电气自动化控制中人工智能分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气自动化控制中人工智能分析
1.人工智能应用理论分析
人工智能属于自然科学和社会科学交叉的一门边缘学科,涉及众多学科,比如哲学与认知科学、计算机科学等,其研究范畴是智能搜索、感知问题、逻辑程序设计、遗传算然、自然语言处理等。从本质上来讲,人工智能就是模拟人的思维的信息过程。两条道路可以用于对人的思维模拟,一条是结构模拟,对人脑的结构机制进行模仿,将类人脑的机器制造出来;另一条是功能模拟,暂时将人脑的内部结构撇开,在模拟是从人脑的功能过程出发。对人脑思维功能的模拟的典型事例就是现代电子计算机,它模拟了人脑思维的信息过程。人工智能并不意味着人的智能,更不意味着对人的智能的超越。从本质上来将,机器思维不同于人类思维的地方表现在四个方面,一,前者是无意识的机械的物理的单纯过程,而后者主要是心理和生理的过程;二,前者没有社会性;三,前者没有人类的意识所特有的能动的创造能力;四,电脑的功能总是在人脑的思维之后。
2.人工智能控制器的优势
人工智能控制器诸如模糊神经,遗传算法等都可以看做一类非线性函数近似器,经过这样的分类,我们就能够较好地对其进行总体理解,也有利于统一开发控制策略。和常规的函数估计其相比,这些人工智能控制器具有下列优势:没有控制对象的模型也可以设计人工智能
器。在很多场合,实际控制对象的精确动态方程是很难得到的,在设计控制器时实际控制对象的模型通常也存在着诸多不确定性因素,比如,和最优 PID 控制器相比,模糊逻辑控制器的上升时间是其1.5倍,下降时间是其 3.5 倍,过冲更加小;相对于古典控制器,人工智能控制器的调节更容易;在缺乏必要的专家知识时,通过相应数据也能够将人工智能控制器设计出来;对语言和相应信息进行运用也可能将人工智能控制器设计出来;人工智能的一致性良好,即使使用一些新的位置输入数据也能得到良好的估计,和驱动器的特性是没有关系的。目前,如果没有使用人工智能的控制算法,也许对特定对象具有良好的控制效果,但是对其他控制对象就不一定具有一致性的良好的控制效果,因此应该依据徒具对象进行具体设计;对新信息或新数据,人工智能控制器的适应性良好;人工智能控制器能够将常规方法解决不了的问题解决掉;人工智能控制器的抗噪声干扰能力良好;实现人工智能控制器控制价格低廉,尤其是只是对最下配置进行使用的情况下;人们和容易扩展和修改人工智能控制器。
3.人工智能技术在电气自动化控制系统中的应用
3.1 人工智能在直流传动中的应用
3.1.1 模糊逻辑控制应用
Mamdani 和 Sugeno 型是主要的两类模糊控制器。现阶段,在调速控制系统中只用到了 Mamdani 模糊控制器。需要注意的是这两种控制器都有一个 if-then 模糊规则库,但是如果 x 是 A,并且 y 是B,那么 Z=f(x,y)是 Sugeno 型控制器的典型规则,这里 A、B 是
模糊集,Z=f(x,y)是 x、y 的函数,一般情况下是将 x、y 的多项式输入进去。当 f 是常数,就是零阶 Sugeno 模型,因此 Sugeno 是 Mamdani 控制器中一个特殊的例子。Mamdani 控制器主要由四个组成部分,一,输入变量的模糊化、量化等是在模糊化的背景下实现的,具有多种形式的隶属函数;二,数据库和语言控制规则库是知识库的两大组成部分,对规则库进行开发的主要方法是在应用和控制目标中运用专家的知识和经历,对建模操作器进行控制,建模过程,使用人工神经网络推理机制及自适应模糊控制器;三,模糊控制器的核心是推理机,能够对人的决策和推理模糊控制行为进行模仿;四,量化和反模糊化是由反模糊化实现的,反模糊化的技术有很多,比如,中间平均技术等。
过去二十多年,在识别模式和处理信号过程中,ANNS(人工神经网络)得到了极为广泛的应用。由于 ANNS 的非线性函数估计其具有一致性,因此它也可以在电气传动控制领域得到有效的应用,无需被控系统的数学模型,具有良好的一致性,对噪音不敏感是其优势所在。此外,ANNS 的并行结构使其很适合多传感器输入运用,比如,在诊断系统、条件监控中能够促进决策可靠性的有效增强。近年来,电气传动的发展方向变为促使传感器数量的最小化,但是在特殊情况下,多个传感器可以使系统对特殊传感器缺陷的敏感性降低,过高的精度和复杂的信号处理都是不需要的。多层前馈 ANN 最常用的学习技术是误差反向传播技术。如果网络的隐藏层与隐藏节点足够多,而且激励函数适宜,多层 ANN 只能实现需要的映射,缺乏直接技术对最
优隐藏层、激励函数等进行选择,那么这个问题就可以用尝试法加以解决。基本的最快下降法就是反向传播训练算法,它向网络反馈输出结点,用于权重调整,搜索最优、和隐藏结点的权重调整迭代不同,输出结点的权重调整迭代尤其自身的特点。通过反向传播技术的使用,能够获取所需的非线性函数的近似值,学习速率参数包含在该算法当中,极大地影响着网络的特性。
3.2人工智能在交流传动中的应用
3.2.1 模糊逻辑的应用
一般情况下,在将模糊逻辑运用到交流传动中时,常规速度调节器被模糊控制器替代。但是英国 Aberdeen 大学开发的具有多个模糊控制器的全数字高性能传动系统却不是这种情况。这些模糊控制器在对常规的 PI 或 PID 控制器进行替代的同时,也用于其他任务。Aberdeen 大学还在各种全数字高动态性能传统系统的开发只能够运用模糊神经控制器。也有人认为,可以使用模糊逻辑对电机的磁通和力矩进行感应。它具有变化着的输入标定引资。有关实验也对所提方案的有效性进行了验证。该系统同时使用模糊速度控制器、CRP 塑变器及 PI 速度控制器,它常常用来对可能的惯性和负载转矩的扰动进行补偿。
3.2.2 神经网络的应用
在交流电机和驱动系统的条件检测与诊断中使用神经网络时,由于ANN 使用常规反向转播算法,因此它在步进电机控制算法的最优化中得到了应用。该方案依据负载转矩和初始速度,利用实验数据,