线性代数与解析几何-厦门大学高等代数共43页文档

合集下载

线性代数简介

线性代数简介

什么是线性代数线性代数是高等代数的一大分支。

我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。

在线性代数中最重要的内容就是行列式和矩阵。

它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。

向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。

线性代数的理论已被泛化为算子理论。

由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

向量的概念, 从数学的观点来看不过是有序三元数组的一个集合, 然而它以力或速度作为直接的物理意义, 并且数学上用它能立刻写出物理上所说的事情。

向量用于梯度, 散度, 旋度就更有说服力。

同样, 行列式和矩阵如导数一样(虽然dy/dx 在数学上不过是一个符号, 表示包括△y/△x的极限的长式子, 但导数本身是一个强有力的概念, 能使我们直接而创造性地想象物理上发生的事情)。

因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。

然而已经证明这两个概念是数学物理上高度有用的工具。

线性代数基本上出现于十七世纪。

直到十八世纪末,线性代数的领域还只限于平面与空间。

十九世纪上半叶才完成了到n维向量空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点.1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。

托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。

不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。

由于它的简便,所以就代数在数学和物理的各种不同分支的应用来说,线性代数具有特殊的地位.此外它特别适用于电子计算机的计算,所以它在数值分析与运筹学中占有重要地位。

线性代数与空间解析几何[整理版]

线性代数与空间解析几何[整理版]

工科数学分析课程编码:N1120011-12课程名称:工科数学分析课程英文名称:Mathematical Analysis for Technology 总学时:180讲课时数:150习题课时数:30学分:12.5开课单位:理学院数学系授课对象:全校工科各专业一年级本科生先修课程:线性代数(一年级第1学期讲完)教材:1.《工科数学分析》(上、下册),高等教育出版社,2003年,第二版2.《工科数学分析》(上、下册),科学出版社,2001年参考书:1.《微积分教程》,韩云瑞,扈志明.北京:清华大学出版社,1999年2.《工科数学分析基础》,马知恩,王绵森.北京:高等教育出版社,1998年3.《高等数学》(第四版),同济大学,北京,高等教育出版社4.《高等数学释疑解难》,高等学校工科课程教学指导委员会本科组,北京高等教育出版社,1992年5.Swokowski. Calculus (5TH) Boston. PWS-KENT.6.《高等数学典型题精讲》韩云瑞.大连:大连理工大学出版社,2001年7.《数学分析》,陈纪修、於棠华、金路.北京:高等教育出版社,2001年8.《数学分析简明教程》,邓东臬,尹小玲.北京:高等教育出版社,2001年内容摘要:工科数学分析是高等学校工科各专业一门十分重要的自然科学基础课程。

其中:函数,极限与连续,导数与微分,微分中值定理,不定积分,定积分,导数与定积分的应用,微分方程,多元函数微分学,多元函数积分学,第二型曲线积分和第二型曲面积分,向量场,无穷级数,以上十二章是必讲内容。

选讲内容有:复变函数初步,微分几何基础知识等是本门课程主要内容。

线性代数与空间解析几何课程编码:N120030课程名称:线性代数与空间解析几何课程英文名称:Linear Algebra and Analytic Geometry总学时:60讲课时数:50习题课时数:10学分:4开课单位:数学系授课对象:工科各专业教材:《线性代数与空间解析几何》(第二版),郑宝东,邓廷权,高等教育出版社,2003年参考书:1.《线性代数》(第三版),同济大学数学教研室,高等教育出版社,1998年2.《线性代数与空间解析几何》,俞正光等,清华大学出版社,1998年3.《线性代数及其应用》,谢国瑞,高等教育出版社,1999年4.《Linear Algebra》,Larry, Smith, Spring-Verlag, 1977内容摘要:线性代数与空间解析几何是高等学校工科各专业一门十分重要的自然科学基础课程。

线性代数与解析几何

线性代数与解析几何


a1n a jn ain a nn
推论 如果行列式有两行(列)完全相同,则该 行列式为零,即
a11
a12
ai1 ai1 an1
ai 2 ai 2 an 2
a1n ain 0 ain ann
a11a22 a12a21
为二阶行列式,记作
a11 a12 a11a 22 a12 a 21 a21 a22
aij (i, j 1,2) 称为这个二阶行列式的元素, aij 的 两个下角标 i, j 分别表示所在的行和列的序号, 常称 aij 是行列式的(i, j)元素.
对线性方程组(1),记 a11 a12 D a11a 22 a12 a 21 0 a21 a22 b1 a12 D1 b1a 22 a12b2 b2 a 22
(
n(n 1 )(n 2) 321 ) 1 2 3 (n 1 )
例3 ( 23514) 0 0 0 3 1 4; 例4 ( 23541) 0 0 0 1 4 5.
n(n 1 ) ; 2
定义: 在一个排列中,将某两个数的位置对调 (其他数不动)的变动叫做一个对换. 定理1.1 一个排列中的任意两个数对换后,排列 改变奇偶性. 定理1.2 在全部n ( n 2) 阶排列中, 奇偶排列各占 一半.


线性代数与空间解析几何是我校工科各专业 必修的重要基础理论课,是工科数学教学三门主 要课程之一,在一般工科专业的教学中占有极重 要的地位,在工程技术、科学研究和各行各业中 有广泛的应用. 本课程的特点是将线性代数与空间解析几何 融为了一门课程 . 代数中的许多概念非常抽象, 几何为抽象的代数提供了直观想象的空间,代数 为几何提供了便利的研究工具 .代数与几何的融合 能加强学生对数与形内在联系的理解,学会用代 数的方法处理几何问题.

(word版)厦门大学参考答案0809学年第一学期《高等代数》期末考试卷

(word版)厦门大学参考答案0809学年第一学期《高等代数》期末考试卷

08-09学年第一学期厦门大学?高等代数?期末试卷 厦门大学?高等代数?课程试卷数学科学学院各系2021年级各专业信息科学与技术学院 计算机科学 系2021年级CST 专业特别说明:答案写在答题纸上一、单项选择题〔32分.共8题,每题4分〕以下说法错误的选项是___B____.假设向量组1,2,3线性无关,那么其中任意两个向量线性无关;B ) 假设向量组1, 2,3 中任意两个向量线性无关,那么1,2,3线性无关;C) 向量组 1 2,2 3,3 1线性相关;D) 假设向量组1,2,3 线性无关,那么1, 1 2, 123线性无关.2. 设n 维列向量1,2,...,m (m n)线性无关,那么n 维列向量1,2,...,m线性无关的充要条件是___D____.A) 向量组 1,2,..., m 可由向量组1, 2,..., m 线性表示;B) 向量组 1, 2,..., m 可由向量组 1,2,..., m 线性表示;C) 向量组 1,2,..., m 与向量组 1, 2,...,m 等价;D)矩阵A (1, 2,..., m )与矩阵B (1, 2,..., m )相抵. 3.设线性方程组 Ax 0的解都是线性方程组 Bx 0的解,那么__C__.A)r(A) r(B);B)r(A) r(B);C)r(A) r(B);D)r(A) r(B).4. 设n 阶方阵A 的伴随矩阵 A * 0,非齐次线性方程组 Ax b 有无穷多组解,那么对应的齐次线性方程组Ax 0的根底解系__B__.A)不存在; B)仅含一个非零解向量;C)含有两个线性无关的解向量; D)含有三个线性无关的解向量 .以下子集能构成R 22的子空间的是___B____.A)122 } ;B)V2{A|tr(A)0,AR 22};V{A||A|0,AR108-09学年第一学期厦门大学?高等代数?期末试卷C)V 3 {A|A 2A,A R 22};D)V 4 {A|A A 或 A,A R 22}.6.设V 是数域K 上的线性空间,V 上的线性变换在基 1,2,...,n 下的矩阵为A 且|A|2,假设在基 n ,n1,...,1下的矩阵为B,那么|B|___B___.A)2n;B)2; C)1; D)不能确定.27.设V 是n 维向量空间, 和 是V 上的线性变换,那么 dimImdimIm的充分必要条件是_____D ___.A) 和都是可逆变换; B)Ker=Ker ;C)Im Im ;D) 和 在任一组基下的表示矩阵的秩相同.8. 设 是线性空间 V 到U 的同构映射,那么以下命题中正确的有 ___D___个.(Ⅰ) 为可逆线性映射;(Ⅱ)假设W 是V 的s 维子空间,那么(W )是U 的s 维子空间;(Ⅲ) 在给定基下的表示矩阵为可逆阵;(Ⅳ)假设V=V 1 V 2,那么(V 1V 2)(V 1)(V 2).A)1B)2C)3D)4二、填空题〔32分.共8题,每题4分〕1 0 0 3假设矩阵A( 1,2,3,0 0 2 4 1,2,3,4的1. 4)经过行初等变换化为1 0 ,那么向量组0 50 0一个极大无关组是1,2,3,其余向量由此极大无关组线性表示的表示式为4315223.2. 设3 维向量空间的一组基为1(1,1,0),2(1,0,1),3(0,1,1),那么向量 (2,0,0) 在这组基1下的坐标为1.13. 设V 1,V 2均为线性空间 V 的子空间,那么 L(V 1 V 2)V 1 V 2.208-09学年第一学期厦门大学?高等代数?期末试卷4. 数域K 上所有三阶反对称矩阵构成的线性空间的维数是 _3_.而E 12E 21,E13E 31,E 23E 32是它的一组基.5. K 12上的线性变换定义如下:((a,b))(0,a),那么Ker={(0,a)|aK}.Im={(0,a)|aK}.6. 设是数域K 上n 维线性空间 V 到m 维线性空间U 的线性映射, 那么为满射的充分必要条件是对任意 U,存在V,使得();Im U;dimImm;.〔请写出两个〕dimKer nm;在任意基下的矩阵都是行满秩的 ; 在某个基下的矩阵是行满秩的 〔.其中任两个均可〕7. 设1,2,...,n 和1, 2,..., n 是线性空间 V 的两组基,从 1,2,..., n到1,2,...,n 的过渡矩阵为P .假设 是V 上的线性变换且 (i ) i, i1,2,...,n ,那么 在基1, 2,..., n 下的表示矩阵是_P_.8. 设是线性空间V 上的线性变换,在基1, 2,...,n 下的表示矩阵为 A B ,其中A 为rr 矩C阵,那么存在V 的一个非平凡-不变子空间L(1,,r ).三、(8 分)设线性空间V 的向量组1,2,..., m 线性无关,V ,考虑向量组,1,2,...,m .求证:或者该向量组线性无关,或者 可由 1,2,...,m 线性表示.证明:假设,1,,m 线性相关,那么存在不全为0的数k 0,k 1,,k m 使得k 0+k 11+k mm0.我们断言,k 0 0.事实上,假设k 0=0,那么k 11+k mm 0.由1, 2,...,m 线性无关知k 1==k m =0.于是,k 0=k 1==k m =0.这与k 0,k 1, ,k m 不全为0相矛盾.因此,k 00.此时,k 1 k m m .1k 0k 0从而,或者该向量组线性无关,或者可由1, 2,..., m 线性表示.四、(10分)设V 1,V 2分别是数域K 上的齐次线性方程组x 1x 2x n 与x 1x 2x n 0的解空间.证明K n1V 1V 2.3a1证明:法一:一方面,a2V1V2,有a1a2a n,那么a1a2a n0.故a1a2a n0a nV1V20.n n n na1a i a ia1a i a i i1a i1i1a i1n1n n1na2K n1,存在a2另一方面,V1,V2,使得=+n n n na a i a i a n a i a ini1i1i1i1a n a nn n n n 即K n1V1V2.因此,K n1V1V2.a1法二:一方面,a2a1a2a n,那么a1a2a n0.故V1V20.V1V2,有a2a1a n0a n11000另一方面,由于V1为方程组Ax0的解空间,其中A 01100,V2为方程组00011(n1)nBx0的解空间,其中B(1,1,,1)1n,所以dimV11,dimV2n1.故dimV1dimV2dimK n1.从而,K n1V1V2.11000法三:一方面,由于V1为方程组Ax0的解空间,其中A 01100,V2为方00011(n1)n程组Bx0的解空间,其中B(1,1,,1)1n,所以dimV11,dimV2n1.故dimV1dimV2dimK n1.4nnnna 1a ia ia 1a ia ii1i1i 1i1na 1na 1a 2Kn1,存在na 2n另一方面,V 1,V 2,使得=+nnnna na ia ia na ia ii1i1i 1i1n a nna nnn即K n1V 1 V 2.因此,K n1V 1V 2.五、(10分)设AK mn .证明:r(A)r 的充分必要条件是存在BK mr,CK rn ,使得r(B)r(C)r 且ABC .证明: 充分性: 由于BK mr ,C K rn 满足r(B)r(C)r 且ABC ,所以rr(B)r(C)rr(A)r(BC)r(B)r故r(A)r .必要性: 由于r(A)r,所以存在m 阶可逆矩阵P 及n 阶可逆矩阵Q 使得AI r 0PQ .令BPI r ,C(I r ,0)Q,那么BK mr ,CKrn满足r(B)r(C)r 且ABC .六、(8分)设V,U,W 是有限维线性空间,:V U ,:WU 是线性映射.求证:存在线性映射:VW 使得的充分必要条件是 Im Im .证明: 充分性: 法一:取V 的一组基 1,2,, n ,由于ImIm,所以(i ) Im,1 in ,即存在iW 使得(i )(i ).定义线性映射:V W 满足(i )i,1in ,那么(i ) (i )( i ), 1 in .因此,.法二:取V 的一组基1,2,,n ,U 的一组基1,2,,m ,W 的一组基1,2,,s .设(1,2, ,n ) (1,2, ,m )A mn(1,2,,s )(1,2,,m )B ms5其中A(1,2,,n ),B(1,2, ,s ).由于ImIm ,所以L(1,2,s,n)L1(,2 ,s ,, 即)1 jn, jciji .取i1C(c ij )s n ,那么A BC .定义线性映射:V W 满足 (1, 2,, n )(1,2,, s )C ,那么.必要性: 对任意 Im,存在V 使得( ).由于,所以( )(())Im从而,ImIm.附加题:(本局部不计入总分)设V,U,W是有限维线性空间且dimVdimW ,:V U , :W U 是线性映射.证明:存在可逆线性映射:V W 使得的充分必要条件是 ImIm.证明:充分性:法一:由于dimVdWim 且Im Im ,所以由维数公式知:dimKerdimKe .r 取Ker的一组基1,2,,r ;Ker 的一组基1,2,, r ,将其扩充为V的一组基1,2,,r ,r1, n ,那么(r1),(n )是Im的一组基.由于Im Im ,所以(r 1),( n )是Im的一组基.设(i )( i ), r 1 i n ,由于 (r1), , (n )线性无关,所以r1,,n 线性无关.我们断言, 1, 2, ,r ,r1,,n 线性无关.事实上,假设k 11k 22krrk r1r 1knn0,那么将作用于上式得k r1(r1) k n (n )0.由于(r1), ,(n )线性无关,所以k r1k n 0.于是k 11 k 22k r r =0.又1, 2, , r 是Ker的一组基,故k 1k r从而,1, 2,,r ,r1,,n 线性无关.注意到dimW n ,故1,2,,r ,r1,,n 是W 的一组基.定义线性映射 :V W 满足(i )i ,1 i n .由于1,2,,n 是V 的一组基,1,2,,n 是W的一组基,故 可逆.又(i )( i)( i ), 1i n ,从而.法二:取V 的一组基1,2,, n ,U 的一组基1,2,,s ,W 的一组基1, 2,, n .设(1,2, ,n )(1,2,,s )A sn6(1,2,,n)(1,2,,s)B sn且dimIm dimIm r,那么r(A)r(B)r.于是,存在n阶可逆矩阵P,Q使得AP(A1,0), BQ(B1,0),其中A1,B1K sr列满秩.由于Im Im,所以同上题证明可知存在n阶矩阵C使得A BC,那么(A1,0)AP BQ(Q1CP).设Q1CP X11X12,其中X11是r阶方阵,那么X21X22(A1,0)(B1,0)X11X12.从而,A1B1X11.又A1列满秩,所以存在A2K rs使得A2A1I r.于X21X22是,I r A2A1(A2B1)X11,即X11是可逆矩阵.因此,存在可逆矩阵X Q X110P1使得0I n rBX BQ X110P1(B1,0)X110P1B1X11,0P1(A1,0)P1A0I nr0I nr定义线性映射:V W满足(1,2,,n)(1,2,,n)X由于X可逆且ABX,故可逆且.必要性:由于,所以同上题证明可知Im Im.又由:V W可逆可知1,所以Im Im.从而,Im Im.7。

线性代数与解析几何 序言

线性代数与解析几何 序言

{
其中
a x + a x2 = b 11 1 12 1 a21x + a22x2 = b2 1 a11a22 − a12 a21 ≠ 0
10
对方程组用加减消元法求出解: 对方程组用加减消元法求出解: ba22 − a b 12 2 x = 1 1 a a −a a 11 22 12 21 a b −ba21 1 x2 = 11 2 a a22 − a a21 11 12 此解不易记忆, 此解不易记忆,因此有必要引进新的 符号“行列式”来表示解. 符号“行列式”来表示解. 如果定义二阶行列式如下(对角线法则): 如果定义二阶行列式如下(对角线法则):
i τ (i1i2Ln )
=
∑ (−1)
i i2Ln i 1
ai11ai2 2 L inn a

行列式还有其它的定义方式 一般行列式不用定义来求值 主要利用行列式性质求值
28
1.2 n 阶行列式的性质
定义 设 D = aij ,称 n a11 a21 ⋅⋅⋅ an1 a a22 ⋅⋅⋅ an2 为 D 的 转 置 行 列 T D = 12 M M M 式. a a ⋅⋅⋅ a
12
例1 求解方程组
{
3 x1 + 5 x2 = 1 − x1 + 2 x2 = 2
3 5= 解 由于 D = 3 × 2 − 5 × (−1) = 11 ≠ 0 −1 2
D1 −8 x1 = D = 11 则方程组的解为 D2 7 x2 = = D 11
1 5 = −8 D1 = 2 2 3 1 =7 D2 = −1 2
s + t = n!
奇排列 s 个
(1,2)对换 (1,2)对换 (1,2)对换 (1,2)对换

高等代数与解析几何第4章全部课件

高等代数与解析几何第4章全部课件

JJJJJJJG G G M1M 2 , v1, v2
异面,即
x2 − x1 X1 X 2
∆ = y2 − y1 Y1 Y2 ≠ 0
(2) L1与
L2
z2 − z1 Z1 Z2
相交的充分必要条件是向量
JJJJJJJG G G M1M 2 , v1, v2
共面,且
G v1

G v2
不平行,即
x2 − x1 X1 X 2
(3.3)
就表示一条直线 L(这两个平面的交线),称之为直线
的一般方程.这时,直线 L的一个方向向量为
G v
=
(
B1
C1 , C1
A1 , A1
B1 )
B2 C2 C2 A2 A2 B2
例3.4 已知一条直线的一般方程为
⎧x + 2y + 3z − 6 = 0 ⎨⎩2x + 3y − 6z −1 = 0
R3 的子集
空间中点轨迹ቤተ መጻሕፍቲ ባይዱ
方程组(1)的图象
2.对空间平面的描述
平面的一般方程
命题1.1 一次方程 Ax + By + Cz + D = 0 ( A, B,C不全为零)
的图象是空间中的平面。反之,任何平面都是 某个一次方程的图象。
平面的三点式方程
通过三个不共面的点
M1(x1, y1, z1), M 2 (x2 , y2 , z2 ), M3 (x3, y3, z3 )
Π2: A2 x + B2 y + C2 z + D2 = 0
定义这两个平面的夹角为它们的法向量 n1 = ( A1, B1,C1) 与 n2 = (A2, B2,C2 ) 之间的夹角(通常指锐角), 设这两平面 的夹角为 θ ,则

高等代数与解析几何大纲

高等代数与解析几何大纲

《高等代数》考试大纲(草稿)(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。

考试要求1. 掌握数域、一元多项式的概念,了解一元多项式的运算及性质。

2. 掌握多项式整除的概念,了解相关的性质。

3. 掌握最大公因式的概念,了解辗转相除法。

4. 理解互素的概念,掌握两个一元多项式互素的充分必要条件。

5. 了解不可约多项式的概念及其性质。

6. 了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。

(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。

考试要求1.理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。

2.会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。

(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。

矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1.理解n维向量、向量的线性组合与线性表示等概念。

2.理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。

3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

4.理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。

5.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。

6.掌握矩阵的数乘、加法、乘法、转置等运算。

掌握方阵的多项式概念。

《线性代数》厦门大学

《线性代数》厦门大学

6、毛泽东思想科学体系的鲜明特点有( A B C ) A.科学性 B.独创性 C.完整性 D.发展性 E.实践性7、我国社会主义四个现代化是(A B C E )P175 A、现代农业B、现代工业C、现代国防D、现代教育E、现代科学技术8、国民革命时期,组成国民革命联合战线的政治联盟有( A B D E ) A.小资产阶级B.民族资产阶级C.大资产阶级D.工人阶级E.农民阶级9、解放初期进行镇压反革命运动的重点打击对象是(A B C D )A、恶霸分子B、特务C、土匪(匪首、惯匪)D、反动党团骨干分子E、反动会道门头子10、新民主主义社会的经济构成有( A B C D E ) A.国营经济 B.合作社经济 C.个体经济 D.私人资本主义经济E.国家资本主义经济11、近代中国民主革命的基本任务是( A B )A、反对帝国主义的侵略B、反对封建主义的统治C、发展社会生产力D、反对资本主义的剥削E、实现国家的繁荣富强12、1945年4月,毛泽东在中共七大政治报告中,首次提出党的优良作风有(A B C )A、理论和实践相结合的作风B、和人民群众紧密联系在一起的作风C、自我批评的作风D、保持谦虚、谨慎、不骄、不躁的作风E、保持艰苦奋斗的作风13、中国共产党在中国革命中战胜敌人的主要法宝是(B C E )A、土地革命B、统战线C、武装斗争D、根据地建设E、党的建设14、毛泽东思想科学体系的鲜明特点是(B C D )A、革命性B、科学性C、独创性D、完整性E、全面性15、1956年毛泽东提出的在共产党与民主党派的关系上实行的方针是(AB ) A.长期共存 B.互相监督 C.肝胆相照 D.荣辱与共 E.共同参政三、名词解释题1、四马分肥P160 “四马分肥”是我国社会主义改造时期对初级形式的民族资本主义工商业获得利润的分配形式的形象说法。

“四马分肥”指民族资本主义企业每年的利润按国家所得税、企业公积金、工人福利奖金、资方的股息红利这四个方面进行分配。

院校资料线性代数.pptx

院校资料线性代数.pptx

0 0 143 0
1 0 59 5 0 1 14 3 0 0 1 0
1 0 0 5
rr125194rr33 0
1
0
3
0 0 1 0
1 0 0 5 D 0 1 0 3
0 0 1 0
第16页/共102页
除仍具有行阶梯形矩阵的特点外,它比矩阵
C
更简单,我们称非零行的非零首元是1,并且它所在的列的其它元素都是零的行 阶梯形矩阵为行最简形矩阵。
第2页/共102页
x1 2x2 3x3 7
5x2 4x3 6
x2 3x3 14
1 2 3 7 0 5 4 6 0 1 3 14
(2)交换上面方程组中第二与第三个方程的位置,得
x1 2x2 3x3 7
x2 3x3 14
5x2 4x3 6
1 2 3 7 0 1 3 14 0 5 4 6
A (1,1)位置为非零元,然后利用矩阵的
初等行变换将它下方元素变成零,即
0 3 6 1
1 9 12 1
A 1 7
8
1
r1r3 1
7
8
1
1 9 12 1
0 3 6 1
第20页/共102页
1 9 12 1
r3r1 0
2
4 2 B
0
3
6
2
(2)以上述矩阵
B 的(2,2)位置为准利用矩阵的初等行
0 0 0
第25页/共102页
1
B
1
0
2 3 1
1 0 1
0
1
2
r2 r1
0
2
0
2 1 1
1 1 1
0

教学大纲-厦门大学高等代数

教学大纲-厦门大学高等代数

教学大纲-厦门大学高等代数第一篇:教学大纲-厦门大学高等代数教学大纲一.课程的教学目的和要求通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。

要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。

突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。

二.课程的主要内容:代数学是研究代数对象的结构理论与表示方法的一门学科。

代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。

本课程力求突出代数学的思想和方法。

《高等代数》分为两个部分主要内容。

一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。

既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。

另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。

《高等代数》从三个角度进行研究。

从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan标准形对应的空间分解。

而欧氏空间则是具体的研究空间的例子。

在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。

本课程力求突出几何直观和矩阵方法的对应和互动。

我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。

三.课程教材和参考书:教材:林亚南编著,高等代数,高等教育出版社,第一版参考书:1.姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版2.北京大学数学系编,高等代数,高等教育出版社,北京(1987)3.张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)4.樊恽、郑延履、刘合国,线性代数学习指导,科学出版社,北京(2003)5.林亚南编:高等代数方法选讲,2002年,见厦门大学精品课程“高等代数”网站四.课程内容及学时分配本课程开课时间:一学年(共两学期),共170学时,其中课堂讲授122学时,习题讨论课42学时,考试6学时。

高等代数与解析几何8.3

高等代数与解析几何8.3
的特征子空间.
类似地,可定义方阵的特征值与特征向量的概念.
定义3.2 设 A ∈ M n (K ). 对于数域K中的一个数 λ0,
若存在n维非零列向量 X ∈ K n 使得
AX = λ0 X
(3.2)
则称 λ0 是矩阵A的一个特征值, X 称为矩阵A的属于 λ0
的一个特征向量.
在线性空间V中取定一个基 η1,η2 , ,ηn ,线性变
⇔ X 是矩阵A的属于 λ0 的特征向量.
这样我们可以通过求线性变换的矩阵的特征值 与特征向量来得到线性变换的特征值与特征向量.
下面讨论特征值与特征向量的求法.
从等式(3.2)可得
(λ0E − A) X = 0
因为 X ≠ 0, 故必有
λ0E − A = 0
(3.3) (3.4)
反过来,若数 λ0 ∈ K 满足等式(3.4),则线性方程组(3.3)
定义3.1 设A是数域K上的线性空间V的线性变换.
对于数域K中的一个数λ0, 若存在V中的一个非零向量
ξ , 使得
A(ξ ) = λ0ξ
(3.1)
则称 λ0 是线性变换A的一个特征值, ξ 称为A的属于 λ0
的一个特征向量.
如果 ξ 是属于 λ0 的一个特征向量,则对于数域K
中的任意非零数k, kξ 也是属于 λ0 的特征向量,这是
−2 −2 λ −1
λ +1 −(λ +1) 0 = −2 λ −1 −2
−2 −2 λ −1
1 −1 0
= (λ +1) −2 λ −1 −2 −2 −2 λ −1
10 0
= (λ +1) −2 λ − 3 −2 = (λ +1)2 (λ − 5) −2 −4 λ −1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档