中南大学 机械振动复习材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I L2
m 33

2ET

y
2 1
m1
m 44

2ET

y
2 2
m2
m 12
m 21

2ET y A y B

M 4
I L2
m 13 m 14 m 23 m 24 m 34 0
[M ]
M

4 M
4

I L2 I L2
m
m
所以: 1
(4
5)
k m
2

3
k m

3

(4
5) k m
将频率代入广义特征值问题方程解得:
u11 : u21 : u31 1: 0.618 :1 ;
u12 : u22 : u32 1: 0 :1 ;
u13 : u23 : u33 0.618 :1: 0.618 ;
三、如图 1 所示,三个刚性齿轮啮合,其转动惯量分别为 I1、I2、I3,齿数分别为 Z1、Z2、Z3,轴 1、轴 2、 轴 3 的扭转刚度分别为 k1、k2、 k3,试求该系统作微幅振动时的固有频率。 (15 分)
解:(1)建立坐标,求各轴转角之间的关系:(3 分) 设轴 1 转角为 x1。则轴 2 的转角 x2、轴 3 的转角 x3 分别为:
2
2
2
U 1 k(r)2 2
由d(E T U ) 0 可知:(I m r2) kr2 0
即:n kr2 /(I m r2) (rad/s)
3、求如图 3 所示的三自由度弹簧质量系统的固有频率和振型。(25 分)(设 m1 m3 m; m2 2m;
2)求出系统的刚度矩阵和质量矩阵; (4 分)
3)求出系统的固有频率;
(4 分)
4)求出系统振型矩阵,画出振型图。 (4 分)
1)略
图2
2)
K


k
r
2 1
1
1
,
M


I
1 0
0 1
3)频率:
2 n1

3 2
5
kr I
2 n2

3 2
5
kr I

4)振型矩阵:
u





5 1 2
1


1 5

1

0.618 1
2
1 0.618
振型图(略)
3.3、(15 分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; 2)求出固有频率; 3)求系统的振型,并做图。
(5 分) (5 分) (5 分)
频率方程:
y A
2

1 2
m1 y12

1 2
m2 y22
(3)系统的势能:(2 分)
1
1
1
1
U=
2
k1y
2 1
+
2
k2y
2 2
+
2
k3(yA-y1)2+
2
k4(yB-y2)2
(4)求质量矩阵:(2 分)
m 11

2ET

y
2 A
M 4
I L2
m 22

2ET

y
2 B
M 4
0


m
0
2
0 ;
0 0 m3 Leabharlann Baidu0 0 1
k1 k2

K



k2
0
k2 k2 k3 k5 k6
k3
0 3 2 0
k3


k

2
10
2
k3 k4 0 2 3
得到系统的广义特征值问题方程:
m

0
0 m
{
x
}+
4k

0
0 9k

{
x
}=0
(4)求系统的固有频率(4 分)
4k-mω2 0
0
9k -mω2 = (4k-m2)(9k- m2)= 0
4k

2 1
=
m
9k

2 2
=
m
(5)求系统的振型、绘制振型图(4 分)
由 ([K ] r2[M ]){ur} 0 有:
2
2g
1(I P 2g
R 2)2
U 1 k(a)2 2
由d(E T
U
) 0 可知:(I P R 2)2 ka2 g
0
即:n
ka2 (rad/s),故 T 2 2
IP R2
n
g
IP R2 g
ka 2
(s)
3.3、 (19 分)图 2 所示为 3 自由度无阻尼振动系统,kt1 kt 2 kt3 kt 4 k ,I1 I2 / 5 I3 I 。
三、计算题(45 分) 3.1、(14 分)如图所示中,两个摩擦轮可分别绕水平轴 O1,O2 转动,无相对滑动;摩擦轮的半径、
质量、转动惯量分别为 r1、m1、I1 和 r2、m2、I2。轮 2 的轮缘上连接一刚度为 k 的弹簧,轮 1 的轮缘上有软 绳悬挂质量为 m 的物体,求:
1)系统微振的固有频率;(10 分) 2)系统微振的周期;(4 分)。
I11 I22
kt11 kt 2 (2
kt 2(1 2) 1) kt3(2
0

3
)

0

I33

kt 3 ( 3
2)

kt 43

0
I1 0 0 1 0 0
M



0
I2
0


I
0
4
0 ;
所以:
0 0 I3 0 0 1
kt1 kt2

K



kt 2
0
kt 2 kt 2 kt3
kt 3
0 2
kt 3


k
1
kt3 kt4 0
1 0 2 1 1 2
2)求扭转系统的总刚度(3 分)
3) 求扭转系统的固有频率(6 分)。
解:1)串联刚度 K1 与 K2 的总刚度: K12

K1K 2 K1 K2
2)
系统总刚度: K

K1K 2 K1 K2
K3
3) 系统固有频率:
K
K1K2 K1 K2

K3
I
I
3.2、(14 分)如图所示,轮子可绕水平轴转动,对转轴的转动惯量为 I,轮缘绕有软绳,下端挂有重量为
2
k1x
2 1
+
2
k2x
2 2
+
2
k3x
2 3
=
2
[
k1+
k2(
1
)2+ k3(
2
1
)2]
x
2 1
3
(4)求系统的固有频率:(4 分)
由 d(U+ET)=0 得:
ZZ ZZ ZZ ZZ [ I1+ I2(
1
)2+ I3(
2
1 )2] x1 + [ k1+ k2(
3
1
)2+ k3(
2
1
)2]x1 = 0
0
0
M I 4 L2 M I 4 L2
0 0
0
0


0 0

m1 0 0 m2
(5)求刚度矩阵:(2 分)
∂ 2U
y y k11=
= k3
∂∂
A
A
∂ 2U
y y k13=
∂∂
=- k3= k31
1
A
∂ 2U
y y ∂ k12=

=0= k21
B
A
∂ 2U
y y k14=
∂∂
Z1
Z x2=
x1
2
(2)系统的动能:(4 分)
Z2 Z2 Z1 Z1
Z Z Z Z x3=
x2=
×
x1=
x1
3
3
2
3
ZZ ZZ ET
=
1 2
I1
x12
+
1 2
I2
x 22
+
1 2
I3
x32
=
1 2
[
I1+
I2(
1
)2+ I3(
2
1
)2]
x12
3
(3)系统的势能:(4 分)
Z Z 1
1
1
1
Z Z U=
2 1 1 1 0.414 1 1
振型矩阵:
u


1
0
1
2



1
0 0.414

2 1
1
1

0.414
1
1
3.1、(12 分)如图 1 所示的扭转系统。系统由转动惯量 I、扭转刚度由 K1、K2、K3 组成。
1)求串联刚度 K1 与 K2 的总刚度(3 分)
= 0 = k41
1
A
∂ 2U
y y ∂ k22=

= k4
B
B
∂ 2U
y y k23=
= 0 =k32
∂∂
B
1
∂ 2U
y y ∂ k24=

=- k4=k42
B
2
∂ 2U
y y k33=
= k1+k3
∂∂
1
1
∂ 2U
y y k34=
∂∂
= 0 = k43
1
2
∂ 2U
y y ∂ k44=

= k2+k4
图1
选取广义坐标 x 或θ; 确定 m 的位移与摩擦轮转角的关系,(质量 m 的位移与摩擦轮转动的弧长及弹簧的变形量相等);, 写出系统得动能函数 Et、势能函数 U; 令 d(Et+U)=0.求出广义质量和刚度
求出 n
k
m

I1 r12
I2 r22
,进一步求出 T
3.2、(16 分)如图所示扭转系统。设转动惯量 I1=I2,扭转刚度 Kr1=Kr2。 1)写出系统的动能函数和势能函数; (4 分)
1
1
[K] =
2、一质量为 m 、转动惯量为 I 的圆柱体作自由纯滚动,圆心受到一弹簧 k 约束,如图 2 所示,求系
统的固有频率。(15 分)
解:取圆柱体的转角 为坐标,逆时针为正,静平衡位置时 0 ,则当 m 有 转角时,系统有:
ET
1 I2 1 m (r)2 1 (I m r2 )2
(10 分)
图1 解:(1)取坐标:(2 分)
取 yA,yB,y1,y2 为描述系统运动的广义坐标,即{x}={yA,yB,y1,y2}T 各个自由度的原点均取静平衡位置,以向上为坐标正方向。
(2)系统的动能:(2 分)
ET

M 2

y A
2
y B
2

I 2
y B
L
(4k-m2)u11 =0
(4k-
2 r
m)u22=0
由此可知:u21 与 u11、u12 与 u22 毫不相关,即该系统是两个独立振动的单自由度系统。 令 u11= u22=1 即振型为: {u1}={1,0}T {u2}={0,1}T
固有频率为1 时振型图
固有频率为2 时振型图
五、如图 3 所示系统,试用能量法求出其质量矩阵、刚度矩阵。假设为均质杆。
32 m k
( 2 ) k 1
0
1 2 2 2 m
k 1
0
1 0 32 m
k
固有频率:
即: (3 2 m )2 (2 2 m ) 2(3 2 m ) 0
k
k
k
12 (2
2) k m
<
22

3k m
<
32 (2
2) k m
3
ZZ ZZ ZZ ZZ
2 n
=
[
k1+
k2(
1
)2+ k3(
2
1
)2]/ [ I1+ I2(
3
1
)2+ I3(
2
1
)2]
3
四、如图 2 所示系统:k1=k,k2=3k、k3=6k、k4=3k,(1)试写出其运动微分方程组;(2)求出系统的固有
频率(3)在图示运动平面上,绘出与固有频率对应的振型图。
k1 k4 k; k2 k3 2k; k5 k6 3k; )
解:以静平衡位置为原点,设 m1, m2 , m3 的位移 x1, x2 , x3 为广义坐标,系统的动能和势能分别为
ET

1m 2
1x12

1m 2
2x22

1m 2
3x32
U

1 2
k1x12

1 2 k2(x1
1)求系统的质量矩阵和刚度矩阵和频率方程; 2)求出固有频率; 3)求系统的振型,并做图。
(6 分) (7 分) (6 分)
解:1)以静平衡位置为原点,设 I1, I2 , I3 的位移1,2 ,3 为广义坐标,画出 I1, I2 , I3 隔离体,根据牛顿
第二定律得到运动微分方程:

(15 分)
解:(1)按图示取坐标:(2 分)
取 x1,x2 为描述系统运动的广义坐标,即{x}={x1,x2}T 各个自由度的原点均取静平衡位置,以向上、向右为坐标正方向。
(2)列出系统的质量矩阵和刚度矩阵(3 分)
m 0
4k 0
[M]=

0
m
[K]=

0
9k

(3)列出系统的运动微分方程(2 分)
P 的物体,绳与轮缘之间无滑动。在图示位置,由水平弹簧维持平衡。半径 R 与 a 均已知。
1)写出系统的动能函数和势能函数;(5 分)
2) 求系统的运动方程;(4 分)
2)求出系统的固有频率。(5 分)
解:取轮的转角 为坐标,顺时针为正,系统平衡时 0 ,则当轮子有 转角时,系统有:
ET
1 I2 1 P (R )2
(
K



2

M
)
u1 u2


0
u3
和频率方程:
3k 2m (2 ) 2k
0
2k 10k 22m
2k
0 2k 0 3k 2m
即: ( 2 ) (3k 2m)(2m2 4 16km 2 22k2 ) 0
解得: 2 (4 5) k 和 2 3 k

x2 )2

1 2 k3(x2

x3 )2

1 2
k4x
2 3

1 2
(k5

k6
)x
2 2
U

1 2 (k1

k2 )x12

1 2 (k2

k3

k5

k6 )x22

1 2 (k3

k4 )x32

k2x1x2

k3x2x3
求偏导得到:
m1 0 0 1 0 0

M



0
m2
相关文档
最新文档