系统牛顿第二定律质点系牛顿第二定律

合集下载

牛顿第二定律与动量定理的专题详解

牛顿第二定律与动量定理的专题详解

牛顿第二定律与动量定理刍议广东省佛冈中学周长春在高中《物理》教材中,动量定理F·t=mv2-mv1,是由牛顿第二定律F=ma推导出来的,那么应如何准确地理解动量定理与牛顿第二定律呢?本文做一初浅的探讨。

一、动量定理是牛顿第二定律原来采用的形式在牛顿提出运动第二定律之前,伽利略在批判亚里士多德的力与速度的依赖关系的基础上,提出了力与加速度的依赖关系,但是他没有也不可能在当时的条件下发现作用力与加速度之间的定量关系。

在1684年8月之后,牛顿用几何法和极限概念论证了引力平方反比律,在为解决万有引力是否跟质量成正比的问题时,他发现了运动第二定律,具体的记载有两处,一处是在“论物体的运动”一文手稿中写道:“…动力与加速度的力之比等于运动与速度之比。

因为运动的量是由速度乘以物质的量导出的…”。

另一处是在《自然哲学的数学原理》的定义Ⅷ中给出的:“因为运动的量是由速度乘以物质的量求出来的,并且动力是由加速度的力乘以同一物质之量求出来的,物体的几个粒子上的加速的力的作用总和就是整个物体的动力”。

上面两段话中,“加速的力”指的是加速度,“运动”“运动的量”指的是动量,“动力”指的是与加速度对应的作用力,“物体”“物质的量”就是质量。

由此可知,牛顿在《自然哲学的数学原理》一书中已明确提出动量的定义:“运动量是用它的速度和质量一起来量度的”,“并把动量的变化率称之为力”,“他又用动量来表述运动第二定律”。

综上所述,牛顿其实已经提出了运动第二定律的文字表述:作用力与加速度成正比。

但当时牛顿并没有明确地用公式(F=ma)表述出来,牛顿第二定律原来采用的形式是力F、质量m、速度v和时间t这四个物理量,选择适当的单位,可使比例系数k=1,这时,牛顿第二定律可表示为①因此,牛顿第二运动定律的真实表述应该是物体所受外力等于其动量对时间的变化率。

①式也叫做牛顿第二定律的微分形式。

《自然哲学的数学原理》已经提出了作用力与加速度成正比,但当时牛顿并没有将公式①直接用F=ma表述出来,这是为什么呢?我国研究牛顿的资深学者阎康年先生在他的专著《牛顿的科学发现与科学思想》中专门研究了牛顿的质量观:“牛顿对质量概念的认识分静质量和动质量两个方面。

物理学第二章牛顿运动定律

物理学第二章牛顿运动定律

l m
l
l
a2
m
a1

m

解:(1)以小球为研究对象,当小车沿水平方向作匀加速运
动时,分析受力:

在竖直方向小球加速度为零,水平方向的
T1
加速度为a。建立图示坐标系:
利用牛顿第二定律,列方程:
m
x方向: T1sinm1a
y方向: T 1co m s 0 g
解方程组,得到:
mg
直角坐标系中的分量形式
Fx mddvtx mdd2t2x
Fy mddvty
d2y mdt2
Fz mddvtz mdd2t2z
自然坐标系中的分量形式
Ft mat mddvt
Fn

man

mv2

2、牛顿第二定律的微分形式
牛顿第二定律原文意思:运动的变化与所加的动力成正 比,并且发生在这力所沿直线的方向上。
§2-1 牛顿第一定律和第三定律
1、牛顿第一定律
任何物体都保持静止或匀速直线运动的状态,直到其它物 体对它作用的力迫使它改变这种状态为止。
几点说明和注意
1、第一定律说明任何物体都具有惯性,牛顿第一定律又叫惯性 定律。
2、当物体受到其他物体作用时才会改变其运动状态,即其他物 体的作用是物体改变运动状态的原因。
大小:取决于绳的收紧程度。

T
方向:沿着绳指向绳收紧的方向。
(3)弹簧的弹力;
弹性限度内,弹性 力满足胡克定律:
Fkx
方向:指向要恢复 弹簧原长的方向。
O
x
F
F
3、 摩擦力
摩擦力:两个相互接触的物体在沿接触面相对运动
时,或者有相对运动趋势时,在它们的接触面间所 产生的一对阻碍相对运动或相对运动趋势的力。

大学物理——第2章-质点和质点系动力学

大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1

质点系中多质点非相同加速度下牛顿第二定律的应用

质点系中多质点非相同加速度下牛顿第二定律的应用

龙源期刊网
质点系中多质点非相同加速度下牛顿第二定律的应用
作者:李福奇
来源:《中学物理·高中》2014年第02期
在解决多个物体运动,具有相同加速度问题时,我们常常用到整体法和隔离法,只要我们分清物体的运动过程,灵活地选择研究对象,交叉使用整体法与隔离法就会让问题简化.在这
里关键在于,题目中多个运动物体问题有共同的速度,共同的加速度.
1问题的提出
如果在多个物体的研究对象中,系统中物体各自速度不一样,加速度也不同,整体法又怎么利用呢?对于这个问题,我进行了进一步的讨论.
2质点系动力学方程的推导。

系统牛顿第二定律(质点系牛顿第二定律)

系统牛顿第二定律(质点系牛顿第二定律)

系统牛顿第二定律(质点系牛顿第二定律)主讲:黄冈中学教师郑成1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=0.02,在木楔的倾角α=30°的斜面上,有一质量m=1.0kg的物块,由静止开始沿斜面下滑,当滑行至s=1.4m时,速度v=1.4m/s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2)解法一:(隔离法)先隔离物块m,根据运动学公式得:v2=2as=0.7m/s2<gsinθ=5m/s2可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象对斜面M:假设地面对M静摩擦力向右:f地+N′sin30°-f′cos30°=0而N′=N=,f′=f=4.3N f地=-Nsin30°+fcos30°=-0.61N说明地面对斜面M的静摩擦力f地=0.61N,负号表示方向水平向左.可求出地面对斜面M的支持力N地N地-f′sin30°-N′cos30°-Mg=0N地= fsin30°+Ncos30°+Mg=109.65N<(M+m)g=110N因m有沿斜面向下的加速度分量,故整体可看作失重状态方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx =m1a1y+m2a2y+…+m n a ny解法二:系统牛顿第二定律:把物块m和斜面M当作一个系统,则:x:f地=M×0 +macos30°=0.61N水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°=109.56N例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力解法一:隔离法N a=mgcosαN b=mgcosβN地=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mgf地=N b′cosα-N a′cosβ=mgcosβcosα-mgcosαcosβ=0N解法二:系统牛顿第二定律列方程:(M+2m)g-N地=M×0+mgsin2α+mgsin2βN地=(M+m)g向右为正方向:f地= M×0+mgsinαcosα-mgsinβcosβ=0【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

质点系的动量定理___概述说明以及解释

质点系的动量定理___概述说明以及解释

质点系的动量定理概述说明以及解释1. 引言1.1 概述质点系的动量定理是经典力学中重要的基本定律之一,它描述了质点系在外力作用下动量的变化情况。

动量是物体运动状态的重要属性,通过研究质点系统的动量变化可以揭示物体与外界环境之间相互作用的规律以及运动过程中涉及的能量转化和传递。

1.2 文章结构本文将按照以下结构展开对质点系的动量定理进行概述和解释。

首先在引言部分进行总体说明,并介绍文章整体结构。

接着,在第二部分将详细介绍质点系的动量概念和动量定理原理,并通过应用实例进行案例分析。

第三部分将阐述动量定理的具体解释和推导方法,包括简单系统和复杂系统下推导方法以及实际应用中可能出现误差和修正方法。

第四部分将探讨动量定理在物理实验中的应用,包括实验装置和步骤介绍、数据处理与分析,以及结果讨论与验证有效性。

最后,在结论与展望部分进行对质点系动量定理的总结评述,并对未来研究方向给出展望和建议。

1.3 目的本文旨在全面介绍和解释质点系的动量定理,通过对动量定理的阐述和案例分析,帮助读者深入理解该定理的物理意义和运用方法。

同时,通过对动量定理在物理实验中应用的讨论,探究其在实际场景中的有效性和适用性。

最后,对质点系动量定理进行总结评价,并提出未来研究方向的展望和建议。

2. 质点系的动量定理2.1 动量概念介绍在物理学中,质点是指大小可忽略不计、仅具有质量和速度的物体。

动量则是一个质点运动状态的重要属性,它定义为质点的质量乘以其速度。

动量可以用数值表示,并且具有方向。

2.2 动量定理原理动量定理是描述物体受力作用时其动量变化规律的基本定律。

根据动量定理,当一个外力作用在一个系统上时,系统的动量将会改变,并且改变值等于外力对系统施加的冲量(冲击力在时间上积分)。

根据牛顿第二定律和牛顿第三定律可得到以下数学表达式:F = ma (牛顿第二定律)F = Δp/Δt (冲击力定义)其中,F代表外力,m代表物体的质量,a代表物体受到外力产生的加速度,Δp代表动量改变值(即冲击力),Δt代表时间间隔。

大学物理质点和质点系的动量定理

大学物理质点和质点系的动量定理
t1
I
O
F t2 t
O
I
t1 t2 t
t1
动量定理常应用于碰撞问题
F
t1 mv2 mv1 t2 t1 t2 t1
在△p一定时, △t 越小,则F越大
t2
Fdt
mv
mv1
F
mv2
注意
第三章 动量守恒和能量守恒
9/14
物理学
第五版
3-1 质点和质点系的动量定理 例 1 一质量为0.05kg、速率为10m/s的刚球,以与钢 板法线呈45º 角的方向撞击在钢板上,并以相同的速率和 角度弹回来.设碰撞时间为0.05s.求在此时间内钢板所受 到的平均冲力 F 解:由动量定理得 F t mv mv mv1 2 1 建立如图坐标系 x
t2
物体由于运动具有的机械效果 Objects with the mechanical effect because of moving 冲量(Impluse) (矢量Vector)
I

t1
Fdt
力对时间的累积效应
The time accumulation effects of forces
作用于质点系的合外力等于质点系动量随 时间的变化率. The combined external force acting on the mass point system is equal to the momentum variation rate of the mass point system with respect to time.

y
两边同乘以ydy, 则
2
y
1 3 1 d yv 2 y gdy ydy yv d yv gy yv 3 2 dt y yv 1 2 2 g y d y yv d yv v ( gy ) 2 0 0 3

3-1 质点和质点系的动量定理

3-1 质点和质点系的动量定理

在直角坐标系中, 在直角坐标系中,动量定理分量形式
v v v v I = Ixi + I y j + Izk
I x = ∫ Fx dt = mv x − mv0 x
t0 t t
I y = ∫ Fy dt = mv y − mv0 y
t0 t
I z = ∫ Fz dt = mvz − mv0 z
t0
t2
参考系
t2 时刻
动量定理
v v mv1 mv2 S系 系 v v v v S’系 m( v1 − u ) m( v2 − u ) 系
∫t
t2
1
v v v F (t )dt = mv 2 − mv1
动量定理常应用于碰撞问题
v v v ∫t1 mv2 − mv1 F= = t 2 − t1 t 2 − t1
例 1 一质量为 0.05kg、速率为 、速率为10m·s-1 的刚球 , 以 角的方向撞击在钢板上, 与钢板法线呈 45º 角的方向撞击在钢板上 并以相同的 速率和角度弹回来. 速率和角度弹回来 设碰撞时间为 0.05s . 求在此时间 内钢板所受到的平均冲力 F . 建立如图坐标系, 解 建立如图坐标系 由动量定理得
答:冲量的方向是动量增量的方向。 冲量的方向是动量增量的方向。
问题二:冲量大小或动量增量与哪两个因素有关? 问题二:冲量大小或动量增量与哪两个因素有关? 与哪两个因素有关
答:力与时间的增量;要产生同样的动量的增量, 力与时间的增量;要产生同样的动量的增量, 力大力小都可以:力大则时间短些; 力大力小都可以:力大则时间短些;力小则时间 长些。只要力的时间累积即冲量一样, 长些。只要力的时间累积即冲量一样,就产生同 样的动量增量。 样的动量增量。

质点和质点系的动能定理

质点和质点系的动能定理

W f1 dr12 f2 dr21
4 – 3 质点和质点系的动能定理
例如: A板相对B板滑动
A板对B板旳摩擦力为 f
B板对A板旳摩擦力为 f
求:当B板从一端移到另 一端时,摩擦力所作功 .
解:
b
f B A
a
v f
摩擦力是一对力,据对力作功旳一般体现式,应有:
A f (a b)
a b 是相对位移量
4 – 3 质点和质点系的动能定理
二 . 成对力旳功
dA f1 dr1 f2 dr2
B1
dr1
f1
B2
f2 r
dr2
21
A1
A2
f2 d (r2 r1) f2 dr21
f1 d (r1 r2 ) f1 dr12
一对内力(internal force)
做旳功与参照系选择无关 , 只决定于两质点旳相互作用力 及其相对位移.
例:炸弹爆炸过程,内力和为零,但内力所做 旳功转化为弹片旳动能。
4 – 3 质点和质点系的动能定理
例:摩擦力做功 从地面看摩擦力对物体作功
W f s
在物体参照系(也是惯性系),物
体没有移动,
v
摩擦力对物体作功 W ? W 0
摩擦力是一对力,成对摩擦力作旳功: f
W物,地 f S
一对摩擦力所做旳功与参照系旳选择无关 = 运动中放出热能
4.3.4 , 4.3.7.
2
dA F dr 称为元功, 描述了力旳空间累积效应。
物理上,称
Ek
1 mv2 P2
2
2m
为质点旳动能.
于是有:
dEk
d(1 2
mv2 )
F
dr

质点系的角动量定理

质点系的角动量定理

质点系的角动量定理质点系的角动量定理引言角动量是物理学中一个非常重要的概念,它描述了物体围绕某一轴旋转时所具有的特定性质。

在实际应用中,我们经常需要研究由多个质点组成的系统的角动量变化,这就涉及到了质点系的角动量定理。

定义首先,我们来回顾一下单个质点的角动量定义:对于一个质量为m、速度为v、距离某一轴距离为r的质点,它的角动量L可以表示为L = mvr sinθ,其中θ是速度方向与轴线方向之间的夹角。

然后再考虑由N个质点组成的系统,每个质点都有自己的速度和位置。

此时,整个系统所具有的总角动量可以表示为L = Σi=1N L_i,即每个质点所具有的角动量之和。

推导接下来我们来推导一下质点系的角动量定理。

假设一个由N个质点组成的系统,在某一瞬间t1时刻它们所具有的总角动量为L1,在另一瞬间t2时刻它们所具有的总角动量为L2。

那么根据牛顿第二定律和牛顿运动定律,我们可以得到以下的式子:F = ma = m(dv/dt) = d(mv)/dt其中F是质点所受的合力,m是质量,v是速度。

将上式两边同时乘以r sinθ,再对所有质点的角动量求和,可以得到:Σi=1N (r_i x F_i) = d/dt (Σi=1N L_i)其中r_i是第i个质点距离某一轴的距离向量,F_i是它所受的合力向量。

右边表示总角动量随时间的变化率。

根据矢量积的性质,r_i x F_i可以表示为m_iv_ir_isinθ_i,其中θ_i是速度方向与轴线方向之间的夹角。

将其代入上式中可得:Σi=1N m_iv_ir_isinθ_i = d/dt (Σi=1N L_i)这就是质点系的角动量定理。

应用利用质点系的角动量定理,我们可以研究各种旋转系统中角动量随时间变化的规律。

例如,在自由陀螺运动中,陀螺在自身重力作用下绕着固定轴线旋转。

由于陀螺具有一定的自旋角速度,它的角动量会随时间变化。

根据质点系的角动量定理,我们可以推导出陀螺的进动和章动规律。

牛顿第二定律的积分形式-3

牛顿第二定律的积分形式-3
1动能定理是牛顿第二定律的另一种积分形式系统内有个质点作用于各质点的力作功分别为各质点初动2010系统的内力有保守内力和非保守内力则一半径为的四分之一圆弧垂直固定与地面上质量为的小物体从最高点由静止下摩擦力所作的功例题1解
第二章
质点动力学
守 恒 定 律
引言
牛顿第二定律力与运动的
瞬时关系式: F ma
Fdt
t1
t2 t1
F
F o t 1
2、质点系动量定理
几个概念
质点系,外力,内力 设 n 个质点组成的质点系, i 其中第 个质点受外力 为 Fi外 ,内力为 Fi内 ,由第 二定律得
t2 t Fi外
m i vi Fi内
dpi Fi外 Fi内 dt
例题1、质量为 m ,速率为 v 的钢球,以与钢板法线呈 角 的方向撞击钢板,并以相同的 速率和角度弹回。设球与钢板 碰撞时间为 t ,求钢板受到 的平均冲力。 解:由质点动量定律,得钢球
x o
v
I Fdt mv2 mv1
取图示坐标系,则
t1
t2
y v
◆最早的火箭载人飞行试验也发生在中国
14世纪末(明朝),一勇敢者万虎坐在装有47个当时最大的火 箭的椅子上,双手各持一大风筝,试图借助火箭的推力和风 筝的升力实现飞行的梦想。尽管这次试验失败了(箭毁人 亡),但万虎被公认是尝试利用火箭飞行的世界第一人。 1959年,为了纪念万虎,人们以他的名字命名了月球的一座 环形山,美国的火箭专家赫伯特· 基姆也撰文记载他的事迹, 在美国的航空和航天博物馆中也标示着:“最早的飞行器是 中国的风筝和火箭”。
v0 cos
例题4、系统内质量移动的问题 (变质量问题) 如从桌面上提起柔软绳子,火箭 飞行中喷出燃气等运动,由于质量的改变, 应用牛顿第二定律较繁琐,而质点系动量 定理对这类问题的研究提供了方便

牛顿第二定律与动量定理的专题详解

牛顿第二定律与动量定理的专题详解

牛顿第二定律与动量定理刍议广东省佛冈中学周长春在高中《物理》教材中,动量定理F·t=mv2-mv1,是由牛顿第二定律F=ma推导出来的,那么应如何准确地理解动量定理与牛顿第二定律呢本文做一初浅的探讨。

一、动量定理是牛顿第二定律原来采用的形式在牛顿提出运动第二定律之前,伽利略在批判亚里士多德的力与速度的依赖关系的基础上,提出了力与加速度的依赖关系,但是他没有也不可能在当时的条件下发现作用力与加速度之间的定量关系。

在1684年8月之后,牛顿用几何法和极限概念论证了引力平方反比律,在为解决万有引力是否跟质量成正比的问题时,他发现了运动第二定律,具体的记载有两处,一处是在“论物体的运动”一文手稿中写道:“…动力与加速度的力之比等于运动与速度之比。

因为运动的量是由速度乘以物质的量导出的…”。

另一处是在《自然哲学的数学原理》的定义Ⅷ中给出的:“因为运动的量是由速度乘以物质的量求出来的,并且动力是由加速度的力乘以同一物质之量求出来的,物体的几个粒子上的加速的力的作用总和就是整个物体的动力”。

上面两段话中,“加速的力”指的是加速度,“运动”“运动的量”指的是动量,“动力”指的是与加速度对应的作用力,“物体”“物质的量”就是质量。

由此可知,牛顿在《自然哲学的数学原理》一书中已明确提出动量的定义:“运动量是用它的速度和质量一起来量度的”,“并把动量的变化率称之为力”,“他又用动量来表述运动第二定律”。

综上所述,牛顿其实已经提出了运动第二定律的文字表述:作用力与加速度成正比。

但当时牛顿并没有明确地用公式(F=ma)表述出来,牛顿第二定律原来采用的形式是力F、质量m、速度v和时间t这四个物理量,选择适当的单位,可使比例系数k=1,这时,牛顿第二定律可表示为①因此,牛顿第二运动定律的真实表述应该是物体所受外力等于其动量对时间的变化率。

①式也叫做牛顿第二定律的微分形式。

《自然哲学的数学原理》已经提出了作用力与加速度成正比,但当时牛顿并没有将公式①直接用F=ma表述出来,这是为什么呢我国研究牛顿的资深学者阎康年先生在他的专着《牛顿的科学发现与科学思想》中专门研究了牛顿的质量观:“牛顿对质量概念的认识分静质量和动质量两个方面。

第二章--质点动力学2

第二章--质点动力学2

W W1 W2
o
r
r1 dr r2
(3)功是过程量:功总是和质点旳某个运
动过程相联络
W dW F dr F cos d r
2、重力、引力、弹性力旳功
(1)重力作功
物体m沿途径 A 过B程中重力
旳功
W
B
dW
B mg dr
y2 mgdy
W
A
mgy2A
mgy1
y1
t1
i1 若 Fi合 0
i 1 n
则 P
mivi
恒矢量
i 1
动量守恒定律:
当系统合外力为零时,系统
旳总动量保持不变。t2
nn
讨论:
Fi合dt mivi mivi0
t1
i 1
i 1
(1)合外力为零或不受外力作用系统总
动量保持不变。
(2)合外力不为零,但合力在某方向分量 为零,则系统在该方向上旳动量守恒。
W mgy2 mgy1 重力势能 Ep mgh
W
G
m'm rB
G
m'm rA
W
1 2
kx22
1 2
kx12
引力势能 弹性势能
Mm
Ep G r
Ep
1 2
kx2
所以能够得到保守力旳功与势 能旳关系式
W Ep2 Ep1 Ep
(2)势能旳讨论 势能是属于存在保守内力旳系统旳, 具有保守力才干引入势能旳概念。 势能是状态旳函数。 势能值旳相对性与势能差旳绝对性。

(2)直角坐标系中,定理分量式 t2
I x Fxdt px2 px1
t1 t2
I y Fydt py2 py1

大学物理-质点动力学学(2024版)

大学物理-质点动力学学(2024版)

在同一直线上。
(2) 分别作用于两个物体上,不能抵消。
F F
(3) 属于同一种性质的力。 (4) 物体静止或运动均适用。
四、牛顿定律的应用 例2-1. 质量为m的物体被竖直上抛,初
解题步骤: (1) 确定研究对象。隔离
速度为v0,物体受到的空气阻力数值与 其速率成正比,即f = kv,k为常数,求
曲线下面的面积表示。
F
A F dx
O xa
xb x
力 位移曲线下的面积表示力F 所作的功的大小。
一、功
元功
dA F dr
dA F dr
Fxdx Fydy Fzdz
例2-1、一质点做圆周运动 ,有一力 F F0 xi yj
作用于质点,在 质点由原点至P(0, 2R)点过程中,F 力做的功为多少?
惯性质量:物体惯性大小的量度。 引力质量: 物体间相互作用的“能 力”大小的量度。 思考:什么情况下惯性质量与引 力质量相等?
2. 牛顿第一定律(惯性定律)
任何物体都保持静止
或匀速直线运动态,直至
其它物体所作用的力迫使
它改变这种状态为止。
3. 力的数学描述: 大小、方向、作用
点—矢量
二、牛顿第二定律
L2
路 径 绕 行 一 周 , 这 些
力所做的功恒为零,
a 若 A
F dr 0,
具有这种特性的力统
L
称为保守力。

A
F dr 0,
没有这种特性的力,
L
F 为保守力。 F 为非保守力。
统称为非保守力 或耗
保守力:重力、弹性力、万有引力、
散力。
静电力。
非保守力:摩擦力、爆炸力
五、势能

质点动力学-动量及动量定理 (2)

质点动力学-动量及动量定理 (2)
d x d x d P 2 d t= F = - v d t d t
柔绳对桌面的冲力F=-F’ 即:
M 2 2 Fv v 而 v 2 g x FM 2 g x / L L
2

而已落到桌面上的柔绳的重量为mg=Mgx/L 所以F总=F+mg=2Mgx/L+Mgx/L=3mg
fi 0
i
'
f
质点系
结论:质点系的内力之和为零
F
外力: 系统外部对质点系内部质点的作用力 约定:系统内任一质点受力之和写成 外力之和
F i fi
内力之和
二、质点系的动量定理
•两个质点的系统
m
1
f
F1
F2
d P1 F1 f dt
m
2
f
d P P 1 d 2 F f F f 1 2 d t d t
解:以链条为系统,向上为X正向,地面为原点建立 坐标系。 t时刻,系统总动量 P X v xv a d x d v dP d(xv) v x x d t d t dt dt
v ax
2
O
变质量问题
系统动量对时间的变化率为:
d P 2 3 ax v ax 2 ax ax d t t时刻,系统受合外 Iy Iz
t2 t1 t2 t1 t2 t1
F x dt F y dt F z dt
+
0 t1 t2 t
(注意可取 + -号)
冲量的几何意义:冲量
I x 在数值上等于
Fx ~ t 图线与坐标轴所围的面积。
3、质点的动量定理
d v d P F m a m d t d t

简述质点系的动量定理及动量守恒定律

简述质点系的动量定理及动量守恒定律

动量是物体运动状态的一种量度,它与物体的质量和速度成正比。

质点系的动量定理和动量守恒定律是描述物体运动规律的重要定律,对于理解和研究物体的运动具有重要意义。

本文将从简述质点系的动量定理开始,逐步深入探讨动量守恒定律,希望能够为读者提供一份深入浅出的参考。

1. 质点系的动量定理质点系的动量定理是描述质点系受力情况下动量的变化规律的定理。

根据牛顿第二定律,质点系的动量定理可以表述为:当一个质点系受到合外力时,它的动量随时间的变化率等于合外力的作用,即\[ \frac{d\vec{p}}{dt}=\vec{F} \]其中,\[ \vec{p} \]代表质点系的动量,\[ \vec{F} \]代表合外力的矢量。

这个定理表明了力对物体动量的影响,是经典力学中非常重要的基本定律之一。

2. 动量守恒定律当质点系受到合内力作用时,它的动量不会发生改变,这就是动量守恒定律的基本内容。

对于一个封闭系统来说,合内力为零,因此动量守恒定律可以表述为:在一个封闭系统内,当没有合外力作用时,质点系的动量保持不变,即\[ \vec{p}_1 + \vec{p}_2 + \cdots + \vec{p}_n = \vec{p}_1' +\vec{p}_2' + \cdots + \vec{p}_n' \]其中,\[ \vec{p}_i \]代表质点i的初始动量,\[ \vec{p}_i' \]代表质点i的最终动量。

动量守恒定律是一个非常重要的物理定律,它对于理解和分析自然界中的各种物理现象具有重要作用。

3. 个人观点和理解动量定理和动量守恒定律的提出和应用,使我们能够更深入地理解物体运动规律,并且在工程技术和自然科学研究中得到了广泛的应用。

在实际生活中,通过对动量定理和动量守恒定律的应用,我们可以更好地理解交通事故、火箭发射和碰撞实验等现象。

这些定律的深入理解和应用,有助于我们更加科学地分析和解决相关问题。

质点运动的基本定律

质点运动的基本定律

r r r b r r F dr = ∫ ( F1 + F2 + L) dr
a
v v d A F d r v r (4)功率 (4)功率 P = = = Fυ dt dt
= ∑ Ai
21
r r [ e .g 2 4 ]已知: m = 2 kg , F = 12 t i , υ 0 = 0 已知: (1 内变力的功; 求: )前 2 s 内变力的功; (2)第1s末和第 2 s 末的功率. 末的功率. xb b r tb r A 解: = ∫ F dr = ∫ Fx dx = ∫ 12 t υ d t
2 0
2
2 0
= 140( N.S)
I = mυ mυ0
∴υ = 24(, F = t i ( sI ),当t = 0 时 已知: m r r 且通过坐标原点, υ0 = 2 j m / s,且通过坐标原点, r r υ 求: ( t ) = ? r ( t ) = ? r
υ
υ =
1+
υ0 υ0
R
6
t
第二节 力学相对性原理和非惯性系
一,伽利略相对性原理
结论1: 结论1:在相对于惯性系做匀速直线运动 1:在相对于惯性系做匀速直线运动 的参照系中所总结的力学规律与 惯性系中相同. 惯性系中相同. 结论2: 2:相对于惯性系作匀速直线运动的 结论2:相对于惯性系作匀速直线运动的 一切参照系都是惯性系. 一切参照系都是惯性系.
5
v m P22——[ P22——[例2-1] f R 已知: 已知:m ,R , ,υ 0 o N 求:υ(t),s(t) 2 υ 解: N = m R dυ fr = N = m dt t = 1 1 2 dυ υ R υ υ0 m = m

专题6动力学特殊问题与方法

专题6动力学特殊问题与方法

速度, 关键在分析该瞬时质点的受力, 特别是当研究对
象运动状态发生突变时, 须对 制约着 对象运 动状 态的
各个力的情况做出准确判断.
例 6 如图 6- 10 所示, 木 块 A 、B 的质 量分 别为
mA = 01 2 kg, mB = 014 kg , 盘 C 的质量 mC
= 016 kg , 现挂 于天 花板 O 处, 整 个装 置
º
将 º 式代入 ¹ 式中即得
2m1gsin A- m12a2- m2 g- m2g = m12a2+ m2 a2,
a2=
2
m
1 gsin A4 m1+ m
m
2
2
g
,
# 46 #
代入数据可得 a2=
g 9
U 11 09 m/ s2. 将 a2 代入 º
式得 T 1 U 1109 N , 则 T 2 = 2T 1 U 2118 N .
至少右移了
h#cot
H,

a g
\
hcot h
H, 故
a \ gcot
H.
对斜面体而言, 因与物体无相互作用, 故有
F - LM g= M a \ M gcot H, F \( L+ cot H) M g.
水平拉力至少是( L+ cot H) Mg . 例 4 如图 6- 6 所示, A 为固 定斜面 体, 其 倾角 A
作用. 例 如 图 ( a) 、( b) 中, m 与 M 间 拉 力 大 小 均 为
M
m +
mF;

(
c)
、(
d)

m

M
间 压力 大 小均 为

整体牛二律

整体牛二律

牛顿第二定律的整体运用2013-04-08 15:19牛顿第二定律研究的对象可以是单个物体(质点),也可以是多个相互作用的物体组成的系统(质点系)。

设系统内各物体的质量分别为m1 、m2、……、mn ,系统所受到的合外力为F ,牛顿第二定律应用于整体时的表达式为:1.若系统内各物体的加速度a 相同,则有F =(m1 + m2 +…+ mn)a2.若系统内各物体的加速度不相同,设分别为a1 、a2、……、an ,则有F = m1a1 + m2a2 +…+ mnan (矢量和)若将各物体的加速度正交分解,则牛顿第二定律应用于整体的表达式为Fx = m1 a1x…+ mnanx + m2a2x +Fy = m1 a1y…+ mnany + m2a2y +在分析实际问题时要注意系统内各物体加速度的方向,与规定的正方向相同时加速度取正值,反之就取负值。

以下通过具体实例分析牛顿第二定律的整体运用。

例1 质量为m = 55 kg的人站在井下一质量为M = 15kg 的吊台上,利用如图1所示的装置用力拉绳,将吊台和自已以向上的加速度a = 0.2 m/s2 提升起来,不计绳质量和绳与定滑轮间的摩擦,g 取10 m/s2,求人对绳的拉力F 的大小。

解析对人与吊台整体受力如图1所示,由于吊台与人的加速度相同,由牛顿第二定律有代入相关数据解得 F = 350 N 。

点拨人与吊台间存在相互的作用力,但题目又不要求出此力。

我们若单独以人或吊台为研究对象,那就都要考虑这个作用力;若以人和吊台组成的整体为研究对象,这个作用力即为整体的内力,应用牛顿第二定律时就可以不予考虑。

例2 如图2所示,水平地面上有一倾角为θ质量为M斜面体,斜面体上有一质量为m 的物块以加速度a 沿斜面匀加速下滑,此过程中斜面体没有动,求地面对斜面体的支持力N 与摩擦力f 的大小。

解析将物块的加速度度a沿水平方向与竖直方向进行分解,对物块与斜面体整体在竖直方向上由牛顿第二定律有在水平方向上由牛顿第二定律有则,点拨本题中所要求的地面对斜面体的支持力N与摩擦力f分别在竖直方向上和水平方向上,由于斜面体没有加速度,而物块的加速度a是沿斜面方向的,故我们应将a沿水平方向与竖直方向进行分解。

系统牛顿第二定律

系统牛顿第二定律

系统牛顿第二定律(质点系牛顿第二定律)主讲:黄冈中学教师郑成1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=0、02,在木楔的倾角α=30°的斜面上,有一质量m=1、0kg的物块,由静止开始沿斜面下滑,当滑行至s=1、4m时,速度v=1、4m/s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向与地面对木楔的支持力.(g=10m/s2)解法一:(隔离法)先隔离物块m,根据运动学公式得:v2=2as=0、7m/s2<gsinθ=5m/s2可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象对斜面M:假设地面对M静摩擦力向右:f地+N′sin30°-f′cos30°=0而N′=N=,f′=f=4、3N f地=-Nsin30°+fcos30°=-0、61N说明地面对斜面M的静摩擦力f地=0、61N,负号表示方向水平向左.可求出地面对斜面M的支持力N地N地-f′sin30°-N′cos30°-Mg=0N地= fsin30°+Ncos30°+Mg=109、65N<(M+m)g=110N因m有沿斜面向下的加速度分量,故整体可瞧作失重状态方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx =m1a1y+m2a2y+…+m n a ny解法二:系统牛顿第二定律:把物块m与斜面M当作一个系统,则:x:f地=M×0 +macos30°=0、61N水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°=109、56N例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α与β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都就是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力与静摩擦力解法一:隔离法N a=mgcosαN b=mgcosβN地=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mgf地=N b′cosα-N a′cosβ=mgcosβcosα-mgcosαcosβ=0N解法二:系统牛顿第二定律列方程:(M+2m)g-N地=M×0+mgsin2α+mgsin2βN地=(M+m)g向右为正方向:f地= M×0+mgsinαcosα-mgsinβcosβ=0。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统牛顿第二定律质点系
牛顿第二定律
The pony was revised in January 2021
系统牛顿第二定律(质点系牛顿第二定律)
主讲:黄冈中学教师郑成
1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=0.02,在木楔的倾角α=30°的斜面上,有一质量m=1.0kg的物块,由静止开始沿斜面下滑,当滑行至s=1.4m时,速度v=1.4m/s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2)
解法一:(隔离法)先隔离物块m,根据运动学公式得:
v2=2as=0.7m/s2<gsinθ=5m/s2
可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象
对斜面M:假设地面对M静摩擦力向右:
f

+N′sin30°-f′cos30°=0
而N′=N=,f′=f=4.3N f

=-Nsin30°+fcos30°=-0.61N
说明地面对斜面M的静摩擦力f

=0.61N,负号表示方向水平向左.
可求出地面对斜面M的支持力N

N

-f′sin30°-N′cos30°-Mg=0
N

= fsin30°+Ncos30°+Mg=109.65N<(M+m)g=110N
因m有沿斜面向下的加速度分量,故整体可看作失重状态
方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.
=m
1a
1x
+m
2
a
2x
+…+m
n
a
nx
=m
1
a
1y
+m
2
a
2y
+…+m
n
a
ny
解法二:系统牛顿第二定律:
把物块m和斜面M当作一个系统,则:
x:f
地=M×0 +macos30°=0.61N水平向左 y:(M+m)g-N

=M×0+masin30°
N

=(M+m)g-ma sin30°=109.56N
例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力
解法一:隔离法
N
a =mgcosα N
b
=mgcosβ
N

=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mg
f
地=N
b
′cosα-N
a
′cosβ=mgcosβcosα-mgcosαcosβ=0N
解法二:系统牛顿第二定律列方程:
(M+2m)g-N

=M×0+mgsin2α+mgsin2β
=(M+m)g
N

向右为正方向:f
= M×0+mgsinαcosα-mgsinβcosβ=0
地。

相关文档
最新文档