近世代数课件(全)--2-4 循环群

合集下载

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数课件群的概念

近世代数课件群的概念
ab ba e . 为了阐明这样的 b 是唯一的; 满足
ab' b'a e. 于是,我们有 b' b'e b'(ab) (b'a)b eb b .所以我 们的命题成立.□
§2 群的概念
对于命题 2.3 中所说的元素 a, b ,我们称 b 为 a 的逆元,记作 b a1 .
乘法都不构成群.
§2 群的概念
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵构 成的集合.显然, P nn 关于矩阵的加法构成交换群, P nn 关于矩阵的乘法不构成群.但是,容易明白,数域 P 上的 全体 n 阶可逆矩阵构成的集合关于矩阵的乘法构成群, 称为 n 级一般线性群,记作 GLn (P ) .数域 P 上的全体行 列式的值等于1的 n 阶方阵构成的集合关于矩阵的乘法 构 成 群, 称为 n 级 特 殊线性群 ,记 作 SLn (P ) . 注意,当 n 1时, GLn (P ) 和 SLn (P ) 都不是交换群.
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
下面介绍置换的表示方法.
设 A {a1, a2 , , an} 是一个有限集, f Sn .我们
可以将 f 表示成下表的形式:
f
a1 (a1)
a2 f (a2 )
f
an (an

近世代数课件循环群

近世代数课件循环群

§4 循环群
我们来阐明 H ar .事实上,一方面, 显然, ar H .另一方面,由于 G a 且 H G ,对于任意的 hH ,可设 h an ,其 中 nZ .我们取整数 q 和 s ,使得
n qr s , 0 s r . 若 s 0 ,则
§4 循环群
as anqr an (ar )q h(ar )q H , 这与 r 为 N 中的最小数矛盾.因此 s 0 ,从而,
((s, n), (t, n)) ( t , n) ((s, t), n) (s, n) (s, t)
((s, t), n)
§4 循环群
(s, n) ( t , n) (s, t)
( st , n) ([s, t] n) . (s, t)
§4 循环群
k Z ,使得 r k[s, t].所以 b ar a[s, t] . (2)假设| a | n . 由于 b H ,因此| b | | | as | ;由于 b K ,
因此| b | | | at | .也就是说, n|n,n|n,
(r, n) (s, n) (r, n) (t, n)
h an aqr (ar )q ar . 由 此 可 见 H ar . 所 以 H ar . 这 就 是 说, H 是循环群.□
§4 循环群
命 题 4.2 设 G a 是 一 个 有 限 循 环 群,| a | n , r 是任意一个整数.那么
| ar | n , (r, n)
令 s | ar | .根据命题 3.12, s | n .另一方 (r, n)
§4 循环群
面,由于 (ar )s e 且| a | n ,根据命题 3.12,
n | (rs) ,从而, n | (rs) .由于 ( n , r) 1,

近世代数12群的概念

近世代数12群的概念
(1)“ ”适合结合律; (2)存在 e G ,使得
ae ea , a G ; (3)对于任意的 a G ,存在 bG ,使得
ab ba e , 则称 (G, ) 是一个群;不致混淆时,简称 G 是一个群.
2020/6/
数学与计算科学学院Company Logo
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
例 1 令 N , Z, Q , R 和C 依次表示正整数集、 整数集、有理数集、实数集和复数集.则 Z, Q ,R 和 C 关于加法分别构成交换群; N 关于加法不构成
群. Q \{0}, R \{0} 和C \{0}关于乘法分别构成交换
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
设 G 是一个群, a G .由于“ ”适合结合律,因
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
第一章 群 论
2020/6/26
数学与计算科学学院
LOGO
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
定义 2.1 一个代数运算.若“ ”满足条件:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有

近世代数简介ppt

近世代数简介ppt
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
域(Field)
一个集合,二种运算
不能被 x5+1 整除 不能被 x6+1 整除


不能被 x14+1 整除
能被 x15+1 整除 ∴ x4+x+1 是本原多项式
而 x4+ x3+ x2+ x+1
能被 x5+1 整除
能被 x15+1 整除
∴ x4+x3+x2+x+1是既约的,但不是本原的
多项式环Rq(x)g(x)
系数GF(q),模g(x)
对于有限域GF(q)上的m次既约多项式P(x),若能 被它整除的最简首一多项式(x n -1)的次数n qm
–1, 则称该多项式为本原多项式。 本原多项式一定既约;
反之,既约多项式未必本原。
多项式循环群 Cycle Group
由多项式的各次幂所构成的群称为多项式循环群
比如, x4+x+1
(q=2, m=4, 2m-1=15)
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文

大学课程近世代数循环群与置换群讲义课件

大学课程近世代数循环群与置换群讲义课件
即 f 是同构,故( G,◦) ≅ (Zn, +n) 。
(2)作映射 f : G → Z , f ( gk )=k ,
则 f 是同构,故 ( G,◦) ≅ (Z , + )。
大学课程近世代数循环群与置换群 讲义课件
二、置换群
定义7.3.3 设 S为集合,称映射τ : S →S 为 S上的
一个变换。变换即为集合S到S自身的一个映射。
而 1 2 1 2 4 3 4 3 5 5 1 2 1 2 3 3 4 4 5 5 1 1 2 2 4 3 4 3 5 5 (1)( 2 3) 4 (3)( 4 1)2
大学课程近世代数循环群与置换群 讲义课件
定理7.3.5 任意一个置换都等于若干个不含公共元 素的循环置换的复合。
例如, 1 32 63 44 18 52 65 77 8 (5)8 2 ()7 1 6 ()3 (1 4)3 2 ()4 5 6 ()8 7
大学课程近世代数循环群与置换群 讲义课件
例7.3.9 利用循环置换的方法,我们有 3次对称群 S3的元素可以表示为: (1), (12), (13), (23), (123), (132)。 4次对称群 S4的元素可以表示为: (1); (12), (13), (14), (23), (23), (34); (123), (132), (124), (142), (134), (143), (234), (243); (1234), (1243), (1324), (1342), (1423), (1432); (12)∘(34), (13)∘(24), (14)∘(23)。
通常还是用
1 2
2 3
3 1
来表示。
大学课程近世代数循环群与置换群 讲义课件

近世代数精品课程25页PPT

近世代数精品课程25页PPT
近世代数精品课程

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

近世代数课件 第7节 循环群

近世代数课件  第7节 循环群
12/22
近世 代数
证明
(2) 只须证明:对任何正整数 r ( r≤n), ar是G的生成元 n与r互质,即(n, r)=1.
充分性: n与r互质,即(n, r)=1 ar是G的生成元. 思路1: a) 欲证:ar是G的生成元,因此只需证得:|ar| = n. b) 欲证: |ar| = n ,令|ar| = k,因此只需证得:k | n,且n | k.
(另证)必要性: ar是G的生成元 n与r互质,即(n, r)=1. 思路: a) 欲证(n, r)=1,令(n, r)=d,因此只需证得d = 1. b) 欲证d = 1,只需证得:n | (n/d). c) 欲证n | (n/d),已知|ar| = n,因此只需证得: (ar)n/d=e. 设ar是G的生成元,则 |ar| = n. 令r与n的最大公约数 为d,则存在正整数 t 使得 r = dt. 因此, |ar| 是n/d的因子,即 n整除n/d. 从而证明了d = 1.
借助于命题:整数r与n互质存在整数 u 和 v 使得ur+vn = 1.
设r与n互质,则存在整数 u 和 v 使得
ur + vn = 1
从而
a = aur+vn = (ar)u(an)v = (ar)u
这就推出ak∈G,ak = (ar)uk∈(ar),即G(ar).
另一方面,显然有(ar)G. 从而G = (ar).
(3) 设G=3Z={3z | z∈Z}, G上的运算是普通加法. 那 么G只有两个生成元:3和3.
15/22
近世 代数
循环群的子群
定理4 设G=(a)是循环群,则 (1) 循环群G的子群仍是循环群. (2) 若G=(a)是无限循环群,则G的子群除{e}以外都

近世代数主要知识点PPT课件

近世代数主要知识点PPT课件
• 假如运算1和1‘来说,有一个A到A’的满射的同态映射存在,同态满射 • 同构映射 一一映射的同态映射就是一个同构映射 • 自同构
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么‫ג‬x:

近世代数课堂PPT

近世代数课堂PPT

4
但其中有一些可以通过旋转一个角
度或翻转180度使它们完全重合, 5 我们称为是本质相同的,我们要考
虑的是无论怎么旋转、翻转都不能
使它们重合的项链类型数。
1 8
7 6
28.07.2024
06:10
例1 用黑白两种颜色的珠子做成有5颗珠子的项链
利用枚举法,得到一共8种不同类型的项链。
随着n、m的增加,用枚举法解决越来越难, 采用群论方法解决是最简单、有效的方法。
学习近世代数的意义
由于近世代数在数学的其他分支、近代 物理、近代化学、计算机科学、数字通信、 系统工程等许多领域都有重要应用,因而它 是现代科学技术的数学基础之一,是许多科 技人员需要掌握的基本内容和方法,因此近 世代数也是数学专业的专业基础课之一。
28.07.2024
06:10
几个有趣的应用实例
28.07.2024
06:10
伽罗华(Évariste Galois,公元1811年~公元1832 年)是法国对函数论、方程式论和数论作出重要贡献的数学
家,他的工作为群论(一个他引进的名词)奠定了基础;所
有这些进展都源自他尚在校就读时欲证明五次多项式方程根
数解(Solution by Radicals)的不可能性(其实当时 已为阿贝尔(Abel)所证明,只不过伽罗华并不知道), 和描述任意多项式方程可解性的一般条件的打算。虽然他已
图。 问题:n个点的图中互不同构的图有多少个?
28.07.2024
06:10
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。

近世代数课件

近世代数课件
研究内容
包括群、环、域等基本概念,以及这 些概念在抽象代数、几何学、拓扑学 等领域的应用。
近世代数的发展历程
19世纪初
随着代数学的发展,人们开始研究代数的结 构,近世代数逐渐形成。
20世纪初
环论和域论的建立进一步丰富了近世代数的 内容。
19世纪中叶
群论的创立为近世代数的发展奠定了基础。
20世纪中叶至今
近世代数课件
目录
• 引言 • 群论基础 • 环论基础 • 域论基础 • 应用举例
01
引言
代数与近世代数
代数
研究数、量、结构、变换以及结构等 概念的数学分支。
近世代数
研究代数的结构、性质和分类的分支 ,是现代数学的重要分支之一。
近世代数的研究对象与内容
研究对象
代数的结构、性质和分类,以及代数 与其他数学分支的联系。
多项式的基本概念
01
多项式是由若干个单项式通过加减运算组成的代数式

多项式的因式分解
02 将一个多项式分解为若干个因式的乘积,这些因式称
为多项式的因子。
多项式因式分解的应用
03
在数学、物理、工程等领域中,多项式因式分解被广
泛应用于解决各种问题,如计算、建模、优化等。
分式域的构造与应用
分式域的基本概念
域的扩张与分解
扩张
如果一个域K包含另一个域F作为其子集,并且K在F上连续,则称K是F的扩张,或称F是 K的子域。
分解
如果一个域K可以分解为若干个子域的乘积,即K=F1×F2×…×Fn,则称K是可分解的 。如果域K没有除了单位元以外的公因子,则称K是素数域。
05
应用举例
线性方程组的解法
线性方程组的基本概念

近世代数(抽象代数)课件

近世代数(抽象代数)课件

9
Logo
§1 代数运算
· a1 a2 … an a1 a11 a12 … a1n a2 a21 a22 … a2n an an1 an2 … ann
其中, aia j aij A , i, j 1, 2, , n .

10
Logo
§1 代数运算
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
明:在不改变元素顺序的前提下,无论怎样在其中添
加括号其中添加括号,这 n 个元素的乘积总等于
n
ai ,
i 1
从而与加括号的方式无关.

23
Logo
§1 代数运算
事实上,当 n 1或 n 2 时,无需加括号,我们的结论
自然成立.当 n 3时,由于“ ”适合结合律,我们的结论成

13
Logo
§1 代数运算
例 5 设 R 是实数集.则 R 上的加法“”适合 结合律、交换律和消去律; R 上的乘法“”适合结 合律和交换律,不适合消去律; R 上减法“-”不适 合结合律和交换律,但适合消去律.
注意: R \{0}上的乘法“”适合结合律、交换 律和消去律.
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .

3
Logo
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.

近世代数第二章课件

近世代数第二章课件

第二章群论 20第二章群论本章讨论具有一个代数运算的代数结构——半群与群,但重点是群的基本知识及典型的两个群-变换群和循环群.群是概括性比较强的一个概念,是近世代数中比较丰富的一个分支,它产生于19世纪初人们对高次方程根号解问题的研究,发展到现在,群论已经应用到数学许多其它分支及一些别的科学领域.如在近世几何中,利用群的观点,把几何加以科学分类;在晶体学中,利用群论的方法,解决了空间晶体的分类问题;在现代通讯理论中,利用群来进行编码,有所谓的群码.我们先从半群开始来研究群.§1 群的定义及基本性质2.1 半群的定义设S是具有一个代数运算的集合,为了方便,将此代数运算叫S的乘法,并且仍用通常的乘法记号“·”来表示,把S的两个元素ba,关于“·”运算结果ba∙简记为ab.当然,这样被叫做乘法不一定就是指数的乘法,还可表示像矩阵、函数、向量的乘法,但一般来说它们都不是数的乘法.定义1如果代数结构(S,·)的乘法适合结合律,即ba∈c∀)有,S,,ab=,则称S关于它的乘法是一个半群,简称Sac(bc()是一个半群.2关于数的乘法是一个半群.关于数的加法也是一例1 偶数集Z个半群.n⨯矩阵作成的集合M n(F),关于矩阵乘法例2数域F上的所有n是一个半群.例3 A 是一个非空集合,A 的幂集}|{A x x A P ⊆=)(关于∩、∪分别是半群.例4 +Z (正整数)关于数减法不能作成一个半群,因为数的减法不是+Z 的一个代数运算;Z 虽然关于数的减法是Z 的代数运算,但结合律不成立,故),(-Z 不是一个半群.注 由于一个半群),(⋅S 的乘法适合结合律,故可以在半群),(⋅S 中可以引进一个元素a 的正整数次幂的概念,规定:, 个n n a aa a =那么,易见半群里有以下指数运算规律:ba ab b a ab a a a a a n n n nm m n n m n m =⋅===⋅+当,)(,)(,,这里+∈Z n m ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-9-19
定理6 n 阶循环群 G ( a ) 有且只有 n 的正因数 T(n)个子群. 证:(1)( a ), ( a ), , ( a ) ,则
(a ) (a )
k d
是 ( a ) 的全部子群; (2)对于每个 1 k n,若 ( k , n ) d
1 2 n
G { , a
2
;且
2
,a
1
, a , a , a ,}
0
2.G是n阶循环群 a n ;且
G {a , a , , a }
1 2 n
3.G是n阶循环群, k k a 是G的生成元 a n
推论 若循环群 a ,则 G a 1 . G
2012-9-19
;
d
(3)若 d | n ,则 ( a ) 是唯一一个 阶为n/d的子群.
2012-9-19
G ( a ) ,则 ( a k ) G .
km
证: a km , a kn ( a k )
(a
kn
)
1
a
k(mn)
(a )
k
定理5 证:
无限循环群 G ( a ) 有无限多个子群.
( a ), ( a ), ( a ), 是 ( a ) 的全部
m n
0
1
2
不同的子群(若 ( a ) ( a ) ,则 m | n , n | m ,于是 m n .)
三、数量 定理2 循环群 G a ,则
(1) 若G是无限阶循环群,则G与整数加群同构. (2) 若G是n阶循环群,则G与模n的剩余类加群 同构.
证明: (1) : a k , k Z
k
(2) : a
k
[k ]
2012-9-19
四、子群 定理3 循环群的子群是循环群.
证: G ( a ) ,H G ,若 H { e } ( e ) ,若
近世代数
第二章 群论
§4 循环群
2012-9-19
循环群是已经研究清楚的群之一,就是 说,这种群的元素表达方式和运算规则,以 及在同构意义下这种群的数量和它们子群的 状况等,都完全研究清楚了.
2012-9-19
一、存在性
定义 若群G中每个元都能表示成某个固定元a 的乘方,就称群G为循环群, 也称群G为由元a 生成的群,记为G=(a),称a是G的一个生成元. 例1 整数加群Z是无限阶循环群
H {e } ,取H的最小正幂 a k ,若 a m H ,则设 m kq r ,
0 r k ,于是 r m kq m k q a a a (a ) H
,故
r 0 ,a
k
m
(a )
k
q
,因此
2012-9-19
H (a ) .
定理4 循环群
a
m m 1 Z,m 1 1 1 1 ,
m m 1 m m m ( 1) ( 1) ( 1) ( 1 ) (1 ) 1 ,
0 1
0
Z (1)
2012-9-19
例2
n次单位根乘群 U n (n > 1) 取 U n ,但
2 n
1} U n
U n ( )
例3 是 n 阶循环群(n >1) 模 n 的剩余类加群
Z n ([1])
是n阶循环群.
2012-9-19
二、构造 定理1 循环群 G a ,则 1. G是无限阶循环群 a
相关文档
最新文档