数学函数专题训练-附详细答案
初中数学函数专题训练姓名:______________考号:______________一、解答题(100分)1.(5分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).2.(5分)反比例函数y=kx(1)求反比例函数的解析式及B点的坐标.(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.(k≠0)与一次函数y=ax+b相交于点A(n,-1),B(1,3),过点A作AD⊥y轴于点D,过3.(5分)如图,已知反比例函数y=kx点B作BC⊥x轴于点C,连接CD.(1)求反比例函数的解析式.(2)求四边形ABCD的面积.4.(5分)如图,反比例函数y=m−2的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:x(1)图象的另一支在第象限;在每个象限内,y随x的增大而,常数m的取值范围是.(2)若此反比例函数的图象经过点(-2,3),求m的值.5.(5分)如图,已知直线l 1:y=kx+1,与x 轴相交于点A ,同时经过点B(2,3),另一条直线l 2经过点B ,且与x 轴相交于点P(m ,0).(1)求l 1的解析式.(2)若S △APB =3,求P 的坐标.6.(5分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在坐标轴上,点B 的坐标为(4,2),直线y=-12x+3交AB ,BC 于点M ,N ,反比例函数y=kx 的图象经过点M ,N .(1)求反比例函数的解析式.(2)若点P 在x 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.(x>0)的图象过格点(网格线的交点)P.7.(5分)如图,反比例函数y=kx(1)求反比例函数的解析式.(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.8.(5分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=√13.(1)求点B的坐标.(2)若△ABC的面积为4,求直线l2的解析式.9.(5分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式.(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?10.(5分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式.(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A 型、B型电脑各多少台,才能使销售总利润最大?11.(5分)已知,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标.(2)求两直线交点C的坐标.(3)求△ABC的面积.的图象交于点A(-3,2),B(n,-6)两点.12.(5分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx(1)求一次函数与反比例函数的解析式.(2)求△AOB的面积.(3)请直接写出y1<y2时x的范围.13.(5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式(不要求写出定义域).(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.14.(5分)如图,一次函数y=kx+b的图象与反比例函数y=m的图象交于A(-2,1),B(1,n)两点.x(1)求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.15.(5分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=2x的图象与直线AB交于点M.(1)求直线AB的函数解析式及M点的坐标.(2)若点N是x轴上一点,且△MNB的面积为6,求点N的坐标.16.(5分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式.(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标.(3)利用(2)的点的坐标以及结合得出函数图象得出答案.17.(5分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶x+6,乙离一楼地面的梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式.(2)请通过计算说明甲、乙两人谁先到达一楼地面.18.(5分)根据记录,从地面向上11 km以内,每升高1 km,气温降低6℃;又知在距离地面11 km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃).(1)写出距地面的高度在11 km以内的y与x之间的函数表达式.(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7 km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km时,飞机外的气温.19.(5分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值.(2)求小强的速度.(3)求线段AB的函数解析式,并写出自变量的取值范围.(x>0)的图象交于点B(m,2).20.(5分)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y=kx(1)求反比例函数的表达式.(2)求△AOB的面积.初中数学函数专题训练试卷答案一、解答题1.(1)解:当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)解:由y1<y2,得:30x+200<40x,解,得x>20时,当x>20时,选择方式一比方式二省钱.2.(1)解:把A(1,3)代入y=kx得:k=1×3=3,∴反比例函数解析式为:y=3x;把B(3,m)代入y=3x,得3m=3,解得m=1,∴B点坐标为(3,1).(2)解:如图,作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,-3),∵PA+PB=PA′+PB=BA′,∴此时PA+PB的值最小,设直线BA′的解析式为:y=mx+n,把A′(1,-3),B(3,1)代入得,{m+n=−33m+n=1,解得{m=2n=−5,∴直线BA′的解析式为:y=2x-5,当y=0时,2x-5=0,解得x=52,∴P点坐标为(52,0).3.(1)解:∵反比例函数y=kx(k≠0)的图象经过B(1,3),∴k=1×3=3.∴反比例函数的解析式为y=3x.(2)解:把A(n,-1)代入y=3x ,得-1=3n,解得n=-3,∴A(-3,-1),延长AD,BC交于点E,则∠AEB=90°,∵BC ⊥x 轴,垂足为点C ,∴点C 的坐标为(1,0),∵A(-3,-1),∴AE=1-(-3)=4,BE=3-(-1)=4,∴S 四边形ABCD =S △ABE -S △CDE =12AE×BE −12CE×DE =12×4×4−12×1×1=7.5.4. (1)四 增大 m<2(2)解:把(-2,3)代入y =m−2x 得到:m-2=xy=-2×3=-6,则m=-4.故m 的值为-4.5.(1)解:∵y=kx+1,经过点B(2,3),∴3=2k+1,∴k=1,∴直线l 1对应的函数表达式y=x+1.(2)解:∵A(-1,0)△APB 的面积=12PA·3=3,解得PA=2,当点P 在点A 的左边时,OP=OA+PA=1+2=3,此时m=-3;当点P 在点A 的右边时,OP=PA-OA=2-1=1,此时m=1.综上所述,P(-3,0)或(1,0).6.(1)解:∵B(4,2),四边形OABC 是矩形,∴OA=BC=2,将y=2代入y=-12x+3得:x=2,∴M(2,2),把M 的坐标代入y=k x 得:k=4,∴反比例函数的解析式是y=4x .(2)解:把x=4代入y=4x得:y=1,即CN=1, ∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON=4×2-12×2×2-12×4×1=4, 由题意得:12|OP|×AO=4,∵AO=2,∴|OP|=4,∴点P 的坐标是(4,0)或(-4,0).7.(1)解:∵反比例函数y=k x (x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=4x .(2)解:如图所示:矩形OAPB 、矩形OCDP 即为所求作的图形.8.(1)解:∵点A(2,0),AB=√13. ∴BO=√AB 2−AO 2=√9=3∴点B 的坐标为(0,3).(2)解:∵△ABC 的面积为4∴12×BC×AO=4∴12×BC×2=4,即BC=4∵BO=3∴CO=4-3=1∴C(0,-1)设l 2的解析式为y=kx+b ,则{0=2k +b −1=b ,解得{k =12b =−1∴l 2的解析式为y=12x-1.9. (1)解:设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,{150k +b =45b =60,解得:{k =−110b =60, ∴该一次函数解析式为y=-110x+60.(2)解:当y=-110x+60=8时, 解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.10. (1)解:由题意可得,y=100x+150(100-x)=-50x+15000,即y 与x 的函数关系式是y=-50x+15000.(2)解:由题意可得,100-x≤2x ,解得,x≥3313,∵y=-50x+15000,∴当x=34时,y 取得最大值,此时y=13300,100-x=66,即商店购进A 型34台、B 型电脑66台,才能使销售总利润最大.11. (1)解:在y=2x+3中,当x=0时,y=3,即A(0,3);在y=-2x-1中,当x=0时,y=-1,即B(0,-1).(2)解:依题意,得{y =2x +3y =−2x −1, 解得{x =−1y =1; ∴点C 的坐标为(-1,1).(3)解:过点C 作CD ⊥AB 交y 轴于点D ;∴CD=1;∵AB=3-(-1)=4;∴S △ABC =12AB·CD=12×4×1=2.12.(1)解:把A(-3,2)代入y 2=m x ,得m=-3×2=-6,∴反比例函数解析式为y 2=-6x .把B(n ,-6)代入y 2=-6x ,得-6n=-6,解得n=1,∴B 点坐标为(1,-6),把A(-3,2),B(1,-6)代入y 1=kx+b ,得{−3k +b =2k +b =−6,解方程组得{k =−2b =−4, ∴一次函数解析式为y=-2x-4.(2)解:当x=0时,y=-2x-4=-4,则AB 与y 轴的交点坐标为(0,-4),∴△AOB 的面积=12×4×(3+1)=8.(3)解:当-3<x<0或x>1时,y 1<y 2.13.(1)解:设y =kx +b ,则有{b =400100k +b =900, 解得{k =5b =400, ∴y =5x +400.(2)解:绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.14.(1)解:因为A点在反比例函数的图象上,可先求出反比例函数的解析式y=-2x,又B点在反比例函数的图象上,代入即可求出n的值为-2,最后再由A,B两点坐标求出一次函数解析式y=-x-1.(2)解:根据图象可得x的取值范围是x<-2或0<x<1.15.(1)解:设直线AB的函数解析式为y=kx+b(k≠0).把点A(0,3)、点B(3,0)代入得:{b=33k+b=0解得:{k=−1 b=3,∴直线AB的函数解析式为y=-x+3;由{y=2xy=−x+3得:{x=1y=2,∴M点的坐标为(1,2).(2)解:设点N的坐标为(x,0),如图所示:∵△MNB的面积为6,∴12×2×|x-3|=6,∴x=9,或x=-3.∴点N的坐标为(-3,0)或(9,0).16.(1)解:由题意可得:银卡消费:y=10x+150,普通消费:y=20x.(2)解:由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600).(3)解:如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通片合算;当x>45时,金卡消费更划算.17.(1)解:设y 关于x 的函数解析式是y=kx+b , {b =615k +b =3,解得,{k =−15b =6, 即y 关于x 的函数解析式是y =−15x+6.(2)解:当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.18. (1)解:根据题意得:y=m-6x .(2)解:将x=7,y=-26代入y=m-6x ,得-26=m-42,∴m=16 ∴当时地面气温为16℃∵x=12>11,∴y=16-6×11=-50(℃)假如当时飞机距地面12 km 时,飞机外的气温为-50℃.19.(1)解:a=3005×(10+5)=900.(2)解:小明的速度为:300÷5=60(米/分),小强的速度为:(900-60×2)÷12=65(米/分).(3)解:由题意得B(12,780),设AB 所在的直线的解析式为:y=kx+b(k≠0),把A(10,900)、B(12,780)代入得:{10k +b =90012k +b =780,解得{k =−60b =1500, ∴线段AB 所在的直线的解析式为y=-60x+1500(10≤x≤12).20. (1)解:∵点B(m ,2)在直线y=x+1上,∴2=m+1,得m=1,∴点B 的坐标为(1,2),∵点B(1,2)在反比例函数y=k x (x>0)的图象上,∴2=k 1,得k=2, 即反比例函数的表达式是y=2x .(2)解:将x=0代入y=x+1,得y=1,则点A 的坐标为(0,1), ∵点B 的坐标为(1,2),∴△AOB 的面积是:1×12=12.。
(专题精选)初中数学函数基础知识真题汇编附解析
(专题精选)初中数学函数基础知识真题汇编附解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到在线段AB上运动,到达点A达点A后,停止运动;动点Q以1cm/s的速度从B A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示s与t的函数关系的是( )A.B.C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵s 随t 的增大而减小,∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】 试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .10.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.11.若y x =有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应13.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,S vt vt vt=⨯-⨯=-≤.2214(1)②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,S vt vt vt22(11)3(1)∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.17.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.18.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.19.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。
初中数学函数练习题(大集合)
初中数学函数练习题(大集合)一、单选题1.反比例函数1k y x-=的图象经过点(2,3)-,则k 的值是( ) A .5- B .6- C .7- D .上述答案都不对 2.二次函数y =2x 2﹣1的图象的顶点坐标是( ) A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1)3.已知函数()252m y m x -=+是关于x 的反比例函数,则该函数图象位于( )A .第一、第三象限B .第二、第四象限C .第一、第二象限D .第三、第四象限4.在平面直角坐标系中,如果点(),A a b 在第三象限,那么点(),B a b --所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数()20y kx k =->的图象可能是( )A .B .C .D .6.点(1,2022)A --在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.从地面竖直向上抛出一小球,小球的高度(y 米)与小球运动的时间(x 秒)之间的关系式为()20.y ax bx c a =++≠若小球在第2秒与第6秒时的高度相同,则在下列时间中小球所在高度最高的是( ) A .第3秒B .第4秒C .第5秒D .第6秒 8.如果点()3a a +,到x 轴距离等于4,那么a 的值为( ) A .4B .7-C .1D .7-或19.在同一直角坐标系中,函数y =ax −a 与y =ax(a ≠0)的图象大致是( )A .B .C .D .10.反比例函数4y x=的图象位于( ) A .第一、二象限 B .第三、四象限 C .第二、四象限D .第一、三象限11.某商场降价销售一批名牌衬衫,已知所获得利润y (元)与降价金额x (元)之间的关系是2260800y x x =-++,则获利最多为() A .15元B .400元C .80元D .1250元12.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么tan α的值是( )A .34B .43C .35D .4513.二次函数22(3)4y x =-+的顶点坐标为( ) A .()2,4B .()3,4C .()3,4-D .()3,4--14.在直角坐标平面内,把二次函数2(1)y x =+的图像向左平移2个单位,那么图像平移后的函数解析式是( ). A .2(1)2y x =+-B .2(1)y x =-C .2(1)2y x =++D .2(3)y x =+15.函数y =kx +b 的图象如图所示,则关于x 的不等式kx +b <0的解集是( )A .x >0B .x <0C .x >2D .x <2二、填空题16.如图,一次函数y =kx +b 的图象经过点(4,0),(0,4),那么关于x 的不等式0<kx +b <4的解集是______.17.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.18.将直线23y x =-向下平移4个单位后,所得直线的表达式是______. 19.已知直线y =ax ﹣1与直线y =2x +1平行,则直线y =ax ﹣1不经过第 ___象限. 20.将二次函数()212y x =--的图象先向右平移1个单位,再向上平移1个单位后图象顶点坐标为__________.三、解答题21.已知抛物线y =ax 2+bx +c (a >0)经过A (m ,n )、B (2-m ,n )两点. (1)求a 、b 满足的关系式;(2)如果抛物线的顶点P 在x 轴上,△PAB 是面积为1的直角三角形,点C 是抛物线上动点(不与A 、B 重合),直线AC 、BC 分别与抛物线的对称轴交于点M 、N . ①求抛物线的解析式; ②求证:PM =PN .22.如图,在平面直角坐标系中,点A 是抛物线26(0)y x x k k =-+>与y 轴交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边ABC 的周长为__________.23.如图,二次函数()20y ax bx c a =++≠的图象的顶点C 的坐标为()13--,,与x 轴交于()30A -,,()10B ,,根据图象回答下列问题:(1)写出方程20ax bx c ++=的根;(2)若方程2ax bx c k ++=有实数根,写出实数k 的取值范围.24.如图,从某建筑物的窗口A 处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),点A 离地面的高度为6米,抛物线的最高点P 到墙的垂直距离为2米,到地面的垂直距离为8米,如图建立平面直角坐标系.(1)求抛物线的解析式; (2)求水落地离墙的最远距离OB .25.已知,如图,二次函数2y x bx c =-++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,6C ,且经过点()1,10(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.(3)求ABC 的面积,写出>0y 时x 的取值范围.【参考答案】一、单选题 1.A 2.D 3.A 4.A 5.B 6.C 7.B 8.D 9.D 10.D 11.D 12.B 13.B 14.D 15.C 二、填空题16.0<x <417.1≥x 18.27y x =-19.二 20.(2,-1)三、解答题21.(1)2b a =-(2)①221y x x =-+;②见解析 【解析】 【分析】(1)根据题意可得抛物线的对称轴为直线212m mx +-==,即可求解; (2)①根据题意可得点P 的坐标为(1,0),可得抛物线的解析式为()21y a x =-,再由勾股定理可得()221m n -=,然后由△PAB 是面积为1的直角三角形,可得11m n-=,可求出m ,n 的值,即可求解;②点()2,21C t t t -+,然后分别求出直线AC 、BC 的解析式,即可求证. (1)解:∵抛物线y =ax 2+bx +c (a >0)经过A (m ,n )、B (2-m ,n )两点, ∴抛物线的对称轴为直线212m mx +-==, ∴12ba-=, 解得:2b a =-; (2)解:①∵点P 为抛物线的顶点, ∴PA =PB ,点P 的坐标为P (1,0), ∴可设抛物线的解析式为()21y a x =-, ∵△PAB 是直角三角形, ∴∠APB =90°,PA =PB ,∵()()()222222221,21,2PA m n PB m n AB m m =-+=--+=--, ∴()()()222221212m n m n m m -++--+=--, ∴()221m n -=,∵△PAB 是面积为1的直角三角形,∴1212n m m --=, ∴11m n-=, ∴221n n ⎛⎫= ⎪⎝⎭,解得:n =1或n =-1(舍去),∴m =2或0,∴点A 的坐标为(2,1)或(0,1), 当点A (2,1)时,a =1;当点A (0,1)时,a =1;∴抛物线的解析式为()22121y x x x =-=-+; ②由①得:令点A (0,1),则B (2,1),设点()2,21C t t t -+,设直线AC 的解析式为()1110y k x b k =+≠,把点A (0,1),()2,21C t t t -+代入得:1211121b k t b t t =⎧⎨+=-+⎩,解得:1121k t b =-⎧⎨=⎩, ∴直线AC 的解析式为()21y t x =-+, 当x =1时,y =t -1, ∴点M (1,t -1), ∴PM =1t -,同理直线BC 的解析式为12y tx t =+-, 当x =1时,y =1-t , ∴点N (1,1-t ), ∴PN =1t -, ∴PM =PN . 【点睛】本题主要考查了二次函数的图象和性质,一次函数的图象和性质,勾股定理,熟练掌握二次函数和一次函数的图象和性质是解题的关键. 22.18 【解析】 【分析】根据抛物线的解析式即可确定对称轴,则AB 的长度即可求解,即可求出答案. 【详解】根据题意可知抛物线26(0)y x x k k =-+>的对称轴是x =3, 如图,作CD ⊥AB 于点D ,∵AB ∥x 轴 ∴AD =3,AB =2AD ∴AB =2AD =6,则AB 为边的等边△ABC 的周长为3×6=18. 故答案为:18. 【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.23.(1)13x =-,21x = (2)3k ≥- 【解析】 【分析】(1)由一元二次方程20ax bx c ++=的根是二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标可得答案;(2)方程2ax bx c k ++=有实数根,则抛物线()20y ax bx c a =++≠与直线y k =有交点,结合抛物线()20y ax bx c a =++≠的顶点坐标为()13,--可得答案. (1)解:∵方程20ax bx c ++=的根是二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标,∴方程20ax bx c ++=的根为13x =-,21x =; (2)解:∵方程2ax bx c k ++=有实数根, ∴抛物线2y ax bx c =++与直线y k =有交点, 由函数图象可知3k ≥-. 【点睛】本题考查二次函数的图象,要熟记以下内容:(1)一元二次方程20ax bx c ++=的根是抛物线()20y ax bx c a =++≠与x 轴交点的横坐标;(2)方程2ax bx c k ++=的解是抛物线()20y ax bx c a =++≠与直线y k =交点的横坐标.24.(1)21(2)82y x =--+(2)6米 【解析】 【分析】(1)根据题意可知该抛物线顶点坐标,且经过点A (0,6),即可设抛物线的解析式为2(2)8y a x =-+,再将A (0,6)代入,求出a 即可;(2)对于该抛物线解析式,令y =0,求出x 的值即可. (1)由题意可知抛物线的顶点坐标为(2,8),且经过点A (0,6), ∴设抛物线的解析式为2(2)8y a x =-+, 把A (0,6)代入得486a +=,解得:12a =-,∴21(2)82y x =--+.(2) 令0y =,得()212802x --+=, 解得:16x =,22x =-(舍去), ∴水落地离墙的最远距离为6米. 【点睛】本题考查二次函数的实际应用.根据题意,利用待定系数法求出解析式是解答本题的关键.25.(1)256y x x =-++;(2)顶点坐标是549,24⎛⎫⎪⎝⎭,对称轴是52x =;(3)ABC ∆的面积为21,>0y 时,x 的取值范围是-1<<6x . 【解析】 【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案; (2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x 轴的交点坐标,然后利用三角形面积公式和图像得出答案. 【详解】(1)∵二次函数2y x bx c =-++的图象经过点()0,6C 、()1,10,∴6110c b c =⎧⎨-++=⎩, 解这个方程组,得56b c =⎧⎨=⎩,∴该二次函数的解析式是256y x x =-++;(2)225495624y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∴顶点坐标是549,24⎛⎫⎪⎝⎭;对称轴是52x =; (3)∵二次函数256y x x =-++的图象与x 轴交于A ,B 两点, ∴2560x x -++=,解这个方程得:11x =-,26x =,即二次函数256y x x =-++与x 轴的两个交点的坐标为()1,0A -,()6,0B . ∴ABC ∆的面积()116162122ABCSAB OC =⨯=⨯--⨯=. 由图像可得,当-1<<6x 时,>0y ,故>0y 时,x 的取值范围是-1<<6x .【点睛】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键.。
(完整版)初中数学一次函数练习题及答案
一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。
初中函数练习题及答案
初中函数练习题及答案初中函数练习题及答案导语:函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
以下是初中函数练习题及答案的内容,仅供参考学习。
初中函数练习题及答案一、选一选,慧眼识金(每小题3分,共24分)1.下列函数关系式:①,y=-2x ② y=-2/x , ③y=-2x2, ④y=2 , ⑤y=2x-1.其中是一次函数的是()(A)①⑤ (B)①④⑤(C)②⑤ (D)②④⑤2.一个正比例函数的图象经过点(2,-1),那么这个正比例函数的表达式为()(A)y=2x (B)y=-2x(C)xy21 (D)xy2 13.函数y=-3x-6中,当自变量x增加1时,函数值y就()(A)增加3(B)减少3(C)增加1(D)减少14.在同一直角坐标系中,对于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象,下列说法正确的是()(A)通过点(-1,0)的是①和③ (B)交点在y轴上的是②和④(C)互相平行的是①和③ (D)关于x轴平行的是②和③5.一次函数y=-3x+6的图象不经过()(A)第一象限(B)第二象限(C)第三象限(D)第四象限6.已知一次函数y=ax+4与y=bx-2的图象在x轴上交于同一点,则a b 的值为()(A)4(B)-2(C)-2/1 (D)2/17.小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a、b分别表示两人跑的路程与小明追赶时间的关系,根据图象判断:小明的速度比小强的速度每秒快A、1米B、1.5米C、2米D、2.5米8.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为3 80 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A、1个B、2个C、3个D、4个二、填一填,画龙点睛(每小题 4分,共32分)1.某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x之间的函数关系式是 .2. 一次函数y= -2x+4的图象与x轴交点坐标是,与y轴交点坐标是与坐标轴围成的三角形面积是。
20道初中数学函数题
20道初中数学函数题1、如图,已知抛物线y= -(1/2)x²+(5-√m²)+m-3与x轴有两个交点A、B,点A在x轴的正半轴上,点B在x轴的负半轴上,且OA=OB。
(1)求m的值;(2)求抛物线的解析式,并写出抛物线的对称轴和顶点C的坐标;(3)在抛物线上是否存在一点M,是△MAC≌△OAC?若存在,求出点M的坐标;若不存在,请说明理由。
解:(1)从图可以看出,抛物线的顶点在y轴的正半轴上,所以:(5-√m²)+m-3>0当m≥0时,(5-√m²)+m-3=2>0当m<0时,(5-√m²)+m-3=2+2m>0,即-1<m<0所以:综上得m的值为m>-1(2)、y=-(1/2)x²+2 (m≥0时)对称轴是x=0,顶点C(0,2)y=-(1/2)x²+2+2m (-1<m<0时)对称轴是x=0,顶点C(0,2+2m).(3)、不存在。
对于y=-(1/2)x²+2来说,不存在M点,因为△OAC是等腰直角△,角O是直角,若在抛物线上找M点,使∠AMC=90°,是不存在的,因为以AC为直径的元与抛物线只有A,C两个交点。
对于y=-(1/2)x²+2+2m 来说,A点坐标是(2√(1+m),0) C点坐标(0,2+2m)也就是说OA的长为2√(1+m),OC的长为2(1+m)对于√(1+m)=(1+m)^(1/2)和1+m来说,由于1+m>0,1/2<1,所以:√(1+m)>1+m (由指数函数的性质而得)即OA>OC所以:以AC为直径的元与抛物线只有A,C两个交点。
2、已知二次函数f(x)=—1/2x平方+x,问是否存在实数m.n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n],如存在求出m,n的值,如不存在说明理由。
初中难的数学练习题
初中难的数学练习题
1. 一元二次方程求解:
解下列一元二次方程:\(2x^2 - 5x - 3 = 0\)。
2. 函数图像分析:
给定函数\(y = x^3 - 3x^2 + 2\),求出该函数的极值点,并画出
其大致图像。
3. 几何图形面积计算:
一个矩形的长为10cm,宽为6cm,求该矩形的面积。
4. 圆与直线的位置关系:
已知圆的方程为\((x - 2)^2 + (y - 3)^2 = 25\),直线方程为
\(y = 2x + 1\),判断直线与圆的位置关系。
5. 概率问题:
一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到至少
一个红球的概率。
6. 多项式除法:
将多项式\(4x^3 - 3x^2 + 2x - 1\)除以\(x - 1\),求商和余数。
7. 三角形内角和定理应用:
一个三角形的两个内角分别为45度和60度,求第三个内角的度数。
8. 代数式求值:
已知\(a = 2\),\(b = 3\),求代数式\(a^2 + 2ab + b^2\)的值。
9. 反比例函数图像性质:
给定反比例函数\(y = \frac{k}{x}\),其中\(k = 4\),求该函数在第一象限的图像上一点,使得该点的横纵坐标之积为8。
10. 统计数据的中位数和众数:
一组数据为:2, 3, 3, 4, 5, 5, 5, 6, 7,求该组数据的中位数和众数。
函数公式练习题
函数公式练习题为了提高学生对函数公式的理解和运用能力,以下是一些函数公式练习题。
请同学们仔细阅读,根据题目要求,独立完成计算和解答。
1. 题目一函数公式:f(x) = 3x - 2a) 当 x = 5 时,计算 f(x) 的值。
b) 当 f(x) = 7 时,计算 x 的值。
2. 题目二函数公式:g(x) = 2x^2 + 5x - 3a) 计算 g(3) 的值。
b) 当 g(x) = 0 时,计算 x 的值。
3. 题目三函数公式:h(x) = 4 - x^2a) 计算 h(-2) 的值。
b) 当 h(x) = 0 时,计算 x 的值。
4. 题目四函数公式:k(x) = √xa) 计算 k(9) 的值。
b) 当 k(x) = 2 时,计算 x 的值。
5. 题目五函数公式:m(x) = |x - 6|a) 计算 m(3) 的值。
b) 当 m(x) = 10 时,计算 x 的值。
6. 题目六函数公式:n(x) = 2^xa) 计算 n(2) 的值。
b) 当 n(x) = 16 时,计算 x 的值。
请用适当的格式,按照上述题目顺序,逐个回答并写明计算过程和结果。
【题目一解答】a) 当 x = 5 时,计算 f(x) 的值。
f(5) = 3(5) - 2= 15 - 2= 13所以,当 x = 5 时,f(x) 的值为 13。
b) 当 f(x) = 7 时,计算 x 的值。
7 = 3x - 29 = 3xx = 9/3x = 3所以,当 f(x) = 7 时,x 的值为 3。
【题目二解答】a) 计算 g(3) 的值。
g(3) = 2(3)^2 + 5(3) - 3= 2(9) + 15 - 3= 18 + 15 - 3= 30所以,g(3) 的值为 30。
b) 当 g(x) = 0 时,计算 x 的值。
0 = 2x^2 + 5x - 32x^2 + 5x - 3 = 0根据二次方程求根公式,可得:x = (-5 ± √(5^2 - 4(2)(-3))) / (2(2))x = (-5 ± √(25 + 24)) / 4x = (-5 ± √49) / 4x = (-5 ± 7) / 4当 x = (-5 + 7) / 4 = 2/4 = 1/2 时,满足 g(x) = 0。
初三函数测试题目及答案
初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。
答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。
答案:013. 函数y=1/x的图象在x=2处的斜率是________。
答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。
答案:115. 函数y=2x^2-4x+1的顶点坐标是________。
答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。
答案:顶点坐标为(1, 1)。
初中数学 函数专题练习及答案
初中数学函数专题练习及答案函数专题讲稿二次函数:1.抛物线 $y=- (x-1)^2+3$ 的顶点坐标为 $(1,3)$。
2.抛物线 $y=x^2-2x+1$ 的顶点坐标是 $(1,0)$。
3.抛物线$y=2x^2+6x+c$ 与$x$ 轴的一个交点为$(1,0)$,则这个抛物线的顶点坐标是 $(-1,-2)$。
4.二次函数 $y=(x-1)^2+2$ 的最小值是 $2$。
5.已知二次函数 $y=-x^2+2x+c$ 的对称轴和 $x$ 轴相交于点 $(1,0)$,则 $m$ 的值为 $1$。
6.抛物线 $y=x^2-2x+3$ 的对称轴是直线 $x=1$。
7.将抛物 $y=-(x-1)$ 向左平移 $1$ 个单位后,得到的抛物线的解析式是 $y=-x^2$。
8.把抛物线 $y=x^2+bx+c$ 向右平移 $3$ 个单位,再向下平移 $2$ 个单位,所得图像的解析式是 $y=x^2-3x+5$,则有$b=3$,$c=4$。
9.已知抛物线 $y=x^2+(m-1)x+(m-2)$ 与 $x$ 轴相交于 $A$,且线段 $AB=2$,则 $m$ 的值为 $2$。
10.一个满足条件的二次函数解析式是 $y=-x^2$。
11.若抛物线 $y=x^2+2x+a$ 的顶点在 $x$ 轴的下方,则$a$ 的取值范围是 $a<1$。
12.已知二次函数 $y=ax^2+bx+c$,且 $a0$,则一定有$b^2-4ac<0$。
利用图像:1.若直线 $y=m$($m$ 为常数)与函数 $y=4$ 的图像恒有三个不同的交点,则常数 $m$ 的取值范围是 $m>4$。
2.阴影部分的面积相等的是 $①②$。
3.若 $A(-\frac{13}{4},1)$,$B(-1,y_2)$,$C(\frac{5}{3},y_3)$ 为二次函数 $y=-x^2-4x+5$ 的图象上的三点,则 $y_1>y_2>y_3$。
初一函数试题及答案
初一函数试题及答案一、选择题(每题2分,共10分)1. 函数的自变量可以是()A. 整数B. 实数C. 有理数D. 任意数2. 下列哪个不是函数的基本要素?()A. 定义域B. 值域C. 函数关系式D. 函数名3. 如果函数\( f(x) \)的定义域是\( \{x | x \geq 0\} \),那么\( f(-1) \)的值是()A. 无定义B. 0C. 1D. -14. 函数\( y = 2x + 3 \)的斜率是()A. 2B. 3C. 5D. 无法确定5. 函数\( y = x^2 \)的图像是一个()A. 直线B. 抛物线C. 双曲线D. 正弦曲线二、填空题(每题2分,共10分)6. 函数\( y = 3x - 2 \)的图像经过点_________。
7. 函数\( y = x^2 \)的顶点坐标是_________。
8. 函数\( y = -x + 5 \)与x轴交点的横坐标是_________。
9. 函数\( y = 2x + 1 \)的图像与y轴交点的纵坐标是_________。
10. 如果函数\( y = kx \)经过点(1, 3),那么k的值是_________。
三、解答题(每题5分,共20分)11. 已知函数\( y = 4x - 1 \),请画出其图像,并求出当\( x = 2 \)时的函数值。
12. 已知函数\( y = x^2 - 2x + 1 \),请求出其顶点坐标。
13. 已知函数\( y = 3x + 5 \),请求出其与x轴和y轴的交点坐标。
14. 已知函数\( y = -x^2 + 2x + 3 \),请判断其开口方向,并求出顶点坐标。
四、综合题(每题10分,共20分)15. 某工厂生产的产品,每件产品的成本为10元,销售价格为15元。
设工厂生产了x件产品,请写出工厂的收益函数,并求出当生产100件产品时的收益。
16. 某学校为提高学生的数学成绩,决定对每学期数学成绩在90分以上的学生进行奖励。
函数题型练习题
函数题型练习题函数题型在数学学习中占有非常重要的地位,通过解题可以帮助学生巩固对函数的理解和应用,提高数学解题的能力。
下面是一些函数题型练习题,希望能够帮助大家加深对函数的认识。
1. 设函数f(x) = (x - 1)² + 1,求f(2)的值。
解析:将x = 2代入函数表达式,有f(2) = (2 - 1)² + 1 = 1 + 1 = 2。
所以f(2)的值为2。
2. 已知函数g(x) = 2x - 3,求g(-4)的值。
解析:将x = -4代入函数表达式,有g(-4) = 2(-4) - 3 = -8 - 3 = -11。
所以g(-4)的值为-11。
3. 设函数h(x) = |x - 2|,求h(-3)和h(5)的值。
解析:将x = -3代入函数表达式,有h(-3) = |-3 - 2| = |-5| = 5。
所以h(-3)的值为5。
将x = 5代入函数表达式,有h(5) = |5 - 2| = |3| = 3。
所以h(5)的值为3。
4. 已知函数k(x) = 2x² - 5x + 3,求k(1)和k(-2)的值。
解析:将x = 1代入函数表达式,有k(1) = 2(1)² - 5(1) + 3 = 2 - 5 + 3 = 0。
所以k(1)的值为0。
将x = -2代入函数表达式,有k(-2) = 2(-2)² - 5(-2) + 3 = 8 + 10 + 3 = 21。
所以k(-2)的值为21。
5. 设函数m(x) = √x + 1,求m(4)的值。
解析:将x = 4代入函数表达式,有m(4) = √4 + 1 = 2 + 1 = 3。
所以m(4)的值为3。
6. 已知函数n(x) = 3x - 2,求n(0)和n(2)的值。
解析:将x = 0代入函数表达式,有n(0) = 3(0) - 2 = -2。
所以n(0)的值为-2。
将x = 2代入函数表达式,有n(2) = 3(2) - 2 = 6 - 2 = 4。
初二函数20题
初二函数20题以下是适合初二学生练习的20道函数题目:1.如果一个函数y = kx (k ≠ 0) 的图像经过点(2, -4),求k 的值。
2.函数y = 2x + 1 与y 轴的交点坐标是_______。
3.已知一次函数y = (3 - k)x - 2k + 18,求k 为何值时,y 随x 的增大而减小?4.函数y = (2x - 1)/(x + 2) 中,当x = -1 时,y 的值是_______。
5.已知函数y = (m + 3)x^(m^2 - 9) 是关于x 的二次函数,求m 的值。
6.已知函数y = (2x - 1)/(x + 3) 的值为1,求x 的值。
7.函数y = (x - 2)/(x + 1) 的图像不经过_______ 象限。
8.若一次函数y = kx + b 的图像经过第一、三、四象限,则k,b 应满足的条件是_______。
9.已知函数y = (2x + 1)/(x - 1),当x = 2 时,y 的值是_______。
10.函数y = (x + 1)/(x - 2) 的图像与x 轴的交点坐标是_______。
11.已知正比例函数y = kx (k ≠ 0) 的图像经过点(-2, 4),则这个函数的表达式是_______。
12.函数y = 2x - 1 与y = -x + 3 的图像的交点坐标是_______。
13.已知二次函数y = ax^2 + bx + c 的图像经过点(-1, 0),(3, 0),(1, -8),求这个二次函数的表达式。
14.函数y = 3x - 5 与y = -2x 的图像的交点坐标是_______。
15.若函数y = (mx + 1)/(x - 2) 的图像关于原点对称,则m = _______。
16.已知二次函数y = ax^2 + bx + c 的图像与x 轴交于点(1, 0) 和(3, 0),且与y 轴交于点(0, -3),求这个二次函数的表达式。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
初二函数练习题20道
初二函数练习题20道1. 函数f(x) = 2x + 3,求f(4)的值。
2. 函数g(x) = 3x² - 2x + 1,求g(-2)的值。
3. 函数h(x) = x - 5,求h(-3)的值。
4. 函数p(x) = x² - 4x,求p(3)的值。
5. 函数q(x) = 2x² + 5x - 1,求q(-1)的值。
6. 函数r(x) = 3x - 2,求r(0)的值。
7. 函数s(x) = 4x² - 2x + 1,求s(1)的值。
8. 函数t(x) = 3x + 2,求t(-4)的值。
9. 函数u(x) = 2x² - 3x,求u(2)的值。
10. 函数v(x) = 5x - 1,求v(3)的值。
11. 函数w(x) = x² + 2x + 3,求w(0)的值。
12. 函数x(x) = 2x - 3,求x(-1)的值。
13. 函数y(x) = -3x + 2,求y(4)的值。
14. 函数z(x) = 3x² + 4x + 2,求z(-2)的值。
15. 函数a(x) = x² - 5x + 3,求a(-3)的值。
16. 函数b(x) = 4x - 5,求b(1)的值。
17. 函数c(x) = -2x² + 3x - 1,求c(0)的值。
18. 函数d(x) = -x + 2,求d(-2)的值。
19. 函数e(x) = 5x² - 3x + 4,求e(2)的值。
20. 函数f(x) = -4x² + 2x - 5,求f(1)的值。
以上是初二函数练习题的20道题目,每道题都要根据给定的函数形式求出相应的函数值。
通过解答这些题目,你可以巩固和练习函数概念以及函数求值的方法。
这些练习题涵盖了一些基本的一次函数和二次函数的形式,帮助你更好地理解函数的特点和性质。
注意,在解答这些题目时,需要将给定的函数中的自变量x替换为题目中给定的数值,然后进行计算,最终得到函数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x
= ;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )
A .-1
B .-2
C .2
D .2或-2
(3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( )
A .反比例函数
B .正比例函数
C .一次函数
D .反比例或正比例函数
(4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )
(5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )
(6)反比例函数(0k y k x
=≠)的图象经过(—2,5
n ), 求(1)n 的值;(2)判断点B (24
,)是否在这个函数图象上,并说明理由
(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3
时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.
(8)若反比例函数22)12(--=m x m y 的图象在第二、四象限,则m 的值是( )
A 、 -1或1;
B 、小于12
的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =
在同一坐标系内的图象大致是( )
(10)、如图,正比例函数(0)y kx k
=>与反比例函数2y x
=的图象相交于A
、C
过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于( ) A .1 B .2 C .4 D .随k 的取值改变而改变.
11、已知函数12y y y =-,其中1x y 与成正比例,22x y -与1,1;3, 5.2,.x y x y x y =====时当时求当时的值
12、(8分)已知,正比例函数y ax =图象上的点的横坐标与纵坐标互为相反数,反比例函数y x
=
在每一象限内y x 随的增大而减小,一次函数24y x k a k =-++过点()2,4-.
(1)求a 的值.
(2)求一次函数和反比例函数的解析式.
x x x x A B C D
二次函数提高题:
1. 232m
m y mx ++=是二次函数,则m 的值为( ) A .0或-3
B .0或3
C .0
D .-3 2.已知二次函数22(1)24y k x kx =-+-与x 轴的一个交点A (-2,0),则k 值为( )
A .2
B .-1
C .2或-1
D .任何实数
3.与22(1)3y x =-+形状相同的抛物线解析式为( )
A .2112y x =+
B .2(21)y x =+
C .2(1)y x =-
D .22y x =
4.关于二次函数2y ax b =+,下列说法中正确的是( )
A .若0a >,则y 随x 增大而增大
B .0x >时,y 随x 增大而增大。
C .0x <时,y 随x 增大而增大
D .若0a >,则y 有最小值.
5.函数223y x x =-+经过的象限是( )
A .第一、二、三象限
B .第一、二象限
C .第三、四象限
D .第一、二、四象限
6.已知抛物线2y ax bx =+,当00a b ><,时,它的图象经过( )
A .第一、二、三象限
B .第一、二、四象限
C .第一、三、四象限
D .第一、二、三、四
象限
7.对y = )
A .当x =1时,y 最大值=22
B .当x =1时,y 最大值=8
C .当x =-1时,y 最大值=8
D .当x =-1时,y 最大值=22
8.二次函数2y ax bx c =++的图象过点(1,0)、(0,3),对称轴x =-1.
1)求函数解析式;
2)图象与x 轴交于A 、B (A 在B 左侧),与y 轴交于C ,顶点为D ,求四边形ABCD 的面积.
9、抛物线21323
y x x =-
+-与2y ax =的形状相同,而开口方向相反,则a =( ) (A )13- (B )3 (C )3- (D )13 10.把二次函数122--=x x y 配方成顶点式为( )
A .2)1(-=x y
B . 2)1(2--=x y
C .1)1(2++=x y
D .2)1(2-+=x y 11.函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )
A .3<k
B .03≠<k k 且
C .3≤k
D .03≠≤k k 且
12、若抛物线n m x a y ++=2)(的开口向下,顶点是(1,3),y 随x 的增大而减小,则x 的取值范围
是( )(A )3x > (B )3x < (C )1x > (D)0x <
13.抛物线)0(2
≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 0.
14.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.
15.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .
16.对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 .
17.已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,
则b = ,c = .
18、已知二次函数2y ax bx c =++ 的图象经过点(1,0)和(-5,0)两点,顶点纵坐标为
92,求这个二次函数的解析式。
.。