基于动态图像序列的运动目标跟踪
计算机视觉中的目标跟踪与运动估计算法
计算机视觉中的目标跟踪与运动估计算法摘要:随着计算机视觉技术的迅猛发展,目标跟踪与运动估计成为了计算机视觉领域一个重要的研究方向。
目标跟踪是指在给定的视频序列中,通过对目标的连续观察和判断,实时地追踪目标的位置,运动估计则是通过对目标在图像或视频序列中的运动进行建模和预测。
本文将介绍目标跟踪与运动估计的基础概念、常用算法和应用领域,并讨论其挑战和发展趋势。
1.引言计算机视觉是一门研究如何使计算机能够“看”的学科,它将图像处理、模式识别和人工智能等知识相结合,旨在模拟人类的视觉系统,实现对图像和视频的理解和分析。
目标跟踪与运动估计是计算机视觉领域的一个重要方向,具有广泛的应用前景。
2.目标跟踪算法目标跟踪算法是指在给定的视频序列中,通过对目标的连续观察和判断,实时地追踪目标的位置。
常见的目标跟踪算法包括基于模板匹配的方法、基于特征匹配的方法、基于相关滤波的方法等。
这些算法利用了图像中目标的特征信息(如颜色、纹理、形状等)来判断目标的位置,并通过更新模型或特征来实现目标的连续跟踪。
3.运动估计算法运动估计是指通过对目标在图像或视频序列中的运动进行建模和预测。
常见的运动估计算法包括基于光流的方法、基于特征点匹配的方法、基于深度学习的方法等。
这些算法利用了图像序列中的像素或特征点之间的变化关系,预测目标的未来位置,进而实现对目标的运动估计。
4.应用领域目标跟踪与运动估计在很多领域有着广泛的应用,例如视频监控、交通管理、移动机器人、虚拟现实等。
在视频监控领域,目标跟踪与运动估计可以实时地追踪事件发生的位置和运动轨迹,提供重要的监控信息。
在交通管理领域,目标跟踪与运动估计可以预测交通流量和车辆轨迹,提供交通优化的参考。
在移动机器人领域,目标跟踪与运动估计可以实现对机器人的自主导航和动作控制。
在虚拟现实领域,目标跟踪与运动估计可以实现用户动作捕捉和虚拟对象的交互。
5.挑战和发展趋势目标跟踪与运动估计在实际应用中仍面临一些挑战,如目标形变、光照变化、遮挡等。
目标跟踪算法的分类
目标跟踪算法的分类主要基于两种思路:a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标;b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。
一.运动目标检测对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。
运动检测即为从序列图像中将变化区域从背景图像中提取出来。
运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测(一)静态背景1.背景差2.帧差3.GMM4.光流背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。
因此对于固定摄像头的情形,目前大多数的跟踪算法中都采用背景减算法来进行目标检测。
背景减算法的局限性在于它需要一个静态的固定摄像头。
(二)运动场通常情况下,摄像机的运动形式可以分为两种:a)摄像机的支架固定,但摄像机可以偏转、俯仰以及缩放; b)将摄像机装在某个移动的载体上。
由于以上两种情况下的背景及前景图像都在做全局运动,要准确检测运动目标的首要任务是进行图像的全局运动估计与补偿。
考虑到图像帧上各点的全局运动矢量虽不尽相同 (摄像机做平移运动除外 ),但它们均是在同一摄像机模型下的运动,因而应遵循相同的运动模型,可以用同一模型参数来表示。
全局运动的估计问题就被归结为全局运动模型参数的估计问题,通常使用块匹配法或光流估计法来进行运动参数的估计。
块匹配基于块的运动估算和补偿可算是最通用的算法。
可以将图像分割成不同的图像块,假定同一图像小块上的运动矢量是相同的,通过像素域搜索得到最佳的运动矢量估算。
块匹配法主要有如下三个关键技术:a)匹配法则,如最大相关、最小误差等b)搜索方法,如三步搜索法、交叉搜索法等。
c) 块大小的确定,如分级、自适应等。
光流法光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。
运动目标检测与跟踪
背景差方法
背景差分法假定背景是静止不 变的,因此背景不随帧数而变。
相减
二值化
后处理
结果
背景估计法
• 背景估计法适用于背景静止情况下的视频分割,其主要基 于以下两个假设:
假设1:在背景静止的情况下,若外界光照条件不变,且在不考虑噪 声的情况下,视频序列图像中的背景保持不变。 假设2:在目标可视的情况下,目标与背景的灰度之间存在着一定的 对比度。 • 根据假设1,在静态场景的条件下视频序列图像中不包含目标的完整 背景在每一帧都相同,由于运动目标会遮挡住一部分背景,所以每一 帧中的背景并不等于完整背景,关键技术就是根据一定的准则从连续 k帧图像中估计出该视频序列图像的完整背景。
根据假设2,运动目标与背景之间的灰度存在着一定的对比度,因此 在不考虑噪声的情况下,在差分图像中属于背景区域的像素的灰度值 为零,从而检测出了运动目标。
运动目标检测方法存在的实际应 用上的困难
1
运动阴影的 干扰
2
动态背景的 影响
3
场景光照的 变化
运动阴影的干扰
• 原因:由于阴影和目标都与背景的差别很大,并 且二者常有着相同的运动,阴影常被错划为运动 目标。
Contents
1
现状和应用
2
目标检测的相关技术
3
目标跟踪的常用方法
4
结语
现状
• 运动目标检测与跟踪是在基于动态图像分析的基 础上结合图像模式识别和图像跟踪方法对图像序 列中的目标进行检测—识别—跟踪的过程,它是 图像处理与计算机视觉领域中的一个非常活跃的 分支,在最近二十几年间,随着计算机技术、 CLSI技术与高分辨率传感技术,图像处理技术的 迅速更新,它在国名经济和军事领域的许多方面 有着广泛的应用。
基于视频图像序列移动目标的检测与跟踪
一 个 码 本 (CB)数 组 ,每 一 个 码 本 (CB)数 组 由 n个 码 字 (CE)组 成 , 每 一 个 码 字 是 由 6个 元
素 组 成 的数 组 。
CB={CEI,CEe,CE3,…,CE ,T}
(6)
式 中:n为 一 个 码 本 中所 包 含 的码 字 数 目,
为 了能够提取 出完整 的 目标轮廓信 息,本 文采用三 帧差 法对 目标的轮廓信息进行提取 。 由于三 帧差 法主要检测的是前后两帧相对变化 的部 分 , 无 法 检 测 出 重 叠 的 部 分 ,导 致 检 测 出
保 留 了 目标 的 轮 廓 信 息 。
根据 三帧 差法 的 思想 ,首先 选取 图像 序
f0 茹 = (4)
『1 SRq _I】nsRQ k+I_k)=1
㈨ 10肼 . n础 1 (5)
2码本算 法
码 本 算 法 是 Kim 等 提 出 的 一 种 新 颖 的 背 景建模方法 。为 了能够 提取出 目标的 内部信息 , 本 文采用 自适应码本算法 ,通 过实时更新码本 中的码字 ,来建立新 的码 本模型。具体步骤如 下 :
列连 续三帧 图像 I (x,y),Ik(x,y),I k十1(x,y),通
过 公式 (1)、公式 (2)计算 出相邻 两帧图像
的差 值 Ds kk_l】、DS ¨ _k1。再 通 过 公 式 (3)、
公式 (4)选择合适闽值 T进 行图像 二值化处理 。
利 用公式 (5)对每 一个像 素点得 到二值 图像
mage& Multimedia Technology· 图像与多媒体技术
基 于视频 图像序列移动 目标 的检测 与跟踪
图像处理中的目标跟踪算法设计与性能评估方法
图像处理中的目标跟踪算法设计与性能评估方法目标跟踪是计算机视觉领域中一项重要的任务,广泛应用于视频监控、智能交通、无人驾驶和增强现实等领域。
目标跟踪算法设计与性能评估是提高跟踪准确性和效率的关键。
本文将介绍图像处理中的目标跟踪算法设计以及常用的性能评估方法。
一、目标跟踪算法设计目标跟踪算法旨在从连续的图像序列中,准确地估计目标的位置和尺度。
以下是几种常见的目标跟踪算法设计方法:1. 基于模板的方法:该方法将目标的初始位置和尺度作为模板,在后续图像中寻找与模板最相似的区域作为目标的位置。
基于模板的方法包括均值漂移、相关滤波器和模板匹配等。
2. 基于特征的方法:该方法通过提取目标的特征信息进行跟踪,常用的特征包括颜色、纹理、形状和运动等。
基于特征的方法包括卡尔曼滤波器、粒子滤波器和深度学习等。
3. 基于超像素的方法:该方法将图像分割成若干个超像素,在跟踪过程中利用超像素的空间关系和相似性来估计目标的位置。
基于超像素的方法包括稀疏表示、分割与跟踪、跟踪与检测等。
二、性能评估方法评估目标跟踪算法的性能是十分重要的,以下是几种常用的性能评估方法:1. 准确性评估:准确性是评估目标跟踪算法的核心指标之一,通常使用重叠率(Overlap Rate)和中心误差(Center Error)来衡量。
重叠率是目标边界与跟踪结果的交集与并集之比,中心误差是目标中心与跟踪结果中心的欧氏距离。
高重叠率和低中心误差表示算法具有较好的准确性。
2. 鲁棒性评估:鲁棒性是评估目标跟踪算法抗干扰能力的指标,常见的鲁棒性评估方法包括光照变化、尺度变化、遮挡和快速运动等。
通过在各种干扰情况下测试算法的跟踪准确性,可以评估算法的鲁棒性。
3. 复杂度评估:复杂度评估是评估目标跟踪算法的计算复杂度和运行速度的指标,常用的复杂度评估方法包括处理帧率、平均处理时间和内存占用等。
较低的复杂度和较快的运行速度表示算法具有较好的效率。
4. 数据集评估:数据集评估是常用的目标跟踪算法性能评估方法之一,目标跟踪领域有许多公开的数据集,如OTB、VOT和LAR等。
动态场景下的基于SIFT和CBWH的目标跟踪
动态场景下的基于SIFT和CBWH的目标跟踪王芬芬;陈华华【摘要】针对动态背景下的目标跟踪,提出了基于SIFT特征和CBWH特征的卡尔曼跟踪算法。
算法利用卡尔曼滤波器预测目标的大概位置;在所在位置区域内提取SIFT特征,与第一帧和前一帧进行特征匹配,并投票获得候选目标位置;利用CBWH特征获得目标可能位置;将二者位置加权对卡尔曼滤波器预测值进行修正,得到目标位置。
实验表明,所提算法取得了较好的实验结果。
%An object tracking algorithm based on Kalman filter using scale invariant feature transform (SIFT) and CBWH is proposed to solve the problem that trackers always drift or even lose target in dynamic scenes . Kalman filter predictsan area ,each matched keypoint casts a vote for the object center ,then the voting results are evaluated by the nearest neighbor clustering , the weighted result is a candidate position of the object's center.Another possible position is calculated by mean shift tracking using CBWH .The positions above are weighted into the object's center.This center is then sent to Kalman filter to get the final position and velocity . Experimental results demonstrate that the proposed method obtains good tracking results .【期刊名称】《杭州电子科技大学学报》【年(卷),期】2015(000)004【总页数】4页(P46-49)【关键词】动态场景;目标跟踪;卡尔曼滤波;尺度不变特征变换【作者】王芬芬;陈华华【作者单位】杭州电子科技大学通信工程学院,浙江杭州310018;杭州电子科技大学通信工程学院,浙江杭州310018【正文语种】中文【中图分类】TP391运动目标跟踪是计算机视觉的重要研究方向,其中对先验未知的物体进行跟踪越来越引起人们的关注。
视频检测和运动目标跟踪方法总结
视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。
一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。
光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。
优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。
缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。
且计算复杂耗时,需要特殊的硬件支持。
二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。
1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。
视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。
优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。
缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。
而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。
2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。
三帧双差分较两帧差分提取的运动目标位置更为准确。
三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。
运动目标检测和跟踪的研究及应用
在人所感知到的环境信息中,视觉信息占了非常大的比重,其中动态视觉信息更是其主要组成部分.感知环境中的这些动态视觉信息已成为计算机视觉的一个重要的研究方向.运动目标检测与跟踪是应用视觉和运动图像编码研究领域的一个重要课题,在许多领域有着广泛的应用. 本文主要研究了基于DSP的运动目标检测与跟踪问题,包括硬件平台的构建和运动检测跟踪算法软件设计与实现. 在运动目标检测部分,介绍了现有的几种常用的检测算法,针对传统帧差算法,检测出的运动目标不够完整的缺点,进行了改进;针对传统的背景重建算法运算量大,耗时的缺点,提出基于块的背景重建,均通过实验验证了方法的有效性. 在运动目标跟踪部分,首先介绍了Kalman滤波的基本原理,在此基础上提出了基于Kalman滤波的跟踪算法;然后详细分析了本文目标跟踪系统所采用的波门算法,为后面系统的实现打下了理论基础. 详细介绍了基于DAM6416P图像处理平台的跟踪系统的实现, 整个系统工作过程为DSP先对采集到的图像进行预处理,然后采用帧差法检测运动目标,接着采用基于双波门算法根据目标的质心位置来判断是否移动云台以及云台移动方向,从而实现对运动目标的实时跟踪. 从实验数据与结果看,本文研究的跟踪系统在一定条件下能够准确、及时地检测跟踪目标,达到了预期效果.
2.学位论文何西华视频运动目标检测与跟踪算法研究2008
视频环境的运动目标检测与跟踪是当前计算机视觉研究中一个非常活跃的领域。计算机视觉研究的目标是使计算机具有通过一幅或多幅图像认知周围环境信息的能力。运动图像序列中包含了比静态图像更多的有用信息。运动对象的检测与提取,是将视频图像序列划分成若干的运动对象,并在时间轴上对这些运动对象进行跟踪,为以后的研究工作奠定基础,如基于对象的编码技术以及基于内容的视频检索等。目标跟踪则是随着数字视频技术的发展及应用而产生的一个新的研究课题,其在军事以及民用等诸多领域中有着广泛的应用。 本文主要研究了基于视频序列运动目标检测与跟踪的基本理论和关键技术。重点研究背景模型下运动目标的检测和提取,运动目标阴影的处理,以及运动目标跟踪等方面的内容。 论文首先对的相关背景知识作了介绍。其中包括目标检测与跟踪系统中采用的运动约束假设和外部环境约束假设;目标检测技术采用的主要算法,包括静态图像中的目标检测和运动目标检测;目标跟踪基础知识,包括跟踪的基本概念,目标的常用的四种表示方法等。 在运动目标检测研究方面,首先介绍了当前主要目标检测和提取算法的原理,通过试验对帧间差分法和自适应背景相减法进行分析。在此基础上提出将背景减除与帧间差分方法结合的目标检测算法。实验表明,该方法能够在较大程度上满足系统的要求,提高检测结果精度。针对阴影对目标检测造成的不利影响,最后本论文还总结了目标抑制阴影的几种算法。 在运动目标跟踪研究方面,首先归纳了在目标跟踪中常被采用的视觉特征、统计特征、变换系数特征和代数特征;分析了目标的三种线性运动模型;阐述了目标特征搜索匹配的主要算法,并重点研究了基于目标颜色直方图特征的均值偏移目标跟踪算法(Mean-ShiftAlgorithm),在此基础上提出了一种联合目标位置预测的改进的跟踪算法,通过对均值偏移算法和改进的跟踪算法通过的分析和实验比较,表明本论文的改进跟踪算法较均值偏移跟踪算法由于利用了目标的空间位置信息,提高了目标跟踪的可靠性和有效性。
基于视频图像序列的目标运动轨迹提取技术
摘要基于视频图像序列的目标运动轨迹提取技术是已经成为精确制导武器的关键技术之一,能够提高武器打击精度及力度;同时更能体现目标跟踪监控系统的智能化和自动化。
而在众多模式下的基于视频图像序列的轨迹提取技术中,基于固定参照物视场变动模式的轨迹测量技术不受相机视野限制,能够有效地扩大目标跟踪范围,更有着重要的研究意义和工程应用价值。
固定参照物视场变动模式的轨迹测量技术要求相邻两帧之间必须具有一定的重复。
由于运动目标瞬时空间位置坐标是通过相对前一时刻空间位置坐标的相对变化得到,因此存在轨迹计算的累积误差较大的问题,同时由于目标体运动过程中的姿态变化、参照环境的复杂性等因素,导致轨迹计算的精度很难得到保证。
本论文针对固定参照物视场变动模式下运动目标轨迹提取问题进行深入研究,设计开发了基于视频图像序列的目标运动轨迹提取系统,针对目标在运动过程中的姿态变化导致的相机坐标系变化问题,提出了成像系统外参实时校正方法,通过陀螺仪获取的数据和空间坐标系变换关系对相机姿态角参数实时校正;针对SIFT特征匹配算法中的欧式距离无法自适应调节问题,提出了多目标优化的SIFT特征匹配算法,建立了以相关系数和特征点之间的欧氏距离为目标函数,以置信度为约束条件的多目标优化模型,减少了特征点的误配率;最后通过车载CCD实验对系统功能和精度进行验证,数据表明该系统能够精确的实现运动目标的轨迹测量,并具有较强的适应性和可靠性。
1绪论1.1课题研究背景及意义基于视频图像序列的目标运动轨迹提取技术是动态视觉领域中一个具有重要意义和实际价值的研究课题。
目标运动轨迹是反映一段时间内目标的运动路线,它的精确提取能够实现测量和分析目标的运动参数、运动行为评估等。
在军事领域中,该技术已经成为精确制导武器的一项关键技术,它能够有效地提高武器的打击精度,强化武器的打击力度;同时在民用领域,以该技术为基础建立的人机交互系统,能够实现运动目标的智能跟踪、行为监管等,真正地体现运动目标监控系统的自动化和智能化。
运动目标跟踪系统的图像处理单元设计
I a e Pr c s i g Un tDe in o o i r e a k ng S se m g o e sn i sg fM vng Ta g tTr c i y t m
YU W u l n CHE L n h i S Big h a , IKe q n — g, o N u - a , U n - u L - i
( . c ol f nomain, e igIs tt o eh oo y Z u a),h h i 10 5 C ia 1S h o fr t B in tu e f cn l ( h h i Z u a 9 8 , hn ; oI o j ni T g 5
(. 1 北京理工大学珠海学院信息学 院 , 广东珠海 5 9 8 ;. 力集成 电路设计公 司 , 10 5 2 炬 广东珠海 5 9 8 ) 10 5 摘要 : 运动 目标跟踪 系统的图像 处理单元对于 系统跟踪的准确性与 实时性至关重要。文 中将跟 踪 系统采集到 的动 态 图像序列经过预处理后送入 图像 处理单元进行 中值 滤波、 边缘检 测以及 匹配跟 踪 , 实现 对运动 目标的信 息跟踪 。该 文对 传统的 中值滤 波算 法进行改进 , 同时对 Sbl oe 边缘检测 算法进行 改进 , 少 了系统 的运算 时间, 系统 的 图像 处理 单元具 减 使
1 视 频 运 动 目标 跟 踪 器 的 总体 结构
2 2 1 中值 滤 波 的 原 理 ..
《2024年基于光流法的运动目标检测与跟踪技术》范文
《基于光流法的运动目标检测与跟踪技术》篇一一、引言随着计算机视觉技术的不断发展,运动目标检测与跟踪技术在智能监控、自动驾驶、人机交互等领域得到了广泛应用。
其中,光流法作为一种重要的运动目标检测与跟踪技术,因其能实时、准确地捕捉运动目标的轨迹和位置信息,被广泛地应用于各种实际应用场景中。
本文将介绍基于光流法的运动目标检测与跟踪技术的基本原理、方法及最新进展。
二、光流法基本原理光流法是利用图像序列中像素强度变化信息来检测运动目标的一种方法。
它通过分析图像序列中像素点的亮度变化情况,从而确定各像素点的运动矢量,即光流。
根据光流的大小和方向,可以确定图像中运动目标的轨迹和位置信息。
光流法具有计算简单、实时性较好等优点,在运动目标检测与跟踪中得到了广泛应用。
三、光流法在运动目标检测中的应用1. 背景建模与去除:通过光流法对图像序列进行背景建模,将背景与前景分离,从而实现对运动目标的检测。
该方法可以有效地去除背景噪声,提高运动目标检测的准确性。
2. 动态阈值设定:根据图像序列中像素点的光流大小和方向,设定动态阈值来区分运动目标和背景。
这种方法能够根据实际情况自动调整阈值,从而提高运动目标检测的鲁棒性。
3. 轮廓提取:利用光流矢量场对图像进行分割,提取出运动目标的轮廓信息。
这种方法可以有效地提取出运动目标的形状特征,为后续的跟踪和识别提供基础。
四、光流法在运动目标跟踪中的应用1. 特征点匹配:通过光流法计算的特征点与已知的特征点进行匹配,实现运动目标的跟踪。
该方法具有较好的鲁棒性,适用于复杂的场景和光照条件变化。
2. 基于区域的跟踪:利用光流场估计的区域内像素点的动态信息,对运动目标进行区域性跟踪。
该方法能够提高跟踪的准确性和稳定性,减少因噪声和遮挡等因素导致的跟踪失败。
3. 多线索融合:将光流法与其他传感器数据(如深度信息、声音信息等)进行多线索融合,实现多模态的跟踪方法。
这种方法能够提高跟踪的准确性和可靠性,适用于多种复杂场景。
如何利用计算机视觉技术进行运动目标检测和跟踪
如何利用计算机视觉技术进行运动目标检测和跟踪计算机视觉技术的快速发展使得运动目标检测和跟踪成为可能。
这项技术不仅在安防领域起到重要作用,还应用于自动驾驶、智能监控和虚拟现实等众多领域。
本文将介绍如何利用计算机视觉技术进行运动目标检测和跟踪。
一、运动目标检测运动目标检测是指利用计算机视觉技术,通过分析连续的图像序列,检测出视频中出现的运动目标。
运动目标可以是人、车辆、动物等各种物体。
以下是运动目标检测的主要步骤。
1. 前景提取前景提取是运动目标检测的第一步,其目的是将视频中的前景目标从背景中分离出来。
常用的前景提取方法包括帧差法、基于统计学模型的方法和基于深度学习的方法。
帧差法是最简单的方法,基于像素之间的差异来识别前景目标。
而基于统计学模型的方法则通过建立像素值的分布模型来识别前景目标。
基于深度学习的方法通常使用卷积神经网络(CNN)来提取特征并进行分类。
2. 运动检测运动检测是利用差分技术或光流法等方法,检测出视频中的运动目标。
差分技术通过对相邻帧之间的差异进行计算,来确定运动目标的位置。
而光流法则通过跟踪关键点在连续帧之间的移动来检测运动目标。
3. 目标分割和识别目标分割和识别是将前景目标分割并分类的过程。
它通常通过图像分割算法和目标识别算法实现。
图像分割算法将前景目标从图像中提取出来,并通过边缘检测、区域生长或图像分割神经网络等方法实现。
目标识别算法则通过比较目标特征和已知类别的模型特征,来对目标进行分类。
二、运动目标跟踪运动目标跟踪是指通过分析视频序列中的目标位置,持续追踪目标的运动轨迹。
以下是运动目标跟踪的主要步骤。
1. 目标初始化目标初始化是运动目标跟踪的第一步,其目的是在视频序列的初始帧中确定目标的位置。
常用的目标初始化方法有手动框选和自动检测。
手动框选是通过人工在初始帧中标记目标的位置。
而自动检测则通过运动目标检测算法自动获取初始目标位置。
2. 特征提取和匹配特征提取和匹配是运动目标跟踪的核心步骤。
《2024年基于光流法的运动目标检测与跟踪技术》范文
《基于光流法的运动目标检测与跟踪技术》篇一一、引言在计算机视觉和智能监控领域,运动目标检测与跟踪技术是一项至关重要的技术。
该技术通过实时获取并分析视频序列中的图像信息,对运动目标进行准确检测与跟踪,进而实现目标识别、行为分析、异常检测等功能。
光流法作为一种经典的运动目标检测与跟踪方法,具有广泛的应用前景。
本文将重点介绍基于光流法的运动目标检测与跟踪技术,分析其原理、方法及优缺点,并探讨其在实际应用中的发展前景。
二、光流法原理光流是指图像中像素点在单位时间内运动的速度和方向。
光流法基于图像序列中像素强度的变化来计算光流,从而实现对运动目标的检测与跟踪。
其基本原理是:在连续的视频帧之间,如果某个区域发生运动,那么该区域的像素强度变化将与周围区域产生差异。
通过分析这些差异,可以确定运动目标的轨迹和位置。
三、光流法在运动目标检测中的应用基于光流法的运动目标检测方法主要包括以下步骤:首先,通过计算图像序列中像素的光流,得到每个像素的运动矢量场;然后,根据预设的阈值或其他条件,从运动矢量场中提取出运动目标的轮廓信息;最后,通过形态学处理等手段对提取出的轮廓信息进行优化和整合,得到完整的运动目标区域。
该方法可以有效地从背景中分离出运动目标,为后续的跟踪和分析提供基础。
四、光流法在运动目标跟踪中的应用基于光流法的运动目标跟踪方法主要利用光流信息对运动目标进行连续的定位和跟踪。
具体而言,首先在初始帧中检测并确定运动目标的初始位置;然后根据后续帧中的光流信息,计算目标在连续帧之间的位置变化;最后通过一定的算法对目标的轨迹进行预测和更新,实现目标的跟踪。
该方法可以有效地解决因背景干扰、光照变化等因素导致的跟踪问题。
五、光流法的优缺点及改进方向优点:1. 适用于各种类型的运动目标,包括刚性物体和非刚性物体;2. 可以处理背景动态变化的情况;3. 在没有先验知识的情况下,能够自主地检测和跟踪运动目标。
缺点:1. 计算量大,实时性较差;2. 对光照变化和噪声较为敏感;3. 在复杂场景下,容易出现误检和漏检的情况。
运动目标的图像识别与跟踪研究
运动目标的图像识别与跟踪研究一、本文概述随着计算机视觉技术的快速发展,运动目标的图像识别与跟踪已成为当前研究的热点之一。
该技术广泛应用于视频监控、智能交通、人机交互、机器人导航等多个领域,对于提高系统的智能化水平和自动化程度具有重要意义。
本文旨在深入研究运动目标的图像识别与跟踪技术,分析其基本原理、方法和技术难点,探讨当前的研究现状和发展趋势,以期为实现更精准、高效的运动目标识别与跟踪提供理论支持和实践指导。
本文首先介绍了运动目标图像识别与跟踪的基本概念和研究背景,阐述了其在各个领域的应用价值和现实意义。
接着,对运动目标图像识别与跟踪的基本原理进行了详细阐述,包括图像预处理、特征提取、目标匹配与跟踪等关键步骤,并对各种方法进行了比较和评价。
在此基础上,本文重点分析了当前运动目标图像识别与跟踪技术的研究现状,探讨了各种方法的优缺点和适用范围,指出了存在的问题和挑战。
本文展望了运动目标图像识别与跟踪技术的发展趋势,探讨了未来可能的研究方向和应用前景。
通过本文的研究,旨在为读者提供一个全面、深入的运动目标图像识别与跟踪技术概览,为相关领域的研究人员和实践者提供有益的参考和启示。
本文也希望能够促进运动目标图像识别与跟踪技术的进一步发展和应用,推动计算机视觉领域的技术创新和产业发展。
二、运动目标图像识别运动目标图像识别是计算机视觉领域中的一项重要任务,它涉及到从连续的图像序列中准确、快速地检测和识别出动态变化的目标。
在运动目标图像识别中,我们主要面临两大挑战:一是如何在复杂的背景中有效地提取出运动目标,二是如何准确地描述和识别这些运动目标。
运动目标的提取是运动目标图像识别的关键步骤。
这通常通过背景建模和运动检测来实现。
背景建模是指通过建立背景模型来区分背景和前景(即运动目标)。
一种常见的背景建模方法是使用高斯混合模型(GMM),它可以自适应地学习和更新背景模型。
运动检测则是指通过比较当前帧与背景模型的差异来检测出运动目标。
基于动态图像序列的运动目标检测与跟踪
adtemoo a co e f betaea o akd t a ese o eepr n a tem v g bet c n tnt j t s jc r s ce .Icnb enf m t x i th th oi jcs a h i re r oo i s l t r r h e me t no n
K YW OR S:akru dM e;ie sma o ; bet eet gadTakn E D B cgo n o lFl r t t n O jc D tcn n r i d t Ei i i c g
1 引言
运 动 目标 的检测 与跟踪 在智 能监控 和车辆 导航领 域 中 得到 了广 泛的应用 。其 中, 运动 目标的检测 就是从视 频流 中 去除静止 的背 景 , 测 出运动 的 目标 及其 携带 的运 动信息 , 检
中 图 分 类 号 : P 9 . T 3 14 文献 标 识 码 : A
。
自动跟踪原理
自动跟踪原理
自动跟踪是一种技术,可以在无需人工干预的情况下,对物体、人员或其他运动目标进行监测和跟踪。
它通常通过计算机视觉和图像处理算法来实现。
自动跟踪的原理是基于连续的视频帧或图像序列,通过分析目标在时间上的位置和运动信息,来实现对目标的跟踪。
具体的实现过程通常包括以下几个步骤:
1. 目标检测:首先需要对视频帧或图像序列中的目标进行检测,根据不同的应用需求,可以使用不同的目标检测算法,如基于特征的检测算法、基于深度学习的目标检测算法等。
目标检测的目的是找到视频中所有可能的目标。
2. 目标跟踪:在目标检测的基础上,需要对目标进行跟踪。
目标跟踪是指在视频帧或图像序列中,通过分析目标的位置和运动信息,来追踪目标的移动轨迹。
常用的目标跟踪算法包括卡尔曼滤波、粒子滤波、相关滤波等。
3. 跟踪更新:目标跟踪是一个动态过程,由于目标可能发生形变、遮挡、背景变化等情况,需要对跟踪算法进行更新和调整,以适应目标的变化。
常见的跟踪更新方法有模型更新、颜色模型更新、形态学更新等。
4. 跟踪评估:对于自动跟踪系统的性能评估是必不可少的。
常见的评估指标包括精度、鲁棒性、速度等,通过对跟踪结果的检验,来评估和改进跟踪算法的性能。
总的来说,自动跟踪是通过分析目标的位置和运动信息,在视频帧或图像序列中实现目标的实时监测和跟踪的技术。
它在许多领域具有广泛的应用,如视频监控、行人追踪、交通监控等。
不同的跟踪算法和技术可以根据具体需求进行选择和应用。
序列图像中的目标区域跟踪算法的设计
() 3
使 用 3 3模 板 的 中值 滤 波 算法 处理 原 图像 的完 x 整工作步骤如下 :
腐蚀 的运算符是 0, A用 B 腐蚀写作A B, 来 O 其定 A B={ I( 0 B) A} () 4
() 1 将模 板在 图像 中漫游 , 并将 模板 中心 与 图像 中某 个像素的位置重合 ;
信息设计 。在算法 的设计过程 中能够综合考虑 目标 的
运动特 点 、 摄像机与 目标 的位 置 以及所摄 取 图像 的特 点等多种 因素 , 可以提 高算法 的性 能。 如果能够较好地进 行 区域分 割 , 可以基 于 区域 就 的统计特征设计 跟踪算 法¨ 工 。区域 面积 和 区域重 心
膨胀 和腐蚀 都是数 学形态 学的基本运算 。
则 中值 m可 以定义如下 :
m :
膨胀 的运算 符是① , A用 B来膨胀写作 A0 B, 其
『 g
m 一 。2 d
( 2 )
定 义为 :
^
Lg +g )2 n m d 2=0 ( / o
Ao B={ I[ B) 'A } ( f ]≠ l
h x i c t e e p r n e,t i lg rt m i v i b e e e h sa o h i s a al l . a
Ke r :r c n fr g o y wo ds ta k g o e i n;fa u fr g o i e t r o i n;i g e e c e e ma e s qu n e
AnAlo i m s nfrT a kn jc #o ma eS q e c g r h Dei o r c igOb et t g Re ni I g e u n e n
图像处理中的目标跟踪方法综述
图像处理中的目标跟踪方法综述目标跟踪是计算机视觉领域的一个重要研究方向,旨在从图像序列中实时追踪一个或多个目标。
目标跟踪在各种应用中都有广泛的应用,如视频监控、自动驾驶、虚拟现实等。
本文将综述目标跟踪领域涉及的一些主要方法和技术。
1. 基于特征提取的目标跟踪方法基于特征提取的目标跟踪方法通过提取目标区域的特征来进行目标跟踪。
其中,颜色特征是最常用的一种特征,可以通过计算目标区域的颜色直方图或使用颜色模型来表示。
此外,纹理特征、边缘特征和形状特征等也可以用来描述目标。
2. 基于相关滤波的目标跟踪方法相关滤波是一种常用的目标跟踪方法,它通过计算目标模板和候选区域之间的相关性来进行目标跟踪。
常见的相关滤波方法包括均方差滤波和归一化相关滤波。
这些方法在一定程度上可以提高目标跟踪的准确性和鲁棒性。
3. 基于机器学习的目标跟踪方法机器学习在目标跟踪中的应用越来越广泛,其中最常见的方法是在线学习。
在线学习可以根据当前跟踪结果和新的训练样本来不断更新目标模型,从而实现自适应的目标跟踪。
常见的在线学习方法包括增量学习、在线支持向量机和在线随机森林等。
4. 基于深度学习的目标跟踪方法深度学习是目前计算机视觉和图像处理领域的热门技术,也在目标跟踪中取得了显著的成果。
深度学习方法通过卷积神经网络(CNN)来学习目标的特征表示,并利用循环神经网络(RNN)或卷积神经网络来预测目标的位置。
这些方法在目标跟踪的准确性和鲁棒性方面表现出色。
5. 基于多特征融合的目标跟踪方法多特征融合是提高目标跟踪性能的一种常用策略。
它可以将不同尺度、不同特征的信息进行融合,从而提高目标跟踪的准确性和鲁棒性。
常见的多特征融合方法包括特征加权、特征选择和特征级联等。
综上所述,目标跟踪在图像处理中扮演着重要的角色。
各种方法和技术的不断发展与创新,为目标跟踪的准确性和鲁棒性提供了更高的要求和更多的可能性。
因此,我们可以期望在未来的研究中会出现更多有效的目标跟踪方法,为各种应用提供更好的解决方案。
第三章 运动目标跟踪
第三章运动目标跟踪方法3.1 引言运动目标跟踪是机器视觉领域内一个备受关注的课题,图像中运动目标的跟踪技术通常是通过目标检测来进行跟踪。
运动目标的跟踪就是在视频图像的每一幅图像中确定出我们感兴趣的运动目标的位置,来实现目标的跟踪。
在机器视觉研究领域里,随着技术不断发展,自动目标跟踪(ATR)越来越受到研究者的重视,具有广阔的应用前景。
运动目标的跟踪在虚拟现实、工业控制、军事设备、医学研究、视频监控、交通流量观测监控等很多领域都有重要的实用价值。
特别在军事上,先进的武器导航、军事侦察和监控中都成功运用了自动跟踪技术。
而跟踪的难点在于如何快速而准确的在每一帧图像中实现目标定位。
3.2 单一摄像头常见跟踪方法简介基于视频的目标检测、跟踪等技术的发展,使得摄像头系统的应用越来越广泛,其研究也越来越深入。
从单一摄像头到多摄像头的场景监控,监控技术越来越成熟,下面就两类目标跟踪问题进行研究。
目前,根据不同跟踪方法可分类为如下几类。
1、基于区域的跟踪基于区域的跟踪是根据图像中对应于运动目标区域的变化来实现跟踪。
运动区域一般通过背景图像与当前帧图像比较来获取,因此需要对背景图像动态更新,难点在于处理运动目标的影子和遮挡情况。
基于区域的跟踪方法目前已有较多的应用,如Wren利用小区域特征进行室内单人的跟踪,将人体看作由头、躯干、四肢等身体部分所对应的小区域块所组成,重庆邮电大学硕士论文第二章运动目标检测与跟踪理论基础利用高斯分布建立人体和场景的模型,属于人体的像素被规划于不同的身体部分,通过跟踪各个小区域来完成整个人的跟踪;McKenna等将跟踪过程建立在区域、人、人群三个抽象级别上执行,区域可以合并和分离,而人是由许多身体部分区域在满足几何约束的条件下组成的,同时人群又是由单个的人组成的,因此利用区域跟踪器并结合人的表面颜色模型,在遮挡情况下也能够较好地完成多人的跟踪。
但是在复杂情况下,基于区域的跟踪方法还缺乏可靠性,并且不能很好地获取物体的3D位置、方位。
《2024年基于OpenCV的运动目标检测与跟踪》范文
《基于OpenCV的运动目标检测与跟踪》篇一一、引言随着计算机视觉技术的飞速发展,运动目标检测与跟踪作为计算机视觉领域的重要研究方向,已经得到了广泛的应用。
OpenCV(开源计算机视觉库)作为计算机视觉领域的强大工具,为运动目标检测与跟踪提供了有效的解决方案。
本文将详细介绍基于OpenCV的运动目标检测与跟踪的方法、原理及实践应用。
二、运动目标检测1. 背景减除法背景减除法是运动目标检测的常用方法之一。
该方法通过将当前图像与背景图像进行差分,从而提取出运动目标。
在OpenCV中,可以使用BackgroundSubtractorMOG2类实现背景减除法,该类可以适应动态背景,提高运动目标检测的准确性。
2. 光流法光流法是一种基于光流场的目标检测方法。
它通过计算图像序列中像素点的运动信息,从而检测出运动目标。
在OpenCV中,可以使用calcOpticalFlowPyrLK函数实现光流法,该方法对光照变化和背景干扰具有较强的鲁棒性。
3. 深度学习方法随着深度学习在计算机视觉领域的广泛应用,基于深度学习的运动目标检测方法也逐渐成为研究热点。
通过训练深度神经网络,可以提取出图像中的特征信息,从而更准确地检测出运动目标。
在OpenCV中,可以使用DNN模块实现基于深度学习的运动目标检测。
三、运动目标跟踪1. 基于特征的跟踪方法基于特征的跟踪方法通过提取目标区域的特征信息,如颜色、形状、纹理等,从而实现目标的跟踪。
在OpenCV中,可以使用Optical Flow、KLT跟踪器等实现基于特征的跟踪方法。
2. 基于区域的跟踪方法基于区域的跟踪方法通过在图像中搜索与目标区域相似的区域,从而实现目标的跟踪。
在OpenCV中,可以使用CamShift算法、MeanShift算法等实现基于区域的跟踪方法。
3. 深度学习在跟踪中的应用深度学习在跟踪领域的应用也越来越广泛。
通过训练深度神经网络,可以提取出更丰富的特征信息,提高跟踪的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江工程学院学报,第19卷,第3期,2002年9月Journal of Zhejiang Institute of Science and T echnology Vol .19,No .3,Sep 12002文章编号:100924741(2002)0320165206收稿日期:2002201222基金项目:国家自然科学基金资助项目(60103016),浙江省自然科学基金资助项目(601019),浙江省教育厅科研资助项目(2000036)作者简介:周志宇(1974— ),男,浙江诸暨人,在职硕士研究生,从事计算机视觉的研究。
基于动态图像序列的运动目标跟踪周志宇,汪亚明,黄文清(浙江工程学院计算机视觉与模式识别研究中心,浙江杭州 310033) 摘要:介绍了运动目标跟踪中基于特征、32D 、变形模型和区域的4种跟踪方法,着重分析了变形模型中Snake 的跳跃模型跟踪方法和基于区域的几个有代表性的跟踪方法,说明了其在智能交通监控中的应用,并给出了区域跟踪的实验结果。
关键词:动态图像序列;运动目标;变形模型;区域跟踪中图分类号:TP391141 文献标识码:A0 前 言基于动态图像序列的运动目标跟踪技术在军事、国防、工业过程控制、医学研究、交通监控、飞机导航等领域有着广泛的应用前景。
运动目标跟踪的目的就是通过对序列图像进行分析研究,计算出运动目标在连续帧图像中的位移,给出运动目标速度等运动参数,从而对缓解城市交通拥挤、堵塞现象提供依据。
利用图像捕捉并跟踪我们感兴趣的运动目标,形成运动目标的序列图像由于比静止目标的一帧图像提供了更多的有用信息,使得可以利用序列图像检测出在单帧图像中很难检测出的目标。
在复杂背景下对运动目标的跟踪以达到特定的目的,可靠性和精度是跟踪过程中的两个重要指标,为此,人们提出了许多方法来解决跟踪问题,但归纳起来,主要有基于特征、32D 、变形模型和区域的4种跟踪方法。
1 运动目标的跟踪方法111 基于特征的跟踪方法用于目标的跟踪的个体特征有许许多多,不管是刚体运动目标,还是非刚体运动目标,在序列图像中相邻的两帧图像,由于图像序列间的采样时间间隔很小,可以认为这些个体特征在运动形式上具有平滑性,因此可以用直线[1]、曲线[2]、参照点[3]等个体特征来跟踪运动目标。
Liu [1]等人介绍了灰度图像中一种边缘直线匹配的算法。
在边缘直线的提取中,首先,用图像边缘聚焦技术处理图像数据,消除不必要的图像噪声,形成了一个边缘,然后从边缘中分割出直线,并从中提取直线。
用一种以直线的几何关系和灰度图像的信息为基础的匹配函数描述了两幅图像边缘直线的相似性,在连续帧图像中采用直线匹配的方法进行了运动参数的估计。
基于特征的跟踪方法有其显著的优点:a )由于使用的符号模型运动方式简单,运动具有平滑性,因此跟踪目标的算法就简单了;b )这种方法已经假设特征符号运动是相互独立的运动,因此在运动分析时661浙江工程学院学报 2002年 第19卷可以不区分运动物体是刚体还是非刚体,也不用管它的几何形状;c)跟踪过程中符号特征容易捕捉,能够匹配到每一个特征符号。
但是,基于特征的跟踪方法也有其致命的缺点[4]:a)伴随着复杂运动的简单运动,刚体运动目标的特征提取就会产生困难,如圆柱旋转式运动时,运动目标不可能是匀加速运动,更不可能是匀速运动;b)运动初始化时的难点。
刚体的一些特征会因为遮挡而无法识别,因此,基于特征的跟踪算法必须解决目标跟踪过程中的运动初始化的难点,但这些问题的解决又会使跟踪算法变得非常复杂;c)在改变符号参数和32D目标运动参数时,这些参数是非线性的,因此特征跟踪中恢复的32D运动参数对噪声相当敏感。
112 基于32D的跟踪方法基于32D的跟踪方法是通过使用摄像机和场景的几何学知识,将一个有精确几何形状的三维模型投影成图像,根据图像中的位置变化来进行跟踪。
最早的基于32D的跟踪方法是G ennery[5]在1982年提出的。
Jung[4]运用32D的方法对圆柱体旋转运动进行了跟踪。
Nickels[6]运用了32D方法跟踪机器人机械手的运动情况。
VIS ATRAM系统[7]中为了简化3D估计,用长方体的车辆模型来跟踪车辆,获取了运动车辆的速度和尺寸大小。
在XTRACK系统[8][9]中,跟踪序列图像中运动车辆始于用光流场法分割序列图像中的起始帧目标图像。
这些起始帧图像的平面投影依赖一个最初估计的一个参照点,获取目标的方位和速度。
初始的角速度假定为0,用合适的多维车辆模型来跟踪目标。
基于32D的跟踪方法被应用于估计运动目标的运动,从2D图像中推断出运动目标的3D形状。
基于32D的跟踪方法其显著的优点是即使在复杂驾驶操作、明显交通阻塞的情况下利用模型知识的结果会鲁棒地得到跟踪结果,最大的缺点是由于计算的工作量大,实时性差。
113 基于变形模型的跟踪方法变形模型分为没有全局结构,只要满足某些一般的正则化约束,就可以表示任何形状的自由式变形模型和已知几何形状的先验知识,并用少数参数表示的参数式模型。
自由式变形模型最典型的是1987年K ass[10]等人提出用来处理刚性物体或非刚性物体而开发的叫Snake 的主动轮廓模型。
Snake模型是一种有效的分割和跟踪工具。
有人用该模型来检测目标边缘和跟踪运动目标[11][12]。
Snake是基于Snake能量的,分割和跟踪是通过能量最小化的原则进行的。
Snake能量E由控snake(v(s)),吸引轮廓到特定的图像能量E image(v(s))和外部约束能量E cont(v(s))制平滑度的轮廓内部能量Eint的组合来控制和约束。
能量函数表示为:E snake=∫10E snake(v(s))d s=∫10[E int(v(s))+E image(v(s))+E cont(v(s))]d sK ass[10]等人提出的Snake模型依赖于图像中细微的变化,因为他的解决方案是建立在变化基础之上,但Snake模型存在初始化轮廓问题和对图像噪声非常敏感,不能解决快速运动的目标跟踪。
为给定一个适合的初始化轮廓。
Menet[13]等人提出了B2Snake,目标轮廓用B样条来表达,轮廓的表达更加有效,更加结构化。
C ohen[14]提出了一种可膨胀的轮廓线,降低了对轮廓线初始化的敏感性。
计算机视觉跟踪就是通过序列图像对跟踪目标边界连续分割。
对于高速公路上车辆的跟踪可以对车辆的边界进行连续分割。
Snake 分割过程是一种与能量最小化成功找到能量最小的表面,Snake就能找到目标边界。
W on[15]等人提出了Snake的跳跃模型的理论来解决快速运动目标的跟踪问题。
当序列图像中连续两帧图像不存在目标重叠现象时,Snake的跳跃模型就可以用来跟踪物体,这种Snake的跳跃模型理论是假设在图像流的处理中能够获得运动方向的基础上的,从先前每一帧图像中获得的Snake的节点跳跃到目标的边界,在确定目标分割半径的基础上,位移到另一个区域并且重新初始化。
通过图像流信息的反复分割和跳跃来达到能量最小化。
这里Snake的总能量Esnake由外部约束能量E cont和吸引轮廓到特定的图像能量E image组成,能量函数表示为:图1 跳跃模型的图像流操作 E snake =Σn i =1[E cont (i )+E image (i )]跳跃模型的图像流操作过程如图1所示。
在初始化状态中Snake 的节点是人为初始化或自动初始化的。
起先,Snake 收缩到分割目标的边界,这种分割过程是分割Snake 总能量到最小化状态。
在下一帧图像中,目标的位置将变化到另一个位置,新的位置与先前图像的图像位置很远,经过计算图像流,Snake 节点根据图像流信息进行跳跃。
Snake 的跳跃模型的显著优点是可以在不连续的情况下由节点设置表达,依靠寻找最大倾斜点可以找到物体确切的边界,最大的缺点是对遮挡现象十分敏感。
114 基于区域的跟踪方法Francois [16]提出的区域跟踪方法依赖于以前的检测来区分运动目标,然后跟踪目标。
跟踪算法依赖于两个互相影响的动态系统,这个系统捕获了在场景中投影到图像平面的随时间变化的形状和运动组成,运用滤波跟踪技术精确估计了区域几何形状和速度。
Jorge [17][18][19]等人提出的区域跟踪算法不仅利用了分割结果来给跟踪提供信息,同时也能利用跟踪所提供的信息改善分割效果,把连续帧的目标匹配起来达到跟踪目标的目的。
他们的方法是:a )对当前帧图像进行帧到帧的运动分割,这时它用到两帧连续的图像,产生了一个主控表;b )在区域匹配过程中,将主控表中的区域与当前分割出来的区域进行匹配;c )利用两个K alman 滤波器估计运动参数;d )将所有这些丢失区域进行恢复;e )将当前帧分割结果更新图2 区域跟踪流程图到主控表;f )将已不在视野范围内的旧区域删除;g )将主控表中每个区域的运动参数和它相应的矩阵对应起来,并得出下一帧中可能的位置,发现该目标与形状有关的数据。
区域跟踪流程图见图2。
图3 SRG 流程图G rinias [20]等人提出的基于半自动起始区域增长算法的目标跟踪方法,在序列图像中连续两帧图像用一个起始区域增长分割算法进行初始分割,然后在整个序列图像中跟踪出目标。
在跟踪过程中,每一个分割的初始化都是基于前一帧提取图像的分割结果,而且为了自动提取初始的对象集,需要一个用户给定的层次描述。
半自动起始区域增长(SRG )算法一直执行到所有的像素都被标记,在SRG算法执行的过程中需要用到一个顺序排序列表(SS L )来插入邻接点。
半自动起始区域增长(SRG )算法流程图见图3。
在连续帧图像中,初始分割的结果是这样被跟踪的:假设已经跟踪到k -1帧图像,第k -1帧图像分割结果提供了第k帧图像分割的初始集。
Manchurl [21]等人推荐了一种方法:在分割起始阶段即帧内分割阶段定义了一个感兴趣的区域,相应的目标边界可以精确发现。
帧内分割以后,区域自动跟踪应用于随时间演变的区域,跟踪到操作者停止处理。
第二阶段为帧间分割阶段,这时分割分为两个独立的过程模型,对于非刚体运用边界跟踪的方法,对于刚体运用域跟踪的方法,在复杂背景下的目标跟踪中,对于刚体和非刚体的跟踪同时使用不同方法的跟踪,提供了一种跟踪的新思路。
基于区域跟踪的方法显著优点是对于运动目标中存在的遮挡问题不太敏感,而且这种方法跟踪可以改善图像的分割。
761第3期周志宇等:基于动态图像序列的运动目标跟踪 2 在智能交通监控中的应用基于特征的方法来跟踪车辆,由于个体特征提供的前后连贯性差,而且跟踪信息过于简单,对系统和传感器的固有噪声和目标周围背景的干扰引起的噪声相当敏感。