异方差问题检验与修正
实验三 异方差性的检验及修正
实验三异方差性的检验及修正一、实验目的掌握异方差性的检验及处理方法二、实验学时:2三、实验内容及操作步骤建立并检验我国制造业利润函数模型1.检验异方差2.调整异方差四、实验要求【例1】表1列出了2012年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
(一)检验异方差性⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
⒉Goldfeld-Quant检验⑴将样本按解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为216231.7。
SMPL 1 10LS Y C X图3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。
SMPL 19 28 LS Y C X图4 样本2回归结果⑷计算F 统计量:12/RSS RSS F =11501152/216231.7=53.19,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.319.5305.0=>=F F ,所以存在异方差性 ⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。
第9章 异方差问题检验与修正
293543 9528.2 18415.4
The scatter graph between R&D expenditure and Sales
15000
10000
5000
0
0
100000
200000
300000
sales (million dollars)
Why Worry About Heteroskedasticity?
heteroskedasticity, cont.
The OLS estimates aren’t efficient, that’s the variances of the estimates are not the smallest variances.
If the standard errors are biased, we can not use the usual t statistics or F statistics for drawing inferences. That is, the t test and F test and the confidence interval based on these test don’t work.
Patterns of heteroskedasticity
Y X
homoskedasticity
Y
Decreasing with X
Y
var(u|X)=s2 (homoskedasticity)
If this is not true, that is if the variance of u is different for different values of the X’s, then the errors are heteroskedastic
异方差的诊断及修正
异方差的诊断与修正—甘子君 经济1202班 1205060432一、异方差的概念:异方差性(heteroscedasticity )是相对于同方差而言的。
所谓同方差,是为了保证回归参数估计量具有良好的统计性质,经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。
如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。
在回归模型的经典假定中,提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var也就是说iu 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =kik i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为ni u X X Y iki k i i ,,2,1221 =++++=βββ如果其它假定均不变,但模型中随机误差项iu 的方差为).,,3,2,1(,)(22n i u Var i i ==σ则称iu 具有异方差性。
也称为方差非齐性。
二、内容根据1998年我国重要制造业的销售利润与销售收入数据,运用EV 软件,做回归分析,用图示法,White 检验模型是否存在异方差,如果存在异方差,运用加权最小二乘法修正异方差。
三、过程:(实践过程、实践所有参数与指标、理论依据说明等)(一) 模型设定为了研究我国重要制造业的销售利润与销售收入是否有关,假定销售利润与销售收入之间满足线性约束,则理论模型设定为:i Y =1β+2βi X +i μ其中,i Y 表示销售利润,i X 表示销售收入。
由1998年我国重要制造业的销售收入与销售利润的数据,如图1:1988年我国重要制造业销售收入与销售利润的数据 (单位:亿元)(二)参数估计1、双击“Eviews”,进入主页。
异方差的检验及修正
异方差问题的检验与修正【实验目的】1、深刻理解异方差性的实质、异方差出现的原因、异方差的出现对模型的不良影响(即异方差的后果),掌握估计和检验异方差性的基本思想和修正异方差的若干方法。
2、能够运用所学的知识处理模型中的出现的异方差问题,并要求初步掌握用Eviews处理异方差的基本操作方法。
【实验原理】1、最小二乘估计。
2、异方差。
3、最小二乘残差图解释异方差。
4、Breusch-Pagan检验(B-P检验)和White检验(怀特检验)检验特定方差函数的异方差性。
5、稳健标准差和加权最小二乘法对特定方差函数的异方差性的修正。
【实验软件】Eviews6.0【实验步骤】一、设定模型首先将实验数据导入软件之中。
(注:本实验报告正文部分只显示软件统计结果,导入数据这一步骤参见附A)本次实验的数据主要是Big Andy店的食品销售收入数据与食品价格数据,共采用了75组。
实验数据来源于课本中的例题,由老师提供。
如下表:表Big Andy店月销售收入和价格的观测值sales price sales price sales price sales price 73.2 5.6975.7 5.5978.1 5.773.7671.8 6.4974.4 6.2288 5.2271.2 6.3762.4 5.6368.7 6.4180.4 5.0584.7 5.3367.4 6.2283.9 4.9679.7 5.7673.6 5.2389.3 5.0286.1 4.8373.2 6.2573.7 5.8870.3 6.4173.7 6.3585.9 5.3478.1 6.2473.2 5.8575.7 6.4783.3 4.9869.7 6.4786.1 5.4178.8 5.6973.6 6.3967.6 5.4681 6.2473.7 5.5679.2 6.2286.5 5.1176.4 6.280.2 6.4188.1 5.187.6 5.0476.6 5.4869.9 5.5464.5 6.4984.2 5.0882.2 6.1469.1 6.4784.1 4.8675.2 5.8682.1 5.3783.8 4.9491.2 5.184.7 4.8968.6 6.4584.3 6.1671.8 5.9873.7 5.6876.5 5.3566 5.9380.6 5.0282.2 5.7380.3 5.2284.3 5.273.1 5.0874.2 5.1170.7 5.8979.5 5.6281 5.2375.4 5.7175 5.2180.2 5.2873.7 6.0281.35.45756.0581.25.83696.33其中,sales 表示在某城市的月销售收入,以千美元为单位;price 表示在该城市的价格,以美元为单位。
异方差性的检验和修正
甘肃
4916.25
4126.47
上 海 11718.01
8868.19
青海
5169.96
4185.73
江 苏 6800.23
5323.18
新疆
5644.86
4422.93
1、做 Y 关于 X 的散点图以及回归分析 将数据通过 excel 录入到 eviews 中,对解释变量与被解释变量做散点图,选择解 释变量作为 group 打开,在数据表“ group”中点击 view/graph/scatter/simple scatter,出现以上数据的散点图,如下图所示:
图的结果显示,X 前的参数在 5%的显著性水平下不为零,同时,F 检验也表明方程的线性 关系在 5%的显著性水平下成立。 其次,采用异方差稳健标准误法修正原 OLS 的标准差,得到下图所示的估计结果:
任然可以看出,变量 x 对应参数修正后的标准差比 ols 估计的结果有所增大,这表明原模型 OLS 估计结果低估了 X 的标准差。
上海
11718.01
8868.19
青海
5169.96
4185.73
北京
10349.69
8493.49
内蒙古
5129.05
3927.75
广东
9761.57
8016.91
陕西
5124.24
4276.67
浙江
9279.16
7020.22
甘肃
4916.25
4126.47
天津
8140.5
6121.04
黑龙江
4912.88
计量经济学实验四——异方差的检验和修正
实验目的:学习建立回归模型,并进行异方差检验和对模型进行修正 实验内容:
异方差的检验与修正
西安财经学院本科实验报告学院(部)统计学院实验室313课程名称计量经济学学生姓名学号1204100213专业统计学教务处制2014年12 月15 日《异方差》实验报告五、实验过程原始记录(数据、图表、计算等) 一.选择数据1.建立工作文件并录入数据File\New\workfile, 弹出Workfile create 对话框中选择数据类型.Object\new object\group,按向上的方向键,出现两个obs 后输入数据.中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元城市 y x1 x2 城市 y x1 x2 北京 5724。
5 958.3 7317。
2 湖北 2732。
5 1934。
6 1484。
8 天津 3341。
1 1738.9 4489 湖南 3013。
3 1342.6 2047 河北 2495。
3 1607。
1 2194。
7 广东 3886 1313。
9 3765.9 山西 2253.3 1188。
2 1992.7 广西 2413。
9 1596。
9 1173。
6 内蒙古 2772 2560.8 781.1 海南 2232。
2 2213。
2 1042.3 辽宁 3066。
9 2026。
1 2064。
3 重庆 2205。
2 1234.1 1639。
7 吉林 2700.7 2623。
2 1017。
9 四川 2395 1405 1597.4 黑龙江 2618。
2 2622.9 929.5 贵州 1627。
1 961。
4 1023。
2 上海 8006 532 8606.7 云南 2195.6 1570。
3 680。
2 江苏 4135.2 1497。
9 4315.3 西藏 2002。
2 1399.1 1035.9 浙江 6057。
2 1403.1 5931。
7 陕西 2181 1070。
4 1189。
8 安徽 2420。
9 1472。
8 1496。
3 甘肃 1855.5 1167。
实验五 计量经济学异方差问题及其修正
实验五异方差性一、实验目的掌握异方差的检验方法与处理方法.二、实验要求应用教材第116页案例做异方差模型的图形法检验、Goldfeld-Quanadt检验与White检验,使用WLS法对异方差进行修正;三、实验原理异方差性检验:图形法检验、Goldfeld-Quanadt检验、White检验与加权最小二乘法;四、实验步骤一、模型的OLS估计(1)录入数据打开EViews6,点“File”→“New”→“Workfile”选择“Unstructured/Undated”,在Observations 后输入21,如下所示:点击“ok”。
在命令行输入:DATA Y X,回车。
将数据复制粘贴到Group中的表格中,如下图:(2)估计回归方程在命令行输入命令:LS Y C X ,回车。
或者在主菜单中点“Quick ”→“Estimate Equation ”,在Specification 中输入 Y C X ,点“确定”。
得到如下估计结果: 写出回归方程:i ˆ562.9075 5.3728iY X =-+t=(-1.9306) (8.3398)2R=0.7854 F=69.55二、模型的异方差检验1、图示检验法(1)作散点图:X——Y在命令行输入命令:scat X Y ,回车(2)作散点图:X——2~ei首先生成残差的平方序列,在命令行输入命令:GENR E2=resid^2 ,回车。
作散点图:在命令行输入命令: SCAT X 2~e E2 ,回车,结果如下图。
i由上图可以看出,残差平方2~i e 对解释变量X 的散点图主要分布在图形中的下三角部分,大致看出残差平方2~i e 随i X 的变动呈增大的趋势,因此,模型很可能存在异方差。
2、模型的G-Q 检验 原假设0H :同方差 备择假设1H :异方差(1)首先将样本按X 由小到大的顺序排列,在命令行输入命令:SORT X 回车(2)去除掉中间的5个样本(n/4=5.25,为了使剩下的样本能被平均分成两份,去掉7个),将剩余的16个样本平均分为两份,每一份8个样本。
计量经济学--异方差的检验及修正
经济计量分析实验报告一、实验项目异方差的检验及修正二、实验日期2015.12.06三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,进行异方差的检验和补救。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
检验是否存在异方差并补救。
五、实验步骤1、建立模型。
以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆)t 4X — 城乡居民储蓄存款年末增加值(亿元)3、对模型进行多重共线性检验。
4、检验异方差是否存在。
六、实验结果(一)、消除多重共线性之后的模型多元线性回归模型估计结果如下:4321000779.0053329.0151924.0720076.0-99.81113ˆX +X +X +X =Y i SE=(26581.73) (0.230790) (0.108223) (0.013834) (0.020502) t =(3.051494) (-3.120046) (1.403805) ( 3.854988) (0.038020)R2=0.969693R2=0.957571F=79.98987(1)拟合优度检验:可决系数R 2=0.969693较高,修正的可决系数R 2=0.957571也较高,表明模型拟合较好。
异方差性的概念类型后果检验及其修正方法
异方差性的概念类型后果检验及其修正方法异方差性(heteroscedasticity)是指随着自变量的变化,被解释变量的方差不保持恒定,呈现出不同的分散特征。
异方差性可能会导致线性回归模型的参数估计不精确,误差项的标准误差的估计不准确,常见的检验和修正方法包括Breusch-Pagan检验和White检验,同时,还可以采取加权最小二乘法或者转换变量的方法来修正异方差性。
异方差性可以分为条件异方差和非条件异方差两种类型。
条件异方差是指在给定自变量的情况下,被解释变量方差的大小存在差异;非条件异方差则是指被解释变量的方差在整个样本空间内都存在差异。
异方差性的后果是导致参数估计的不准确性和偏误。
当存在异方差性时,OLS(普通最小二乘法)估计的标准误差会低估真实标准误差,从而使得参数显著性以及模型拟合效果可能出现问题。
此外,在存在异方差性的情况下,t检验、F检验等假设检验的结果也会受到影响。
在进行线性回归模型时,常常需要对异方差性进行检验。
一种常用的检验方法是Breusch-Pagan检验,其基本思想是对残差的平方与自变量进行回归,然后通过F检验来判断异方差的存在与否。
另一种常用的检验方法是White检验,它是在一个包含自变量和交互项的扩展模型中对残差的平方与自变量进行回归,通过Wald检验统计量来判断异方差的存在与否。
异方差性可以通过多种修正方法来处理。
其中,一种常用的方法是采用加权最小二乘法(WLS)来估计参数。
WLS的基本思想是将方差不恒定的观测值加权,使得每个观测值的权重与方差的倒数成正比。
另一种常用的方法是通过转换变量,使得原始数据变换成具有恒定方差的形式,例如对数变换、平方根变换等。
下面以一个案例来说明如何检验和修正异方差性。
假设我们研究了城市的房价(被解释变量)与房屋面积和所在地区(自变量)之间的关系。
我们采集了100个样本数据,并构建了线性回归模型进行分析。
1.检验异方差性:使用Breusch-Pagan检验来检验模型的异方差性。
2019年第9章 异方差问题检验与修正.ppt
Patterns of heteroskedasticity
Y
X homoskedasticity Y Y Increasing with X
185.1 nurse 1569.5 space 274.8 consumption 2828.1 electronics 225.9 chemistry 3751.9 polymer 2884.1 computer 4645.7 fuel 5036.4 auto
The scatter graph between R&D expenditure and Sales
What’s heteroskedasticity?
What is Heteroskedasticity?
Recall
the assumption of homoskedasticity implied that conditional on the explanatory variables, the variance of the unobserved error, u, was constant
X1 X2 X3
.
.
E(Y|X) = b0 + b1X
X
Examples
Generally, cross-section data more easily induce heteroskedasticity because of different characteristics of different individuals. Consider a cross-section study of family income and expenditures. It seems plausible to expect that low income individuals would spend at a rather steady rate, while the spending patterns of high income families would be relatively volatile. If we examine sales of a cross section of firms in one industry, error terms associated with very large firms might have larger variances than those error terms associated with smaller firms; sales of larger firms might be more volatile than sales of smaller firms.
异方差性的检验方法和修正
Z N UE L异方差性的检验方法和修正一、 实验目的熟练掌握异方差性的检验方法和修正处理方法二、实验原理异方差(heteroskedasiticity )是计量经济工作红线性回归模型经常遇到的问题,异方差的存在对线性回归分析有很强的破坏作用。
利用异方差的图形检验、戈德菲尔特-夸特检验、怀特检验方法,检验案例中线性回归模型的异方差是否存在,若存在的话,如何通过加权最小二乘法进行修正,建立能够真正反应案例的经济模型,实现对经济的正确指导作用。
三、实验要求通过Eviews 软件应用给定的案例做异方差模型的图形检验法、Glodfeld-Quanadt(戈德菲尔特-夸特)检验与White(怀特)检验,并使用加权最小二乘法(WLS)对异方差进行修正。
四、 实验步骤在现实经济活动中,最小二乘法的基本假定并非都能满足,本案例讲讨论随机误差项违背基本假定的一个方面—异方差性。
本案例将介绍:异方差模型的图形检验、戈德菲尔特-夸特检验、怀特检验;异方差模型的加权最小二乘法修正。
1、建立workfile 和对象,录入2007年城镇居民收入X 和消费额Y 的数据。
2、参数估计按住ctrl 键,同时选中序列X 和序列Y ,点右键,在所出现的右键菜单中,选择open\as Group 弹出一对话框,点击其上的“确定”,可生成并打开一个群对象。
在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X 与Y 的简单散点图,可以看出X 与Y 是带有截距的近似线性关系。
点击朱界面菜单Quick\Estimate Equation, 在弹出的对话框中输入 Y C X,点确定即可到回归结果,如下:VariableCoefficientStd. Errort-StatisticProb. C 756.6871570.1912 1.3270760.1948X0.3076930.01908216.124970.0000R-squared0.899659 Mean dependent var 8689.161Durbin-Watson stat1.694571 Prob(F-statistic)0.0000003、异方差检验本案例用的是2007年的全国各个诚实城镇居民收入和消费额,由于地区之间这种差异使得模型很容易产生异方差,从而影响模型的估计和运行,为此必须对该模型是否存在异方差进行检验。
异方差的检验与修正
实验一异方差的检验与修正一、实验目的:了解异方差(heteroscedasticity)、Goldfeld-Quandt 检验、Spearman rank correlation 检验、Park 检验、Glejser 检验、Breusch-Pagan 检验、White 检验、加权最小二乘法( weighted least squares,简记WLS )、模型对数变换法等基本概念及异方差产生的原因和后果。
掌握异方差的检验与修正方法以及如何运用Eviews软件在实证研究中实现相关检验与修正。
二、基本概念:异方差(heteroscedasticy)就是对同方差假设(assumption of homoscedasticity)的违反。
经典回归中同方差是指随着样本观察点X的变化,线性模型中随机误差项的方差并不改变,保持为常数。
异方差的检验有图示法及解析法,检验异方差的解析方法的共同思想是,由于不同的观察值随机误差项具有不同的方差,因此检验异方差的主要问题是判断随机误差项的方差与解释变量之间的相关性。
异方差的修正方法有加权最小二乘法和模型对数变换法等,其基本思路是变异方差为同方差,或者尽量缓解方差变异的程度。
三、实验内容及要求:内容:根据北京市1978-1998年人均储蓄与人均收入的数据资料,若假定X为人均收入(元),丫为人均储蓄(元),通过建立一元线性回归模型分析人均储蓄受人均收入的线性影响,并讨论异方差的检验与修正过程。
要求:(1)深刻理解上述基本概念(2 )思考:异方差的各种检验方法所适用的情况及如何运用加权最小二乘法(WLS )修正异方差?(3)熟练掌握相关Eviews操作四、实验指导:1•用OLS估计法估计参数(1)导入数据打开Eviews 软件,选择"File” 菜单中的“New--Workfile ” 选项,出现“Workfile Range ' 对话框,在"Workfile frequency ”框中选择"Annual”,在"Start date”和"End date”框中分别输入“ 1978”和“ 1998”,如下图:图1 — 1 建立新文件然后单击“ OK”,弹出如下窗口:图1 — 2 建立新文件选择"File”菜单中的“ lmport--Read Text-Lotus-Excel "选项,找到要导入的名为EX3.2.xls 的Excel 文档,单击"打开”出现" Excel Spreadsheet Import”对话框并在其中输入"x”和“y ” ,如下图所示:图1 —3导入数据再单击“ OK”完成数据导入。
异方差问题的检验和修正
14655.1 178.3 274.8 consumption 101314.1 1595.3 10278.9
metal
21896.2 258.4 2828.1 electronics 116141.3 6107.5 8787.3
house
26408.3 494.7 225.9 chemistry 122315.7 4454.1 16438.8
.
E(Y|X) = b0 + b1X
.
X1
X2
X3
X
Examples
Generally, cross-section data more easily induce heteroskedasticity because of different characteristics of different individuals.
0
0
0
0
100000
200000
sales (million dollars)
100000
200000
sales (million dollars)
300000
300000
Why Worry About Heteroskedasticity?
The consequences of
heteroskedasticity
var(u|X)=s2 (homoskedasticity)
If this is not true, that is if the variance of u is different for different values of the X’s, then the errors are heteroskedastic
计量经济学异方差的检验与修正实验报告
计量经济学实验报告关于异方差性的检验与修正2012/11/18学院:国际教育学院专业:国际经济与贸易班级:10级一班姓名:苗子凯学号:1014102025一.异方差检验运行Eviews,依次单击file→new→work file→unstructed→observation 20。
命令栏中输入“data y x”,打开“y x”表,接下来将数据输入其中。
然后开始进行LS回归,命令栏中输入“ls y c x”回车,即得到回归结果如下回归方程为::Y = 272.3635389 + 0.7551249391*X二.开始检验异方差White 检验法:依次单击View →Residual Tests →Heteroskedasticity test →Whit 经估计出现white 检验结果,如下图:所以拒绝原假设,表明模型存在异方差Goldfeld-Quanadt 检验法: 在命令栏中直接输入:ls y c x →sort 1 20(进行排序) →smpl 1 8 →ls y c x →enter 得到如下结果:99.5%565.122置信水平下的卡方值>=nR继续取样本,在命令栏中直接输入: smpl 13 20 →ls y c x→enter得到如下结果:计算F统计量:F=RSS2/RSS1=615472.0/126528.3=4.864;F=4.864> F0.05(6,6)=4.28,拒绝原假设,表明模型确实存在异方差性。
帕克检验重新打开eviews,依次键入以下步骤:file→new→work file→unstructed→observation 20。
命令栏中输入“data y x”,打开“y x”表,接下来将数据输入其中。
然后键入:genr lne2=log(resid^2) → genr lnx=log(x) →ls lne2 c lnx得到结果如下:可得到α=3.47,且t=2.89,说明显著性明显,而α的显著性不为零意味着存在显著性。
检验异方差性与调整异方差性
检验异方差性与调整异方差性1. 异方差性的概念及检验方法异方差性指的是随机变量的条件方差,并且条件方差不是常数。
也就是说,观测值的方差不仅仅取决于均值,还可能取决于其他因素。
在统计分析中,如果存在异方差性,会对参数估计和假设检验产生影响。
因此,需要在进行统计分析之前,先检验数据是否存在异方差性。
1.1 异方差性检验方法常用的异方差性检验方法有多种,包括:•基于残差的图形检验方法,如残差图和方差-均值图;•基于统计检验的方法,如Levene检验、Bartlett检验以及Brown-Forsythe检验;1.2 基于残差的图形检验方法1.2.1 残差图残差图是一种简单直观的检验异方差性的方法。
在残差图中,横轴表示预测值或观测值的均值,纵轴表示对应的残差。
如果残差的方差与均值无关,则残差图应该呈现出随机分布的特点。
反之,如果残差图中存在明显的模式,即残差的方差与均值相关,则可以初步判断存在异方差性。
1.2.2 方差-均值图方差-均值图是一种更细致的检验异方差性的方法。
在方差-均值图中,横轴表示预测值或观测值的均值,纵轴表示对应的残差的方差。
如果方差-均值图中存在明显的模式,即残差的方差与均值相关,则可以初步判断存在异方差性。
1.3 基于统计检验的方法1.3.1 Levene检验Levene检验是一种常用的检验异方差性的方法。
Levene检验基于修正后的中位数差异进行计算,主要用于检验两个或多个样本之间的方差是否存在显著差异。
在假设检验中,原假设为各组样本方差相等,备择假设为各组样本方差不等。
如果p值小于设定的显著性水平(如0.05),就可以拒绝原假设,认为样本之间存在异方差性。
1.3.2 Bartlett检验Bartlett检验是另一种常用的检验异方差性的方法。
Bartlett检验基于观测值与各组均值差异进行计算,主要用于检验两个或多个样本之间的方差是否存在显著差异。
在假设检验中,原假设为各组样本方差相等,备择假设为各组样本方差不等。
实验4-异方差性的检验和修正(更新至20131015)
验,F 统计量为
F
e e
2 2i 2 1i
735844.7 5.0762 144958.9
(2.3.2)
判断:在 0.05 下,在式 2.3.1 中分子、分母的自由度均为 6,查 F 分布 表得临界值为 F0.05 (6,6) 4.28 ,因为 F 5.0762 F0.05 (6,6) 4.28 ,所以拒绝原假设, 表明模型确实存在异方差。 (3)White 检验 由 图 2.3.3 估 计 结 果 , 按 路 径 view/Residual tests/white
图 2.3.5
4
判断。由图 2.3.5 可以看出,残差平方 ei2 对解释变量 X i 的散点图主要分布 在图形中的下三角部分,大致看出残差平方 ei2 随 X i 的变动呈增大的趋势,因此, 模型很可能存在异方差。但是否确实存在异方差还应通过更进一步的检验。 (2)Goldfeld-Quanadt 检验 对变量取值排序(按递增或递减) 。直接在工作文件窗口中按 Proc\Sort Current Page…,在弹出的对话框中输入 X 即可(默认项是 Ascending(升序))。 本例选升序排序,这时变量 Y 与 X 将以 X 按升序排序(如图 2.3.6)。
所以拒绝原假设,接受备择假设,表明模型存在异方差。 根据 White 统计量所对应 p 值的分析: 给定显著性水平 0.05 ,因为 Probabilit y (White) 0.000119 0.05 ,所 以拒绝原假设,表明模型存在异方差。
图 2.3.10
8
4.异方差性的修正
计量经济学异方差的检验与修正实验报告
计量经济学异方差的检验与修正实验报告本文以Salvatore(2001)《计量经济学》第13章为基础,通过实际数据测试,探究异方差的检验与修正方法及影响。
一、实验数据说明本实验采用的数据为美国1980年的50个州的经济数据,其中X1为人均所得(单位:美元),X2为每个州的城市百分比,Y为人口出生率(单位:千分之一),数据来源于《Applied Linear Regression Models》(Kutner, Nachtsheim, & Neter, 2004)。
二、实验原理当数据呈现异方差性时,传统的OLS估计方法将会失效,此时需要使用其他的估计方法。
其中常用的是加权最小二乘(WLS)估计方法。
WLS估计方法的思想是对存在异方差(方差不相等)的观测值进行权重调整,使得加权后的平方残差最小。
本实验将通过检验异方差条件、使用原有OLS估计进行对比以及应用WLS修正方法的实现来说明异方差对实证分析的影响。
三、实验内容及结果首先,为了检验异方差条件是否成立,可以采用Breusch-Pagan检验。
测试结果如下:\begin{equation}H_0:Var(\epsilon_i)=\sigma^2=\textit{常数},\nonumber\\H_1:Var(\epsilon_i)\neq \sigma^2,i=1,2,…,n\end{equation}结果如下表:Breusch-Pagan Test: u^2 = 112.208 Prob > chi2 = 0.0000通过检验结果可知,Breusch-Pagan检验统计量的p值为0.0000,小于0.05的水平,因此拒绝原假设,认为方差存在异方差。
接下来,我们将使用传统的OLS估计方法进行回归分析(OLS 1),并与WLS估计方法(WLS 1)进行对比。
OLS 1结果如下:\begin{equation}Y=0.0514X1+1.0871X2-58.7254 \nonumber\end{equation}\begin{table}[h]\centering\caption{OLS1结果}\begin{tabular}{cccc}\toprule& coef. & std. err. & t \\\midruleconst & -58.7254 & 23.703 & -2.477 \\X1 & 0.0514 & 0.027 & 1.895 \\X2 & 1.0871 & 0.402 & 2.704 \\\bottomrule\end{tabular}\end{table}从OLS 1的结果中可以看出,X1和X2对Y的影响都是正的,但没有达到显著水平,此时需要进行进一步分析。
异方差检验及修正讲解
异方差(fānɡ chà)检验及修正
我们利用上次的nnn文件中的实例(shílì)数据进 行分析。 具体步骤: 1.OLS拟合:首先对数据进行回归分析,在工作 文件主显示窗口选定需要分析的回归方程\打开 估计方程及其统计检验结果输出窗口(见下图一)。
精品资料
Байду номын сангаас
异方差检验(jiǎnyàn)及修正
精品资料
异方差(fānɡ chà)检验及修正
精品资料
异方差检验(jiǎnyàn)及修正
White Heteroskedasticity(no cross terms)与White Heteroskedasticity(cross terms)选项的区别在于:在no cross terms选项下得到的辅助回归方程中不包含原回归方程左手变 量的交叉乘积项作为解释变量;而cross terms选项下得到的辅 助回归方程中包含原回归方程左手变量的交叉乘积项作为解释 变量。在我们(wǒ men)使用的一元回归例子中,这两个选项 的作用没有区别。当我们(wǒ men)分析多元回归模型的异方 差问题时,因为所选辅助回归方程的解释变量不同,这两个选 项的作用就不同了。
精品资料
异方差(fānɡ chà)检验及修正
4.加权最小二乘法 我们仍然使用nnn文件的数据,点工具栏上点
Proc\make Equations,选择估计方法—普通最小二乘法, 点击Options 按钮进入方程估计选择对话框,在LS\TSLS Options选项框中选择Weighted LS/TSLS\在对话框内输 入权重(quán zhònɡ)1/abs(resid),点击确定应用,回 到估计方程对话框,点击确定得到加权最小二乘法回归方 程(见图四,并与图一中的方程比较)。
第9章 异方差问题检验与修正
ui
2
b1
The consequences of heteroskedasticity, cont.
The R2 and adj-R2 are unaffected by heteroskedasticity.
R2 ESS 1 RSS
TSS
TSS
R
2
1
RSS n TSS n
141649.9 3163.8 9761.4
leisure
35107.7 1620.6 2884.1 computer
175025.8 13210.7 19774.5
paper
40295.4 421.7 4645.7 fuel
230614.5 1703.8 22626.6
food
70761.6 509.2 5036.4 auto
heteroskedasticity, cont.
The OLS estimates aren’t efficient, that’s the variances of the estimates are not the smallest variances.
If the standard errors are biased, we can not use the usual t statistics or F statistics for drawing inferences. That is, the t test and F test and the confidence interval based on these test don’t work.
OLS estimates are still unbiased and consistent The R2 and adj-R2 are unaffected by
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、异方差问题检验与修正
1、使用双对数模型
Ln Y = β0+β1 ln X1 + β2 ln X2 + μ
回归分析:
Ln Y尖=3.266 + 0.1502 ln X1 + 0.4775 ln X2
(3.14) (1.38) (9.25)
R^2=0.7798 D.W.=1.78 F=49.60 RSS=0.8357
估计结果显示,其他来源的纯收入对农户人均消费支出的增长更有刺激作用。
2、异方差性检验
(1)图示法
Log(E)=-6.010808+0.451832 log(lx2)
(-0.679156) (0.102484)
可以看出,有91%的概率认为 X2的参数为0.451832是显著的,因此X2存在异方差性。
可知 X2可能存在异方差性。
(4)怀特(White)检验
从图中可得,X2项的参数的t检验是显著的且怀特统计量n R^2=31*0.7648=23.70
因此,X2具有异方差性
3、异方差的修正
根据帕克检验算权重:w=1/残差
Log(E)=-6.010808+0.451832 log(lx2)
(-0.679156) (0.102484)
W=1/(lx2^0.6721845)
可以看出,对原模型进行加权最小二乘估计得到
Ln y尖=3.005048+ 0.201401 ln X1 + 0.463065 ln X2 修正前 R^2=0.775025
修正后R^2=0.999999。