1.4有理数加法(第一课时)(沪科版七年级上教案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4有理数的加减法

第一课时有理数加法

教学目标:

1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.

3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.

教学重点:有理数的加法法则,能准确地进行有理数的加法运算.

教学难点:异号两数相加的法则.

教学教学程序设计:

一.类比联想提出问题

通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.

又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.

具体问题是:在下列问题中用负数表示量的实际意义是什么?

(1)某人第一次前进了5米,接着按同一方向又向前进了3米;

(2)某地气温第一天上升了3°C,第二天上升了-1°C;

(3)某汽车先向东走4千米,再向东走-2千米。

紧接着,回答:

(1)某人两次一共前进了多少米?

(2)某地气温两天一共上升了多少度?

(3)某汽车两次一共向东走了多少千米?

组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.

在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.

二.直观演示归纳法则

用6个实例讲两个有理数相加的问题:

(1)向东走5米,再向东走3米,两次一共向东走了多少米?

(2)向西走5米,再向西走3米,两次一共向东走了多少米?

(3)向东走5米,再向西走5米,两次一共向东走了多少米?

(4)向东走5米,再向西走3米,两次一共向东走了多少米?

(5)向东走3米,再向西走5米,两次一共向东走了多少米?

(6)向西走5米,再向东走0米,两次一共向东走了多少米?

点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加.

探究:若设向东为正,向西为负,你能写出算式吗?

(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;

(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;

(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;

以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三

大类。 即:

这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;问题(3)、

(4)、(5)是异号两数相加的情况;问题(6)有是有一个加数为零的情况.

这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示

验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的

点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后

师生共同归纳总结出有理数的加法法则.

有理数的加法法则:

1.同号两数相加,取与加数相同的符号,并把绝对值相加.

2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的的加数的符

号,并用较大的绝对值减去较小的绝对值.

3.一个数与零相加,仍得这个数.

归纳出法则之后,进一步启发诱导学生分析法则特点,并总结规律:两个有理数相加

所得的“和”由符号和绝对值两部分组成,计算“和”的绝对值,实质上是进行算术数的加减,

因此,有理数的加法运算,贯穿一个化归思想,即把有理数的加法运算化归为算术数的加

减运算.

一般步骤为:

(1)根据有理数的加法法则确定和的符号;

(2)根据有理数的加法法则进行绝对值的加减运算.

前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的

关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引

导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的

过程中培养学生的思维能力.

总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,

那么,对于两个有理数,相加后和还一定大于加数吗?

提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的

某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法

与算术运算的一个很大的区别.

三.应用迁移 巩固提高

为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题

和练习题,选题遵循由浅入深,循序渐进的原则.

类型:同号、异号、0与一个数相加的三种情况的有理数相加

例1:计算下列各题:

(1)(+7)+(+4) (2)(-3)+(-9)

(3)4+(-4) (4)(21)+(-3

1)) (5)(-10.5)+(+1.5) (6)(+5)+0

(7)(-7)+0 (8)0+(-8)

分析:先确定符号,在进行绝对值加减运算.

解:(2)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

相关文档
最新文档