高考数学矩阵与变换

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点评
解析答案
变式训练 2
(2015· 福建)已知矩阵
2 A= 4
1 1 , B = 0 3
1 . -1
(1)求 A 的逆矩阵 A-1;
解 因为|A|=2×3-1×4=2,
3 -1 3 1 2 - 2 1 2 . =2 所以 A- = -4 2 -2 1 2 2
2 1 - 2 - 1 3 1 3 所以 A= = . 3-1 2 1 2 - 3 3
解析答案
1
2
3
4
5
6
7
8
(2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量.

λ-2 -1 2 -1 矩阵 A 的特征多项式为 f(λ)= = λ -4λ+3=(λ-1)(λ-3), -1 λ-2
=(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A的特征值为λ1=7,λ2=-4. 故A的特征值为7和-4.
解析答案
返回
高考题型精练
2 A-1= 1
1
2
3
4
5
6
7
8
1.已知矩阵 A 的逆矩阵 (1)求矩阵 A;
1 . 2
解 因为矩阵A是矩阵A-1的逆矩阵,且|A-1|=2×2-1×1=3≠0,
解析答案
(2)求矩阵C,使得AC=B.
解 由AC=B得(A-1A)C=A-1B,故
1 0 3 1 =2 -1 -2 2 . -3
3 1 - 1 2 C=A- B=2 -2 1
解析答案
题型三
例3
求矩阵的特征值与特征向量
-1 ,其中 a∈R,若点 P(1,1)在矩阵 A 的变换下 1
解析答案
1
2
2.(2016· 江苏)已知矩阵 矩阵 AB.
1 A=0
2 ,矩阵 -2
1 B 的逆矩阵 B-1= 0
1 -2 ,求 2

2 B=(B-1)-1=2 0 2
1 1 2 1 4 2= . 1 1 0 2 2
1 x-1 -2 1 = , = 0-1 y 2
-1 x-1=-2, x=-1, 则 即 所以矩阵 A= 2 y=2, y=2,
1 . 0
从而矩阵A的特征多项式f(λ)=(λ+2)(λ-1), 所以矩阵A的另一个特征值为1.
2 对应的变换作用下 1
变为直线 l′:x+by=1.
(1)求实数a,b的值;
解析答案
(2)若百度文库 P(x0,y0)在直线 l 上,且
解 由
x x 0 0 A = ,求点 y0 y0
P 的坐标.
x x x0=x0+2y0, 0 0 A = ,得 y0 y0 y0=y0,
栏目 索引
体验高考
高考必会题型 高考题型精练
体验高考
x 1 是矩阵 A= 1.(2015· 江苏)已知 x, y∈R, 向量 α= - 1 y
1
2
1 的属于特征值 0
-2 的一个特征向量,求矩阵 A 以及它的另一个特征值.

x 即 y
由已知,得Aα=-2α,
1 已知矩阵 A= a
得到点 P′(0,-3).
(1)求实数a的值;

1 由题意得 a
0 -1 1 = , 1 1 -3
所以a+1=-3,所以a=-4.
解析答案
(2)求矩阵A的特征值及特征向量.
λ-1 -1 1 2 解 , 令 f ( λ ) = = ( λ - 1) -4=0. 1 4 λ- 1 解得A的特征值为λ=-1或3. -2x+y=0 当 λ=-1 时,由 得矩阵 A 的属于特征值-1 的一个特征向 4x-2y=0 1 由(1)知 A= -4
1 量为 ; 2
2x+y=0 当 λ=3 时,由 得矩阵 A 的属于特征值 3 的一个特征向量为 4x+2y=0 1 . -2
点评 解析答案
变式训练 3

已知
1 A= 6
5 ,求 A 的特征值. 2
λ-2 -5
λ-1 A 的特征多项式 f(λ)= -6
解析答案
(2)求曲线C的焦点坐标和渐近线方程.
解 曲线C′的焦点坐标为F1(0,-2),F2(0,2),渐近线方程为y=±x. 再顺时针旋转45°后,
即可得到曲线 C 的焦点坐标为(- 2,- 2)和( 2, 2),渐近线方程为 x =0,y=0.
点评
解析答案
变式训练 1
1 已知直线 l:ax+y=1 在矩阵 A= 0
专题9 系列4选讲
第 40 练 矩阵与变换
题型分析 高考展望
本讲从内容上看,主要考查二阶矩阵的基本运算,考查矩阵的逆运算
及利用系数矩阵的逆矩阵求点的坐标或曲线方程等,一般以基础题目
为主,难度不大 . 又经常与其他知识结合,在考查基础知识的同时,
考查转化与化归等数学思想,以及分析问题、解决问题的能力.
1 ∴AB= 0
1 2 · -2 0
1 5 4 1 4 . = 1 0 -1 2
解析答案
返回
高考必会题型
题型一
常见矩阵变换的应用
例1 已知曲线C:xy=1. (1)将曲线C绕坐标原点逆时针旋转45°后,求得到的曲线C′的方程;
解得 y0=0.
又点P(x0,y0)在直线l上,所以x0=1.
故点P的坐标为(1,0).
解析答案
题型二
例2
二阶矩阵的逆矩阵
a M= 0
设矩阵
0 (其中 a>0,b>0). b
(1)若 a=2,b=3,求矩阵 M 的逆矩阵 M-1;
解析答案
(2)若曲线 C: x2+y2=1 在矩阵 M 所对应的线性变换作用下得到曲线 C′: x2 2 4 +y =1,求 a,b 的值.
相关文档
最新文档