三相四线电能表计量错误的分析(精)

合集下载

三相四线制电路中两功率表法计量误差分析

三相四线制电路中两功率表法计量误差分析

的, 决定 一 R[
6 ]正负 主要 由 j 。决定 。。为 A、 j
B C三 相 电流 之 和 ,。的 幅值 和 相 位 不 但 决 定 于 、 j 负 载 的平 衡情 况 , 且 决 定 于 电路 的功 率 因 数 。 而 当
超前 j 。在 0 ~ 9 。 围 内, R [,j 为 负 , 。 0范 ~ (B ]
差 , 电力 企业 、 计单 位 、 对 设 施工 单位 都有 着极 为 重
要 的意 义 。
1 两 表 法 测 量 有 功 功 率 误 差 理 论 分 析
1 1 测 量 电路及 功 率计 算 . 两 功 率 表法 测 量 三 相 四线 电路 和三 相 三 线 电 路有 功 功率 的接 线 图如 图 1 示 。 所
i a a y e O s a d r iem e s r me t cr u t n e u e t e e r r fg t n r y me e s i a u e n , s n l z d t t n a d z a u e n ic i a d r d c h r o s o a e e e g t r n me s r me t s
少计 量 。 目前我们 国家 西南 地 区很 多地 方小 型火力
电量 测试 的人员 所认识 。 但 在实 际 测量 中 , 相 _ l 1 三
发 电厂仍 然采用 两 功率 表 法 测 量 三相 四线 电路 有
收稿 日期 :0 9 1— 9修 回 日期 :0 91 —5 2 0— 0 2 ; 2 0— 1 2
R[ j 古]为正 , 测量将 产 生正 误差 。

() a 两功率 表法 测量三 相三 线电路 功率
般 电路 中都 存在 着正 序 、 负序 和零序 组 电压

三相四线电能表常见错误接线分析

三相四线电能表常见错误接线分析

三相四线电能表常见错误接线分析摘要:三相四线电能表的功能主要在于精确计量电能,进而实现用电安全与保证计量的科学性,电能表常装置在客户终端。

要实现电能计量功能的准确、高效,就一定要确保电能表接线的正确。

本文分析了三相四线电能表常见的错误接线,并提出检测方法,以供同行业参考。

关键词:三相四线;电能表;接线0.引言通常来说,国内多采取相量法来检查三相四线电能表的错位接线,但因相量法操作较为复杂,对从业时间不长的用电稽查人员而言,实践难度大且易产生误判,缺乏时效性。

对比之下,压降测试技术通过高效的工作效率与精确的电能计量,已广泛应用于装表接电的实际工作中,对用户与供电单位的经济效益起到了有利保障。

1.常见错误接线一是电压断线,电能表二次回路基本是使用铜芯导线为材料,而入户电线主要以多股铝芯线为主。

两种材料对连接工艺有严格标准,即如果线路于连接时处理不慎,则会致使导线长时间运行在过压的状态,易发生氧化,从而导致电能表缺相运行,最终计量发生误差。

二是电压电流相位不同。

这种错误接线会使得电流互感器和电能表装置位于不同操作界面,在功率参数的作用下,电能表的运行不稳定,快慢不一。

对此可行抽压法,对三相四线正转情况施以相关核查、考量。

三是零线未接入,由于零线接触不适导致内部线路发生断开,在电量负荷不均时,电能表计量受到极大制约。

2.检测三相四线电能表电流互感器二次回路方法2.1检测原理对电流二次同路极性端各相电压幅值展开检测,得知测量值中电流同相电压最小。

如果Ua1、Ub1、Uc1分别对应流过电能表一元件、二元件、三元件的电流线圈电压降,可得出电能表每一电压线圈所加电压相位关系图。

可知Uaa1、Uab1、Uac1作为A相电压对应a1、b1、c1电压值,其中Ua同相的极性端电压幅值最低,同理可证,把极性端对各相位电压幅值测出,最小电压便是该相电流。

3.测试三相四线电能表常见错误接线方法3.1仪表准备通过压降测试技术测试时,测试仪表中应包括高精度的数字万用表、相序表、钳形电流表[1]。

三相四线电能计量装置常见错误接线及判断

三相四线电能计量装置常见错误接线及判断

三相四线电能计量装置常见错误接线及判断摘要:电能计量装置是电力企业实现电量结算及线损考核的重要工具,电能计量准确与否直接关系到发、供电企业的经济效益和社会效益,各发、供电企业在提高计量准确性方面都越来越重视。

而计量装置的接线是否正确,将直接影响到计量的准确性。

因此,掌握电能计量装置错误接线的分析方法极为重要。

关键词:计量装置三相四线电能表接线类型一、引言为确保供电企业和广大电力用户的利益不受损失,对于准确计量电能,使电能计量装置准确、稳定运行在计量管理工作中显得十分重要。

掌握电能计量装置接线检查是每个计量工作者必须具备的。

因此,计量人员、用电检查人员必须学会错误接线的判断方法。

造成电能计量装置的故障原因:1.构成电能计量装置的各组成部分出现故障。

2.电能计量装置接线错误。

3.人为抄读电能计量装置或进行电量计算出现的错误。

4.窃电行为引起的计量失准。

5.外界不可抗力因素造成的电能计量装置故障。

二、计量装置的原理电能计量是通过二次电路、互感器以及电能表按一定的结构组合从而实现在线电能计量功能。

在竞争愈发激烈的今天,在现代电力市场条件下为了能够保证公平、公正、公开的电能生产者和使用提供优越的服务,建立现代化的电能计量、交易以及电力系统是非常必要的。

作为提供电能计量的源头,对于电能的管理和计量是非常至关重要的作用。

电能计量装置是为计量电能所必须的计量器具和辅助设备的总体,包括电能表、负荷管理终端、配变监测终端、集中抄表集中器、计量柜(计量表箱)、电压互感器、电流互感器、实验接线盒以及二次回路等。

电能表按接线方式不同可分为:单相表、三相三线电能表、三相四线电能表。

三、常见的错误接线类型三相四线电能表四根电压线钳分别夹电能表2、5、8、10号接线端子,三根电流线钳夹1、4、7号端子,校验仪上则按颜色和顺序依次接好即可。

三相四线电能表在正确接线的情况下,计量功率为:P=P1+P2+P3=3IpUpcosφ电能表计量正常,若接线出现错误,则会出现漏计或错计电量,从而造成相应的损失。

电能计量的误差分析

电能计量的误差分析

电能计量的误差分析摘要:在电力系统中,电表是电力公司运行的主要计量工具,电表的准确性直接影响到用电的社会效益和经济效益,关系到可靠性和公正性。

能源公司和客户。

因此,减少计量装置的误差,提高能源公司的社会经济效益,对公司的发展和声誉至关重要。

文章首先对电力系统中电能计量装置测量误差的产生原因进行了讨论和分析,提出了降低电能计量装置误差的有效方法。

关键词:电表;错误原因;有效措施1电能计量误差产生的原因分析1.1外部温度影响在电能计量工作当中,由于受到系统外部环境的温度、电流大小、电压大小等因素的影响,经常会造成电能计量误差问题,通过对电能表的计量误差问题的研究和分析,可以看出当电能表在工作过程中所处的环境温度出现突变问题时,经常会影响到电能表计数的准确度,同时当电能表内部的电流和外接线路电流之间出现误差情况下,电能表的计量数据也会出现一定的偏差,直接造成了电压不良波动问题,这种误差问题和电流误差问题表现形式基本相同,只要电能表当中的电压和外部线路的电压产生差异,很容易会造成电能表的滑轮转动产生误差,进而造成了电能表的计量数据不准确,形成了电能计量数据偏差。

1.2电能表误差电能表误差可以分为两类:一类是基本误差,即由于电能表本身的结构问题产生的误差;另一类是附加误差,是指由于外界环境或条件引起的电能表计量误差。

电能表基本误差通常是由于电能表选用不当造成的,用户应当根据有关规定,并结合实际情况,选择合适的电能表,以避免产生电能表基本误差。

此外,电压、频率、环境温度的变化,电压波形畸变的影响,运行不稳定,相序改变,三相电压不对称,负载不平衡等,都会使电能表产生附加误差。

2电力系统中有功电能的计算与误差分析2.1电力系统中有功电能的计算方法在电力系统中,对电能资源中有功电能资源主要是通过要计算时间内有功电能资源的平均有功功率以及对电能资源有功功率的计量时间两个影响因素进行计算的。

对某一段时间内的有功电能计算公式为:W=T×P。

三相四线有功电能表误接线分析及对电能计量的影响

三相四线有功电能表误接线分析及对电能计量的影响

三相四线有功电能表误接线分析及对电能计量的影响摘要:随着中国国民经济的不断增长和发展,电能需求量的日益增加,电力客户逐步增多,对电能计量装置接线的准确性要求将不断提高。

电能计量是电力商品交易中的"一杆秤",电能计量的准确、公平、公正、可靠直接关系到供用电双方的经济利益。

在新装计量装置中由于电流互感器相序、极性的错误导致电能表的误接线,造成电能计量的不准确。

文章在此背景下,初步探讨和分析了三相四线有功电能表误接线分析及对电能计量的影响。

关键词:三相四线有功电能表;误接线分析;电能计量影响随着我国居民的用电需求量日益增大,因此对电能计量装置的要求越来越高。

电能表是统计电能的重要设备,电能计量的准确性和可靠性直接关系到供电企业以及居民用电的实际利益。

此外对于在10kV以上的高压电和10kV以下低压电供电系统而言,也都通常会采用三相四线制供电方式。

三相四线有功电能表是计量电能过程中较为常用的设备,不仅仅能够计量三相和单相动力负荷电能,而且能够计算照明负荷电能,与此同时起到防窃电效果,最终被广泛应用。

在使用三相四线有功电能表时往往需要用到用电流互感器,以期扩大量程。

而诸多研究显示,在使用三相四线有功电能表计量电能过程中,常常出现电能表与电流互感器极性配合问题。

如果忽视上述问题,将显著提高电能表错误接线率。

三相四线有功电能表的错接机会表达多,一旦错接将会出现以下情况:其一,有的不转;其二,有的反转;其三,有的虽然正常运转,但是所计量出的电量数与实际电量数出入较大。

一、三相四线有功电能表计量原理和接线方法1.三相四线有功电能表计量原理分析电能表能够计量电量主要是因为电能表内部有以下零部件:其一,电压;其二,电流线圈。

电能表在负荷电流作用之下会产生转矩,通过机械装置带动电能表计数器,继而显示出用电量。

2.三相四线有功电能表的接线方法分析三相四线有功电能表有三个电路线圈、三个电压线圈,因此在负荷电流作用下会产生三个转矩。

电能计量装置三相四线错误接线分析

电能计量装置三相四线错误接线分析

电能计量装置三相四线错误接线分析【摘要】为确保电能计量的公平、公正,电能计量装置必须正确接线、准确计量,因此避免电能计量装置的错误接线显得尤为重要,而供电企业的大多数电能均是被三相四线制的用户消耗掉的,对这些用户的电能计量装置进行错误接线分析会对供电企业产生举足轻重的作用,并对错误接线的电能计量装置按正确接线方式进行电量追退,能更好地维护发、供、用电三方的合法权益。

【关键词】计量装置错误接线分析1 电能计量装置的基础知识1.1 电能计量装置的概念电能计量装置包含各种类型电能表,计量用电压、电流互感器及其二次回路、电能计量柜(箱)等。

1.2 电能表的分类电能表的分类一般有以下五种:按使用电源性质:分为交流电能表和直流电能表。

按结构及原理:分为感应式、电子式和机电式。

按准确度等级:分为普通级和精密级。

普通级电能表一般用于测量电能,常见等级有0.5、1.0、2.0 、3.0 级;精密级电能表则主要作为标准表,用于校验普通电能表,常见等级有0.01、0.05、0.2 级等按用途:分为工业与民用电能表、电子标准电能表及特殊用途电能表等。

按接线:分为单相两线有功电能表、三相四线有功电能表、三相三线有功电能表、三相三线60°无功电能表、三相四线90°无功电能表。

1.3 电能表用电压、电流互感器分类及介绍(1)电能表用互感器按用途分为:电压互感器和电流互感器。

(2)电能表用互感器按接线分①电能表用电压互感器按接线分为单相电压互感器和三相电压互感器。

②电能表用电流互感器按接线分为:单一变比的电流互感器、有两个变比的电流互感器、还有多抽头式的电流互感器。

2 三相四线电能计量装置的正确接线2.1 三相四线有功电能表的接线方式常见的三相四线有功电能表的共同特点是有三个规格相同的驱动元件,其接线方式是:其电流Ia、Ib 、Ic 分别通过第一元件、第二元件和第三元件的电流线圈,电压Ua、Ub、Uc 分别并接于第一元件、第二元件和第三元件的电压线圈上,因此三相四线电路可看成由三个单相电路组成,所以总的电能为各相电能(以功率表示)之和。

三相四线制电能表误接后的电能补退分析

三相四线制电能表误接后的电能补退分析

三相四线制电能表误接后的电能补退分析摘要:电能表的错误接线给电能计量带来很大的计量误差,它所计量的电能是不准确的,而电费的结算关系到供、用电双方的经济利益。

文章通过比较分析其实际接线和理论接线的功率表达式,得出错误接线的计量影响和更正系数,从而达到准确的计量。

此外文章还介绍在实际生活中计算法无法适用的情况下,电能估算的方法。

关键词:电能表;误接;更正系数;电能补退中图分类号:TM933.4电能表的错误接线给电能计量带来很大的计量误差,它所计量的电能是不准确的,而电费的结算关系到供、用电双方的经济利益,因此在进行电费的结算时进行必要的电量更正以确保电量的正确。

电能表错误接线分析的目的是通过对错误接线的相量分析,判断实际接线方式,推导出电能表的在错误接线时所计量的电能(功率)占正确计量电能的百分比。

从而得出实际电能值,最终使差错电量得以补退,确保供、用电双方的公平交易。

电量的更正基于对错误接线和相量图的正确分析。

因此,如实地绘出错误接线图和错误接线相量图,同时进行功率因数测定和了解错误接线发生时间等因素至关重要。

下面介绍有关电量更正的计算方法:1更正系数①查表法。

可以查找相关工具书籍或电量更正系数表,利用查表法时应选择符合实际情况的功率因数值。

②测试法。

用标准表测出错误接线时电能表计量的功率P′,再用标准表测出更正后电能表所计量的正确功率P,代入公式(1)可求更正系数K。

③计算法。

先求出错误接线时的功率表达式和正确接线时的功率表达式,利用公式(1)求出更正系数。

错误接线时,电能表所记录的功率可按元件计算,每个元件实际所接电压,电流及电压与电流夹角余弦的乘积为该元件的功率,再将各元件功率相加可得总功率。

如图1,三相四线制一相电流反接的错误接线;如图2,实际电流方向相量图。

由该接线图可知,可采用一个三相四线型电能表(三元件)或三只单相电能表测量该功率。

各相功率表达式:P1=UuIucos(180o-φ);P2=UvIvcosφ;P3=UwIwcosφ当三相负荷平衡时,有Uu=Uv=Uw=U;Iu=Iv=Iww=I总功率P′=P1+P2+P3=-UIcosφ+UIcosφ+ UIcosφ= UIcosφ正确接线时,P=3UIcosφ2差错电量的补、退由公式(1)可知,正确接线电能W=K*错误接线电能A′,即A=K*A′,则应退补的电量△A就是实际电能值与错误接线时电能表所计量电能值之差。

三相四线电能表误接线分类及对电能计量的影响

三相四线电能表误接线分类及对电能计量的影响

三相四线电能表误接线分类及对电能计量的影响摘要:三相三线电能表是在电力计量需求发展以及计量技术进步的条件下,在电力系统运行中应用的一种新计量装置。

应用三相三线电能表在进行电能情况的计量过程中,由于电力系统中的电流互感器的相序以及极性错误问题,会容易造成三相三线电能表在进行接线计量应用中,出现误接线问题,从而对于电能表计量装置的计量结果造成一定的不利影响。

本文主要分析探讨了三相三线电能表误接线对计量的影响情况,以供参阅。

关键词:三相三线;电能表;误接线;计量;影响1电能表误接线在实际运行中,电能表出现误接线时会产生的现象有如下几种:一是,指针不转;二是,指针反转;三是,指针正转,但计量出的电量数与实际用电情况不相符,从而导致电力计量不准情况出现。

根据实践经验来看,电能表误接线情况产生的原因有如下几个:一是,计量柜柜内的接线出现连接错误;二是,电能表安装时,现场施工存在接线错误情况;三是,用户在窃电时,将电能表接线连接错误。

其中,电能表安装现场施工出现接线错误的情况比较常见,主要是电极的极性弄反和二次回路线互换接线错误两种情况,并且,上述几种原因也可能同时发生。

另外,电能表的误接线除了上述几个原因外,还有可能是电压相序出现错误情景、电压出现断线问题、电流出现断线问题等。

因此,在实践过程中,需要根据实际的接线情况进行相量分析,结合电能表实际运行情况,计算出实际的有功功率与无功功率的计算表达式,则可以推测出电能表误接线给电力计量带来的影响。

现对常见的电能表误接线情况进行分析。

以单相电子式防窃电电能表的现象连接为例。

在接线连接现场有三块上述类型的电能表,如图1所示,分别用A、B 和C来表示,其中,1和3为电能表的进线连接端,2和4为电能表的出现连接端。

在实际安装过程中,采用B电能表的零线进入端是在B电能表的零线出线连接端,一般情况下,在普通感应式电能表中,采用这种零线接线方式,电能的计量可以完全保持正常和正确计量。

三相四线电能表错误接线分析及其判断

三相四线电能表错误接线分析及其判断

三相四线电能表错误接线分析及判断三相四线电度表接线方式的分析与判断1、三相四线电度表标准接线方式P=P1+P2+P3=U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式P=P1+P2+P3=U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ)=-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。

负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)P=P1+P2+P3=U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。

负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式P=P1+P2+P3=U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。

【电网 营销】电能计量装置错误接线分析及退补电量计算

【电网 营销】电能计量装置错误接线分析及退补电量计算

1电能计量装置错误接线分析及退补电量计算一、电能表错误接线分析 1、单相有功电能表错误接线分析(1)未接电压挂钩:0)u (i,:元件= 0P = 表不转。

(2)电压挂钩接②端:)u ,i (i :元件b + 电压元件损耗被计入电能表,对用户不公平,因用户已分摊了表损电费。

2(3)火线②进①出:u)(-i,:元件 ϕ-=cos UI P 表反转。

(4)火线、零线搞错:(-i,-u):元件 ϕ=cos UI P 负载1的电能被正确计量,但负载2的电能不被计量,所以容易造成窃电。

(5)火线①进,零线②进:火零线被电流元件短接,若电源方向送电,立刻烧毁电表。

2、三相四线有功电能表错误接线分析分析步骤:(1)确定各元件所接电流、电压;(2)画各元件所接电流、电压相量图;(3)根据相量图,写出电能表在对称负载时,各元件的功率表达式及总功率表达式并化简;(4)由化简后的总功率表达式判断计量是否正确。

【例1】某三相四线有功电能表接线如下图所示,试分析计量是否正确。

34解:三个元件所接电流、电压分别为:)U ,I (:1A a ••元件、)U ,I (:2元件B c ••、)U ,I (:3元件C b ••-5根据相量图得负载对称时三个元件的功率分别为:ϕ=cos UI P 1、)120cos(UI P 2ϕ+︒=、)60cos(UI P 3ϕ+︒=∴总功率 )sin 3(cos UI P P P P 321ϕ-ϕ=++='A•U6∴计量不正确。

【例2】某三相四线有功电能表接线为)U ,I (:1元件B a ••、)U ,I (:2元件C b ••、)U ,I (:3元件A c ••试分析计量是否正确。

解:根据三相四线有功电能表相量图得负载对称时三个元件的功率分别为:)120cos(UI P 1ϕ-︒=、)120cos(UI P 2ϕ-︒=、)120cos(UI P 3ϕ-︒=∴总功率)sin 23cos 21(UI 3)120cos(UI 3P P P P 321ϕ+ϕ-=ϕ-︒=++=' ∴计量不正确。

电能计量装置错误接线判断分析与处理

电能计量装置错误接线判断分析与处理

电能计量装置错误接线判断分析与处理【摘要】三相三线错误接线判断原理、三相三线测量数据、错误的相量图、更正系数、追退电量、错误接线图、三相四线测量数据、三相四线的错误向量图及更正系数和错误接线图、【关键词】元件、相别、相电压、线电压、电流、夹角、参考点、相量图、更正系数、接线图前言:电能计量装置准确与否直接关系企业的经济效益和社会的效益,掌握电能计量装置接线检测是每个计量工作者必须具备技能,掌握错误接线判断分析、以便计算更正系数,追退电量,维护企业和用电户的合法权益。

1、三相三线错误接线判断处理1.1三相三线错误接线判断原理三相三线电能计量装置电能表二元件构造正常接线第一元件:电压、电流为 Uab Ia第二元件:电压、电流为 Ucb Ic判断错误接线需测量数据,一般用,元件指的表尾一般用1、2、3来表示,表示接入的位置,所以,测量数据元件表示:第一元件:电压、电流为 U12 I1第二元件:电压、电流为 U32 I3这样画向量图时就可以把元件和相分开、元件指的表尾一般用1、2、3来表示,相别用A B C来表示1.2、三相三线需要测量数据(1)测量赋值-伏安相位仪测量:测量电压、电流的大小,能够判断是否存在断线问题U12 = U32= U31= I1= I3=U1-地= U2-地= U3-地=(2)需要测量相位:∠U12U32=∠U12I1 =、∠U32I3=、∠I1I2 =(3)相序判断∠U12U32= 300° 表示正相序 abc、bcc cab∠U12U32= 60°表示逆相序acb bac cba(4)三相三线需要找参考点用伏安相位仪电压测量黑笔按电能表装置上Ub(零)电压参考点红笔分别接电能表尾三元件U1 U2 U3哪个与Ub(零)参考电压为零,则表示该元件为Ub 例如:1 2 30(B)1.3、根据电压相别绘电压向量图(1)可以先以相别定坐标,建立坐标系,然后根据电压相序标注元件电压,电压 Ua Ub Uc注意因是矢量,所以应点点(3)根据前面判断的电压相序,以及接地相,判断第一、第二元件接入的电压,然后在相量图上标出U1 U2 U3 ,再画出U12 U32 。

电能表计量误差原因分析及建议

电能表计量误差原因分析及建议

电能表计量误差原因分析及建议摘要:随着我国市场经济体制的不断完善和发展,电能逐渐在工业领域、农业领域等以及其它领域彰显着越来越重要的作用,自身在市场中的价值也在不断的提升。

然而随着全球一体化的不断发展,我国所消耗的能源数量与日俱增,同样也面临着能源紧缺的困境。

然而当时的社会情境下,我国取之不尽,用之不竭的错误观点还存在一些人的意识观念中。

相反,这种错误的观点,会限制我国稀缺性能源在别的领域中的运用情况。

电能作为我国能源的重要组成部分,它推动了我国各个行业的发展,促进我国经济不断前进。

关键词:电能表;计量误差;原因分析随着科学技术的快速发展,电力事业取得了突飞猛进的进步,电力资源已经成为人们生活中不可缺少的重要组成部分,发挥着不可替代的作用。

在电力系统中,电能表是其中的基础仪器之一,主要功能是对供电量进行统计,直接与电力企业的经济效益挂钩。

但是,在电能表实际工作中,由于多种原因,经常会存在计量误差或者计量损耗的情况,从而影响电力企业整体的经济效益,因此,对电能表计量误差和损耗的具体体现和产生原因进行研究具有很高的现实意义。

1 电能表计量的应用意义电力资源是我们生活中最为基础的能源,而消耗电能的多少和具体的计算方式都是通过电能表计量来完成的。

供电企业和用户在结算时,都是依据电能表计量的数据为基准,如果在结算过程中出现了电能表计量误差,就会直接损害电力企业或者用户的利益。

当电能表计量数据多了,就会影响企业经济效益,如果长期如此,就会造成供电企业本金亏损。

所以,电能表的准确性必须存在准确性和公平性,才能保证双方的合法利益。

2 产生误差的原因分析2.1 电流电压及温度的变化影响电能表计量误差的因素主要包括电流电压的变化以及温度的差异。

电能表在进行测试电量的过程中,会用到电流电压,电流电压的变化会影响温度的变化,反过来说,温度的高低同样影响着电流电压的变化,一旦电流电压超范围则会导致误差的出现。

在测量电路的过程中,如果选择使用电子式电能表,需要特别注意这种电能表使用的电压与传统电能表使用的电压的差别,电压的不同往往会影响测量电表数据的变化,最终会导致测量误差的出现。

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析三相四线有功电能表是市场上常见的计量仪表,其主要用于实现有功电能计量。

但是,误接线时会导致计量不准确,甚至无法正常计量。

因此,本文将探讨三相四线有功电能表的几种误接线及其计量分析。

一、电流接反误接线电流接反误接线是指在三相四线有功电能表的接线过程中,将电流接线反向接入到了电能表上。

这种接线错误可能会导致电能表不能正常计量,或者计量误差较大。

其计量分析可从电路结构和电流技术两个方面进行探讨。

1.电路结构分析三相四线有功电能表主要由电流电路和电压电路两部分组成。

其中,电流电路通过互感器感应三相电流,将其变换为与电压等效的电压信号。

而电压电路则通过电压分压器将接入的三相电压分压为低电平信号。

这两个电路均结合了控制电路和电子计量单元,构成了完整的计量系统。

如果将电流接反,则互感器感应的电流与实际电流方向相反,导致电路中电压信号的相位错误。

进而,改变整个计量系统中的电量积分方向,导致能量计量的出错。

2.电流技术分析在三相电路中,每个电源的电流方向都是不同的。

若将电流接反,则会导致三相电流的相位相反,包括电流的大小及其相位角。

因此,在计量分析中还需要考虑三相电流的相位和相对大小。

三相电流在不同的相位位置上具有不同的时间加权系数和相位角,因此不同时段的计算结果会有所不同。

二、电压接反误接线与电流接反误接线相似,电压接反误接线也会对三相四线有功电能表的计量结果产生较大影响,进而产生类似的计量误差。

计量分析可从电路结构和电压技术两个方面进行探讨。

1.电路结构分析电压接线与电流接线相似,均分为电压电路和电流电路两部分。

当电压接反时,电压电路的输入信号与正常接线情况下输入的信号相反,使得计量系统中的电量积分方向变化,从而影响电能表的计量准确性。

2.电压技术分析电压技术分析包括各相电压的相位、电压比例系数和有效值。

当其中一相电压接反时,其他电压的相对相位就发生了变化,进而导致与电流相关联的电功率计算错误。

电能计量装置错误接线及分析

电能计量装置错误接线及分析

电能计量装置错误接线及分析摘要:在经济快速发展的新形势下,我国综合国力得以进一步增强,这也对电力企业服务工作提出了更高的要求。

电力计量装置不仅是电力企业为用电客户提供优质服务的重要保障,而且清空对电力企业经济效益的实现具有极为重要的关系。

所以在电能计量装置接线工作中,需要确保接线的正确性,确保电能计量装置运行的稳定性,从而使电力系统能够安全的运行。

关键词:电能计量;错误接线;检查分析电能计量作为计量工作的一个重要组成部分,是电力企业生产经营管理及电网安全运行的重要环节,其技术水平和管理水平不仅事关电力工业的发展和电力企业的形象而且影响电能贸易结算的公平、公正和准确、可靠,关系到电力企业、广大电力客户和老百姓的利益。

电能表的计量准确性可以通过电能计量检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识淡薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。

一、电能计量装置及错误接线类型1.单相电路错误接线单相电路有功电能计量中的错误接线问题是电能计量装置错误接线中的最常见的,该错误情况的出现主要由以下几个方面的因素造成。

第一是由于装置安装人员在接线过程中操作失误,导致线路接反现象的情况,相线和零线混淆;第二,在电能计量装置接线时,该工作人员未能正确区分进出线;第三,电能计量装置的电流线圈与电源间存在短路情况,接线错误使电能表无法正常计数;第四,由于工作人员的疏忽,电压钩连片未连接,电能表故障。

2.三相三线错误接线三相三线电路计量的错误接线可分为有功电能计量中的错误和无功电能计量中的错误。

其中三相三线电路有功电能计量中会出现电流端进出线路接反问题,导致电能计量装置工作异常,同时电压端接线顺序调换、电压电流相位无法对应,多会导致接线错误。

3.三相四线错误接线三相四线电路有功电能计量错误接线存在三种表现形式,在检查工作中需要加以注意区分。

浅谈三相四线电能表接线错误对电能计量的影响

浅谈三相四线电能表接线错误对电能计量的影响

浅谈三相四线电能表接线错误对电能计量的影响摘要:根据三相四线有功电能表电能计量原理,结合向量图,分析在错误接线下三相四线有功电能表电能计量与正确接线时的误差值,并采用三相电能表校验装置,对错误接线下的三相四线有功电能表的实际电能计量性能进行验证,对处理实际由于错误接线引起的电能纠纷提供参考。

关键词:三相四线电能表;接线错误;电能计量前言:三相四线电能表是测量三相四线制中电能的仪表,广泛应用于民用和工业用之中。

作为用作电能贸易结算的电能表,其能否正确计量,关系到用电结算双方的利益。

影响电能表是否正确计量的因素,除了电能表的准确度等级之外,还有电能表的接线是否正确。

目前在用的电能表准确度等级较高,带来电能计量误差影响较少,但错误接线给电能计量带来的误差却往往很大,三相四线电能表在安装接线的过程中,有可能出现错误接线的情况。

在发现错误接线后,需对电能表错误接线进行分析,判断错误接线下电能计量与正确接线下电能计量的误差,用作处理因电能表错误接线引起的电能计量纠纷时的技术参考。

1.三相四线电能表电能计量的工作原理三相四线有功电能表按结构和原理可分为机电式和电子式两种。

机电式三相四线电能表多为三相四线三元件的电磁元件结构,三相电流、电压分别通过电能表中的电流、电压线圈,产生相应的工作磁通,与表内的测量机构互相作用,驱动表内转盘转动,其驱动力矩大小与电流电压值成正比。

转盘的转动带动表内计度器各位字轮转动,让用户读取当前电能表测得的累计电能值。

三相四线机电式电能表接线图如图1所示。

电流IA、IB、IC分别通过电表内的第一元件、第二元件、第三元件的电流线圈上,电压UAN、UBN、UCN分别并接在第一元件、第二元件、第三元件的电压线圈上。

其向量关系图如图2所示。

图1 三相四线机电式电能表接线图图2 三相四线机电式电能表向量关系图2.三相四线电能表接线错误的原因分析2.1电流线圈进出线接反的问题图3为A相电流互感器副边反极性接入的错误接线图。

三相四线电能表计量错误的分析

三相四线电能表计量错误的分析

三相四线电能表计量错误的分析xx摘要本文介绍三相四线电能表计量错误的原因和用理论及实验手段的分析方法。

关键词电能表有功功率因素0引言在临场监测观察中,电能表计量错误常见的是:反转;停转;时而正转时而反转,虽然正转,但计量与实际用量不符,分析认为,引起三相四线电能表计量错误的原因可归纳为三大类,一是仪表机械故障,二是器件损坏,三是电气接线错误。

1仪表机械故障电能表的基本误差主要由转动部分的磨擦以及电流元件的电流和磁通之间的非线性关系等多方面因素所引起的。

如果仪表长时间使用于不良环境状态中,潮湿、灰尘、铁屑进入仪表内部,就易使永久磁钢阻力增大,也容易造成滚珠轴承磨损,传动机构蜗杆及齿轮生锈,从而造成电能表误差数据波动,严重者会时而停时而转或完全停转。

一般处理为清除灰尘杂质,在轴承及转动机构的各转动齿轮的轴孔内加适量的润滑油。

2器件损坏图1为三相四线电能表正确接线图。

当其中一个或两个电流互感器开路,或者电能表中其中一个或两个电流线圈开路,此时电能表仍正转,但计量错误甚大。

如果表中一个电流线圈开路,则少计量三分之一,假如两个线圈开路,则少计量三分之二。

故此现象要细心观察,不难发现。

开路的原因多为线圈内部损坏烧断,也有因接头脱焊或镙丝松落。

3电气接线错误三相四线电能表接线并不复杂,但往往由于疏忽,会造成错接,以致出现停1转、反转或者虽正转但与实际负荷不符的现象。

(1)电流互感器二次引线反接见图2。

电流互感器二次引线三相全部反接到电能表表端,这时三元件都倒进相应的相电流、相电压。

设三相电压对称,三相负荷平衡条件下,其三相功率为:P P1P2P3UUCNICNcos(1803UIcos ANIANcos(180A)UBNIBNcos(180C)显然,三相电能表反转,数字均为负值,理论计算其绝对值是正确计量时的数值。

但在实际测量中,由于仪表结构设计中的轻载补偿力矩为正值,其值比正确计量时约少百分之十。

图3为向量图。

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析发布时间:2021-09-06T11:30:24.373Z 来源:《中国电力企业管理》2021年5月作者:李娟[导读] 在供电系统当中,三相四线有功电能表是一种重要的计量装置。

但是,在安装这一装置时,却存在几种常见误接线问题。

一旦发生此类问题,势必会造成电能表计量错误,非常不利于供电服务质量的提升。

本文首先介绍了三相四线有功电能表正确接线时的计量分析,之后分别针对几种误接线计量问题进行了相关探究,最后介绍了一种较为简便的接线方式,希望能够为大家带来有价值的参考。

大唐山西发电有限公司太原第二热电厂李娟山西省太原市 030041摘要:在供电系统当中,三相四线有功电能表是一种重要的计量装置。

但是,在安装这一装置时,却存在几种常见误接线问题。

一旦发生此类问题,势必会造成电能表计量错误,非常不利于供电服务质量的提升。

本文首先介绍了三相四线有功电能表正确接线时的计量分析,之后分别针对几种误接线计量问题进行了相关探究,最后介绍了一种较为简便的接线方式,希望能够为大家带来有价值的参考。

关键词:三相四线有功电能表;几种误接线计量;解决措施引言:在供电计量工作中,三相四线有功电能表的计量精准性直接关系到供电质量及其整体效益。

但是,这对于接线人员的专业水平、操作技能和实践经验都是一种极大的考验。

一旦出现误接线,电度表就会出现慢走、倒走等现象,从而造成计量误差,还极有可能引发短路事故。

因此,有必要针对几种三相四线有功电能表误接线及其计量问题进行系统性研究,力争提出科学有效的解决措施。

一、正确接线状态下的计量分析在低压三相四线有功电能表计量的过程中,无需使用电压互感器,但通常需要为其配备电流互感器。

当低压经电流互感器与三相四线有功电能表相连接时,其正确接线方法如图1所示:图1 正确接线方法示意图先将电流IA、IB、IC分别与电能表当中第一元件、第二元件、第三元件的电流线圈相连在一起,再将电压UAN、UBN、UCN分别与第一元件、第二元件、第三元件的电压线圈连接在一起[1]。

论述三相四线有功电能表错误接线分析与判断

论述三相四线有功电能表错误接线分析与判断
两只电流互感器极性接反,如果在三只电流互感器中有两 只出现极性接反的为A相和B相,如果三相负载对称,则有功功
率为正确接线计量的-1/3,电能表反转明显。如果极性接反的 为B相与C相,则其实际反应情况与A相、B项接反情况相反。
三只电流互感器全部接反,此情况下如果三相负载对称, 则有功功率为正确接线计量-1倍,电能表出现反转。
1 三相四线有功电能表正确接线方式分析 1.1 三相四线有功电能表零线接法 使用直接接入法,零线经过10#或11#接线端子直接接到开
关。这种接线方式下,三相电压与电流对称与否,在中性点直 接接地三相四线电路中都可对电路有功电能实现准确计量。而 采取一进一出方式对单相电能表零线接线,剪断电源零线,然 后接入电能表,由于电源零线被剪断后,容易导致接入电能表 零线端子的过程中出现接触不良、断线等问题。此情况下,如 果负荷不对称,则无法保证电能表计量准确性,且电路中性点 发生位移,会降低某些相的电压,而一些相电压则会升高,从 而将电器设备烧坏,甚至酿成严重的火灾事故,其安全隐患较 大。因此,在三相四线有功电能表零线接线中,不可将其剪断 接入,而要采用交接法进行[1]。
2.2 电流、电压回路不同相 两元件电流、电压不同相,A相电流、电压是同一相,B 相和C相电压、电流不同相,此时如果为三相负载对称,则有 功功率为零,电能表无法运转。B相和C相同相,其他两相不同 相时,分析方法与结论相同。 三元件电流、电压不同相,此时三相负载对称,如果Φ在 0~60°范围内,则电能表反转,计量值失准。三元件电流、电 压不同相,另一种情况在三相负载对称的情况下,Φ在0~30° 之间,则电能表反转;Φ为30°,则电能表不转;Φ>30°, 电能表正转,相比正确接线时转速比较慢[2]。 2.3 电压、电流回路断线 首先是一相电压或电流断线,此时A相电压断线,其元件 不计量,如果为三相负载对称,计量值为正确接线计量的2/3, 电能表走慢。其次是两相电压、电流断线,如果断线为A、B相 电压、电流断线,则两相元件都不计量,计量值为正确接线计 量的1/3,同样电能表走慢。最后,三相电压、电流都断线,此时 三相元件都不计量,电能表不走。在三相四线电能表中,一个 元件电流、电压或者各相元件同时失流失压,元件不计量,且 少计量值为正确接线计量1/3。 2.4 零线断线 负载不平衡、三相四线有功电能表没有接入零线的情况 下,正常情况下电能表不会出现计量误差。而在三相不对称的 情况下,则会产生计量误差,且不同于接零线时误差。而实际 情况中多为三相不对称,因此会产生误差。 因此,在装表接电前,需准备好标准接线图,认真核对电 能表型号、电压等级和极性等,装表过程中二次回路接线需穿 对应标号,按相色接入电能表,避免接线错误。现场需使用相 关仪器仪表检查计量装置,实现正确接线。

三相四线有功电能表误接线造成的计量误差

三相四线有功电能表误接线造成的计量误差

三相四线有功电能表误接线造成的计量误差1简例(1)其中一相电流互感器二次极性接反:假如A相电流互感器二次反极性,则各个元件所计量的功率表达式为:Pa / = Ua(-la)cos ©-Ualacos © aPb=Ublbcos © bPc=Uclccos ©三元件功率之和为P z =Pa +Pb +Pc=-UaIacos © a+Ublbcos © b+Uclccos 当三相电路平衡时U日二Ub二Uc 二UOIs二巾二Ic二10血二©b二机二机I 则P Z = uoiocos ©0而实际输出电能P=3Uclccos©,0故p/ MP由以上分析推导可知,本例错误接线造成的计量误差是计量装置只计量了1/3的有功电能,乘以3为实际有功电能值。

(2)其中两相电流元件接错:假设AC两相电流元件接错,则各个元件所计量的功率表达式为:Pg7 =Ualccos(120-° c)Pb=Ublbcos © bPfc =Uclacos(120-° a当三相电路平衡时,三元件的功率之和为:P / =Pa / +Pb / +Pc /=U0l0cos(120-© 0)U0l0cos © 0+U0l0cos(l2&) °0 而P=3U0l0cos ©0 故p/ MP由以上分析推导可知,本例错误接线造成电能表不转,计量装置不能计量实际输出的电能。

(3)其中一相电流元件接错:假设B相电流元件进出接反,则各个元件所计量的功率表达式为:Pa/ =UalaCOS(|)a b/ =Ub(」b)cos © bPc=Uclccos ©c当三相电路平衡时,三元件的功率之和为:P / =Pa / +Pb / +Pc / =U0l0cos ©UOIOcos © O+UOIOcos © O=UOIOc由以上分析推导可知,本例错误接线,造成计量误差,电能表所计量的电能为实耗电量的三分之一,乘以3后方为实际电能值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相四线电能表计量错误的分析
陈军灵
摘要本文介绍三相四线电能表计量错误的原因和用理论及实验手段的分析方法。

关键词电能表有功功率功率因素
0 引言
在临场监测观察中,电能表计量错误常见的是:反转;停转;时而正转时而反转,虽然正转,但计量与实际用量不符,分析认为,引起三相四线电能表计量错误的原因可归纳为三大类,一是仪表机械故障,二是器件损坏,三是电气接线错误。

1 仪表机械故障
电能表的基本误差主要由转动部分的磨擦以及电流元件的电流和磁通之间的非线性关系等多方面因素所引起的。

如果仪表长时间使用于不良环境状态中,潮湿、灰尘、铁屑进入仪表内部,就易使永久磁钢阻力增大,也容易造成滚珠轴承磨损,传动机构蜗杆及齿轮生锈,从而造成电能表误差数据波动,严重者会时而停时而转或完全停转。

一般处理为清除灰尘杂质,在轴承及转动机构的各转动齿轮的轴孔内加适量的润滑油。

2 器件损坏
图1为三相四线电能表正确接线图。

当其中一个或两个电流互感器开路,或者电能表中其中一个或两个电流线圈开路,此时电能表仍正转,但计量错误甚大。

如果表中一个电流线圈开路,则少计量三分之一,假如两个线圈开路,则少计量三分之二。

故此现象要细心观察,不难发现。

开路的原因多为线圈内部损坏烧断,也有因接头脱焊或镙丝松落。

3 电气接线错误
三相四线电能表接线并不复杂,但往往由于疏忽,会造成错接,以致出现停 1 转、反转或者虽正转但与实际负荷不符的现象。

(1)电流互感器二次引线反接
见图2。

电流互感器二次引线三相全部反接到电能表表端,这时三元件都倒进相应的相电流、相电压。

设三相电压对称,三相负荷平衡条件下,其三相功率为:P=P1+P2+P3=U
+UCNICNcos(180
=-3UΦIΦcosΦ ANIANcos(180 -ΦA)+UBNIBNcos(180 -ΦB) -ΦC)
显然,三相电能表反转,数字均为负值,理论计算其绝对值是正确计量时的数值。

但在实际测量中,由于仪表结构设计中的轻载补偿力矩为正值,其值比正确计量时约少百分之十。

图3为向量图。

同理,如果只有A相反接,B相和C相接线正确,则三相功率为:
P=P1+P2+P3=UΦIΦcosΦ
理论计算得出第I元件与第II元件抵消,第III元件正转,其值为单相功率的数值。

但在实际计量中,其值约比单相功率数值多百分之十。

(2)跨相接线
如图4跨相接线错误。

在第I元件上的是A相电流和B相电压,第II元件的是B 相电流和C相电压,第III元件的是C相电流A相电压。

相当于将电压相序旋转120°后加在各元件上。

因此,电能表所反应的有功功率为:
+UAICcos(120 -ΦC)
当三相负荷平衡时,p=3UIcos(120 -Φ)
因而可知,当30 <Φ<90 时,电能表正转,电能表的有功功率读数为正值;当0 <Φ<30 时,电能表反转,电能表的有功功率读数为负值,当Φ=30 时,电能表停转。

可见错误的跨相接线,电能表的转向情况同负荷大小无关,而与负荷的功率因素有关。

相量图如图5所示。

参考文献
1、陈军灵黄玢电路与测量技术基础广州华南理工大学出版社,2001。

相关文档
最新文档