六招破解函数最值及巧用数形结合求参数问题

合集下载

高中数学教学论文:巧用数形结合解含参问题

高中数学教学论文:巧用数形结合解含参问题

巧用数形结合解含参问题摘要:数形结合是一种很有价值的思想, 它也是高考中明确规定要求考查的主要思想之一,运用数形结合的思想,可以让一些似乎要大费气力、绞尽脑汁的题目轻松获解。

比如在解含参问题时,如果恰当地利用数形结合思想,能使题目的解答直观醒目,从而使很多题目巧妙地得到解答。

关键词:数形结合 函数 不等式 方程 参数在新课程理念下,进一步明确数学学习的目的,发展自主学习和合作学习的能力,形成有效的数学学习策略,培养学生的解题能力,解题能力的形成建立在数学知识、学习策略、数学方法等素养整合发展的基础上。

方法在解题中至关重要,这对于节省时间,提高效率,煅炼能力有重要的作用。

含参数问题在高中教学中是一个难点,演算过程繁琐冗长,学生往往将问题复杂化导致解题不完整。

自从浙江省自主命题以来,含参数问题似乎已经被遗忘在角落,而今又成了今年高考的新宠。

值得思考的是含参问题能否也有巧妙的解法,使学生轻而易举地解决问题呢?在第二轮高考复习中遇到了几类学生难以解决的含参问题,下面就这些例题具体来说明用数形结合思想解含参问题的巧妙之处。

一.巧用数形结合思想解决含参方程问题。

例1.若关于x 的方程2)lg()2lg(2=--k x x 有实数解,求实数k 的取值范围。

分析:原命题等价于⎪⎪⎩⎪⎪⎨⎧-=-≠->->-)4()(2)3(1)2(0)1(02222k x x k x k x x 有实数解。

(1) 由(1)(2)条件,由(4)构造两个函数k x y x y -=-=和22图象有交点,其中k 的几何意义是在x 轴上的截距,(3)是必需满足。

(2) 由(1)(2)条件,由构造两个函数22x y --=和k x k x y +-=--=)(图象有交点,其中k 的几何意义是在y 轴上截距,(3)必须满足。

(3) 由(1)(2)条件,由(4)构造两个函数22x y -=和2)(k x y -=图象有交点,其中k 的几何意义是抛物线的对称轴,(3)是必需满足。

高中数学解题方法谈 解读高考中的数形结合思想

高中数学解题方法谈 解读高考中的数形结合思想

解读高考中的数学思想——数形结合篇数形结合是一种重要的数学思想方法,其应用大致可以分为两种情形:一是借助形的生动和直观来表明数之间的联系,即“以形助数”;二是借助于数的精确和严密来阐明形的某些属性,即“以数辅形”.这种思想方法在求解选择题和填空题的时候非常有用,对寻找解答题的求解思路也很有帮助.以下举例说明.一、用数形结合思想解决集合问题处理集合与集合的关系,借助图形进行直观思考,不仅可以使各集合之间的相互关系直观明了,而且也便于将各元素的归属确定下来,使抽象的集合问题,形象直观的得解. 例1 设22{()|(1)1}{()|0}A x y x y B x y x y m =+-==++,,,≥,则使A B ⊆成立的实数m 的取值范围是_____.解析:由于集合A ,B 都是点的集合,故可结合图形进行分析.集合A 是圆22(1)1x y +-=上的点的集合,集合B 是不等式0x y m ++≥表示的平面区域内的点的集合,要使A B ⊆,则应使圆被平面区域所包含(如图1),知直线0x y m ++=应与圆相切或相离且在圆的下方,即0m >.1=,解得1m =,故m的取值范围是1m . 评述:如果所给集合是点的集合,那么在研究它们之间的关系时,可以借助数形结合思想,将问题转化为函数图象或曲线之间的关系求解.二、用数形结合思想解决方程问题在研究某些方程的根的个数问题、根的大小问题以及根的取值范围等问题时,都可以将方程进行恰当的变形,通过引进函数,转化为两个或几个函数图象之间的关系来解决. 例2 已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( ).(A )a b αβ<<< (B )a b αβ<<<(C )a b αβ<<< (D )a b αβ<<<解析:若令()()()g x x a x b =--,显然函数()g x 的两个零点是a 、b ,函数()f x 的两个零点是αβ,,而函数()f x 的图象是由函数()g x 的图象沿y 轴向上平移两个单位得到的,结合图象可知a b αβ<<<,故应选(B ).例3 若方程240x x m --=恰有4个不同的实数根,则实数m 的取值范围为_____. 解析:将方程化为24x x m -=,构造函数2()4()f x x x g x m =-=,,则方程240x x m --=恰有4个不同的实数根,亦即两个函数()f x 与()g x 的图象恰好有4个不同的交点,如图2,易知当-4<m <0时方程有4个根.三、用数形结合思想解决函数问题我们学过的一些初等函数,如:正比例、反比例函数、一次函数、二次函数、指数函数、对数函数、三角函数等都蕴含着丰富的数形结合的思想,因此,在处理函数问题时,要充分联系函数图象.例4 (2006年辽宁高考题)已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( ).(A )[11]-, (B)12⎡⎤-⎢⎥⎣⎦(C )12⎡-⎢⎣⎦, (D)12⎡--⎢⎣⎦, 解析:cos (sin cos )11()(sin cos )sin cos sin (sin cos )22x x x f x x x x x x x x ⎧=+--=⎨<⎩≥,,,即等价于min {sin cos }x x ,,因此在同一坐标系下分别画出函数sin cos y x y x ==,的图象,在两个图象的每两个交点之间取位于下方的图象,就是函数()f x 的图象,从而容易得到()f x 的值域是12⎡-⎢⎣⎦,,故答案为(C ). 四、数形结合思想解决数列问题由于数列的通项公式和前n 项和公式都可以看成n 的函数,因此,许多数列问题可以借助函数的图象解决.例5 设{}()n a n *∈N 是公差为d 的等差数列,n S 是前n 项的和,且56678S S S S S <=>,,则下列结论错误的是( ). (A )0d < (B )70a =(C )95S S > (D )6S 和7S 均为n S 的最大值解析:可以把等差数列的前n 项和2122n d d S n a n ⎛⎫=+- ⎪⎝⎭看成是关于n的二次函数,结合图形可知,答案为(C ).例6 已知在等差数列{}n a 中,312a =,前n 项和为n S ,且121300S S ><,.则当n S 取到最值时,n 等于( )(A )6 (B )7 (C )12 (D )13解析:由于121300S S ><,,所以130a <,而3120a =>,所以数列的公差d <0,即数列是递减数列.则2(0)n S an bn a b a =+∈<R ,,,如图3,可以把n S看成关于n 的二次函数,其图象是一条抛物线,经过原点,开口向下,又121300S S ><,,所以若设抛物线和x 正半轴的交点为(0)M m ,,则12<m <13,于是抛物线的对称轴为(66.5)2m x =∈,,因此当n =6时n S 取到最大值,选(A ). 编者注:数列的有关问题用函数的观点来解决是一种较好的方法,但要注意,他们并非真正意义上的一次、二次函数!五、用数形结合思想解决不等式问题例7 如图4,请你观察图形以及图形中线段的位置关系及其数量关系,说明如何通过该图形来说明不等式2a b +成立.你还能构造另外的图形来说明这个不等式成立吗?解析:在圆O 中,AB 是一条直径,M 是圆上任意一点,过M 点作MC ⊥AB 交AB 于C ,令CA =a ,CB =b ,则容易得到2a b MC MO +==,由于在Rt △MCO 中,MO 是斜边,MC是直角边,所以有2a b +>C 点与O点重合时,有2a b +=2a b +.由于问题的本质上是在Rt △AMB 中处理问题,所以可构造类似的图形如图5所示(注:CN a BN b ==,.). 评述:几何图形的直观解释和证明,真正体现了代数和几何的有机统一,可谓“无字的证明”.六、用数形结合思想解决最值或范围问题例8 已知a 、b 、c 是某一直角三角形的三边的长,其中c 为斜边,若点(m ,n )在直线ax +by +2c=0上,则22m n +的最小值等于_____.解析:令d ==d 表示点(m ,n )与坐标原点之间的距离.由于点(m ,n )在直线ax +by +2c =0上,所以d 的最小值就是坐标原点到直线ax +by +2c =022c c==,即22m n +的最小值等于4. 例9 在区间[01],上给定曲线2y x =,试在此区间内确定点t的值,使图6中的阴影部分的面积1S 与2S 之和最小.解:1S 面积等于边长为t 与2t 的矩形的面积去掉曲线2y x =与x 轴、直线x t =围成的面积,即22312023tS t t x dx t S =-=⎰;的面积等于曲线2y x =与x 轴、1x t x ==,围成的面积去掉矩形面积,矩形边长分别为2(1)t t -,,即12232221(1)33t S x dx t t t t =--=-+⎰. 所以阴影部分面积S 为:321241(01)33S S S t t t =+=-+≤≤ 由21()42402S t t t t t ⎛⎫'=-=-= ⎪⎝⎭,得 t =0,或12t =. 经验证知,当12t =时,S 最小.。

求解函数问题策略三之数形结合一望而解

求解函数问题策略三之数形结合一望而解

求解函数问题策略三:数形结合一望而解
翻开近年的高考题仔细看,可以发现,这些较难试题所涉及的知识点都是函数题。

想一想也正常,函数具有抽象性、灵活性、应用性。

那么,当我们面对这些函数题时,该如何应对呢?
解决方案:数形结合一望而解
“数少形时缺直观,形少数时难入微”它准确的告诉我们:数形结合,相得益彰;利用数、式进行深入细致的分析;利用图形直观又可以看出数、式的内在关系;
点评:本题通过图形,立即发现函数是增函数,从而将函数值的不等关系转化为二次不等式,方便、快捷的产生了结论。

点评:本题不仅要会画图,更重要的是善于分析图形的关系,当然,如果图形画的比较准确的话,凭直觉也许能提出较准确的猜想。

用数形结合法巧解最值问题

用数形结合法巧解最值问题

用数形结合法巧解最值问题胡龙林数形结合涉及两方面的问题,一是将图形性质转化成数量关系问题,二是将数量 关系问题转化成图形性质问题,都是中学数学普遍而重要的问,利用后者求函数 的最值可获得简捷解法。

现行高中数学教材解析几何中简单线性规划内容,教材重点在于图解法求解目标函数的最值,它更好地体现了数形结合的思想方法,也引发了我对数形结合这思想方法的一点思考。

数形结合不仅把抽象的问题直观 化,简化解题过程,提高学生的解题能力,而且可拓宽解题思路,提高学生思维的灵活题性和创造性。

1利用数轴上的截距解函数最值截距是指函数与所有坐标轴交点的坐标之差, 可取正数也可取负数或0.求形如)()(x g x f y ±=的函数最值, 可以把)(),(x g x f 当作是变量, 即令)(),(x g u x f v ==, 方程0),(=v u F 一般表示一条曲线, 则y 可以当作是y u v +±=的直线在纵坐标轴上的截距, 因此截距的最值也即是函数的最值.]1[例1 已知数y x ,满足03422=+-+x y x , 求y x +的最值.解 令,b y x =+则.b x y +-= 因为1)2(22=+-y x 的圆心为)0,2(, 以及它到直线b x y +-=的距离为1, 所以111|12|22=+-⨯b , 可得22±=b . 于是,22max +=b .22min -=b例2 求函数3424322+---+=t t t t S 的最值.解 令⎪⎩⎪⎨⎧-+=+-=,43,34222t t y t t x 有x y S -=又).0,0(,1624433422222≥≥=+⇔⎪⎩⎪⎨⎧-+=+-=y x y x tt y t t x 因此S 可看成是直线系S x y +=和椭圆162422=+y x 在第一象限相交直线在轴上的截距(如图所示), 可得图1.62,6min max -==S S例3 求函数2310)(2-+-+=x x x x f 的最值.解 设整理可得)0(,2)5(22≥=+-v v u . (1)因此, 可看出方程(1)表示uov 平面上的一个半圆()如图1O 且它与x 轴在)0,25(-A 与)0,25(+B 处相交.图2进一步原函数可以写成v u x f +=)(, (2)方程(2)表示uov 平面上斜率为-1的直线系, ()x f 表示此直线系在u 轴上的截距,通过计算可得函数与半圆相切的直线在u 轴上的最大截距为7, 即7)(max =x f 而过)0,25(-A 直线在u 轴上的最小截距为,25- 即25)(min -=x fu v =⎧⎪⎨=⎪⎩2 利用两点间的距离公式解函数最值两点间的距离公式分为平面和空间两种形式, 在平面内设1122(,),(,),A x y B x y 则||AB =在空间中, 可设111222(,,),(,,),A x y z B x y z 则||AB =例4求函数)y x R =∈的最小值.解 如图所示.图3由于2565222++++-=x x x x y=,且y 是点(,0)x 到点(1,2),(3,4)A B -的距离之和, B 关于x 轴的对称点为(3,4)B '--, 因此AB ==故132max =y .例5 求函数1725422++++-=x x x x z 的最小值,并求出此时的x 值.解 将已知函数进行整理可得.)40()1()10()2(2222++++-+-=x x z上式表明z 是点)0,(x p 到点(2,1),(1,4)A B --的距离之和(如下图所示),图4要求其最小值,只需在x 轴上找到一点p ,使得p 到A , B 的之间距离之和达到最小即可. 通过进一步的求解, 有34)41()12(||22min =+++==AB z .并且, 可得直线AB 的方程3154+=+x y , 令0=y , 通过求解可得45=x ,因此此当45=x 时,.34min =z 由以上可以看出数形结合是把数学问题中的数量数关系与空间形式结 合起来的一种思维,它使逻辑思维与形象思维完美统一起来。

例说数形结合解决求函数最值问题

例说数形结合解决求函数最值问题

例说数形结合解决求函数最值问题数形结合就是将抽象的数的方式与直观图形结合起来,既分析其代数含义又分析其几何含义。

在数与形的结合上往往采用“以形助数”或“以数辅形”的手段寻找解题的思路。

求函数的最值是中学数学的重要内容之一,题型多变,解法灵活,也是历年高考的必考内容,下面仅就这一方面利用数形结合的技巧举例说明。

例1:求函数的值域。

分析:我们可以先进行换元,去掉根号,然后在寻找解决问题的突破口。

解:令则原函数表达式等价转化为,即为过点和点的直线的斜率。

作出示意图像,经观察,计算可知的变化范围为。

评注:此题若采取代数方法,比较繁琐,但是给代数问题赋以一个合适的几何意义,问题就变得鲜活,简单。

例2:已知,求的最小值。

【分析】将看成是直线上的点A(x,y)与定点B(1,1)间的距离,则的最小值也就是点B(1,1)到直线的距离。

解:是由直线上动点与定点间的距离,显然的最小值是点到直线的距离,即例3.求函数的最值。

分析:等式右边根号内同为的一次式,如简单的换元无法转化为二次函数求最值,故用常规方法比较难。

如能联想到直线的截距,数形结合换元后,以形助数,则可轻松解决。

令则则所函数化为以为参数的直线族,它与椭圆在第一象限的部分有公共点又例4:对于任意函数f(x)、g(x),在公共定义域内,规定f(x)*g(x)=min{ f(x)、g(x)},若f(x)=,g(x)=,求f(x)*g(x)的最大值。

分析:本题可首先确定函数的定义域,然后作出函数的图像,由图像可求出解析式,最后求最大值。

解:由题意得:的解为x=2故其图象如图,显然在点P时f(x)*g(x)取最大值,最大值为1。

例5.甲、乙两地相距S千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a 元(1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?分析:本题可根据实际问题抽象出函数模型,然后根据不等式性质、最值等知识,结合函数的图像,即可求解。

第二章 函数、导数及其应用

第二章 函数、导数及其应用

[例1] 已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),求 函数y的最小值. [思路点拨] 化简后采用换元转化为二次函数的最值问 题,利用配方法解决. [解] y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+ 2a2-2. 令t=ex+e-x,则f(t)=t2-2at+2a2-2. 因为t≥2,所以f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定 义域为[2,+∞). 因为抛物线y=f(t)的对称轴为t=a,所以当a≤2且a≠0时, ymin=f(2)=2(a-1)2; 当a>2时,ymin=f(a)=a2-2.
[答案] 9
[点评]
利用基本不等式法求解最值的关键在于确定
定值,求解时应注意两个方面的问题:一是检验基本不等
式成立的三个条件——“一正、二定、三相等”,灵活利用
符号的变化转化为正数的最值问题解决;二是要注意函数
解析式的灵活变形,通过“拆”、“添”或“减”等方法“凑”出
常数.对于条件最值问题,应首先考虑常数的代换,将函
[例3]
1 4 函数f(x)=x+ (0<x<1)的最小值为________. 1-x
[思路点拨] 通分 ―→ 换元 ―→ 化简 ―→ 找定值 ―→ 求定值
1-x+4x 3x+1 1 4 [解析] f(x)=x+ = = , 1-x x1-x -x2+x t-1 令t=3x+1,则x= 3 ,t∈(1,4), t t 9t f(x)变为g(t)= = 1 5 4 = -t2+5t-4 = t-12 t-1 -9t2+9t-9 + - 3 3 9 , 4 -t+ t +5 4 4 9 因为t∈(1,4),所以5>t+ t ≥4,0<- t+ t +5≤1, 4 -t+ t +5 ≥9,所以f(x)的最小值为9.

利用数形结合处理数学问题的技巧

利用数形结合处理数学问题的技巧

利用数形结合处理数学问题的技巧摘要数形结合在代数解题中有广泛应用,是数学研究的常用方法,它的思想可以把抽象的代数问题具体化,把数量关系与空间图形结合起来,既能分析其代数意义,又能揭示其几何意义。

它包含“以形助数”和“以数辅形”两个方面。

下面将通过一些典型例题,探索解题中应用数形结合的技巧和方法。

关键词:数形结合思想方法技巧典型例题正文:数与形是数学中最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。

我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。

”“数”与“形”反映了事物两个方面的属性。

我们认为,数形结合,主要指的是数与形之间的一一对应关系。

数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数辅形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。

“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。

“以形助数”就是把某些复杂的数学问题通过几何图形很直观的看出来,这样就把问题直观具体化。

数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:一、解决集合问题:在集合运算中常常借助于数轴来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。

二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。

函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值
1.利用函数图像:函数的图像能够直观地表示出函数的性质和变化规律。

通过观察函数图像的形状和趋势,可以得到函数的最值。

例如,对于一个连续递增函数,其最小值一定在定义域的最左边,最大值一定在定义域的最右边。

对于一个连续递减函数,则相反。

因此,可以通过观察函数图像的趋势来确定函数的最值。

2.利用导数和极值:当函数存在导数时,可以通过导数和极值的关系来求函数的最值。

根据导数的定义,函数的极值点对应着导数为0的点。

因此,求函数的最值可以转化为求函数导数的零点。

利用微积分的知识,可以求得函数的导数,然后找出导数为0的点,通过比较这些点的函数值来确定函数的最值。

3.利用平均值不等式:平均值不等式是数学中的一个重要定理,它可以用来求函数的最值。

平均值不等式的基本内容是:对于一组非负数的平均值,其最大值等于这组数中的最大值,最小值等于这组数中的最小值。

利用这个定理,可以将函数的求最值问题转化为一组非负数的最值问题,进而求得函数的最值。

除了以上几种常见的数形结合思想,还有其他一些方法,如利用等式和不等式的性质,利用对称性等。

这些方法在不同的问题中都有所应用。

最后,需要注意的是,求函数的最值并不总是一件容易的事情,它涉及到数学的各个方面,需要灵活运用各种方法。

在解决问题的过程中,除了观察图形和利用数学定理外,还需要深入理解问题的背景和条件,灵活运用数学知识,才能得出准确的结果。

因此,在求函数最值时,需要注意综合运用各种数学思想和方法,以取得较好的效果。

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法

成一个无盖的方盒,问截去多少方能使盒子容积最大?
解:设截的小正方形边长为 x,则做成方盒容积为 y=(x-2a) x(0≤x≤a/2)
于是问题就归结为求函数在区间内极值问题。运用引理可知在 x=a/6 是盒子容积
最大。
五、利用平面几何图形求最值
例 11 求函数
的最小值。
分析:本题要求无理函数最值。用代数方法比较困难,若将函数表达变形为; 则函数表达式显现为坐标平面上
条件求出自变量的范围,最终将问题为一元二次函数区间内最值问题。但这样解
决此题,计算量较大。我们仔细分析约束条件,将约束条件可以整理为
,它表示以 x、y 为坐标的动点必须在椭圆
内或边界。而函数 f(x、y)=x-3y 可以约束区域内有点在
直线上的情况下,直线系中哪条直线在 y 轴截距最大或最小。显然在与椭圆相切
y x 3
y x3
x o
根据图像我们可以判断:当 x=0,
;当 x=3,
,对此类型问题的
思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图
像来求解极值,那么过程就非常复杂。那么是否有更简单的方法呢?经过对问题
的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图
就转化为在图像上找一点使得该点的横纵坐标之和最大或最小。此后就可采用椭
圆的参数方程解决。 例 5 若 2x+4y=1 求 x2+y2 的最小值 分析 函数 f(x、y)= x2+y2 我们理解为点(x、y)到原点的距离的平方,而
动点(x、y)在直线 2x+4y=1 上移动,那么我们就将问题转化为在直线上找一点,
于:能深刻理解函数解析式的内涵,且计算简单。

想学好高中数学,就要学会数形结合!数形结合六大应用及例题详解

想学好高中数学,就要学会数形结合!数形结合六大应用及例题详解

想学好高中数学,就要学会数形结合!数形结合六大应用及例题详解数形结合是数学中的一种非常重要的思想方法,它包含了“以形助数”和“以数辅形”两个方面。

一、什么是数形结合?1、借助形的生动性和直观性来阐明数之间的联系。

例如应用函数的图象来直观的说明函数的性质;2、借助于数的精确性和规范性来阐明形的某些属性。

如应用曲线的方程来精确的阐明曲线的几何性质。

概括的说,就是在解决数学问题时,将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系与转化二、数形结合应用的三个原则1、等价性原则在数形结合时,代数性质和几何性质转换必须是等价的,否则解题将会出现漏洞。

有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应。

2、双方性原则既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数进行几何分析容易出错。

3、简单性原则不要为了“数形结合”而数形结合。

具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与二次曲线。

三、如何运用数形结合思想解答数学题1、要彻底明白一些概念和运算的几何意义以及曲线的代数特征;2、要恰当设参,合理用参,建立关系,做好转化;3、要正确确定参数的取值范围,以防重复和遗漏;4、精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

很多数学概念都具有明显的几何意义,善于利用这些几何意义,往往能收到事半功倍的效果。

数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

四、应用方式和例题详解(一)数形结合思想在解决方程的根、不等式解集问题中的应用解析:方法说明:(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解得个数是一种重要的思想方法,其根本思想是先把方程两边的代数式看作是两个熟悉函数表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解得个数。

人教版数学-备课资料求解最值六技巧

人教版数学-备课资料求解最值六技巧

求解最值“六”技巧基本不等式是“不等式”中非常重要的定理。

对于有些不等式问题,当直接使用基本不等式条件不足时,可经过如下的“六招”变形技巧,从而使问题顺利解决。

一、变例1.若,求的最大值。

分析:虽然是定值,但、均为负数,故先变号后再运用基本不等式求函数的最值。

解:∵,∴,∴(当且仅当时,取“”)。

因此,的最大值为。

二、拆例2.已知,求函数的最小值。

分析:函数式的分子是二次、分母是一次,分子配方后把该函数式拆分为和的形式,利用基本不等式求得最值。

解:∵,,当且仅当时,即时取等号。

∴当时,有最小值。

三、添例3.已知,,且,求的最小值。

分析:直接求解似乎无从下手,由于题设中的可变形得,因此可通过添项,运用基本不等式求解。

解:由已知得,∵,,∴,,∴。

当且仅当,即时等号成立。

故的最小值是。

四、倒例4.已知,求的最小值。

分析:观察所求函数式的特点,通过取倒数、拼凑,可用基本不等式求解。

解:∵,∴,,∴。

∴,∴,当,即时,等号成立。

故所求的最小值为。

五、方例5.若,,且,求的最大值。

分析:仔细观察题目中已知式中与都是二次的,而所求式子中是一次的,且带有根号。

因此,通过将所求函数式平方,即可运用基本不等式求得最值。

解:。

当,即,,等号成立。

故的最大值为。

六、代例6.已知正数,满足,求的最小值。

分析:本题不能直接运用基本不等式,因为,但的值不确定,无法求出其最小值。

所以考虑把已知作为整体代入所求式中,使之出现和或积为定值的情形,再用基本不等式求得最值。

解:∵、,∴,当且仅当,即且时等号成立。

故的最小值为。

“四招”帮你破解函数值域问题

“四招”帮你破解函数值域问题

解题宝典求函数值域是高考数学试卷中的基础问题,常以选择题、填空题的形式出现.解答此类问题的常用方法有配方法、反函数法、换元法、判别式法、单调性法等,依据不同的问题选择合适的方法是解题的关键.本文重点介绍四种破解函数值域问题的方法.一、配方法对于形如y =ax 2+bx +c (c ≠0)或者H (x )=a []f (x )2+b []f (x )+c (a ≠0)的函数最值问题,可以运用配方法来求解.首先运用完全平方公式将目标函数式配凑成y =a (x ±m )2+n 的形式,然后结合函数的定义域,利用二次函数的图象和性质求得函数的值域.例1.已知14≤x ≤4,试求函数f (x )=x 2+2x +4x值域.解:f (x )=x 2+2x +4x =x +4x +2=æèçx -2+6,又14≤x ≤4,所以f (x )在éëùû14,2上单调递减,f (x )在[]2,4上单调递增,则y max =f (14)=334,y min =f (2)=6,所以函数的值域为6≤y ≤334.解答本题主要运用了配方法,首先将函数式配方,然后讨论函数在定义域内的单调性,进而求得函数的值域.二、反函数法对于形如y =cx +d ax +b(a ≠0)的函数值域问题,一般先求出该函数的反函数y =d -bxax -c,然后利用函数与反函数的定义域与值域互逆的关系得出原函数的值域.值得注意的是,在运用该方法解题时需要先判断函数是否有反函数,可依据“严格单调函数必定有严格单调的反函数,并且二者单调性相同”的性质进行判断.例2.试求函数f (x )=e x -1e x +1的值域.解:设x 1<x 2,x 1,x 2∈R ,则y 1-y 2=e x 1-1e x 1+1-e x 2-1e x 2+1=2e x 1-e x 2(e x 1+1)(e x 2+1)<0,则f (x )为减函数,且存在反函数,所以f (x )-1=ln 1+x 1-x,由1+x 1-x>0可得x ∈()-1,1,故函数f (x )值域为()-1,1.这里首先证明函数的单调性且具有反函数,然后求出函数的反函数,结合反函数的定义域求得原函数的值域.运用反函数法求函数的值域较为便捷,只需要探讨反函数的定义域即可.三、分离常数法对于上述y =cx +d ax +b(a ≠0)类型的值域问题,除了反函数法还可以利用分离常数法求解,首先将函数式转化成y =c a -d -cb a ax +b ,然后讨论d -cba ax +b的取值即可求得函数的值域.运用分离常数法解题的难点在于,依据分母的结构对分子利用待定系数法进行配凑.例3.试求y =1-x 2x +5的值域.解:y =1-x 2x +5=-12+722x +5,∵722x +5≠0,即y ≠-12,∴函数f (x )值域为{y |y ≠-}12.我们通过分离常数将函数式简化,讨论含有变量式子的值域即可解题.四、换元法对于形如y =ax ±bx +c 或者H (x )=af (x )含有根式的值域问题,可以令bx +c =t 或f (x )=t ,通过换元将函数式转化为关于t 的函数式,然后结合函数的定义域和性质进行求解即可.例4.求函数f (x )=2x +1-2x 值域.解:设t =1-2x ()t ≥0,∴x =1-t 22,∴f (t )=-t 2+t -1=-(t -12)2+54,∴f (t )min =f (12)=54,∴函数f (x )值域为{y |y ≤}54.这里通过换元,将函数式转化为一元二次函数,借助一元二次函数的性质求得最值.通过上述分析,同学们可以发现,有些问题有多种不同的解法,例如求函数y =cx +d ax +b(a ≠0)的最值可以运用反函数法和分离常数法.因此同学们在解题时要对各种解题技巧了然于胸,才能快速找到解题的突破口,提升解题的效率.(作者单位:南京师范大学第二附属高级中学)“刘武39Copyright©博看网 . All Rights Reserved.。

六招破解函数最值及巧用数形结合求参数问题

六招破解函数最值及巧用数形结合求参数问题

六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=af(x)2+bf(x)+c(a≠0)的最值问题,可以考虑用配方法.[例1]已知函数y=(e x-a)2+(e-x-a)2(a∈R,a≠0),求函数y的最小值.[解]y=(e x-a)2+(e-x-a)2=(e x+e-x)2-2a(e x+e-x)+2a2-2.令t=e x+e-x,则f(t)=t2-2at+2a2-2.因为t≥2,所以f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2,+∞).因为抛物线y=f(t)的对称轴为t=a,所以当a≤2且a≠0时,y min=f(2)=2(a-1)2;当a>2时,y min=f(a)=a2-2.[点评]利用二次函数的性质求最值,要特别注意自变量的取值范围,同时还要注意对称轴与区间的相对位置关系.如本题化为含参数的二次函数后,求解最值时要注意区分对称轴与定义域的位置关系,然后再根据不同情况分类解决.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如a2+b2=1及部分根式函数形式的最值问题.[例2]设a,b∈R,a2+2b2=6,则a+b的最小值是________.[解析]因为a,b∈R,a2+2b2=6,所以令a=6cos α,2b=6sin α,α∈R.则a+b=6cos α+3sin α=3sin(α+φ),所以a+b的最小值是-3.[答案]-3[点评]在用换元法时,要特别注意换元后新元的取值范围.如本题换元后中间变量α∈R,这是由条件a,b∈R得到的.3.不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:a 2+b 2≥2ab (a ,b 为实数),a +b 2≥ab (a ≥0,b ≥0),ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b 为实数). [例3] 函数f (x )=1x +41-x(0<x <1)的最小值为________. [解析] f (x )=1x +41-x =1-x +4x x (1-x )=3x +1-x 2+x, 令t =3x +1,则x =t -13,t ∈(1,4), f (x )变为g (t )=t-⎝ ⎛⎭⎪⎫t -132+t -13=t -19t 2+59t -49=9t -t 2+5t -4=9-⎝⎛⎭⎫t +4t +5, 因为t ∈(1,4),所以5>t +4t ≥4,0<-⎝⎛⎭⎫t +4t +5≤1,9-⎝⎛⎭⎫t +4t +5≥9,所以f (x )的最小值为9.[答案] 9[点评] 利用基本不等式法求解最值的关键在于确定定值,求解时应注意两个方面的问题:一是检验基本不等式成立的三个条件——“一正、二定、三相等”,灵活利用符号的变化转化为正数的最值问题解决;二是要注意函数解析式的灵活变形,通过“拆”、“添”或“减”等方法“凑”出常数.对于条件最值问题,应首先考虑常数的代换,将函数解析式乘以“1”构造基本不等式.4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考中是必考的,多在解答题中的某一问出现.[例4] 已知函数f (x )=x ln x ,则函数f (x )在[t ,t +2](t >0)上的最小值为________.[解析] 因为f ′(x )=ln x +1,所以当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. ①当0<t <t +2<1e时,t 无解; ②当0<t <1e <t +2,即0<t <1e 时,f (x )min =f ⎝⎛⎭⎫1e =-1e;③当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t . 所以f (x )min =⎩⎨⎧ -1e ,0<t <1e ,t ln t ,t ≥1e .[答案] f (x )min =⎩⎨⎧ -1e ,0<t <1e ,t ln t ,t ≥1e[点评] 本题是函数在不定区间上的最值问题,因此区间的位置要全部考虑到,不要遗漏.5.导数法设函数f (x )在区间[a ,b ]上连续,在区间(a ,b )内可导,则f (x )在[a ,b ]上的最大值和最小值应为f (x )在(a ,b )内的各极值与f (a ),f (b )中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5] 函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值,最小值分别是________,________.[解析] 因为f ′(x )=3x 2-3,所以令f ′(x )=0,得x =-1(舍正).又f (-3)=-17,f (-1)=3,f (0)=1,易得,f (x )的最大值为3,最小值为-17.[答案] 3 -17[点评] (1)利用导数法求函数最值的三个步骤:一是求函数在(a ,b )内的极值,二是求函数在区间端点的函数值f (a ),f (b ),三是比较上述极值与区间端点函数值的大小,即得函数的最值.(2)函数的最大值点及最小值点必在以下各点中取得,导数为零的点,导数不存在的点及区间端点.6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的一种常用的方法.这种方法借助几何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的一种重要途径.[例6] 对a ,b ∈R ,记max|a ,b |=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max||x +1|,|x -2||(x ∈R )的最小值是________.[解析] 由|x +1|≥|x -2|,得(x +1)2≥(x -2)2,解得x ≥12. 所以f (x )=⎩⎨⎧ |x +1|,x ≥12,|x -2|,x <12,其图象如图所示.由图形,易知当x =12时,函数有最小值,所以 f (x )min =f ⎝⎛⎭⎫12=⎪⎪⎪⎪12+1=32.[答案] 32[点评] 用数形结合的方法求解函数最值问题,其关键是发现条件中所隐含的几何意义,利用这个几何意义,就可以画出图形,从而借助图形直观地解决问题.如将本题化为分段函数的最值问题后,可以用分段求解函数最值的方法去解.二、巧用数形结合妙解3类求参数问题数形结合就是根据数学问题的条件与结论的内在联系,既要分析问题的代数含义,又要揭示其几何意义,把“数”与“形”巧妙地结合起来,并利用“结合”寻找解题的思路,使问题得到圆满解决,数形结合是根据数量与图形之间的对应关系,通过数与形的互相转化来解决问题的一种重要思想方法.通过“以形助数,以数辅形”把复杂问题简单化,抽象问题具体化,充分利用形的直观性和数的严谨性来思考问题,拓展了思路,这就是数形结合的核心价值.通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值[例1] 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)[解析] 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<abc <12.[答案] C[点评] 通过图形可以发现a ,b ,c 所在的区间,再把绝对值符号去掉,就能发现ab =1,这样利用数形结合就可把问题化难为易了.2.通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2] 已知m ∈R ,函数f (x )=x 2+2(m 2+1)x +7,g (x )=-(2m 2-m +2)x +m .(1)设函数p (x )=f (x )+g (x ).如果p (x )=0在区间(1,5)内有解但无重根,求实数m 的取值范围;(2)设函数h (x )=⎩⎪⎨⎪⎧ f (x ),x ≥0,g (x ),x <0,是否存在m ,对于任意非零实数a ,总存在唯一非零实数b (b ≠a ),使得h (a )=h (b )成立?若存在,求m 的值;若不存在,请说明理由.[解] (1)因为p (x )=f (x )+g (x )=x 2+mx +7+m ,令p (x )=0,①因为方程①在(1,5)内有实数解,且没有重根,由p (x )=0,得m =-x 2+7x +1=-(x +1)2-2(x +1)+8x +1=2-(x +1)-8x +1, 因为1<x <5,令t =x +1,则2<t <6,如图所示,所以-163<m ≤2-4 2. 当m =2-42时,p (x )=0有两个相等的根,所以实数m 的取值范围是-163<m <2-4 2. (2)由题意,得当x ≥0时,h (x )=x 2+2(m 2+1)x +7,h (x )在区间[0,+∞)上单调递增; 当x <0时,h (x )=-(2m 2-m +2)x +m ,h (x )在区间(-∞,0)上单调递减.记A ={h (x )|x ≥0},B ={h (x )|x <0},则A =[7,+∞),B =(m ,+∞).(ⅰ)若∀a >0时,如图(1)知,由于h (x )在(0,+∞)上是增函数,若存在非零实数b (b ≠a ),使得h (a )=h (b ),则b <0,且A ⊆B ,即m ≤7;(ⅱ)若∀a <0时,如图(2)知,由于h (x )在(-∞,0)上是减函数,若存在非零实数b (b ≠a ),使得h (a )=h (b ),则b >0,且B ⊆A ,即m ≥7.综合(ⅰ)(ⅱ),知所求m =7.现在证明充要性:①必要性:由求解过程知必要性成立;②充分性:当m =7时,A =B ,对于∀a ≠0,则∃b (b ≠a ,且ab <0),使得h (a )=h (b ).[点评] 第(1)问含有参数的二次方程或分式方程在区间(1,5)内有解且无重根,纯粹从数的角度去理解是相当困难的,通过分离变量,把方程化归为函数m =-x 2+7x +1(1<x <5),再通过换元画出函数的图象,方程在区间内有解的条件就非常容易得出了.第(2)问的解题思路也是在“形”指点下进行的,对于∀a >0,存在b ≠a ,使得h (a )=h (b )的条件是m ≤7;反过来,对于∀a <0,存在b ≠a ,使得h (a )=h (b )的条件是m ≥7.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3] 如果函数y =1+4-x 2(|x |≤2)的图象与函数y =k (x -2)+4的图象有两个交点,那么实数k 的取值范围是________.[解析] 函数y =1+4-x 2的值域为[1,3],将y -1=4-x 2两边平方,得x 2+(y -1)2=4,考虑到函数的值域,函数y =1+4-x 2的图象是以(0,1)为圆心,2为半径的上半圆,半圆的端点为点A (-2,1)和点B (2,1);函数y =k (x -2)+4是过定点P (2,4)的直线.画出两函数的图象如图所示,易得实数k 的范围是⎝⎛⎦⎤512,34.[答案] ⎝⎛⎦⎤512,34[点评] 函数y =1+4-x 2的图象是半圆,像这样由圆或圆锥曲线的部分图形构成的函数图象,在基本初等函数中没有涉及,应该把它和对勾函数y =x +1x作为“基本初等函数”来掌握.典例3的等价命题是方程式4-x 2=3+k (x -2)在[-2,2]上有两个不同的实根,求实数k 的取值范围.。

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法对于一个给定的函解析式,我们如果能大致作出其对应的函数图像,那么函数的许多性质都可以通过图像客观地反应出来。

因此,只要我们做出了函数图像,那么我们就可以根据图像找到极值点,从而求出函数的极值。

下面,我就从几个方面讨论一下,函数图象在求极值问题中的应用。

一、函数解析式中含有绝对值的极值问题。

我们给出问题的一般形式,设a≤x≤b,求函数的极值。

很容易判断该函数为分段函数,其对应的图像是折线,因此只要做出函数的图像那么就可以准确的找出函数的极值点。

例1设-2≤x≤3,求函数的最值。

解:若将函数示为分段函数形式。

作出函数图像根据图像我们可以判断:当x=0,;当x=3,,对此类型问题的思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图像来求解极值,那么过程就非常复杂。

那么是否有更简单的方法呢?经过对问题的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图像的拐点(使函数中某一个绝对值部分为零的点)因此我们只需将这些点求出来并代入函数解析式求出其所对应的值。

经过比较就得出了极值例如上题:f(-2)=7、f(-1)=4、f(0)=3、f(2)=5、f(3)=8、、=8,据此我们下面给出解决这一类问题更一般的方法。

=max {f(bi)、i=1、2、3……n },=min {f(-bi),i=1、2、3……n }.二、将极值问题转化为几何问题。

运用此方法解决极值问题关键在于深刻理解,挖掘解析式所蕴含的几何意义。

1.转化为求直线斜率的最值。

例2求函数的最值分析函数解析式非我们常见的函数模型。

通过分析我们发现该函数可以看做过点A (3、2)与B (sin 、-cos )两点直线的斜率。

而动点B的轨迹是y xo 3+=x y 3+-=x y 13+-=x y 13-=x y圆x2+y2=1。

因此我们就将问题转化为了求定点(3、2)与圆x2+y2=10上一点连线的斜率的最大值与最小值。

巧用“三招”解答函数最值问题

巧用“三招”解答函数最值问题

方法集锦函数最值问题是一类综合性的问题,常将三角函数、数列、不等式、函数、圆锥曲线等知识点融合在一起考查.同学们在面对不同题型时,要学会见招拆招、有的放矢.本文主要介绍解答函数最值问题的“三招”.一、利用三角函数的有界性我们知道正弦、余弦、正切函数都具有有界性,如x ∈R ,则||sin x ≤1,||cos x ≤1.在求函数的最值时,可以通过三角恒等变换,将问题转化为正弦、余弦、正切函数的最值问题,然后利用正弦、余弦、正切函数的有界性来求函数的最值.例1.求函数y =3sin 2x -6sin x cos x +11cos 2x 的最值.解:y =3∙1-cos 2x 2-3sin 2x +11∙1+cos 2x2=7-sin 2x -4cos 2x =7-5cos(2x +ϕ),∵||cos(2x +ϕ)≤1,∴y min =7-5=2;y max =7+5=12.本题主要考查了三角函数的最值.首先运用二倍角公式对sin 2x ,cos 2x 进行转化,使三角函数式中的角、次数统一,然后运用辅助角公式将三角函数式化为只含有余弦的式子,最后利用余弦函数的有界性求得函数的最值.二、利用换元思想有些函数式比较复杂,如含根式、多个变量等,我们很难直接求出函数的最值,此时可以利用换元思想来求解,将函数式中的某一部分式子或者整体用一个新元代替,通过换元将复杂的式子简化,从而将问题转化为常规的函数最值问题.常见的换元方法有三角换元、均值换元、对称换元等.例2.求函数y =x +1-x 的最值.解:令t =1-x (t ≥0),则x =1-t 2,所以y =-t 2+t +1=-(t -1t )2+54,因为t =12∈[)0,+∞,所以f (x )max =f (0)=54.运用换元思想能够极大程度地简化函数式.同学们要仔细观察函数式的结构、特征,恰当地进行换元.当遇到a 2+b 2=1类型的式子时,可令a =sin x ,b =cos x ,进行三角换元;当遇到a +b =m (m 为常数)类型的式子时,可令a =m 2+λ,b =m 2+γ,进行均值换元;等等.在换元后,通常可利用函数的图象和性质,或者基本不等式求得最值.三、利用判别式法在遇到形如y =ax 2+bx +c dx 2+ex +f及y =ax +b ±cx 2+dx +e 的二次函数最值问题时,我们可以将问题转化为二次方程问题,根据函数的定义域,确定判别式与0之间的关系,通过解不等式求出函数的最值.例3.当0≤x ≤1时,求函数y =2x 2-5x +23x 2-10x +3最值.解:将函数式变形可得(3y -2)x 2+(5-10y )x +(3y -2)=0,由Δ≥0,可得()5-10y 2-4(3y -2)2≥0,解得y ≥1916或y ≤14,即f (x )极小值=916,f (x )极大值=14,当y =14时,x =1;y =916时,x =-1(不符合题意),而x =0时,f (x )=23,所以函数y =2x 2-5x +23x 2-10x +3的最大值为f (0)=23.值得注意的是,在利用判别式法求函数的最值时,求出的y 是值域而不是最值,此时同学们要注意考虑定义域的范围,可以将极大值、极小值分别代入函数式中进行检验,结合定义域的范围进行综合考虑.函数的最值问题是高中数学中常考的一类问题.解答此类问题的方法有很多,除了上述“三招”之外还有配方法、数形结合法、导数法等.有些题目往往需要同时运用几种方法来综合求解,因此同学们在解题时,不要局限于使用某种方法,要注意灵活应变.(作者单位:山东省胶州市第二中学)48。

高中数学函数最值问题的解题思路与举例

高中数学函数最值问题的解题思路与举例

高中数学函数最值问题的解题思路与举例在高中数学中,函数最值问题是一个常见且重要的考点。

解决这类问题需要运用一定的解题思路和技巧。

本文将介绍一些常见的函数最值问题及其解题思路,并通过具体的例子来说明。

一、函数最值问题的基本概念和解题思路函数最值问题是指在一定的条件下,求函数的最大值或最小值。

解决这类问题的基本思路是找到函数的极值点,然后比较这些极值点的函数值,得出最值。

对于一元函数,我们可以通过求导数的方法来求解极值点。

具体步骤如下:1. 求函数的导数;2. 令导数等于零,解方程得到极值点;3. 比较这些极值点的函数值,得出最值。

对于二元函数,我们可以通过偏导数的方法来求解极值点。

具体步骤如下:1. 求函数的偏导数;2. 令偏导数等于零,解方程得到极值点;3. 比较这些极值点的函数值,得出最值。

二、函数最值问题的举例及解析1. 求函数 y = x^2 在区间 [0, 2] 上的最大值和最小值。

解析:首先,我们求函数的导数:y' = 2x。

令导数等于零,得到 x = 0。

将 x = 0 代入函数,得到 y = 0。

所以函数在 x = 0 处取得最小值 0。

然后,我们比较区间的两个端点和极值点的函数值。

将 x = 0、x = 2 代入函数,得到 y(0) = 0,y(2) = 4。

所以函数在区间 [0, 2] 上的最大值为 4。

综上所述,函数 y = x^2 在区间 [0, 2] 上的最大值为 4,最小值为 0。

2. 求函数 y = x^3 - 3x 在区间 [-2, 2] 上的最大值和最小值。

解析:首先,我们求函数的导数:y' = 3x^2 - 3。

令导数等于零,解方程得到 x = ±1。

将 x = ±1 代入函数,得到 y(1) = -2,y(-1) = 2。

所以函数在 x = ±1 处取得极值。

然后,我们比较区间的两个端点和极值点的函数值。

将 x = -2、x = 2 代入函数,得到 y(-2) = -14,y(2) = 10。

重点突破10已知函数的最值求参数

重点突破10已知函数的最值求参数

重点突破10已知函数的最值求参数在数学中,我们经常要研究函数的极值问题,即要找出一个函数在其定义域内取得最大值或最小值的参数值。

常见的方法有函数图像法、导数法和二次函数分析法等。

接下来,我们将重点讨论已知函数的最值求参数的方法。

一、函数图像法:函数图像法是较为直观的一种方法,通过观察函数的图像来判断函数的极值及其对应的参数值。

例如,考虑如下函数:f(x)=a*x^2-5x+6我们要求这个函数的最小值及其对应的参数值。

首先,我们可以画出函数的图像,观察这个图像的最低点所对应的x值即可得到最小值对应的参数值。

二、导数法:导数法是求函数的极值的一种常用方法,利用函数的导数来判断函数的增减性和极值。

对于已知的函数,我们可以先求出其导数,然后找出导数为零的点或导数变号的点,这些点就是函数可能取得极值的地方。

接下来,我们可以通过对这些点进行一些判断,例如使用二阶导数来判断极值类型,从而得到函数的最值及其对应的参数值。

例如,考虑如下函数:f(x)=a*x^3-6x^2+12x-8首先,我们计算函数的导数:f'(x)=3a*x^2-12x+12然后,我们令导数等于零,解方程得到导数为零的点:3a*x^2-12x+12=0解这个二次方程,得到两个解x1和x2、我们可以代入原函数,计算对应的函数值,然后比较这两个函数值的大小,即可得到函数的最值及其对应的参数值。

三、二次函数分析法:对于二次函数,我们可以直接利用二次函数的性质来求最值及其对应的参数值。

例如,考虑如下二次函数:f(x) = ax^2 + bx + c其中,a、b和c是常数,且a≠0。

我们可以知道,二次函数的图像是一个抛物线。

当a>0时,抛物线开口向上,此时函数的最小值即为抛物线的顶点,对应的参数值可以通过计算顶点的横坐标得到。

当a<0时,抛物线开口向下,此时函数的最大值即为抛物线的顶点,对应的参数值可以通过计算顶点的横坐标得到。

需要注意的是,以上方法适用于一些特定的函数形式,对于其他类型的函数,可能需要采用其他方法来求解最值及其对应的参数值。

利用数形结合求解函数问题

利用数形结合求解函数问题

利用"数形结合"求解函数问题摘要:"数形结合"思想方法是研究数学问题的重要方法,本文对中学数学中的函数问题,谈谈如何运用"数形结合"的思想解题。

关键词:数形结合、图形、函数著名的数学家华罗庚先生说过:"数形结合千般好,数形分离万事休。

"有些繁难的代数题,假设我们借助于图形的性质,可以使许多抽象的概念及复杂的数量关系直观化、简单化,从而探索出巧妙的解法。

下面就函数的几个方面进行研究。

1、利用数形结合求函数的定义域面对求函数的定义域问题,有些人常常是顾此失彼,所以在看到题目后,首先的应该把所有使函数有意义的条件列出,待求出所有满足条件的解后用相应的图形表示出来,再逐一判断,这样才能尽量避免失误,得出正确的答案。

例1:函数f(x)的定义域是[a,b]其中a<0<b且|a|>b,求函数g(x)=f(x)+f(-x)的定义域。

分析:假设g(x)的定义域为M,f(x)f(-x)的定义域分别为A、B,那么有M=A∩B,利用数轴分析得知,阴影部分即为所求。

如图A∩B解:∵函数f(x)的定义域为[a,b]∴a≤x≤b假设使f(x)e有意义,必须有a≤-x≤b,即有-b≤x≤-a∵a<0<b ∴-b<0<-a又∵|a|>b>0 ∴.a<-b∴函数g(x)的定义域{x|a≤x≤b}∩{x|-b≤x≤-a}={x|-b≤x≤b}小结:这样的题目要是改为选择题,图形一画那就简单明了,不用解题,要是象上面的求解,画出图形有助于解题。

2、利用数形结合求函数的值域对于一些给了的定义域求值域的函数,假设只采用代数的方法思考问题,往往会太过于抽象或无从下手。

但如果根据函数的定义,引入图象,使所求的问题具体化,可从图中一目了然,那么达到事半功倍的效果。

例2.求函数y=|x+3|-|x+1|的值域。

分析:就自变量x的范围讨论去掉绝对值,将函数表示为分段函数,画出分段函数的图象,由图象即可得y 的范围⎪⎩⎪⎨⎧-+=2422)(x x f 3131-≤-≤≤--≥x x x函数的图象如图,由图象即可得y ∈[-2,2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F (x )=af (x )2+bf (x )+c (a ≠0)的最值问题,可以考虑用配方法.[例1] 已知函数y =(e x -a )2+(e -x -a )2(a ∈R ,a ≠0),求函数y 的最小值. [解] y =(e x -a )2+(e -x -a )2=(e x +e -x )2-2a (e x +e -x )+2a 2-2. 令t =e x +e -x ,则f (t )=t 2-2at +2a 2-2. 因为t ≥2,所以f (t )=t 2-2at +2a 2-2=(t -a )2+a 2-2的定义域为[2,+∞).因为抛物线y =f (t )的对称轴为t =a ,所以当a ≤2且a ≠0时,y min =f (2)=2(a -1)2; 当a >2时,y min =f (a )=a 2-2.[点评] 利用二次函数的性质求最值,要特别注意自变量的取值范围,同时还要注意对称轴与区间的相对位置关系.如本题化为含参数的二次函数后,求解最值时要注意区分对称轴与定义域的位置关系,然后再根据不同情况分类解决.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如a 2+b 2=1及部分根式函数形式的最值问题.[例2] 设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是________.[解析] 因为a ,b ∈R ,a 2+2b 2=6,所以令a =6cos α,2b =6sin α,α∈R .则a +b =6cos α+3sin α=3sin(α+φ),所以a +b 的最小值是-3.[答案] -3[点评] 在用换元法时,要特别注意换元后新元的取值范围.如本题换元后中间变量α∈R ,这是由条件a ,b ∈R 得到的.3.不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:a 2+b 2≥2ab (a ,b 为实数),a +b 2≥ab (a ≥0,b ≥0),ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b 为实数).[例3] 函数f (x )=1x +41-x(0<x <1)的最小值为________. [解析] f (x )=1x +41-x =1-x +4x x (1-x )=3x +1-x 2+x, 令t =3x +1,则x =t -13,t ∈(1,4), f (x )变为g (t )=t -⎝⎛⎭⎫t -132+t -13=t -19t 2+59t -49=9t -t 2+5t -4=9-⎝⎛⎭⎫t +4t +5, 因为t ∈(1,4),所以5>t +4t ≥4,0<-⎝⎛⎭⎫t +4t +5≤1,9-⎝⎛⎭⎫t +4t +5≥9,所以f (x )的最小值为9.[答案] 9[点评] 利用基本不等式法求解最值的关键在于确定定值,求解时应注意两个方面的问题:一是检验基本不等式成立的三个条件——“一正、二定、三相等”,灵活利用符号的变化转化为正数的最值问题解决;二是要注意函数解析式的灵活变形,通过“拆”、“添”或“减”等方法“凑”出常数.对于条件最值问题,应首先考虑常数的代换,将函数解析式乘以“1”构造基本不等式.4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考中是必考的,多在解答题中的某一问出现.[例4] 已知函数f (x )=x ln x ,则函数f (x )在[t ,t +2](t >0)上的最小值为________.[解析] 因为f ′(x )=ln x +1,所以当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. ①当0<t <t +2<1e时,t 无解; ②当0<t <1e <t +2,即0<t <1e 时,f (x )min =f ⎝⎛⎭⎫1e =-1e; ③当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t . 所以f (x )min =⎩⎨⎧ -1e ,0<t <1e ,t ln t ,t ≥1e .[答案] f (x )min =⎩⎨⎧ -1e ,0<t <1e ,t ln t ,t ≥1e[点评] 本题是函数在不定区间上的最值问题,因此区间的位置要全部考虑到,不要遗漏.5.导数法设函数f (x )在区间[a ,b ]上连续,在区间(a ,b )内可导,则f (x )在[a ,b ]上的最大值和最小值应为f (x )在(a ,b )内的各极值与f (a ),f (b )中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5] 函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值,最小值分别是________,________.[解析] 因为f ′(x )=3x 2-3,所以令f ′(x )=0,得x =-1(舍正).又f (-3)=-17,f (-1)=3,f (0)=1,易得,f (x )的最大值为3,最小值为-17.[答案] 3 -17[点评] (1)利用导数法求函数最值的三个步骤:一是求函数在(a ,b )内的极值,二是求函数在区间端点的函数值f (a ),f (b ),三是比较上述极值与区间端点函数值的大小,即得函数的最值.(2)函数的最大值点及最小值点必在以下各点中取得,导数为零的点,导数不存在的点及区间端点.6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的一种常用的方法.这种方法借助几何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的一种重要途径.[例6] 对a ,b ∈R ,记max|a ,b |=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max||x +1|,|x -2||(x ∈R )的最小值是________.[解析] 由|x +1|≥|x -2|,得(x +1)2≥(x -2)2,解得x ≥12. 所以f (x )=⎩⎨⎧ |x +1|,x ≥12,|x -2|,x <12,其图象如图所示. 由图形,易知当x =12时,函数有最小值,所以 f (x )min =f ⎝⎛⎭⎫12=⎪⎪⎪⎪12+1=32.[答案] 32[点评] 用数形结合的方法求解函数最值问题,其关键是发现条件中所隐含的几何意义,利用这个几何意义,就可以画出图形,从而借助图形直观地解决问题.如将本题化为分段函数的最值问题后,可以用分段求解函数最值的方法去解.二、巧用数形结合妙解3类求参数问题数形结合就是根据数学问题的条件与结论的内在联系,既要分析问题的代数含义,又要揭示其几何意义,把“数”与“形”巧妙地结合起来,并利用“结合”寻找解题的思路,使问题得到圆满解决,数形结合是根据数量与图形之间的对应关系,通过数与形的互相转化来解决问题的一种重要思想方法.通过“以形助数,以数辅形”把复杂问题简单化,抽象问题具体化,充分利用形的直观性和数的严谨性来思考问题,拓展了思路,这就是数形结合的核心价值.通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值[例1] 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)[解析] 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<abc <12.[答案] C[点评] 通过图形可以发现a ,b ,c 所在的区间,再把绝对值符号去掉,就能发现ab =1,这样利用数形结合就可把问题化难为易了.2.通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2] 已知m ∈R ,函数f (x )=x 2+2(m 2+1)x +7,g (x )=-(2m 2-m +2)x +m .(1)设函数p (x )=f (x )+g (x ).如果p (x )=0在区间(1,5)内有解但无重根,求实数m 的取值范围;(2)设函数h (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,g (x ),x <0,是否存在m ,对于任意非零实数a ,总存在唯一非零实数b (b ≠a ),使得h (a )=h (b )成立?若存在,求m 的值;若不存在,请说明理由.[解] (1)因为p (x )=f (x )+g (x )=x 2+mx +7+m ,令p (x )=0,①因为方程①在(1,5)内有实数解,且没有重根,由p (x )=0,得m =-x 2+7x +1=-(x +1)2-2(x +1)+8x +1=2-(x +1)-8x +1, 因为1<x <5,令t =x +1,则2<t <6,如图所示,所以-163<m ≤2-4 2. 当m =2-42时,p (x )=0有两个相等的根,所以实数m 的取值范围是-163<m <2-4 2. (2)由题意,得当x ≥0时,h (x )=x 2+2(m 2+1)x +7,h (x )在区间[0,+∞)上单调递增; 当x <0时,h (x )=-(2m 2-m +2)x +m ,h (x )在区间(-∞,0)上单调递减.记A ={h (x )|x ≥0},B ={h (x )|x <0},则A =[7,+∞),B =(m ,+∞).(ⅰ)若∀a >0时,如图(1)知,由于h (x )在(0,+∞)上是增函数,若存在非零实数b (b ≠a ),使得h (a )=h (b ),则b <0,且A ⊆B ,即m ≤7;(ⅱ)若∀a <0时,如图(2)知,由于h (x )在(-∞,0)上是减函数,若存在非零实数b (b ≠a ),使得h (a )=h (b ),则b >0,且B ⊆A ,即m ≥7.综合(ⅰ)(ⅱ),知所求m =7.现在证明充要性:①必要性:由求解过程知必要性成立;②充分性:当m =7时,A =B ,对于∀a ≠0,则∃b (b ≠a ,且ab <0),使得h (a )=h (b ).[点评] 第(1)问含有参数的二次方程或分式方程在区间(1,5)内有解且无重根,纯粹从数的角度去理解是相当困难的,通过分离变量,把方程化归为函数m =-x 2+7x +1(1<x <5),再通过换元画出函数的图象,方程在区间内有解的条件就非常容易得出了.第(2)问的解题思路也是在“形”指点下进行的,对于∀a >0,存在b ≠a ,使得h (a )=h (b )的条件是m ≤7;反过来,对于∀a <0,存在b ≠a ,使得h (a )=h (b )的条件是m ≥7.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3] 如果函数y =1+4-x 2(|x |≤2)的图象与函数y =k (x -2)+4的图象有两个交点,那么实数k 的取值范围是________.[解析] 函数y =1+4-x 2的值域为[1,3],将y -1=4-x 2两边平方,得x 2+(y -1)2=4,考虑到函数的值域,函数y =1+4-x 2的图象是以(0,1)为圆心,2为半径的上半圆,半圆的端点为点A (-2,1)和点B (2,1);函数y =k (x -2)+4是过定点P (2,4)的直线.画出两函数的图象如图所示,易得实数k 的范围是⎝⎛⎦⎤512,34.[答案] ⎝⎛⎦⎤512,34[点评] 函数y =1+4-x 2的图象是半圆,像这样由圆或圆锥曲线的部分图形构成的函数图象,在基本初等函数中没有涉及,应该把它和对勾函数y =x +1x作为“基本初等函数”来掌握.典例3的等价命题是方程式4-x 2=3+k (x -2)在[-2,2]上有两个不同的实根,求实数k 的取值范围.。

相关文档
最新文档