第40招 数列最值的求法

合集下载

高考数学压轴数列的最值题型分类专题

高考数学压轴数列的最值题型分类专题

高考数学压轴数列的最值题型分类专题题型一、求数列n a 的最大项、最小项求解数列的最大项最小项通常采用 ①利用均值不等式求最值②解不等式组 1+≥n n a a ,1-≥n n a a ③构造函数利用单调性法④根据数列项的正负与单调性求数列的最大最小项.1. 基本不等式法例1.已知数列{}n a 的通项公式为1562+=n na n ,,求{}的最大值n a2.解不等式组例1.已知数列{}n a 的通项公式为1562+=n na n ,,求{}的最大值n a变式练习:(1) 已知数列}{n a 中,)2(8.0+=n a n n ,求数列的最大项.(2)已知等差数列{}n b 的前n 项和为n T ,且15,1054≤≥T T ,求的最大值4a(3)已知数列}{n a 中,)2(8.0+=n a n n ,求数列的最大项.(4)已知数列}{n a 的通项公式nn n n a 11)1(10+=,试求出该数列的最大项.3.构造函数利用单调性 (若1n n a a +<,则此数列为递增数列,若1n n a a +>,则其为递减数列,若1n n a a +=,则其为常数列)例 1 数列}{n a 中,20172016--=n n a n ,则该数列中的最大项与最小项分别是__________例2. 设函数)1x 0(log log )x (f 2x x 2<<-=数列{}n a 满足),2,1n (,n 2)2(f na==(1)求n a 。

(2)求{}n a 的最小项变式练习: (1)已知)N n (98n 97n a n*∈--=则在数列{}n a 的前30项中最大项和最小项分别是_____。

(2) 已知)N n (n131211S n *∈++++= ,记1n 1n 2n S S a ++-=,求数列{}n a 的最小值。

(3) 已知数列)N n (156n n a 2n*∈+=,则该数列中的最大项是第几项?(4) 已知无穷数列{}n a 的通项公式nn n 10)1n (9a +=,试判断此数列是否有最大项,若有,求出第几项最大,若没有,说明理由。

求数列极限的十五种解法

求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

高考数学专题40 概率中的单调性与最值问题(解析版)

高考数学专题40 概率中的单调性与最值问题(解析版)

专题40 概率中的单调性与最值问题一、题型选讲题型一 、概率中的单调性问题例1、【2021年高考浙江卷】设0<a <1,那么随机变量X 的分布列是那么当a 在〔0,1〕内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【解析】方法1:由分布列得1()3aE X +=, 那么2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 那么当a 在(0,1)内增大时,()D X 先减小后增大.应选D .方法2:那么222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,那么当a 在(0,1)内增大时,()D X 先减小后增大.应选D . 例2、【2021年高考浙江卷】设01p <<,随机变量ξ的分布列是那么当p 在〔0,1〕内增大时, A .D 〔ξ〕减小 B .D 〔ξ〕增大C .D 〔ξ〕先减小后增大D .D 〔ξ〕先增大后减小【答案】D【解析】∵E(ξ)=0×1−p 2+1×12+2×p 2=p +12,∴D(ξ)=1−p 2(0−p −12)2+12(1−p −12)2+p2(2−p −12)2=−p 2+p +14,∵12∈(0,1),∴D(ξ)先增大后减小,应选D .例3、【2021年高考山东】〔多项选择题〕信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .假设n =1,那么H (X )=0B .假设n =2,那么H (X )随着1p 的增大而增大C .假设1(1,2,,)i p i n n==,那么H (X )随着n 的增大而增大D .假设n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,那么H (X )≤H (Y ) 【答案】AC【解析】对于A 选项,假设1n =,那么11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,假设2n =,那么1,2i =,211p p =-, 所以()()()121121log 1log 1H X p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,假设()11,2,,i p i n n==,那么()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,那么()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,假设2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m jP Y j p p +-==+〔1,2,,j m =〕.()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅.()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111i i m i p p p +->+,所以222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 应选:AC题型二、概率中的最值问题例4、〔2021·浙江温州中学高三3月月考〕随机变量ξ的可能值有1,2,3,且()131P p ξ==-,()31P p ξ==-,那么()D ξ的最大值为〔 〕A .89B .1716C .2625D .1【答案】D【解析】随机变量ξ的可能值有1,2,3,且()131P p ξ==-,()31P p ξ==-, 可得:()212P p ξ==-,由0311*******p p p ≤-≤⎧⎪≤-≤⎨⎪≤-≤⎩,可得11,32p ⎡⎤∈⎢⎥⎣⎦所以()()()()1312123144E p p p p ξ=-+-+-=-.()()()222(144)31(244)12(344)1D P P P P P P ξ=-+⨯-+-+⨯-+-+⨯-()216184P P =-+-,11,32p ⎡⎤∈⎢⎥⎣⎦当12p =时,()D ξ的最大值为1. 应选:D .例5、〔2021届浙江省杭州市第二中学高三3月月考〕随机变量的分布列如下:ξ其中,,成等差数列,那么的最大值为〔 〕 A .B .C .D .【答案】A【解析】因为,,成等差数列,,.那么的最大值为例6、〔2021届浙江省宁波市鄞州中学高三下期初〕,两个不透明盒中各有形状、大小都相同的红球、白球假设干个,A 盒中有个红球与个白球,盒中有个红球与个白球〔〕,假设从,盒中各取一个球,表示所取的2个球中红球的个数,那么当取到最大值时,的值为〔 〕 A .3 B .5C .7D .9【答案】B【解析】可能值为,, , , 分布列为 a b c D ξ23592934a b c 122b a c,a b c 1,b ,c a,33∴=+++=∴==-2E ξa c 2a 3∴=-+=-+2222222D ξ12a a 2a b 12a a 3333⎛⎫⎛⎫⎛⎫⎛⎫=-+-⨯+-⨯++-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22821224a a 439333a ⎛⎫=-++=--+≤ ⎪⎝⎭D ξ23A B m 10m -B 10m -m 010m <<A B ξ()D ξm ξ0,1,210(10)(0)1010100m m m m P ξ--==⋅=221010(10)(1)10101010100m m m m m m P ξ---+==⋅+⋅=10(10)(2)1010100m m m m P ξ--==⋅=ξ,,当且仅当时,等号成立.应选:B.例7、〔2021·浙江省温州市新力量联盟高三上期末〕随机变量的分布列如下:其中,,成等差数列,那么的最大值为〔 〕 A .B .C .D .【答案】D【解析】因为,,成等差数列,∴,∵,∴,, ∴,那么,当时取等号. 那么的最大值为.应选:D.例8、〔2021届山东省日照市高三上期末联考〕某公司准备投产一种新产品,经测算,每年生产万件的该种产品所需要的总本钱〔万元〕,依据产品尺寸,产品的品质可能出22(10)(10)(10)()0121100100100m m m m m m E ξ--+-=⨯+⨯+⨯=22222(10)(10)(10))(01)(11)(21)100100100(D m m m m m m ξ--+-=-⨯+-⨯+-⨯2(10)1101()505022m m m m -+-≤⨯==5m =X a b c ()D X 29593423a b c 2b a c =+1a b c ++=13b =23c a =-()823E X a =-2422()4969833E X a b c a a a =++=++-=-()()()22D XE X E X =-22821224439333a a a ⎛⎫=-++=--+≤ ⎪⎝⎭13a b c ===()D X 23()515x x ≤≤()32231630910x C x x x =-++现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在,,,,,,〔单位:〕中,经统计得到的频率分布直方图如下图.产品的品质情况和相应的价格〔元/件〕与年产量之间的函数关系如下表所示.以频率作为概率解决如下问题: 〔1〕求实数的值;〔2〕当产量确定时,设不同品质的产品价格为随机变量,求随机变量的分布列; 〔3〕估计当年产量为何值时,该公司年利润最大,并求出最大值.【答案】〔1〕;〔2〕见解析〔3〕年产量时,该公司年利润取得最大值,最大利润为138万.【解析】〔1〕由题意得,解得;〔2〕当产品品质为优时频率为,此时价格为;[)25.26,25.30[)25.30,25.34[)25.34,25.38[)25.38,25.42[)25.42,25.46[)25.46,25.50[]25.50,25.54mm m x a x ξξx 6a =12x =()0.04234 2.5 4.531a ⨯++++++=6a =()10.0446 2.50.5p =⨯++=34x -+当产品品质为中时频率为,此时价格为; 当产品品质为差时频率为,此时价格为;以频率作为概率,可得随机变量的分布列为:〔3〕设公司年利润为,那么整理得,显然当时,,时,, ∴当年产量时,取得最大值.估计当年产量时,该公司年利润取得最大值,最大利润为138万.二、达标训练1、【2021年高考全国Ⅲ卷理数】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,那么p = A . B . C .D .【答案】B【解析】∵()(1)D X np p =-,∴0.4p =或0.6p =,4466641010(4)C (1)(6)C (1)P X p p P X p p ==-<==-,22(1)p p ∴-<,可知0.5p >,故0.6p =.应选B .2、〔2021届浙江省“山水联盟〞高三下学期开学〕设,随机变量的分布列如下表所示 ()20.04230.2p =⨯+=3255x -+()30.04 4.530.3p =⨯+=3205x -+ξ()f x ()()323323340.5250.2200.3163055910x f x x x x x x x ⎛⎫⎡⎤⎛⎫⎛⎫=-+⨯+-+⨯+-+⨯--++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭()323123092x f x x x =-++-()()()21131231233f x x x x x '=-++=-+-[]5,12x ∈()0f x '≥[]12,15x ∈()0f x '≤12x =()f x ()12138f =12x =102b <<X,那么当在内增大时,的变化情况〔 〕A .先增大再减小B .先减小再增大C .增大D .减小【答案】D【解析】由分布列的性质可得. , .当在内增大时,减小. 应选:.3、〔2021届浙江省台州市温岭中学3月模拟〕,随机变量,的分布列如表所示,那么〔 〕A .,B .,C .,D .,【答案】B【解析】,,,由,所以,应选:B.()2E X =b 10,2⎛⎫ ⎪⎝⎭()D X 1a b c ++=()2,102b E X <<=()()()222()1222321D X a b c a c b ∴=-⨯+-⨯+-⨯=+=-b 10,2⎛⎫ ⎪⎝⎭()D X D c a >ξn E E ξη>D D ξη<E E ξη>D D ξη=E E ξη>D D ξη>E E ξη<D D ξη=234E a b c ξ=++432E a b c η=++()20E E c a ξη-=->6ξη+=()6D D D ξηη=-=4、〔2021届浙江省杭州市高三3月模拟〕随机变量ξ满足P (ξ=0) =x ,P (ξ=1) =1-x ,假设1(0,),2x ∈那么〔 〕 A .E (ξ)随着x 的增大而增大,D (ξ)随着x 的增大而增大 B .E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而增大 C .E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而减小 D .E (ξ)随着x 的增大而增大,D (ξ)随着x 的增大而减小 【答案】B【解析】依题意()0111E x x x ξ=⨯+⨯-=-,在区间1(0,)2上是减函数.()()()2201111D x x x x ξ=--⋅+--⋅-⎡⎤⎡⎤⎣⎦⎣⎦2x x =-+,注意到函数2y x x =-+的开口向下,对称轴为12x =,所以2y x x =-+在区间1(0,)2上是增函数,也即D ξ在区间1(0,)2上是增函数. 应选:B5、〔2021·浙江学军中学高三3月月考〕a ,b 为实数,随机变量X ,Y 的分布列如下:假设,随机变量满足,其中随机变量相互独立,那么取值范围的是〔 〕 A . B . C . D .【答案】B【解析】由,,所以,即,又,故,所以,又随机变量的可能取值为-1,0,1,那么,,,列出随机变量的分布列如下:()()1E Y P Y ==-ξXY ξ=XY ()E ξ3,14⎡⎤-⎢⎥⎣⎦1,018⎡⎤-⎢⎥⎣⎦1,118⎡⎤⎢⎥⎣⎦3,14⎡⎤⎢⎥⎣⎦()E Y c a =-c a a -=2c a =1a b c ++=1b a c =--=13[0,1]a -∈1[0,]3a ∈XY 115(1)366P XY c a a =-=+=11131(0)()36222P XY b b a c a b ==+++=+112(1)363P XY a c a ==+=XY所以. 应选:B.6、〔2021届浙江省十校联盟高三下学期开学〕设,相互独立的两个随机变量,的分布列如下表:那么当在内增大时〔 〕A .减小,增大B .减小,减小C .增大,增大D .增大,减小【答案】D【解析】,,,,,, , 当在内增大时,增大,减小,应选:D .7、〔2021·浙江温州中学3月高考模拟〕随机变量X 的分布列如下表: ()521636E a a a ξ=-+=-∈1,018⎡⎤-⎢⎥⎣⎦112p <<ξηp 1,12⎛⎫⎪⎝⎭()E ξη+()D ξη+()E ξη+()D ξη+()E ξη+()D ξη+()E ξη+()D ξη+112p <<211()333E ξ=-+=-()121E p p p η=-+=-4()23E p ξη+=-2212118()(1)(1)33339D ξ=-+⨯++⨯=222()(2)(1)(22)44D p p p p p p η=--+-=-228117()444()929D p p p ξη+=-+=--+∴p 1(,1)2()E ξη+()D ξη+其中a ,b ,.假设X 的方差对所有都成立,那么〔 〕 A . B . C . D . 【答案】D【解析】由X 的分布列可得X 的期望为,又,所以X 的方差, 因为,所以当且仅当时,取最大值, 又对所有成立, 所以,解得, 应选:D.8、〔2021届浙江省之江教育评价联盟高三第二次联考〕设,随机变量的分布列是:那么当在内增大时〔 〕 A .增大B .减小C .先增大后减小D .先减小后增大【答案】A 【解析】根据随机变量的分布列, 0c >()13D X ≤()0,1a b ∈-13b ≤23b ≤13b ≥23b ≥()E X ac =-+1a b c ++=()()()()22211D X a c a a c b a c c =-+-+-++-()()()222a c a b c a c a c =-++--++()2a c a c =--++()2211a b b =--++-21412b a b -⎛⎫=--+- ⎪⎝⎭()0,1a b ∈-12b a -=()D X 1b -()13D X ≤()0,1a b ∈-113b -≤23b ≥023a <<X a 03⎛⎫ ⎪⎝⎭,()D X ()D X ()D X ()D X ()()21013()E a X a -+⨯-⨯+⨯=1313a -=那么 = = 由于函数的图象为关于的开口方向向下的抛物线,且,函数的对称轴为, 故增大.应选:A. ()2211210333X D a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫---⋅+--⋅-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=211133a ⎡⎤⎛⎫--⨯ ⎪⎢⎥⎝⎭⎣⎦25239a a -++2533636a ⎛⎫--+ ⎪⎝⎭()D X a 203a <<56a =()D X。

数列最大项的求法

数列最大项的求法

数列最大项的求法
数列是数学中一种重要的概念,它是按一定的规律排列的数字的集合。

在数列中,数值最大的元素被称为数列的最大项。

本文将介绍如何求出数列的最大项。

首先,要求出数列的最大项,必须首先明确该数列的规律,即要确定数列中的每一项之间是否存在规律性的差值或比率。

例如,有些数列,如等差数列,每一项和前一项之间的差值是一个固定值,因此易于求出数列的最大项。

另一方面,有些数列中存在不同的比率,这些数列称为等比数列。

其次,如果已经清楚数列的规律,求出最大项非常容易。

对于等差数列来说,每一项之间的差值是固定的,可以根据它们的次数进行累加,来计算出最大项的数值。

例如,数列 3, 7, 11 中,每一项与前一项之间的差值是 4,则最大项的数值为 3+(3-1)×4=19。

至于等比数列,其中每一项与前一项之间的比率是固定的,可以根据该比率的乘方来计算出最大项的数值。

例如,等比数列 3, 6, 12 中,每一项与前一项之间的比率为 2,则最大项的数值为 3×2^2=12。

最后,有些数列没有规律,即没有等差或等比等规律,这时候就只能使用比较法,即将数列中的每个元素与其他元素进行比较,找出最大值。

总之,求出数列最大项的方法,有三种:首先要明确数列的规律,如果是等差或等比数列,可以利用累加或乘方的原理来求出最大项的数值;如果没有规律,只能使用比较法来求出最大项的数值。

希望本
文能够为各位读者带来帮助。

求数列极限的若干方法

求数列极限的若干方法

求数列极限的若干方法摘要:本文主要探讨了求数列极限的六种方法:极限定义法,迫敛性,单调有界定理,定积分的定义,施笃茨定理,以及利用函数极限求数列极限的方法,并对每一类方法进行了总结,这将有利于我们更好的学习后续课程。

关键词:极限;迫敛性;定积分数列极限是数学分析中最重要的概念之一,以极限作为工具去解决和处理数学问题是一种极其重要的方法。

许多学生在学习数列极限时感觉很困难,原因在于数列极限概念很抽象,而且计算也有一定的难度。

论文总结出了求数列极限的一些常用方法,为并结合实例进行了说明。

1. 数列极限概述对于数列{}n a ,若当n 无限增大时,{}n a 能无限地接近某一个常数a ,就称此数列为收敛数列,a 是此数列的极限。

例如,对于数列⎭⎬⎫⎩⎨⎧n 1,当∞→n 时,n 1能无限地接近于0,则称数列⎭⎬⎫⎩⎨⎧n 1为收敛数列。

就是说,当n 充分大时,数列的通项n a 与常数a 之差的绝对值可以任意小。

因此有下列数列极限的精确定义。

1.1数列极限的N -ε定义定义1 设{}n a 为数列,a 为定数.若对任给的正数ε,总存在正整数N ,使得当n >N 时有ε<-a a n ,则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限。

定理1 (唯一性) 若数列{}n a 收敛,则它只有一个极限。

一个收敛数列一般含有无穷多个数,而它的极限只有一个数。

定理 2 (有界性)若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n 有M a n <.定理3 (保号性)若)0(0lim <>=∞→a a n n ,则对任何)0,)(,0('')(或a a a a ∈∈,存在正数N ,使得当N n >时有)(''a a a a n n <>或。

定理 4 (保不等式性)设{}n a 与{}n b 均为收敛数列.若存在正数0N ,使得当0N n >时有n n b a ≤,则n n n n b a ∞→∞→≤lim lim 。

求数列最大值与最小值项的方法

求数列最大值与最小值项的方法

求数列最大值与最小值项的方法
求数列最大值与最小值项的方法:
1、排序法:通过排序将原来的数列变成有序的,最大值及最小值项将
被排在序列最高或最低位置,从而确定最大最小值。

2、求和法:将原来的数列逐项累加得到总和,将总和减每项数值得到
剩余总和,再从中求出每项的数值,最大值最小值值也就有了。

3、差分法:将原来的数列逐步求出每相邻项之间的差值,每相邻差值
的和可以得出每项数值,最大最小值也就确定了。

4、假设法:假设某一项数值是最大或最小,找出其他各个项数值之和,若等于总和减去该值,则该值就是最大或最小值;若不等,则假定另
一项数值为最大或最小,重复上述操作,直至找出最大或最小值为止。

5、比较法:将原数列的每一项两两比较,较大的数值为最大值,较小
的数值为最小值,一直比较到数列的一头,最后即可得到最大最小值。

6、直接比较法:从原来数列中直接得出最大值或最小值,如从数列中
有一个数值大于或小于其他数,则可以直接得出该数值就是最大或最
小值。

数列最大项的求法

数列最大项的求法

数列最大项的求法数列最大项的求法是数学计算中常见的一种方法,也是学习数学最基础的一部分。

它可以帮助我们做出正确的判断,并得出准确的结果,为解决各种复杂的数学问题提供有力的帮助。

因此,了解数列最大项求法非常重要。

数列最大项求法就是从一组已知数中,求出最大值的方法。

它可以按照不同的数列求法进行求解,具体说来,可以按照迭代法求解、比较法求解、极限法求解、解析法求解等多种方式求解。

以迭代法求解为例,根据数学定义,当N为一个正整数时,aN为数列{a1,a2,…,aN}中的最大值。

迭代法就是比较ai和ai+1,找出最大值,可以将它们写成如下形式:Max(a1,a2,…,aN)=Max(Max(a1,a2),Max(a2,a3),…,Max(aN-1,aN))可以看到,可以通过循环不断比较从第一项开始至最后一项的所有数,最后得出的结果aN即为所有数列的最大值。

比较法则就是比较每一个数,找出最大值,具体地说,先比较a1和a2,然后比较大的数和a3,以此类推,直到最后一项,最后得出的结果aN即为所有数列的最大值。

极限法也是尤其有用的求解最大值的方法。

它可以帮助我们在极限情况下,求出最大值。

一般地,可以用如下公式求解:当X→∞时,Max(a1,a2,…,aN)=Max(f(X))其中,f(X)是定义在X上的函数。

从函数f(X)的定义可以看出,当X值趋近于正无穷的时候,f(X)的值也会趋近于正无穷,因此可以得出f(X)的最大值,即所求的最大值。

解析法求解最大值时,可以通过计算某一数列的解析式来求出最大值。

比如我们有一个数列{a1,a2,…,aN},我们可以将它们写成解析式:a1+a2+…+aN=∑aN利用微积分方法可以求出该解析式的极值,也就是数列最大项的值。

总结以上,数列最大项的求法有多种,不同的求法可以用不同的方法来求解,根据实际情况不同,可以选择适当的求解方法。

这种求法也是不断发展着的,不断发现新的求法,用新的方法解决新出现的数学问题,这样不但可以求出更精确的数学结果,更能帮助我们在解决复杂的数学问题方面取得更大的进步。

数列求最值

数列求最值

数列的最值问题教学目标:1、会通过研究数列}{n a 通项的规律,判断其前n 项和n S 的最值情况;2、会利用函数思想研究数列的最值问题;3、会利用求数列中最大(小)项的一般方法研究数列的最值问题;4、体验数列问题和函数问题之间的相互联系和相互转化。

教学重点:1、研究数列最值问题的三种基本思路的理解和应用; 2、 数列与函数的联系及数列的特殊性在解题中的体现。

教学难点:1、用函数思想研究数列问题时应注意的方面; 2、 求数列中最大(小)项的一般方法的理解。

教学设计思想:数列的最值问题是一类常见的数列问题,是数列中的难点之一,也是函数最值问题的一个重要类型,数列的最值问题大致有以下2种类型: 类型1、求数列}{n a 的前N 项和n S 的最值,主要是两种思路:(1)研究数列)(n f a n =的项的情况,判断n S 的最值;(2)直接研究n S 的通项公式,即利用类型2的思路求n S 的最值。

类型2、求数列}{n a 的最值,主要有两种方法:(1)从函数角度考虑,利用函数)(x f y =的性质,求数列)(n f a n =的最值;(2)利用数列离散的特点,考察⎩⎨⎧≥≥-+11k k k k a a a a 或⎩⎨⎧≤≤-+11k k k k a a a a ,然后判断数列}{n a 的最值情况。

数列可看作定义在自然数集上的函数,在研究数列问题时既要考虑它与函数的紧密联系,又要重视它的特殊性。

这节课为高三第一轮复习课中数列最值问题的第一课时,学生对数列的最值问题大多没有形成明晰的知识脉络,因此,这节课在知识技能上以基本概念和基本解题思路的理解和掌握为主,同时注意函数思想的渗透和部分函数、不等式知识技能的滚动复习。

从以往的情况来看,学生在用函数思想解题时,容易遗漏数列定义域的特殊性,并对求数列中最大(小)项的一般方法理解不深刻,容易遗忘。

教学内容:一、例1、在等差数列}{n a 中,1,101-==d a ,n S 为}{n a 前n 项和,求n S 的最大值。

数列求和的最值问题解法公式

数列求和的最值问题解法公式

数列求和的最值问题解法公式
数列求和的最值问题通常涉及到对一系列数字进行求和,并找到这个和的最大值或最小值。

解决这类问题的方法有很多,但这里我们提供一种常用的方法:分治策略。

分治策略的基本思想是将一个复杂的问题分解为两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

对于数列求和的最值问题,我们可以使用分治策略将数列分为两部分:一部分是前半部分,另一部分是后半部分。

然后分别求这两部分的和,并比较哪个更大或更小。

如果前半部分的和大于后半部分的和,那么整个数列的和的最大值就是前半部分的和加上后半部分的和;
如果后半部分的和大于前半部分的和,那么整个数列的和的最小值就是前半部分的和加上后半部分的和。

数学公式表示为:
如果 S1 是前半部分的和,S2 是后半部分的和,那么整个数列的和 S = S1 + S2。

我们需要比较 S1 + S2 和 S2 + S1 的大小,以确定整个数列的和的最大值或最小值。

这种方法的时间复杂度是 O(n),其中 n 是数列的长度。

这是因为我们需要遍历整个数列一次来计算前半部分和后半部分的和。

数列的通项公式与求和的常用方法

数列的通项公式与求和的常用方法

数列的通项公式与求和的常用方法高考要求数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法 一、重难点1.数列通项的求法: ⑴定义法(利用AP,GP 的定义);⑵累加法(n n n c a a =-+1型);⑶⑷累乘法(n nn c a a =+1型);⑸构造法:若一阶线性递归数列a n =ka n -1+b (k ≠形式:)1(11-+=-+-k b a k k b a n n (n ≥2),于是可依据等比数列的定义求出其通项公式;⑹间接法(例如:4114111=-⇒=----n n n n n n a a a a a a );⑺(理科)数学归纳法。

2.前n 项和的求法:⑴分组求和法;⑵裂项法;⑶错位相减法;(4)倒序相加法。

3.等差数列前n 项和最值的求法:⑴⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或 ;⑵利用二次函数的图象与性质。

数列单调递增1<n n a a +⇔。

二、例题例1已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),(1)求数列{a n }和{b n }的通项公式;(2)设数列{c n }的前n 项和为S n ,对一切n ∈N *,都有n n c c b c b c +++ 2111=a n +1成立,求lim ∞→n nn S S212+命题意图 本题主要考查等差、等比数列的通项公式及前n 项和公式、数列的极限,以及运算能力和综合分析问题的能力知识依托 本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n 项和,实质上是该数列前n 项和与数列{a n }的关系,借助通项与前n 项和的关系求解c n 是该条件转化的突破口错解分析 本题两问环环相扣,(1)问是基础,但解方程求基本量a 1、b 1、d 、q ,计算不准易出错;(2)问中对条件的正确认识和转化是关键技巧与方法 本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{d n }运用和与通项的关系求出d n ,丝丝入扣解 (1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2, ∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1); 又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2,∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2, ∴b n =b ·q n -1=4·(-2)n -1(2)令nn b c=d n ,则d 1+d 2+…+d n =a n +1,(n ∈N *),∴d n =a n +1-a n =2, ∴n n b c =2,即c n =2·b n =8·(-2)n -1;∴S n =38[1-(-2)n ] ∴2lim ,1)21(2)21()2(1)2(121222212212-=--+-=----=+∞→++n n n n n n n n n S S S S 例2设A n 为数列{a n }的前n 项和,A n =23(a n -1),数列{b n }的通项公式为b n =4n +3;(1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明 数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim ∞→n 4)(n na T 命题意图 本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力知识依托 利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点错解分析 待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不清技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解解 (1)由A n =23(a n -1),可知A n +1=23(a n +1-1), ∴a n +1-a n =23 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=23(a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n(2)∵32n +1=3·32n =3·(4-1)2n=3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n ]=4n +3, ∴32n +1∈{b n } 而数32n =(4-1)2n=42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1(3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++n n n n n D r r r r , 89)(lim ,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n n n n n nn n n r n a T a D B T 例3 设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项(1)写出数列{a n }的前3项(2)求数列{a n }的通项公式(写出推证过程)(3)令b n =)(2111+++n n n n a a a a(n ∈N *),求lim ∞→n (b 1+b 2+b 3+…+b n -n )解析 (1)由题意,当n =1时,有11222S a =+,S 1=a 1, ∴11222a a =+,解得a 1=2 当n =2时,有22222S a =+,S 2=a 1+a 2,将a 1=2代入,整理得(a 2-2)2=16,由a 2>0,解得a 2=6当n =3时,有33222S a =+,S 3=a 1+a 2+a 3, 将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10 故该数列的前3项为2,6,10(2)解法一 由(1)猜想数列{a n } 有通项公式a n =4n -2 下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *) ①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论成立②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有k k S a 222=+,将a k =4k -2 代入上式,解得2k =k S 2,得S k =2k 2,由题意,有11222++=+k k S a ,S k +1=S k +a k +1, 将S k =2k 2代入得(221++k a )2=2(a k +1+2k 2),整理得a k +12-4a k +1+4-16k 2=0,由a k +1>0,解得a k +1=2+4k , 所以a k +1=2+4k =4(k +1)-2,即当n =k +1时,上述结论成立根据①②,上述结论对所有的自然数n ∈N *成立解法二 由题意知n n S a 222=+,(n ∈N *) 整理得,S n =81(a n +2)2, 由此得S n +1=81(a n +1+2)2,∴a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2]整理得(a n +1+a n )(a n +1-a n -4)=0, 由题意知a n +1+a n ≠0,∴a n +1-a n =4,即数列{a n }为等差数列,其中a 1=2,公差d =4∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2解法三 由已知得n n S a 222=+,(n ∈N *) ①, 所以有11222++=+n n S a ②, 由②式得11222++=+-n n n S S S ,整理得S n +1-22·1+n S +2-S n =0,解得n n S S ±=+21,由于数列{a n }为正项数列,而2,211>+∴=+n n S S S , 因而n n S S +=+21,即{S n }是以21=S 为首项,以2为公差的等差数列所以n S = 2+(n -1) 2=2n ,S n =2n 2,故a n =⎩⎨⎧≥-=-=-)2(,24)1(,21n n S S n n n 即a n =4n -2(n ∈N *)(3)令c n =b n -1,则c n =)2(2111-+++n n n n a a a a1212111[(1)(1)],221212121n n n n n n +-=-+-=--+-+ 1212n n b b b n c c c +++-=+++111111(1)()()1,335212121n n n =-+-++-=--++121()(1) 1.lim lim 21n n n b b b n n →∞→∞∴+++-=-=+ 三、练习1 作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________2 数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1-na n +12=0,又知数列{b n }的通项为b n =2n-1+1(1)求数列{a n }的通项a n 及它的前n 项和S n ; (2)求数列{b n }的前n 项和T n ;(3)猜想S n 与T n 的大小关系,并说明理由3 数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *)(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ;(3)设b n =)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *均有T n >32m成立?若存在,求出m 的值;若不存在,说明理由4 设数列{a n }的前n 项和为S n ,且S n =(m +1)-ma n 对任意正整数n 都成立,其中m 为常数,且m <-1 (1)求证 {a n }是等比数列;(2)设数列{a n }的公比q =f (m ),数列{b n }满足 b 1=31a 1,b n =f (b n -1)(n ≥2,n ∈N *) 试问当m 为何值时,)(3lim )lg (lim 13221n n n n n n b b b b b b a b -∞→∞→+++=⋅ 成立?5 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145 (1)求数列{b n }的通项b n ;(2)设数列{a n }的通项a n =log a (1+n b 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论6 设数列{a n }的首项a 1=1,前n 项和S n 满足关系式 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4…) (1)求证 数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (11-n b )(n =2,3,4…),求数列{b n }的通项b n ;(3)求和 b 1b 2-b 2b 3+b 3b 4-…+b 2n -1b 2n -b 2n b 2n +1 参考答案1 解析 由题意所有正三角形的边长构成等比数列{a n },可得a n =12-n a ,正三角形的内切圆构成等比数列{r n },可得r n =12163-n a ,∴这些圆的周长之和c =lim ∞→n 2π(r 1+r 2+…+r n )=233π a 2, 面积之和S =lim ∞→n π(n 2+r 22+…+r n 2)=9πa 2答案 周长之和233πa ,面积之和9πa 22 解 (1)可解得11+=+n na a n n ,从而a n =2n ,有S n =n 2+n ,(2)T n =2n +n -1(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6猜想当n ≥5时,T n >S n ,即2n >n 2+1可用数学归纳法证明(略)3 解 (1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n 可知{a n }成等差数列,d =1414--a a =-2,∴a n =10-2n (2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,当n >5时,S n =n 2-9n +40,故S n =⎪⎩⎪⎨⎧>+-≤≤+-540951922n n n n n n(3)b n =)111(21)22(1)12(1+-=+=-n n n n a n n )1(2)]111()3121()211[(2121+=+-++-+-=+++=∴n n n n b b b T n n ;要使T n >32m 总成立,需32m<T 1=41成立,即m <8且m ∈Z ,故适合条件的m 的最大值为74 解 (1)由已知S n +1=(m +1)-ma n +1 ①, S n =(m +1)-ma n ②, 由①-②,得a n +1=ma n -ma n +1,即(m +1)a n +1=ma n 对任意正整数n 都成立∵m 为常数,且m <-1 ∴11+=+m m a a n n ,即{1+n n a a }为等比数列(2)当n =1时,a 1=m +1-ma 1,∴a 1=1,从而b 11 由(1)知q =f (m )=1+m m,∴b n =f (b n -1)=111+--n n b b (n ∈N *,且n ≥2)∴1111-+=n n b b ,即1111=--n n b b , ∴{n b 1}为等差数列 ∴nb 1=3+(n -1)=n +2,21+=∴n b n (n ∈N *) 11(),(lg )[lg ]lg ,lim lim 1211n n n n n n m n m m a b a m n m m -→∞→∞-=∴⋅==++++122311111113()3()1lim lim 344512n n n n b b b b b b n n -→∞→∞+++=-+-++-=++ 而10lg 1,10,119m m m m m =∴=∴=++由题意知5 解 (1)设数列{b n }的公差为d ,由题意得 ⎪⎩⎪⎨⎧=-+=1452)110(1010111d b b 解得b 1=1,d =3,∴b n =3n -2(2)由b n =3n -2,知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n )=log a [(1+1)(1+41)…(1+231-n )],31log a b n +1=log a因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小,取n =1时,有(1+1)>3113+⋅取n =2时,有(1+1)(1+41)>3123+⋅…由此推测(1+1)(1+41)…(1+231-n )>313+n ①若①式成立,则由对数函数性质可判定当a >1时,S n >31log a b n +1, ②当0<a <1时,S n <31log a b n +1, ③下面用数学归纳法证明①式(ⅰ)当n =1时,已验证①式成立 (ⅱ)假设当n =k 时(k ≥1),①式成立,即313)2311()411)(11(+>-+++k k那么当n =k +1时,1111(11)(1)(1)(1))2).4323(1)23131k k k k k++++>+=+-+-++ 22232(32)(34)(31)[(32)]31(31)k k k k k k +-+++-=++2940,2)(31)31k k k k +=>+>=++111(11)(1)(1)(1)43231k k ++++>-+ 因而这就是说①式当n =k +1时也成立由(ⅰ)(ⅱ)可知①式对任何正整数n 都成立由此证得 当a >1时,S n >31log a b n +1;当0<a <1时,S n <31log a b n +1 6 解 (1)由S 1=a 1=1,S 2=1+a 2,得3t (1+a 2)-(2t +3)=3t∴a 2=tt a a t t 332,33212+=+ 又3tS n -(2t +3)S n -1=3t , ① 3tS n -1-(2t +3)S n -2=3t ②①-②得3ta n -(2t +3)a n -1=0∴tt a a n n 3321+=-,n =2,3,4…, 所以{a n }是一个首项为1公比为t t 332+的等比数列; (2)由f (t )= t t 332+=t132+,得b n =f (11-n b )=32+b n -1可见{b n }是一个首项为1,公差为32的等差数列于是b n =1+32(n -1)=312+n ;(3)由b n =312+n ,可知{b 2n -1}和{b 2n }是首项分别为1和35,公差均为34的等差数列,于是b 2n =314+n ,∴b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1 =b 2(b 1-b 3)+b 4(b 3-b 5)+…+b 2n (b 2n -1-b 2n +1) =-34 (b 2+b 4+…+b 2n )=-34·21n (35+314+n )=-94 (2n 2+3n )四、易错题 1、(广东省韶关市2008届高三第一次调研考试)已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ==,则过点(,)n P n a 和2(2,)n Q n a ++(n ÎN *)的直线的斜率是 A .4 B .3 C .2 D .1 答案:A2、(广东省深圳外国语学校2008届第三次质检)设等比数列{}n a 的公比为q ,前n 项和为s n ,若s n+1,s n ,s n +2成等差数列,则公比q 为 ( ) A .2-=q B .1=q C .12=-=q q 或 D .12-==q q 或 答案:A3、(广东实验中学2008届高三第三次段考)等差数列}{n a 的前n 项和为30,,1182=++a a a S n 若,那么下列S 13值的是 ( ) A .130 B .65 C .70 D .以上都不对 答案:A4、(广东省五校2008年高三上期末联考)已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且11a +b =5,11a >b ,++11a b N (n N )、∈∈,则数列nb {a }前10项的和等于A.55B.70C.85D.100答案:C .解析:本题考查了等差数列的通项及前n 项和计算.11111111,11(1)12523n n n b n a a n b b n a a b a b n a b n n n =+-=+-=+-=++--=++-=+-=+ 因此,数列{}nba 也是等差数列,并且前10项和等于:10(413)852+= 5、(河北省正定中学高2008届一模)在正项等差数列{a n }中,前n 项和为n S ,在正项等比数列{b n }中,前n 项和为T n ,若a 15=b 5,a 30=b 20,则S 30-S 15T 20-T 5∈( )A .(0,1)B .(12,1)C .[1,+∞]D .[12,2]答案:C6、(河北省正定中学2008年高三第五次月考)在等差数列{n a }中,a 1>0, 95175a a =, 则数列{n a }前n 项和n S 取最大值时,n 的值等( )A 12B 11C 10D 9 答案:C7、(黑龙江省哈尔滨九中2008年第三次模拟考试)设n S 是等差数列}{n a 的前n 项和,若3184=S S ,则168S S等于( )A .103 B .13 C .91 D .81答案:A8、(黑龙江省哈师大附中2008届高三上期末)设等比数列{a n }的前n 项和为S n ,若S 10:S 5=1:2,则S 15:S 5=( ) A .3:4 B .2:3 C .1:2 D .1:3 答案:A 9、(黑龙江省哈师大附中2008届高三上期末)已知数列}{n a 的前三项依次是—2,2,6,前n 项的和S n 是n 的二次函数,则a 100等于( ) A .3900 B .392C .394D .396答案:C 10、(湖北省鄂州市2008年高考模拟)设数列}{n a 的前n 项和为)(*N n S n ∈,关于数列}{n a 有下列三个命题:①若数列}{n a 既是等差数列又是等比数列,则1+=n n a a ; ②若),(2R b a bn an S n ∈+=,则数列}{n a 是等差数列; ③若n n S )1(1--=,则数列}{n a 是等比数列. 这些命题中,真命题的个数是( )A .0B .1C .2D .3答案:D ①不妨设数列}{n a 的前三项为d a a d a +-,,,则其又成等比数列,故222d a a -=,∴0=d ,即1+=n n a a ;②由n S 的公式,可求出b a n a n +-=)12(,故}{n a 是等差数列;③由n S 可求由1)1(2--=n n a ,故数列}{n a 是等比数列. 故选D .【总结点评】本题主要考查等差、等比数列的概念,n S 与n a 的关系,思维的灵活性. 11、(湖北省黄冈市麻城博达学校2008届三月综合测试)}{n a 为等差数列,若11101a a <-,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n = A .11 B .17 C .19 D .21答案:C12、(湖北省黄冈市麻城博达学校2008届三月综合测试)在正项等差数列{a n }中,前n 项和为Sn ,在正项等比数列{b n }中,前n 项和为Tn ,若a 15=b 5,a 30=b 20,则S 30-S 15T 20-T 5∈( )A .(0,1)B .(12,1)C .[1,+∞]D .[12,2]答案:C13、(湖北省黄冈中学2008届高三第一次模拟考试)各项均为正数的等比数列{a n }的前n 项和为n S ,若32,14n n S S ==,则4n S 等于( ) A .16 B .26 C .30 D .80答案:C14、(湖北省黄冈市2007年秋季高三年级期末考试)数列{}n a 中,0n a ≠,且满足113(2)32n n n a a n a --=≥+,则数列1{}na 是:A 递增等差数列B 递增等比数列C 递减数列D 以上都不是 答案:A15、(湖北省随州市2008年高三五月模拟)数列{}n a 满足2113,1()2n n n a a a a n N ++==-+∈,则122008111m a a a =+++ 的整数部分是 A. 0 B. 1 C. 2 D. 3 答案:B16、(湖南省长沙市一中2008届高三第六次月考)数列{a n }满足=+-==+200811a ,11,2则n n a a aA .2B .-31 C .-23 D .1答案:A17、(湖南省株洲市2008届高三第二次质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1( n ∈N *),则a 2007= ( )A .0B .- 3C . 3D .32答案:C18、(黄家中学高08级十二月月考)在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项的和为 A . 8122-B. 9122-C. 10122-D. 11122-【解】:由21813314=⇒===q q q a a ,所以()1010110911()112211212a q S q -⋅-===---故选B ; 19、(江苏省盐城市2008届高三六校联考)数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和S n >1020,那么n 的最小值是( ) A 、7 B 、8 C 、9 D 、10答案:D20、(江西省鹰潭市2008届高三第一次模拟)若数列{a n }满足112,0;2121, 1.2n n n nn a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若167a =,则20a 的值为( ) A .67 B. 57 C. 37 D. 17答案:B21、(宁夏区银川一中2008届第六次月考)已知f(x)=bx+1为关于x 的一次函数,b 为不等于1的常数,且满足g(n)=⎩⎨⎧≥-=)1( )]1([)0(1n n g f n 设a n =g(n)-g(n -1)(n ∈N 8),则数列{a n }为( )A .等差数列B .等比数列C .递增数列D .递减数列答案:B22、(山东省实验中学2008届高三第三次诊断性测试)设5021,,,a a a 是以1,0,1-这三个整数中取值的数列,若:95021=+++a a a 且107)1()1()1(2502221=++++++a a a ,则5021,,,a a a 当中取零的项共有( )A .11个B .12个C .15个D .25个答案:A23、(山东省郓城一中2007-2008学年第一学期期末考试)在等差数列{}n a 中,若181006100510041003=+++a a a a ,则该数列的前2008项的和是( )A .18072B .3012C .9036D .12048答案:C24、(山东省郓城一中2007-2008学年第一学期期末考试)已知*,7980N n n n a n ∈--=,则在数列{a n }的前50项中最小项和最大项分别是( )A .1a ,50aB .9a ,50aC .8a ,9aD .9a ,8a 答案:D25、(山西大学附中2008届二月月考)二次函数2(1)(21)1y n n x n x =+-++,当n 依次取1,2,3,4,…,n ,…时,图象在x 轴上截得的线段的长度的总和为 A .1 B .2 C .3 D .4答案:A。

数列最值

数列最值

数列最值的求法一、数列是一个函数,所以函数求最值的很多方法同样适用于它,又由于数列是一个特殊的函数,在求最值时,又表现出它的特殊性.有些特殊的方法要理解并记住.二、数列求最值常用的方法有函数、数形结合、基本不等式、导数、单调性等,特殊的方法有夹逼法等. 【方法讲评】方法一 函数的方法使用情景 比较容易求出函数的表达式解题步骤一般先求出函数的表达式,再利用函数的方法求出数列的最值.【例1】在等差数列}{n a 中,1,101-==d a ,n S 为}{n a 前n 项和,求n S 的最大值.【点评】数列是一个特殊的函数,等差数列的前n 项和可以看作是一个关于n 的二次函数2n S An Bn =+,利用图像解答.【反馈检测1】 设等差数列{n a }的前n 项和为n S ,已知3a =12,12s >0,130s <, (1)求公差d 的取值范围;(2)指出1s ,2s ,…,12s 中哪一个值最大,并说明理由. 方法二 数形结合法使用情景比较容易求出数列的通项解题步骤 先求数列的通项,再对通项的图像进行研究.【例2】在等比数列{}n a 中,)(0*N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a ,3a 与5a 的等比中项为2.(1)求数列{}n a 的通项公式;(2)设n n a b 2log =,数列{}n b 的前n 项和为S n ,当nS S S n +++Λ2121最大时,求n 的值.【点评】(1)等差数列的通项n a 可以看作是一个关于n 的一个一次函数,画出函数的图像,比较直观地看出数列的哪些项是正数,哪些项是负数,从而得到前多少项的和最大或最小.(2)注意数列{}n a 中,由 于9a 0=,所以前8项的和和前9项的和相等,且都最大,所以在考虑问题时,注意那些“零”项,以免得出错误的结论. 学.科.网【例3】已知数列{}n a 中,79()80n n a n N n *-=∈-则在数列{}n a 的前n 项中最小项和最大项分别是( )A.150,a aB. 18,a aC. 89,a aD.950,a a【点评】该题中的函数是双曲线,画出函数的图像,可以看出在靠近渐近线的地方函数取到最小值或最大值.【反馈检测2】已知等差数列{n a },*n a N ∈,n S =212)8n a +(.若1302n n b a =-,求数列 {n b }的前n 项和的最小值.方法三 单调性法使用情景 数列的单调性比较容易确定解题步骤先求数列的通项,再对通项的单调性进行研究.【例4】 已知数列}{n a 的通项公式nn n a )10)(1(+=,)(N n ∈,求}{n a 的最大值.【点评】(1)数列按照单调性分可以分为单调增函数、单调减函数、非单调函数.(2)判断数列的单调性一般有两种方法,方法一是作差判断,如果110{}0{}n n n n n n a a a a a a ++->⇒-<⇒单调递增;单调递减.方法二是作商判断,如果 111(0){}1(0){}n n n n n n n na aa a a a a a ++>>⇒<>⇒单调递增;单调递减. 【例5】设单调递增函数()f x 的定义域为()0,+∞,且对任意的正实数,x y 有:()()()f xy f x f y =+且1()12f =-.⑴一个各项均为正数的数列{}n a 满足:()()(1)1n n n f s f a f a =++-其中n S 为数列{}n a 的前n 项和,求数列{}n a 的通项公式;⑵在⑴的条件下,是否存在正数M 使下列不等式:1212221(21)(21)(21)n n n a a a n a a a ⋅≥+---K K K K对一切*n N ∈成立?若存在,求出M 的取值范围;若不存在,请说明理由.⑵假设M 存在满足条件, 即121221(21)(21)(21)n nn M n a a a ≤+---L L 对一切*n N ∈恒成立.令1212()21(21)(21)(21)n nn g n n a a a =+---L L ,∴1(1)2313(21)(21)n g n n n n ++=+⨯⨯⨯⨯-+L L ,故22(1)4841()4832123g n n n g n n n n n +++==>++++, (1)()g n g n ∴+>,∴()g n 单调递增,*n N ∴∈,()(1)g n g ≥=23. ∴230M <≤【点评】(1)本题就是利用作商法判断数列的单调性,再求数列的最值;(2)是选择作差法判断函数的单调性,还是选择作商法判断数列的单调性,主要看数列的形式,如果数列是商的形式,一般利用作商法判断数列的单调性,如果数列是和的形式,一般选择作差法判断数列的单调性.【反馈检测3】 已知数列{}n a 中,,11=a 且点()()1,n n P a a n N *+∈在直线10x y -+=上.(1)求数列{}n a 的通项公式;(2)若函数()1231111(),nf n n N n a n a n a n a *=++++∈++++L 求函数)(n f 的最小值; (3)设n nn S a b ,1=表示数列{}n b 的前n 项和, 试证明:1231(1),(,2)n n S S S S n S n N n *-++++=-∈≥L .方法四 基本不等式法使用情景 有一正二定三相等的数学情景解题步骤先求函数的表达式,再利用基本不等式解答.【例6】广州市某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引进该设备可获得的年利润为50万元. (1)引进该设备多少年后,开始盈利? (2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.【点评】基本不等式同样可以求数列的最值.如果n 取等时的值不是正整数,可以求它附近的点的函数值,比较就可以了. 学.科.网【反馈检测4】某大学毕业生响应国家“自主创业”的号召,今年年初组织一些同学自筹资金196万元购进一台设备,并立即投入生产自行设计的产品,计划第一年维修、保养费用24万元,从第二年开始,每年所需维修、保养费用比上一年增加8万元,该设备使用后,每年的总收入为100万元,设从今年起使用n 年后该设备的盈利额为()f n 万元.(Ⅰ)写出()f n 的表达式;(Ⅱ)求从第几年开始,该设备开始盈利;(Ⅲ)使用若干年后,对该设备的处理方案有两种:方案一:年平均盈利额达到最大值时,以52万元价格处理该设备;方案二:当盈利额达到最大值时,以16万元价格处理该设备.问用哪种方案处理较为合算?请说明理由.方法五 导数法使用情景 函数比较复杂,单调性一般方法不行. 解题步骤先求函数,再求导,再研究函数的单调性.【例7】在数列}{n a 中,nn a •a k•a n n +-+=+=+2111,1(n *∈N ),其中k 是常数,且3625≤≤k . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)求数列}{n a 的最小项.以上1n -个式子相加得)11(11n k n a a n ---=-,即)11(11nk n a a n ---+=. 又k a +=11,所以)11(11n k n k a n ---++=,即(2,3,)n ka n n n=+=L . 当1n =时,上式也成立.所以数列}{n a 的通项公式为(1,2,3,)n ka n n n=+=L . (Ⅱ)为考查数列}{n a 的单调性,注意到(1,2,3,)n k a n n n =+=L ,可设函数)1)()(≥+=x xkx x f ,则21)(xkx f -=',即22)(x k x x f -='.可知)1,x k ⎡∈⎣时,0)(<'x f ;k x =时,0)(='x f ;(,)x k ∈+∞时,0)(>'x f .所以函数xkx x f +=)(在[1,k ]上是减函数;在),k ⎡+∞⎣上是增函数.因为3625≤≤k ,所以65≤≤k .(3)当56a a =,即6655kk +=+,即30k =时, 12345567,a a a a a a a a >>>>=<<L . 所以数列}{n a 的最小项为11630665=+==a a . (4)当65a a <且5>k 时,6655kk +<+且25>k ,则3025<<k , 12345567,a a a a a a a a >>>>><<L . 所以数列}{n a 的最小项为555ka +=.(5)当665<>k a a 且时,6655kk +>+且36k <,则3630<<k ,Λ<<>>>>>76654321,a •a •a a a a a a .所以数列}{n a 的最小项为666k a +=. 综上所述:当25k =时,数列}{n a 的最小项为5a =10;当3025<<k 时,数列}{n a 的最小项为555ka +=;当30k =时,数列}{n a 的最小项为56a a ==11;当3036k <<时,数列}{n a 的最小项为666ka +=;当36k =时,数列}{n a 的最小项为612a =.【点评】(1)利用导数求数列的最值,不能直接求,必须先构造数列对应的函数,因为数列是离散型函数,不可导.(2)注意数列对应的函数的单调性和数列本身的单调性是有区别的,有人认为“数列对应的函数在),0(a 上单调递增,在),(+∞a 上单调递减,则数列在最靠近a x =的地方取得最大值”.如下图所示,数列对应的连续函数在),0(a 上单调递增,在),(+∞a 上单调递减,但是数列并不是在最靠近c x a x ==的处取得最大值,而是在b x =处取得最大值(其中)0,,>∈*a N c b .所以可知当数列对应的函数在),0(a 上单调递增,在),(+∞a 上单调递减,则数列不一定在最靠近a x =的地方取得最大值,必须把a x =附近的整数值代进去比较,才可以判断谁是最大值.所以一般不利用导数求数列的最值.【反馈检测5】求数列}{n n n a =的最大项与最小项.【例8】已知二项式122nx ⎛⎫+ ⎪⎝⎭.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.【点评】利用数列离散的特点,考察⎩⎨⎧≥≥-+11k k k k a a a a 或⎩⎨⎧≤≤-+11k k k k a a a a ,然后判断数列}{n a 的最值情况.(1)、若数列}{n a 中的最大项为k a ,则⎩⎨⎧≥≥-+11k kk k a a a a ;(2)、若数列}{n a 中的最小项为k a ,则⎩⎨⎧≤≤-+11k k k k a a a a .注意:这只是k a 为数列最值的必要不充分条件,不是充要条件,若k 不止一解时,需要代入检验. 学.科.网【反馈检测6】已知n x x 223)(+的展开式的系数和比n x )13(-的展开式的系数和大992,求n xx 2)12(-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项.高中数学常见题型解法归纳及反馈检测第40讲:数列最值的求法参考答案【反馈检测1答案】(1)(-247,-3);(2)当6n =时,n S 最大.解法二:由题意可得:n S =1na +(1)2n n d -=(122)n d -+22n n d -=25(12)22d n d n +- 显然0d ≠, n S 是关于自变量n 的二次函数, 由(1)知:0d <,二次函数的图像抛物线的对称轴为5122n d=-, 由(1)知:2437d -<<-, 所以6<5122d -<132,又因为n *N ∈,故当6n =时,n S 最大,即6s 最大.【反馈检测2答案】225-因此等差数列{n a }的公差大于0.1a =1s =2112)8a +(,解得1a =2.所以42n a n =-,则1302312n n b a n =-=-.即数列{n b }也为等差数列且公差为2.由23102(1)310{n n -≤+-≥,解得293122n ≤≤,因为n *N ∈,所以15n =, 故{n b }的前15项为负值, 因此15s 最小, 可知1b =-29,d =2,所以数列 {n b }的前n 项和的最小值为15s =1529215312-+⨯-()=-225.【反馈检测3答案】(1)n a n =;(2))(n f 的最小值是1(1)2f =;(3)见解析. 【反馈检测3详细解析】(1)由点P ),(1+n n a a 在直线01=+-y x 上,即11=-+n n a a ,且11=a ,数列{n a }是以1为首项,1为公差的等差数列1(1)1n a n n =+-⋅=,∴n a n =(2)n n n n f 212111)(+++++=Λ 11111(1)2342122f n n n n n n +=++++++++++L 111111(1)()021********f n f n n n n n n n +-=+->+-=++++++所以)(n f 是单调递增,故)(n f 的最小值是1(1)2f =()()()()123111111231231n S S S S n n n n n n -∴++++=-⋅+-⋅+-⋅++--⋅⎡⎤⎣⎦-L L()1111111111231231n n n n n n n ⎛⎫⎛⎫=+++--=++++- ⎪ ⎪--⎝⎭⎝⎭L L()1n n nS n n S =-=-.(,2)n N n *∈≥【反馈检测4答案】(Ⅰ)()2480196f n n n =-+-(n *∈N );(Ⅱ)从第三年开始盈利;(Ⅲ)采用方案一合算.【反馈检测4详细解析】(Ⅰ)2(1)()100196[248]480196()2n n f n n n n n n N *-=--+=-+-∈. (Ⅱ)由()0f n >得:24801960n n -+->即220490n n -+<,解得10511051n -<<,由n N*∈知,317n ≤≤,即从第三年开始盈利 (Ⅲ)方案①:年平均盈利为()f n n ,则()49494()80428024f n n n n n n =-++≤-⋅⋅=,当且仅当49n n=,即7n =时,年平均利润最大,共盈利24×7+52=220万元.方案②:2()4(10)204f n n =--+,当10n =时,取得最大值204,即经过10年盈利总额最大,共计盈利204+16=220万元两种方案获利相等,但由于方案二时间长,所以采用方案一合算. 【反馈检测5答案】331{}3, 1.n a a a ==的最大项为最小项为学.科.网【反馈检测6答案】(1)8064)1()2(555106-=-⋅⋅=x x C T ;(2)437310415360)1()2(x xx C T -=-=。

2022高考数学必考题型解答策略:数列

2022高考数学必考题型解答策略:数列

2022高考数学必考题型解答策略:数列命题趋势数列是新课程的必修内容,从课程定位上说,其考查难度不应该太大,数列试题倾向考查基础是差不多方向.从课标区的高考试题看,试卷中的数列试题最多是一道选择题或者填空题,一道解答题.由此我们能够推测2020年的高考中,数列试题会以考查差不多问题为主,在数列的解答题中可能会显现与不等式的综合、与函数导数的综合等,但难度会得到操纵.备考建议1.数列是一种专门的函数,学习时要善于利用函数的思想来解决。

如通项公式、前n 项和公式等2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住差不多量1a 、d(或q),把握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算。

3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情形等等。

4.等价转化是数学复习中常常运用的,数列也不例外 。

如na与nS 的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳。

5.深刻明白得等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键。

6.解题要善于总结差不多数学方法.如观看法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习适应,定能达到事半功倍的成效。

7.数列应用题将是命题的热点,这类题关键在于 建模及数列的一些相关知识的应用。

解答策略1.定义:⑴等差数列*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=⇔=-⇔-++为常数)}{ Bn An s b kn a n n +=⇔+=⇔2;⑵等比数列N)n 2,(n )0(}1n 1-n 2n 1n n ∈≥⋅=⇔≠=⇔++a a a q q a a a n{)0k ,1q ,0q (kq k Sn 0,(n ≠≠≠-=⇔=⇔的常数)均为不为q c cq a n n ;2.等差、等比数列性质等差数列特有性质:①项数为2n 时:S 2n =n(a n +a n+1)=n(a 1+a 2n );nd S =-奇偶S ;1n n a aS +=偶奇S ;②项数为2n-1时:S 2n-1=(2n-1)中a ;中偶奇a S =S - ;1-n n S =偶奇S ;③若0)(,,=≠==+n m m n a n m n a m a ,则;若)(,,n m S n S m S n m m n +-===+则;若0)(,=≠=+n m m n S n m S S ,则。

数列求和与最值

数列求和与最值

数列的求和与最值(高考一轮复习)数列的最值①10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;②n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即:若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或100n n a a +≤⎧⎨≥⎩。

1、等差数列{}n a 中,12910S S a =>,,则前 项的和最大。

2、已知数列{}n a ,22103n a n n =-+,它的最小项是3、设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) <0 =0>S 5 与S 7均为S n 的最大值4、在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =____5、已知数列{a n }中,6.15-=n n a n )(*∈N n ,求数列{a n }的最大项6、已知}{n a 是各项不为零的等差数列,其中10a >,公差0d <,若100S =,求数列}{n a 前n 项和的最大值7、在等差数列}{n a 中,125a =,179S S =,求n S 的最大值8、设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,⑴求出公差d 的范围, ⑵指出1221S S S ,,,Λ中哪一个值最大,并说明理由。

数列通项公式一、公式法(定义法)根据等差数列、等比数列的定义求通项1.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式2.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式3.已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式4.已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;二、t ka a n n +=+1 (1≠k )型在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________三、累加法(适用于:1()n n a a f n +=+) 1.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式2.已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式四、累乘法(适用于: 1()n n a f n a +=)已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a五、待定系数法(适用于1()n n a qa f n +=+)六、递推公式法1.数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式2.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列数列的求和总结一、直接用等差、等比数列的求和公式求和。

高中数学解题方法系列:数列中求最大项或最小项的方法

高中数学解题方法系列:数列中求最大项或最小项的方法

高中数学解题方法系列:数列中求最大项或最小项的方法法一:利用单调性①差值比较法若有0)()1(1>-+=-+n f n f a a n n ,则n n a a >+1,则 <<<<<+121n n a a a a ,即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若有0)()1(1<-+=-+n f n f a a n n ,则n n a a <+1,则 >>>>>+121n n a a a a ,即数列}{n a 是单调递减数列,所以数列}{n a 的最大项为)1(1f a =.②商值比较法若有0)(>=n f a n 对于一切n ∈N *成立,且1)()1(1>+=+n f n f a a n n ,则n n a a >+1,则 <<<<<+121n n a a a a 即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若有0)(>=n f a n 对于一切n ∈N *成立,且1)()1(1<+=+n f n f a a n n ,则n n a a <+1,则 >>>>>+121n n a a a a 即数列}{n a 是单调递减数列,所以数列}{n a 的最小项为)1(1f a =.③利用放缩法若进行适当放缩,有n n a n f n f a =>+=+)()1(1,则 <<<<<+121n n a a a a ,即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若进行适当放缩,有n n a n f n f a =<+=+)()1(1,则 >>>>>+121n n a a a a ,即数列}{n a 是单调递减数列,所以数列}{n a 的最大项为)1(1f a =.法二:先猜后证通过分析,推测数列}{n a 的某项k a (k ∈N *)最大(或最小),再证明)(k n k n a a a a ≥≤或对于一切n ∈N *都成立即可.这样就将求最值问题转化为不等式的证明问题.例1已知函数x x x f 63)(2+-=,S n 是数列}{n a 的前n 项和,点(n ,S n )(n ∈N *)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6nn n b a c ∙=,且T n 是数列}{n c 的前n 项和.试问T n 是否存在最大值?若存在,请求出T n 的最大值;若不存在,请说明理由.解(Ⅰ)因为点(n ,S n )在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当n =1时,311==S a .当n >1时,1--=n n n S S a ,69)]1(6)1(3[)63(22n n n n n -=-+---+-=当n =1时,31=a 也满足上式,所以n a n 69-=.(Ⅱ)因为n n n n n n n n n b a c b )21)(23(6)21)(69(61,)21(11-=-===--①所以,21)(23()21)(3()21)(1(2132nn n T -++-+-+= ②,)21)(23(21)(3()21)(1(21(211432+-++-+-+=n n n T ③②-③得132)21)(23()21)(2(21)(2(21)(2(2121+---++-+-+=n n n n T 112)21)(23(211]21(1[)21()2(21+------+=n n n .整理得1)21)(12(-+=nn n T ④利用差值比较法由④式得121)(32(11-+=++n n n T ,所以.)21)(21()21)](12(23[)21)](12(21)(32[(21)(12(21)(32(11n n nn n n n n n n n n n T T n-=+-+=+-+=+-+=-++因为1≥n ,所以021<-n .又0)21(>n,所以01<-+n n T T 所以n n T T <+1,所以 >>>>>>+1321n n T T T T T .所以T n 存在最大值.211=T 利用商值比较法由④式得021)(12(1>+=+nn n T .因为,)12(22)12()12(232)21)(12()21)(32(1111n n n n n n T T n n n n +++=++=++=++++165)1221(21)1221(21<=++≤++=n 所以111+<++n n T T ,即n n T T <+1.所以 >>>>>>+1321n n T T T T T /所以T n 存在最大值211=T .利用放缩法由①式得0)21)(21(21)](1(23[111<-=+-=+++n n n n n c ,又因为T n 是数列}{n c 的前n项和,所以n n n n T c T T <+<++11.所以 >>>>>>+1321n n T T T T T 所以T n 存在最大值211=T .先猜后证通过分析,推测数列}{n T 的第一项211=T 最在.下面证明:*)2(1N ∈≥<n n T T n 且.方法①分析法因为121)(12(-+=nn n T ,所以只要证明21121)(12(<-+nn .即只要证明2321)(12(<+nn .只需要证明2423+>∙n n.即只要证明02423>--∙n n由二项式定理得2≥n 且*Ν∈n 时,222)1(1)11(22210++=-++=++≥+=n n n n n C C C nnnnn所以02423>--∙n n成立.所以)2(1≥<n T T n 成立.所以n T 存在最大值211=T .方法②利用数学归纳法(i)当n =2时,因为121)(12(-+=nn n T ,所以1222141121)(14(T T =<=-+=,不等式成立.(ii)假设)2(≥=k k n 时不等式成立,即1T T k <.则当1+=k n 时,.1111++++<+=k k k k c T c T T 由①式得.0)21)(21()21)](1(23[111<-=+-=+++k k k k k c 所以11T T k <+.这就是说,当n =k +1时,不等式也成立.由(i)(ii)得,对于一切2≥n 且*N ∈n ,总有1T T n <成立.所以n T 存在最大值211=T .数列是一种特殊的函数,其通项公式可以视为函数的解析式.因此可以通过判断函数单调性的方法来求函数的最大值,然后通过分析求出数列的最大项.但如果函数的单调性较难判断,那就需要探求另一种途径来解决.例若数列{}n a 的通项公式9(1)(10nn a n =+⋅,求{}n a 的最大项.解:设n a 是数列{}n a 中的最大项,则11,(2)n n n n a a n a a -+≥⎧≥⎨≥⎩,即1199(1)()(),101099(1)()(2)().1010n n n n n n n n -+⎧+⋅≥⋅⎪⎪⎨⎪+⋅≥+⋅⎪⎩解,得89n ≤≤,又∵n N +∈,∴8n =或9,9898910a a ==.当1n =时,91899510a =<,∴{}n a 的最大项为9898910a a ==.对于这种解法,不少同学可能会存在疑问.下面将可能出现的疑问一一展示,加以分析,以探究问题的实质及其解决方法.疑问1:为什么要单独讨论1n =的情况?分析:由于11,(2)n n nn a a n a a -+≥⎧≥⎨≥⎩这个不等式中出现了下标1n -,而数列中的项应该从1开始,因此11n -≥,即2n ≥。

数列中的最值问题

数列中的最值问题

问题二:数列中的最值问题数列中的最值常见题型有:求数列的最大项或最小项、与n S 有关的最值、求满足数列的特定条件的最值、求满足条件的参数的最值、实际问题中的最值及新定义题型中的最值问题等. 题型一:求数列的最大项或最小项求数列中的最大项的基本方法是: (1)利用不等式组⎩⎨⎧a n -1≤a n ,a n ≥a n +1(n ≥2)确定数列的最大项;(2)利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1(n ≥2)确定数列的最小项.(3)利用函数或数列单调性求最大项或最小项.【例1】已知数列}{n a 的通项公式为n a =2156nn +,求}{n a 的最大项.【分析】思路1:利用基本不等式求解.思路2:求满足⎩⎨⎧≥≥-+11n n n n a a a a 的的值.【解法一】基本不等式法.n a =2156n n +=1156n n+,因为156n n +1562n n ⨯;当且仅当156n n =,即n=156时,而,144156169<< 且n ∈N *,于是将n=12或13代人,得1213a =a 且最大.【评注】解法一是是利用基本不等式求解,解法二是通过确定满足⎩⎨⎧≥≥-+11n nn n a a a a 的的值,从而找到最大项【小试牛刀】在数列{a n }中,a n =(n +1)⎝ ⎛⎭⎪⎫1011n(n ∈N *).(1)求证:数列{a n }先递增,后递减;(2)求数列{a n }的最大项.(2)解:由(1)知a 9=a 10=1010119最大.【点评】要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大、最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.题型二:数列前n 项和最值问题公差不为0的等差数列的前n 项和的最值问题在高考中常出现,题型有小题也有大题,难度不大,求等差数列前n 项和最值的方法有:(1)利用{a n }中项的单调性,求出其正负转折项.(2)利用二次函数的性质求最值.公差不为0的等差数列的前n 项和S n =An 2+Bn(A,B 为常数).(3)利用⎩⎨⎧S n ≥S n -1,S n ≥S n +1求出S n 的最值.【例2】在等差数列{a n }中,a 1=7,公差为d,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值范围是________.【分析】知a 1和S 8最大,可以求出S n 关于d 的表达式是关于n 的二次函数,再用二次函数的最值来解决;还可用S 8最大推出项的正负和变化规律,并利用所有正数项和最大.【解析】 (2)方法一(通法):由于S n =7n +n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫7-d 2n,设f(x)=d 2x 2+⎝ ⎛⎭⎪⎫7-d 2x,则其图象的对称轴为直线x =12-7d .当且仅当n =8时S n 取得最大值,故7.5<12-7d <8.5,解得-1<d<-78.方法二(优法):由题意,得a 8>0,a 9<0,所以7+7d>0,且7+8d<0,即-1<d<-78.【小试牛刀】【山西大学附属中学2017级上学期11月模块诊断】设等差数列{}n a 的前项和为n S ,且满足170S >,180S <,则11S a ,22S a ,…,1515S a 中最大的项为( ) A .77S a B .88S a C .99S a D .1010Sa 【答案】C 【解析】117917917()17(2)000022a a a S a +>⇒>⇒>⇒>11889181091018()18()0000022a a a a S a a a ++<⇒<⇒<⇒+<⇒<,因此8910121289100,0,0,0,0,S S SS S a a a a a >>>><而1291289,S S S a a a a <<<>>>>,所以89121289S S S S a a a a <<<<,选C. 题型三:求满足数列的特定条件的最值【例3】【2016届云南师范大学附属中学高三月考四】数列{}n a 是等差数列,若981a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n 等于( ) A .17 B .16 C .15 D .14 【分析】利用等差数列的性质求前项和的最值.【解析】∵数列{}n a 的前n 项和有最大值,∴数列{}n a 为递减数列,又981a a <-, 8900a a ><∴,且890a a +<,又115116158168915()16()1508()022a a a a S a S a a ++==>==+<,,故当15n =时,n S 取得最小正值,故选C .【小试牛刀】【四川省2017年普通高考适应性测试】设数列{}n a 各项为正数,且214a a =,()2*12n n n a a a n N +=+∈.(Ⅰ)证明:数列(){}3log 1n a +为等比数列;(Ⅱ)令()321log 1n n b a -=+,数列{}n b 的前项和为n T ,求使345n T >成立时的最小值. 【答案】(Ⅰ)详见解析(Ⅱ)6【解析】(Ⅰ)由已知,2211124a a a a =+=,则()1120a a -=, 因为数列{}n a 各项为正数,所以12a =, 由已知,()21110n n a a ++=+>, 得()()313log 12log 1n n a a ++=+. 又()313log 1log 31a +==,所以,数列(){}3log 1n a +是首项为1,公比为2的等比数列.题型四:求满足条件的参数的最值【例4】【山东省枣庄市2017届高三上学期期末】已知n S 为各项均为正数的数列{}n a 的前项和,()210,2,326n n n a a a S ∈++=.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前项和为n T ,若对,4n n N t T *∀∈≤恒成立,求实数的最大值. 【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 为等差数列,由此求得{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得的最大值.【解析】(1)当1n =时,由2326n n n a a S ++=,得2111326a a a ++=,即211320a a -+=. 又()10,2a ∈,解得11a =.由2326n n n a a S ++=,可知2111326n n n a a S +++++=.两式相减,得()2211136n n n n n a a a a a +++-+-=,即()()1130n n n n a a a a +++--=.由于0n a >,可得130n n a a +--=,即13n n a a +-=,所以{}n a 是首项为,公差为的等差数列,所以()13132n a n n =+-=-.【点评】(1) 求解与参数有关的问题,一般是分离变量,再构造新函数求解.(2)使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项.要注意由于数列{}n a 中每一项n a 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点. 【小试牛刀】已知数列{}n a 的通项公式为11n a n =+,前项和为n S ,若对任意的正整数,不等式216n n mS S ->恒成立,则常数m 所能取得的最大整数为. 【答案】5【解析】要使216n n m S S ->恒成立,只需2min ()16n n m S S ->. 因2(1)1()n n S S ++-2222121221()()()n n n n n n n n n S S S S S S a a a +++++--=---=+-11111111022232222422224n n n n n n n n =+->+-=->++++++++,所以22113n n S S S S -≥-=,所以1161633m m <⇒<,m 所能取得的最大整数为5.题型五:实际问题中的最值【例5】为了保障幼儿园儿童的人身安全,国家计划在甲、乙两省试行政府规范购置校车方案,计划若干时间内(以月为单位)在两省共新购1000辆校车.其中甲省采取的新购方案是:本月新购校车10辆,以后每月的新购量比上一月增加50%;乙省采取的新购方案是:本月新购校车40辆,计划以后每月比上一月多新购m 辆. (Ⅰ)求经过n 个月,两省新购校车的总数S(n);(Ⅱ)若两省计划在3个月内完成新购目标,求m 的最小值.【分析】本题主要考查实际问题、等差等比数列的前n 项和公式、不等式的解法等数学知识,考查学生将实际问题转化为数学问题的能力,考查学生分析问题解决问题的能力和计算能力.第一问,通过对题意的分析可知甲方案能构成等比数列,而乙方案能构成等差数列,利用等差等比数列的前n 项和公式分别求和,再相加即可;第二问,利用第一问的结论,得出3n =且(3)1000S ≥,直接解不等式即可得到m 的取值范围,并写出最小值.【解析】(Ⅰ)设a n ,b n 分别为甲省,乙省在第n 月新购校车的数量.依题意,{a n }是首项为10,公比为1+50%=32的等比数列;{b n }是首项为40,公差为m 的等差数列. {a n }的前n 项和310[1()]2312n n A -=-,{b n }的前n 项和[4040(1)](1)4022n n n m n n mB n ++--==+. 所以经过n 个月,两省新购校车的总数为S(n)=310[1()](1)2403212n n n n n m A B n --+=++- 3(1)20[()1]4022n n n mn -=-++2320()(40)20222n m mn n =++--.(Ⅱ)若计划在3个月内完成新购目标,则S(3)≥1000,所以323(3)20()3(40)3201000222m mS =+⨯+-⨯-≥,解得m ≥277.5.又*∈N m ,所以m 的最小值为278.【小试牛刀】某企业为节能减排,用万元购进一台新设备用于生产. 第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于( ) A. B. C. D. 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以为首项,以为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为n S 万元,则()22119109n S n n n n n =-+-=-+-,因此,该设备年平均盈利额为210999*********n S n n n n n n n n n n -+-⎛⎫==--+=-++≤-⋅+= ⎪⎝⎭,当且仅当9n n =且当n N *∈,即当3n =时,该设备年平均盈利额达到最大值,此时3n =,故选A.【迁移运用】1.【2016·辽宁大连统考】数列{a n }中,如果存在a k ,使得a k >a k -1且a k >a k +1成立(其中k ≥2,k ∈N *),则称a k 为数列{a n }的峰值,若a n =-3n 2+15n -18,则{a n }的峰值为( ) A .0 B .4 C.133 D.163【答案】A【解析】因为a n =-3⎝ ⎛⎭⎪⎫n -522+34,且n ∈N *,所以当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.2.【中原名校豫南九校2017届第四次质量考评】已知等差数列{}n a 的公差0d ≠,n S 是其前项和,若236 a a a ,,成等比数列,且1017a =-,则2nnS 的最小值是( ) A .12- B .58- C.38- D .1532-【答案】A3.【河南省豫北名校联盟2017届高三年级精英对抗赛,】已知在正项等比数列{}n a 中,存在两项,m n a a 满足14m n a a a =,且6542a a a =+,则14m n+的最小值是( ) A .32 B .2 C. 73 D .256【答案】A【解析】设数列{}n a 的公比为(0)q q >,则由6542a a a =+得220q q --=,解之得2q =或1q =-(舍去),因为存在两项,m n a a 满足14m n a a a =,所以1111224m n a a --=,解之得6m n +=,所以1411414143()()(5)(52)6662n m n m m n m n m n m n m n +=++=++≥+⨯=,当且仅当4,6n m m n m n =+=即2,4m n ==时等号成立,所以14m n +的最小值是32,故选A. 4.【天津六校2017届高三上学期期中联考】已知数列{}n a 满足:11a =,12n n n a a a +=+()n N *∈.若11(2)(1)n n b n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( ) A .23λ>B .32λ>C .32λ<D .23λ< 【答案】D5.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ). A.163 B.133 C .4 D .0【答案】D【解析】∵a n =-32)25(-n +34,由二次函数性质,得当n =2或3时,a n 最大,最大为0.6.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( ) A .5 B .6 C .7 D .8【答案】 C【解析一】由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大. 【解析二】由S 3=S 11,可得3a 1+3d =11a 1+55d,把a 1=13代入,得d =-2, 故S n =13n -n(n -1)=-n 2+14n,根据二次函数的性质,知当n =7时,S n 最大. 【解析三】根据a 1=13,S 3=S 11,则这个数列的公差不等于零,且这个数列的和先是单调递增然后又单调递减,根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,得只有当n =3+112=7时,S n 取得最大值.7.在数列{a n }中,a n =n - 2 013n - 2 014,则该数列前100项中的最大项与最小项分别是( ) A .a 1,a 50B .a 1,a 44C .a 45,a 44D .a 45,a 50【答案】C 【解析】a n =n - 2 013n - 2 014=1+ 2 014- 2 013n - 2 014,∴当n ∈1,44]时,{a n }单调递减,当n ∈45,100]时,{a n }单调递减, 结合函数f(x)=x - 2 013x - 2 014的图象可知,(a n )max =a 45,(a n )min =a 44,选C.8.【2016届重庆市南开中学高三12月月考】已知函数()()22812f x x a x a a =++++-,且()()2428f a f a -=-,设等差数列{}n a 的前项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .378【答案】【解析】由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得.由题意可得2428a a -=-或2842822a a a +-+-=⨯-(), 解得a=1或a=-4,当a=-1时,2712f x x x =+-(),数列{a n }不是等差数列; 当a=-4时,24f x x x =+(),24nS f n n n ==+(), ()()1257575123n a a a n n ∴===+--=+,,,()22121134416122)11(2n n n n S a n n a n n ++++-++∴==-++⨯()113113122121312121n n n n =⨯+++≥++⎡⎤⨯⎢⎥=++⎣⎦+()(),当且仅当1311n n +=+,即131n =-时取等号, ∵n 为正数,故当n=3时原式取最小值378,故选D . 9. 【2016届江苏省盐城市盐阜中学高三上12月月】等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为. 【答案】﹣49【解析】设等差数列{a n }的首项为a 1,公差为d, ∵S 10=10a 1+45d=0,S 15=15a 1+105d=25, ∴a 1=﹣3,d=, ∴S n =na 1+d=n 2﹣n,∴nS n =n 3﹣n 2,令nS n =f (n ),∴f ′(n )=n 2﹣n,∴当n=时,f (n )取得极值,当n <时,f (n )递减;当n >时,f (n )递增;因此只需比较f (6)和f (7)的大小即可. f (6)=﹣48,f (7)=﹣49, 故nS n 的最小值为﹣49. 故答案为:﹣49.10.【2016届河北省正定中学高三上第五次月考】已知数列{}n a 满足151=a ,12n na a n+-=,则na n的最小值为. 【答案】27411.【2016·湖南衡阳五校联考】已知数列{a n }满足a 1=1,a n +1=1-14a n,其中n ∈N *. (1)设b n =22a n -1,求证:数列{b n }是等差数列,并求出{a n }的通项公式a n . (2)设c n =4a n n +1,数列{c n c n +2}的前n 项和为T n ,是否存在正整数m,使得T n <1c m c m +1对于n ∈N *恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 【解析】(1)b n +1-b n =22a n +1-1-22a n -1=22⎝ ⎛⎭⎪⎫1-14a n -1-22a n -1=4a n 2a n -1-22a n -1=2. 所以数列{b n }是等差数列,a 1=1,b 1=2,因此b n =2+(n -1)×2=2n, 由b n =22a n -1得a n =n +12n .(2)c n =2n ,c n c n +2=4n (n +2)=2⎝ ⎛1n -⎭⎪⎫1n +2, 所以T n =2⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<3, 依题意要使T n <1c m c m +1对于n ∈N *恒成立,只需m (m +1)4≥3, 解得m ≥3或m ≤-4(舍), 所以m 的最小值为3.12.【天津六校2017届高三上学期期中联考】已知各项都是正数的数列{}n a 的前项和为n S ,212n n n S a a =+,n N *∈(1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前项和n T ,求证:2n T <;(3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【答案】(Ⅰ)12n a n =(Ⅱ)详见解析(Ⅲ)29λ≥ 【解析】(1)时,是以为首项,为公差的等差数列(2),,即2n T <(3)由得, 当且仅当时,有最大值,13.【中原名校豫南九校2017届第四次质量考评】设等差数列{}n a 的前项和为n S ,且55625S a a =+=.(1)求{}n a 的通项公式;(2)若不等式()()282714nn n S n k a ++>-+对所有的正整数都成立,求实数的取值范围.【答案】(Ⅰ)34n a n =-(Ⅱ)2974k -<<14.【河南省豫北名校联盟2017届高三年级精英对抗赛】已知各项均不相等的等差数列{}n a 的前五项和520S =,且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列11{}n n a a +的前项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围.【答案】(1)1n a n =+;(2)1(,]16-∞. 【解析】(1)设数列{}n a 的公差为d ,则1211154520,2(2)(6),a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩即12124,2.a d d a d +=⎧⎨=⎩ 又因为0d ≠,所以12,1.a d =⎧⎨=⎩所以1n a n =+. (2)因为11111(1)(2)12n n a a n n n n +==-++++, 所以11111111233412222(2)n n T n n n n =-+-++-=-=++++. 因为存在*n N ∈,使得10n n T a λ+-≥成立,所以存在*n N ∈,使得(2)02(2)nn n λ-+≥+成立,即存在*n N ∈,使22(2)nn λ≤+成立.又2142(2)2(4)n n n n =+++,114162(4)n n≤++(当且仅当2n =时取等号), 所以116λ≤.即实数λ的取值范围是1(,]16-∞.15.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前项和,是否存在正整数n,使得n S 60800n >+?若存在,求的最小值; 若不存在,说明理由.【解析】(Ⅰ)设数列{}n a 的公差为,依题意, ,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =. 当0d =时,2n a =;当d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.16.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n =S n -1S n (n ∈N *),求数列{T n }的最大项的值与最小项的值.【解析】(1)设等比数列{a n }的公比为q, 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5, 即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为 a n =32×1)21(--n =(-1)n -1·32n .(Ⅱ)由(Ⅰ)得S n =1-n)21(-=⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.17.【2016届上海市七校高三上12月联考】公差不为零的等差数列{a n }中,a 1、a 2、a 5成等比数列,且该数列的前10项和为100. (1)求数列{a n }的通项公式;(2)若b n =a n ﹣10,求数列{b n }的前n 项和T n 的最小值. 【答案】(1)a n =2n ﹣1;(2)﹣25.【解析】(1)∵公差不为零的等差数列{a n }中,a 1、a 2、a 5成等比数列,且该数列的前10项和为100,∴,∴解得a 1=1,d=2,∴a n =1+(n ﹣1)×2=2n ﹣1. (2)∵b n =a n ﹣10=2n ﹣11, ∴=2﹣11=﹣9,b n ﹣b n ﹣1=(2n ﹣11)﹣2(n ﹣1)﹣11]=2,∴数列{b n }是首项为﹣9,公差为2的等差数列, T n ==n 2﹣10n=(n ﹣5)2﹣25.∴当n=5时,数列{b n }的前n 项和T n 的最小值为﹣25. 18.已知数列{}n a 满足:*1a ∈N ,136a ,且()12,18,1,2,236,18n n n n n a a a n a a +⎧==⎨->⎩,记集合{}*n M a n =∈N .(1)若16a =,写出集合M 的所有元素;(2)若集合M 存在一个元素时3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数. 由12,18236,18n n n n n a a a a a +⎧=⎨->⎩,可归纳证明对任意nk ,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数;如果1k >,因为12k k a a -=或1236k k a a -=-,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n ,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数. (3)由136a ,*1a ∈N ,11112,18236,18n n n n n a a a a a ----⎧=⎨->⎩,可归纳证明()362,3,na n =.因为1a 是正整数,112112,18236,18a a a a a ⎧=⎨->⎩,所以2a 是2的倍数.从而当3n时,n a 是4的倍数.如果1a 是3的倍数,由(2)知对所有正整数n ,n a 是3的倍数,因此当3n时,{}12,24,36n a ∈,这时,M 中的元素的个数不超过5.如果1a 不是3的倍数,由(2)知,对所有的正整数n ,n a 不是3的倍数,因此当3n时,{}4,8,16,20,28,32n a ∈,这时M 的元素的个数不超过8.当11a =时,{}1,2,4,8,16,20,28,32M =有8个元素. 综上可知,集合M 的元素个数的最大值为8. 19.设数列{}n a (1,2,3,n =)的前项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(1)求数列{}n a 的通项公式; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前项和为n T ,求使得111000nT -<成立的的最小值.(2)由(1)可得112n n a =,所以211122111111222212nn n nT ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==--.由111000n T -<,得111121000n --<,即21000n>.因为9102512100010242=<<=,所以10n .所以使111000nT-<成立的的最小值为10.。

高中数学解题方法系列:数列中求最大项或最小项的方法

高中数学解题方法系列:数列中求最大项或最小项的方法

高中数学解题方法系列:数列中求最大项或最小项的方法法一 :利用单调性 ①差值比较法若有0)()1(1>-+=-+n f n f a a n n ,则n n a a >+1,则 <<<<<+121n n a a a a ,即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若有0)()1(1<-+=-+n f n f a a n n ,则n n a a <+1,则 >>>>>+121n n a a a a ,即数列}{n a 是单调递减数列,所以数列}{n a 的最大项为)1(1f a =. ②商值比较法若有0)(>=n f a n 对于一切n ∈N *成立,且1)()1(1>+=+n f n f a a n n ,则n n a a >+1,则 <<<<<+121n n a a a a 即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若有0)(>=n f a n 对于一切n ∈N *成立,且1)()1(1<+=+n f n f a a n n ,则n n a a <+1,则 >>>>>+121n n a a a a 即数列}{n a 是单调递减数列,所以数列}{n a 的最小项为)1(1f a =.③利用放缩法若进行适当放缩,有n n a n f n f a =>+=+)()1(1,则 <<<<<+121n n a a a a ,即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若进行适当放缩,有n n a n f n f a =<+=+)()1(1,则 >>>>>+121n n a a a a ,即数列}{n a 是单调递减数列,所以数列}{n a 的最大项为)1(1f a =.法二: 先猜后证通过分析,推测数列}{n a 的某项k a (k ∈N *)最大(或最小),再证明)(k n k n a a a a ≥≤或对于一切n ∈N *都成立即可. 这样就将求最值问题转化为不等式的证明问题.例1 已知函数x x x f 63)(2+-= ,S n 是数列}{n a 的前n 项和,点(n ,S n )(n ∈N *)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6n n n b a c •=,且T n 是数列}{n c 的前n 项和. 试问T n 是否存在最大值?若存在,请求出T n 的最大值;若不存在,请说明理由.解 (Ⅰ)因为点(n ,S n )在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当n =1时,311==S a . 当n >1时,1--=n n n S S a,69)]1(6)1(3[)63(22n n n n n -=-+---+-=当n =1时,31=a 也满足上式,所以n a n 69-=.(Ⅱ)因为n n n n n n n n n b a c b )21)(23(6)21)(69(61,)21(11-=-===-- ① 所以,)21)(23()21)(3()21)(1(2132n n n T -++-+-+= ②,)21)(23()21)(3()21)(1()21(211432+-++-+-+=n n n T ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T112)21)(23(211])21(1[)21()2(21+------+=n n n .整理得1)21)(12(-+=n n n T ④利用差值比较法由④式得1)21)(32(11-+=++n n n T ,所以.)21)(21()21)](12(23[)21)](12()21)(32[()21)(12()21)(32(11n n nn n n n n n n n n n T T n-=+-+=+-+=+-+=-++ 因为1≥n ,所以021<-n . 又0)21(>n ,所以01<-+n n T T 所以n n T T <+1,所以 >>>>>>+1321n n T T T T T . 所以T n 存在最大值.211=T 利用商值比较法由④式得0)21)(12(1>+=+n n n T .因为,)12(22)12()12(232)21)(12()21)(32(1111•n n n n n n T T nn n n +++=++=++=++++165)1221(21)1221(21<=++≤++=n 所以111+<++n n T T ,即n n T T <+1. 所以 >>>>>>+1321n n T T T T T / 所以T n 存在最大值211=T . 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为T n 是数列}{n c 的前n 项和,所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以T n 存在最大值211=T .先猜后证通过分析,推测数列}{n T 的第一项211=T 最在. 下面证明:*)2(1N ∈≥<n n T T n 且.方法① 分析法因为1)21)(12(-+=n n n T ,所以只要证明211)21)(12(<-+n n . 即只要证明23)21)(12(<+n n . 只需要证明2423+>•n n . 即只要证明02423>--•n n 由二项式定理得2≥n 且*Ν∈n 时,222)1(1)11(22210++=-++=++≥+=n n n n n C C C nnnnn所以02423>--•n n 成立. 所以)2(1≥<n T T n 成立. 所以n T 存在最大值211=T . 方法② 利用数学归纳法(i )当n =2时,因为1)21)(12(-+=n n n T ,所以12221411)21)(14(T T =<=-+=,不等式成立.(ii )假设)2(≥=k k n 时不等式成立,即1T T k <. 则当1+=k n 时,.1111++++<+=k k k k c T c T T由①式得.0)21)(21()21)](1(23[111<-=+-=+++k k k k k c 所以11T T k <+. 这就是说,当n =k +1时,不等式也成立.由(i )(ii )得,对于一切2≥n 且*N ∈n ,总有1T T n <成立. 所以n T 存在最大值211=T .数列是一种特殊的函数,其通项公式可以视为函数的解析式.因此可以通过判断函数单调性的方法来求函数的最大值,然后通过分析求出数列的最大项.但如果函数的单调性较难判断,那就需要探求另一种途径来解决.例 若数列{}n a 的通项公式9(1)()10n n a n =+⋅,求{}n a 的最大项.解:设n a 是数列{}n a 中的最大项,则11,(2)n n n n a a n a a -+≥⎧≥⎨≥⎩,即1199(1)()(),101099(1)()(2)().1010n n n n n n n n -+⎧+⋅≥⋅⎪⎪⎨⎪+⋅≥+⋅⎪⎩解,得89n ≤≤, 又∵n N +∈, ∴8n =或9,9898910a a ==.当1n =时,91899510a =<,∴{}n a 的最大项为9898910a a ==.对于这种解法,不少同学可能会存在疑问.下面将可能出现的疑问一一展示,加以分析,以探究问题的实质及其解决方法.疑问1:为什么要单独讨论1n =的情况?分析:由于11,(2)n n n n a a n a a -+≥⎧≥⎨≥⎩这个不等式中出现了下标1n -,而数列中的项应该从1开始,因此11n -≥,即2n ≥。

重难点06两种数列最值求法(核心考点讲与练新高考专用)(解析版)

重难点06两种数列最值求法(核心考点讲与练新高考专用)(解析版)

重难点06两种数列最值求法(核心考点讲与练)题型一:单调性法求数列最值一、单选题1.(2022·安徽淮南·二模(文))已知等差数列{}n a 的前n 项和为n S ,5711125,26,n n na S a ab a +=-+==,则数列{}n b ( )A .有最大项,无最小项B .有最小项,无最大项C .既无最大项,又无最小项D .既有最大项,又有最小项【答案】D【分析】根据等差数列的首项1a ,公差d 列方程,可得1a 和d ,进而可得{}n a ,{}n b 通项,进而根据{}n b 的单调性,即可得最值.【详解】等差数列{}n a 的首项为1a ,公差为d , 由571125,26,S a a =-+=得1115102511216263a d a a d d +=-=-⎧⎧⇒⎨⎨+==⎩⎩ ,故()1131314n a n n =-+-=-11=13-14n n n a b a n +=+ 当5,n n N ≥∈时, {}n b 单调递减,故5671b b b >>>>,且52b =当15,n n N ≤<∈时, {}n b 单调递减,故12341b b b b >>>>,且14101112b b ==, 故{}n b 有最大值为2,最小值为12 故选:D2.(2022·北京·二模)已知等差数列{}n a 与等比数列{}n b 的首项均为-3,且31a =,448a b =,则数列{}n n a b ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】A【分析】求出等差数列和等比数列的通项公式,n n a b ,得出n n a b ,确定数列{}n n a b 中奇数项都是负数,偶数能力拓展项都是正数,然后设n n n c a b =,用作差法得出{}n c 的单调性,从而可得数列{}n n a b 的最值. 【详解】13a =-,31a =,则1(3)22d --==,32(1)25n a n n =-+-=-, 4438a b ==,438b =,34118b q b ==-,12q =-,111(1)33()22n n n n b ---⋅=-⨯-=,1(1)3(25)2n n n n n a b --⋅-=,显然奇数项都是负数,偶数项都是正数, 设13(25)2n n n n n c a b --==,则113(23)3(25)3(72)222n n n n nn n n c c +-----=-=, 3.5n <,即3n ≤时,10n n c c +->,1n n c c +>,4n ≥时,10n n c c +-<,1n n c c +<,即数列{}n c ,从1c 到4c 递增,从4c 往后递减,由于{}n n a b 中奇数项都是负数,偶数项都是正数, 所以{}n n a b 中,44a b 最大, 又334c =,5153164c =>,所以55a b 是最小项. 故选:A .3.(2022·安徽·芜湖一中三模(文))已知等差数列{}n a 的首项11a =,且4329a a =+,正项等比数列{}n b 的首项112b =,且24332b b =,若数列{}n a 的前n 项和为n S ,则数列{}n n b S 的最大项的值为( ) A .89B .1C .98D .2【答案】C【分析】先求出n a ,的得到n S ,再求出n b ,从而得出n n b S ,然后分析出数列{}n n b S 的单调性,得出答案. 【详解】设等差数列{}n a 的公比为d ,由4329a a =+,则()112932a a d d =+++ 即()211329d d ++=+,故2d =,则()1121n a a n d n =+-=- 则()2112n n n n S na d -=+⨯=设正项等比数列{}n b 的公比为()0q q >,由24332b b =,则()2321132b q b q =所以232113222q q ⎛⎫⨯=⨯ ⎪⎝⎭,解得12q =,则1112n n n b b q -==22n n n b S n =,设22=n n n c ,则()221122n n n n c n c n++==当02n <≤时,11n nc c +>,即123c c c << 当3n ≥时,11n nc c +<,即345c c c >>>所以233333928c b S ===最大.故选:C4.(2022·广东·一模)已知正项数列{}n a 满足1*()n n a n n =∈N ,当n a 最大时,n 的值为( ) A .2 B .3 C .4 D .5【答案】B【分析】先令1x y x =,两边取对数,再分析ln ()xf x x=的最值即可求解. 【详解】令1xy x =,两边取对数,有1ln ln ln xxy x x==, 令ln ()xf x x=,则21ln ()x f x x -'=,当()0f x '>时,0e x <<;当()0f x '<时,e x >. 所以()f x 在(0,e)上单调递增,在(e,+)∞上单调递减. 所以e x =时,()f x 取到最大值,从而y 有最大值,因此,对于1*()nn a n n =∈N ,当2n =时,1222a =;当3n =时,1333a =.而113232>,因此,当n a 最大时,3n =. 故选:B 二、多选题5.(2021·广东·高三阶段练习)设数列{}n a 的前n 项和为n S ,若n a =,则下列结论中正确的是( ) A .()211n n n a n n ++=+B .211n n n S n +-=+C .32n a ≤D .满足2021n S ≤的n 的最大值为2020 【答案】ACD【分析】A 选项,对n a =B 选项,对通项公式分离常数后利用裂项相消法求和;C 选项,{}n a 是单调递减数列,故132n a a ≤=;D 选项,在B 选项的基础上进行求解即可..【详解】()211n n n a n n +++,故A 正确; 因为()1111111n a n n n n =+=+-++,所以2111111211223111n n n S n n n n n n +⎛⎫⎛⎫⎛⎫=+-+-++-=+-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,故B 错误; 因为()()()1111112n n n n +>++++,所以1n n a a +>,所以{}n a 是单调递减数列,所以132n a a ≤=,故C 正确; 因为11101n a n n =+->+,所以n S 单调递增,且20202021S <,20212021S >,所以满足2021n S ≤的n 的最大值为2020,故D 正确. 故选:ACD6.(2022·全国·高三专题练习)等比数列{}n a 各项均为正数,120a =,43220a a a +-=,数列{}n a 的前n 项积为n T ,则( ) A .数列{}n a 单调递增 B .数列{}n a 单调递减 C .当5n =时,n T 最大 D .当5n =时,n T 最小【答案】BC【分析】由等比数列基本量求得等比数列{}n a 的公比,由0n a >可得数列{}n a 的增减性,然后由1+n nT T 判断数列{}n T 的单调性,从而得到n T 的最值.【详解】设等比数列{}n a 的公比为q ,43220a a a +-=,222220a q a q a ∴+-=,等比数列{}n a 各项均为正数,20a ∴>,2210q q ∴+-=,12q ∴=, 120a =,1202nn a ⎛⎫∴=⨯ ⎪⎝⎭,∴数列{}n a 单调递减;121n n n T a a a a -=,11211n n n n T a a a a a +-+∴=,111202nn n n T a T ++⎛⎫∴==⨯ ⎪⎝⎭,当14n ≤≤时,1112012n n n n T a T ++⎛⎫==⨯> ⎪⎝⎭;当5n ≥时,1112012nn n n T a T ++⎛⎫==⨯< ⎪⎝⎭;∴数列{}n T 中,从1T 到5T 递增,从5T 开始递减,5n ∴=时,数列{}n T 中5T 最大.故选:BC7.(2021·河北·高三阶段练习)已知d ,n S 分别是等差数列{}n a 的公差及前n 项和,798S S S >>,设12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,则下列结论中正确的是( )A .满足0n S >的最小n 值为17B .89a a <C .78910a a a a ⋅>⋅D .8n =时,n T 取得最小值【答案】AC【分析】由已知可得80a <,90a >,890a a +<,公差0d >,利用等差数列前n 项和公式以及等差数列的性质可判断A ;由890a a +<可判断B ;作差结合890a a +<可判断C ;由n T 的单调性以及n b 的符号即可求出n T 的最小值可判断D ,进而可得正确选项.【详解】由题意知:8870a S S =-<,9980S a S =->,97890S S a a -=+<, 选项A 中:()()89116161616022a a a a S ++==<,()117179171702a a S a +==>,所以满足0n S >的最小n 值为17,故选项A 正确;选项B 中:89890a a a a -=-->,即89a a >,故选项B 错误; 选项C 中:由80a <,90a >可知公差0d >,则91078a a a a -=()()()88882a d a d a a d ++--()2882422d da d d a =+=+()8920d a a =+<所以78910a a a a ⋅>⋅,故选项C 正确;选项D 中:当8n ≤时,0n a <,当9n ≥时,0n a >,所以当6n ≤时,0n b <,1n n T T +<;77890b a a a >=,889100b a a a =<,当9n ≥时,0n b >, 所以76T T >,78T T >;当8n ≥时,1n n T T +>,()()867878989108971089890T T b b a a a a a a a a a a a a a a -=+=+=+=+>,所以86T T >,所以当6n =时,n T 取得最小值,故选项D 不正确,故选:AC.8.(2022·江苏·高三专题练习)在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n nA B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( )A .n n n ABC 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值D .{}n S 有最小值【答案】ABD【解析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】由222124n n n a c b++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当=n n b c22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD.【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断. 9.(2021·江苏·盐城中学一模)对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( )A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【答案】ACD【分析】根据新定义进行判断.【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确; D .若112nn a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----, 首先函数1y x x=-在(0,)+∞上是增函数,当n 为偶数时,11()(0,1)2nn a =-∈,∴10n nnb a a =-<, 当n 为奇数时,11()2nn a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的,即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>,∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值. 三、填空题10.(2022·上海徐汇·二模)已知定义在R 上的函数()f x 满足()()121f x f x +=+,当[)0,1x ∈时,()3f x x =.设()f x 在区间[)()*,1N n n n +∈上的最小值为n a .若存在*n ∈N ,使得()127n a n λ+<-有解,则实数λ的取值范围是______________.【答案】3(,)32-∞ 【分析】根据题意,利用换元法,分别求出当[)1,2x ∈,[)2,3x ∈,[),,1x n n ∈+时,()f x 的解析式,进而求出21nn a =-,然后,得到存在*n ∈N ,使得()127n a n λ+<-有解,则有272nn λ-<有解,进而必有max272n n λ-⎡⎤<⎢⎥⎣⎦,进而求出max 272n n -⎡⎤⎢⎥⎣⎦,即可求解. 【详解】当[)0,1x ∈时,()3f x x =,因为定义在R 上的函数()f x 满足()()121f x f x +=+,()()312121f x f x x +=+=+,令11t x =+,则11x t =-,所以,当[)11,2t ∈时,有311()2(1)1f t t =-+,所以,当[)1,2x ∈时,3()2(1)1f x x =-+,()()31214(1)3f x f x x +=+=-+,令21t x =+,则21x t =-,[)22,3t ∈,有322()4(2)3f t t =-+,所以,当[)2,3x ∈时,3()4(2)3f x x =-+,同理可得,[)3,4x ∈时,3()8(3)7f x x =-+,根据规律,明显可见当[),1x n n ∈+,()2()21n n n f x x n =-+-,且此时的()f x 必为增函数,又因为n a 为()f x 在区间[)()*,1N n n n +∈上的最小值,所以,1231,3,7,21n n a a a a ===⋯=-,所以,若存在*n ∈N ,使得()127n a n λ+<-有解,则有272nn λ-<有解,进而必有max 272n n λ-⎡⎤<⎢⎥⎣⎦,根据该函数的特性,明显可见,当5n =时,有max 273232n n -⎡⎤=⎢⎥⎣⎦,所以,此时有332λ<故答案为:3(,)32-∞ 11.(2022·浙江台州·二模)已知等差数列{}n a 的各项均为正数,且数列{}n a 的前n 项和为n S ,则数列n n S na ⎧⎫⎨⎬⎩⎭的最大项为___________.(用数字作答) 【答案】1【分析】由等差数列各项均为正数可判定该数列为递增数列,结合等差数列的通项公式和前n 和公式,可判定数列n n S na ⎧⎫⎨⎬⎩⎭为递减数列,进而可得到该数列的最大项.【详解】由题,等差数列{}n a 的各项均为正数,所以10a >,0d >, 且()()111n a a n d nd a d =+-=+-, 所以数列{}n a 是递增数列,又()12n n a a n S +⋅=,所以()1111222n n n n S a a a na a nd a d +==+⎡⎤+-⎣⎦, 即nnSna 是递减数列,所以当1n =时,得到数列n n S na ⎧⎫⎨⎬⎩⎭的最大项为1111a a =⨯, 故答案为:112.(2022·全国·高三专题练习)已知数列{an }对任意m ,n ∈N *都满足am +n =am +an ,且a 1=1,若命题“∀n ∈N *,λan ≤2n a +12”为真,则实数λ的最大值为____.【答案】7【分析】先求出{}n a 的通项公式,然后参变分离转化为求最值【详解】令m =1,则an +1=an +a 1,an +1-an =a 1=1,所以数列{an }为等差数列,首项为1,公差为1,所以an =n ,所以λan ≤2n a +12⇒λn ≤n 2+12⇒λ≤n +12n, 又函数12y x x=+在(0,上单调递减,在)+∞上单调递增, 当3n =或4n =时,min 12()7n n+= 所以7λ≤ 故答案为:713.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8nn a n =+,则数列{}n a 中的最大项的n =________ . 【答案】6或7【分析】利用作商法判断数列的单调性即可求出其最大项. 【详解】()71()08nn a n =+>,令()()1172()27817181()8n n n n n a n a n n ++++==⨯≥++,解得6n ≤, 即6n ≤时,1n n a a +≥,当6n >时,1n n a a +<, 所以6a 或7a 最大, 所以6n =或7. 故答案为:6或7.14.(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,若a 1=32,an +2an +1=0,则Sn -1n S 的最大值与最小值的积为________. 【答案】-3572【分析】先计算出公比,求出Sn ,分奇偶性讨论得出Sn -1nS 的最大值与最小值,即可求解. 【详解】因为an +2an +1=0,所以112n n a a +=-, 所以等比数列{an }的公比为12-,因为a 1=32,所以Sn =31122111212nn ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-- ⎪⎛⎫⎝⎭-- ⎪⎝⎭.①当n 为奇数时,Sn =112n⎛⎫+ ⎪⎝⎭,Sn 随着n 的增大而减小,则1<Sn ≤S 1=32,又Sn -1n S 随着Sn 的增大而增大,故0<Sn -1n S ≤56; ②当n 为偶数时,Sn =112n⎛⎫- ⎪⎝⎭,Sn 随着n 的增大而增大,则34=S 2≤Sn <1,又Sn -1n S 随着Sn 的增大而增大,故712-≤Sn -1n S <0.综上,Sn -1n S 的最大值与最小值分别为56,712-.故Sn -1n S 的最大值与最小值的积为567351272⎛⎫⨯-=- ⎪⎝⎭. 故答案为:-3572. 15.(2022·河南·模拟预测(文))已知数列{}()*n a n N ∈满足11,2,n n n n a n α-+⎧=⎨⎩为奇数为偶数,则21n n n a a a ++的最大值为________.【答案】43【分析】令21n n n n a b a a ++=,n 分为奇偶性,分别求出21n n n a a a ++,通过判断{}n b 的单调性可求出其最大值【详解】令21n n n n a b a a ++=, 当n 为奇数时,21112222n n n a nn n a n n b a a n n ++++++===⋅⋅, 因为32214(4)(2)2124(2)2n n n n n b n n n n b n n ++++++⋅==<++⋅,所以2n n b b +<, 所以当n 为奇数时,数列{}n b 为递减数列, 所以当n 为奇数时,1b 最大,134b =, 当n 为偶数时,11122112242(1)2(1)1n n a n n n a n n n a b a a n n n +-+++++====⋅+++,当n 增大时,n b 在减小, 所以n 为偶数时,2b 最大,243b =, 因为4334>, 所以数列{}n b 的最大值为43,故答案为:4316.(2022·全国·模拟预测)已知数列{}n a 的前n 项和为n S ,等差数列4021n a ⎧⎫⎨⎬+⎩⎭的首项为1,公差为1,则2n n S S -的最大值为__________. 【答案】656【分析】由题意求出n n a S 和,再求出2n S ,令2n n n M S S =-,求出n M 的单调性即可求出n M 的最大值. 【详解】由题意知4021n n a =+,则2012n a n =-,则111201232n nS n ⎛⎫=++++- ⎪⎝⎭, 2111201232n S n n ⎛⎫=++++- ⎪⎝⎭, 令2111201222n n n nM S S n n n ⎛⎫=-=+++-⎪++⎝⎭,则111111112020232221222n n n n M M n n n n n n +⎡+⎤⎡⎤⎛⎫⎛⎫-=+++--+++- ⎪ ⎪⎢⎥⎢⎥+++++⎝⎭⎝⎭⎣⎦⎣⎦()()111111120120202122122122221222n n n n n n n ⎛⎫⎛⎫=+--=--=- ⎪ ⎪+++++++⎝⎭⎝⎭. 由*n ∈N ,易得当2n ≤时,12010562n n M M +-≥->⨯, 所以321M M M >>;当3n ≥时,12010782n n M M +-≤-<⨯, 所以345M M M >>>…,故n M 的最大值为31113652045626M ⎛⎫=⨯++-= ⎪⎝⎭,即当3n =时,2n n S S -取得最大值,为656. 故答案为 :656. 四、解答题17.(2022·湖北·模拟预测)已知数列{}n a 的前n 项之积..为n b ,且()2*12122n n a a a n n n N b b b +++⋅⋅⋅+=∈. (1)求数列n n a b ⎧⎫⎨⎬⎩⎭和{}n a 的通项公式;(2)求()12212n n n n n f n b b b b b ++-=+++⋅⋅⋅++的最大值. 【答案】(1)()*nn a n n N b =∈,1n n a n =+(2)56 【分析】(1)利用1(2)n n n a S S n -=-≥即项与和的关系方法求得nna b ,再利用1(2)n n n b a b n -=≥求得n a ; (2)再由定义求得n b ,并利用作差法得出()f n 是递减的,从而易得最大值.(1)∵212122n n a a a n n b b b +++⋅⋅⋅+=①,∴()()21121211212n n n n a a an b b b --+-++⋅⋅⋅+=≥-②, 由①②可得()2n n a n n b =≥,由①111ab =也满足上式,∴()*n n a n n N b =∈③, ∴()1112n n a n n b --=-≥④,由③④可得()1121n n n n a b n n b a n --=≥-, 即()1121n nn a n -=≥-,∴()112n n a n n --=≥,∴1n n a n =+. (2)由(1)可知1n na n =+,则121212311n n n b a a a n n =⋅⋅⋅=⋅⋅⋅⋅⋅⋅=++,记()121111221n n n f n b b b n n n +=++⋅⋅⋅+=++⋅⋅⋅++++, ∴()11112323f n n n n +=++⋅⋅⋅++++, ∴()()1111110222312322f n f n n n n n n +-=+-=-<+++++, ∴()()1f n f n +<,即()f n 单调递减, ∴()f n 的最大值为()121151236f b b =+=+=. 18.(2022·天津市宁河区芦台第一中学模拟预测)设数列{}n a 的前n 项和为n S ,且满足()*N n n a S n -=∈321.(1)求数列{}n a 的通项公式;(2)记()()n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩12123,为奇数,为偶数,数列{}n b 的前2n 项和为2n T ,若不等式()n n n n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立,求λ的取值范围. 【答案】(1)13-=n n a (2)⎛⎫- ⎪⎝⎭3546,.【分析】(1)利用n a 与n S 的关系即可求解;(2)根据裂项相消法和错位相减法求出数列{}n b 的前2n 项和为2n T ,再将不等式的恒成立问题转化为求最值问题即可求解.(1)由题意,当1n = 时,1113211a a a -=⇒=, 当2n ≥ 时, 11321n n a S ---=,所以()n n n n a a S S -----=113320, 即 13n n a a -=,∴ 数列{}n a 是首项为1,公比为3的等比数列,11133n n n a --∴=⨯=故数列{}n a 的通项公式为13-=n n a . (2)()()12123n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩,为奇数,为偶数,由 (1),得当n 为偶数时,13n n n n nb a -==, 当n 为奇数时, 11142123n b n n ⎛⎫=- ⎪-+⎝⎭,设数列{}n b 的前2n 项中奇数项的和为n A ,所以n nA n n n ⎛⎫=-+-+⋯+-=⎪-++⎝⎭11111114559434141, 设数列{}n b 的前2n 项中偶数项的和为n B ,n n B n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1321111242333①n n B n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352111112429333②,由-①②两,得()n n n n n n B n ++-⎛⨯⎫⎛⎫=⨯+⋯-⎛⎫=-⨯ ⎪++-⎪⎝⎭⨯ ⎪ ⎝⎭⎝⎭-21211321111139281111229332331319,整理得()nn n B +⎛⎫=-⋅ ⎪⎝⎭38927132329,故,()nn n n n n T A B n +⎛⎫=+=+-⋅ ⎪+⎝⎭23892714132329,n nn n n T n ⎛⎫⎛⎫∴+⋅-=-⋅ ⎪ ⎪+⎝⎭⎝⎭2241272713294132329.∴ 不等式()nnn n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立, 即不等式()nnλ⎛⎫-<-⋅ ⎪⎝⎭27271132329对一切*N n ∈恒成立,()xf x ⎛⎫=-⋅ ⎪⎝⎭2727132329在R 上是单调增所以,易知n⎧⎫⎪⎪⎛⎫-⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭2727132329在*N n ∈上为递增数列,∴ 当n 为偶数时,λ⎛⎫<-⋅ ⎪⎝=⎭2272713232956,当n 为奇数时, λ-<-⨯=272713232934, 解得34λ>-,所以λ的取值范围为⎛⎫- ⎪⎝⎭3546,.19.(2022·天津·高三专题练习)设数列{}n a 的前n 项和2n n S a n =-. (1)求数列{}n a 的通项公式; (2)若22log 13nn b a n ⎛⎫=+- ⎪⎝⎭,求n b 的前n 项和n T 取最小值时n 的值; (3)证明:1214.9ni i a =<∑【答案】(1)21nn a =-(2)5或6(3)证明见解析【分析】(1)利用递推关系,当2n ≥时,()1121n n S a n --=--,两式相减得121n n a a -=+,再用构造法得:1121n n a a -+=+,即可求出{}n a 的通项公式; (2)先求出{}n b 的通项公式,由二次函数求最值即可求出答案.(3)对21141i i a =-进行放缩得:()111111111()14144134444i i i i i ----=<=⨯--⎛⎫- ⎪⎝⎭,再求111()34i -⨯的前n 项和即可证明此题.()1因为2n n S a n =-,①1n =时,1121S a =-,11;a =2n ≥时,()1121n n S a n --=--②①-②得121n n a a -=+,所以1121n n a a -+=+,112a +=, 所以数列{}1n a +是2为首项,2为公比的等比数列,故1221;n nn n a a +=∴=-(2)2222226log 13log 2113log 23322n nn n b n n a n ⎛⎫⎛⎫-=+-=-+-=-=-= ⎪ ⎪⎝⎭⎝⎭,所以()62n n n b -=,于是当15n <<时,0n b <;60b =;当6n >时,0n b >.所以当5n =或6时,n T 取最小值. (3)()12111112211111111111111441434()()()1121414413434994914444n nni n i i i i i i i i i i a a ----==-⎛⎫- ⎪⎝⎭===<=⨯<⨯==-<---⎛⎫-- ⎪⎝⎭∑∑,.故1214.9ni i a =<∑20.(2022·重庆巴蜀中学高三阶段练习)已知数列{}n a 的首项10a =,()134N n n a a n n *+=+∈. (1)证明:数列{}21n a n ++是等比数列; (2)求数列{}100n a -的前n 项和n S 的最小值. 【答案】(1)证明见解析(2)304-【分析】(1)由已知等式变形得出()()1211321n n a n a n ++++=++,结合等比数列的定义可证得结论成立; (2)分析数列{}n b 的单调性,确定{}n b 的符号,由此可求得n S 的最小值.(1)解:因为()134N n n a a n n *+=+∈,则()()1211321n n a n a n ++++=++,且133a +=,所以,数列{}21n a n ++是以3为首项,3为公比的等比数列. (2)解:由(1)知,121333n n n a n -++=⋅=,则321n n a n =--.所以,10032101nn n b a n =-=--,所以,113322320n n nn n b b ++-=--=⋅->,故数列{}n b 为递增数列,1100b =-,296b =-,380b =-,428b =-,5132b =,,故当14n ≤≤时,0n b <;当5n ≥时,0n b >. 所以,n S 的最小值为4304S =-.21.(2022·辽宁实验中学模拟预测)已知数列{}n a 的前n 项和为n S ,满足:()*21N n na S n n=+∈ (1)求证:数列{}n a 为等差数列; (2)若25a =,令1n nb a =,数列{}n b 的前n 项和为n T ,若不等式()122455n n T T m m +-≤-对任意*N n ∈恒成立,求实数m 的取值范围.【答案】(1)证明见解析;(2)(,2][7,)m ∈-∞-⋃+∞.【分析】(1)利用,n n a S 关系可得1(2)(1)1n n n a n a --=--,即有1(1)1n n n a na +-=-,将两式相减并整理有112n n n a a a +-+=,即可证结论.(2)由(1)结论及题设可得143n b n =-,令21n n n c T T +=-、1231n n n c T T +++-=,应用作差法比较它们的大小,即可确定21}{n n T T +-的单调性并求其最大值,结合恒成立求m 的取值范围. (1)由题设,(1)2n n n a S +=,则11(1)(1)2n n n a S ---+=(2)n ≥, 所以111(1)(1)(1)(1)1222n n n n n n n n a n a na n a a S S ---+-+--+=-=-=,整理得1(2)(1)1n n n a n a --=--,则1(1)1n n n a na +-=-,所以11(1)(2)1(1)1n n n n n a n a na n a +----=---+,即11(1)()2(1)n n n n a a n a +--+=-,10n -≠, 所以112n n n a a a +-+=,故数列{}n a 为等差数列,得证.(2)由1121S a =+,可得11a =,又25a =,结合(1)结论知:公差214d a a =-=, 所以43n a n =-,故1143n n b a n ==-,则21111 (414581)n n n n n T n c T +-=++++++=, 所以123111111...4549818589n n n n n c T T n n n +++-=+++++++=+++,且*N n ∈, 所以111140310858941(41)(85)(89)n n c c n n n n n n n +++-=-<++++++-=,即1n n c c +<, 所以,在[1,)n ∈+∞且*N n ∈上21n n T T +-递减,则max 32111114)594(5n n T T T T +-=-=+=,要使()122455n n T T m m +-≤-对任意*N n ∈恒成立,即2514(7)(2)0m m m m --=-+≥,所以(,2][7,)m ∈-∞-⋃+∞. 题型二:不等法求数列最值 一、单选题1.(2022·河南·高三阶段练习(理))已知曲线()23e xy x x =+在点()0,0处的切线为l ,数列{}n a 的首项为1,点()()1,n n a a n N *+∈为切线l 上一点,则数列6nna ⎧⎫-⎨⎬⎩⎭中的最小项为( )A .623-B .523-C .613-D .613 【答案】C【分析】首先求出函数的导函数,即可求出切线的斜率,从而求出切线方程,则13n n a a +=,从而求出{}n a 的通项公式,再构造不等式组求出数列6n n a ⎧⎫-⎨⎬⎩⎭中的最小项;【详解】因为()23e x y x x =+,所以()()()22321e 3e 3e 31x x xx x x x y x =+++++'=,所以曲线()23e xy x x =+在点()0,0处的切线的斜率03x k y ='==.所以切线l 的方程为3y x =. 所以13n n a a +=.所以数列{}n a 是首项为1,公比为3的等比数列. 所以1663n n n na ---=. 所以由11265336733n nn n n nn n-----⎧≤⎪⎪⎨--⎪≤⎪⎩,解得131522n ≤≤.因为n *∈N ,所以7n =.所以数列6n n a ⎧⎫-⎨⎬⎩⎭中的最小项为6667133-=-.故选:C.2.(2021·辽宁·建平县实验中学高三阶段练习)已知数列{}n a 满足14a =,*1144(2,N )n n n a a n n a ---=≥∈,若124(6)na n nb na -=⋅-,且存在*N n ∈,使得2460n b m m +-≥成立,则实数m 的取值范围是( ) A.⎣⎦ B.1⎡⎣C .10,6⎡⎤⎢⎥⎣⎦D .11,32⎡⎤-⎢⎥⎣⎦【答案】D【分析】根据题意,令12n n c a =-,进而证明数列{}n c 是以12-为首项,12-为公差的等差数列,故可得22n n a n+=,242n nn b -=,在结合题意将问题转化为()2max 460n b m m +-≥,再求数列{}n b 的最大值代入解一元二次不等式即可得答案. 【详解】()*11442,n n n a a n n a ---=∈N ,()()*11412,n n n a a a n n --∴=-∈N . 令12n nc a =-, 111111122422n n n n n n n n n n a a c c a a a a a a ------∴-=-=----+ ()11142241n n n n n a a a a a ----==--+-()*1112,222n n n n a a n n a a ---=-≥∈-N ,又111122c a ==--, ∴数列{}n c 是以12-为首项,12-为公差的等差数列,11(1)222n n c n ∴=---=-,即122n n a =--, 22n n a n +∴=,()1224462na n n nn b na --∴=⋅-= ∵存在*n ∈N ,使得2460n b m m +-≥成立,()2max 460n b m m ∴+-.令11,,n n n n b b b b -+≥⎧⎨≥⎩得112426,222422,22n n nn n n n n -+--⎧≥⎪⎪⎨--⎪≥⎪⎩则34n ≤≤,*n ∈N ,3n ∴=或4n =.()34max 14n b b b ∴===, 2160m m ∴+-≥,即2610m m --≤,解得1132m -≤≤,∴实数m 的取值范围是11,32⎡⎤-⎢⎥⎣⎦.故选:D .3.(2021·浙江·高三期中)已知数列{}n a 满足11a =,)*1n a n N +=∈,则( ) A .2021512a << B .20211219a << C .20211926a << D .20212633a <<【答案】B【分析】由题意化简可得1n n a a +>,根据3311n n a a +->,利用累加法可得n a 2211n n na a a +-=,利用累加法计算化简可得13132n an +<n a <2021n =计算即可.【详解】解:显然,对任意*n N ∈,0n a >.1n a +=化简可得22110n n na a a +-=>,所以1n n a a +>,则()3322111nn n n n a a a a a ++->-=, 累加可得3311n a a n->-,所以n a又2211n n n a a a +-=,所以()1221311122n n n n n na a a a a a n ++-=<<+,则()()()111121n n n n n a a a a a a a a ++--=-+-++-()()2222223333331111131112221311332n n n n ⎡⎤⎡⎤⎢⎥⎢⎥<+++=++++⎢⎥⎢⎥--⨯⎢⎥⎢⎥⎣⎦⎣⎦, 注意到()()()()11332211233333111311k k k k k k kk k --<=--+-+-,所以()1133222333311113311222231331n n n n ⎡⎤⎛⎫⎢⎥+++<+-=- ⎪⎢⎥⎝⎭-⨯⎢⎥⎣⎦,则13132n a n +<, 所以13132n n a a n +<<n a <当2021n =n a <<1219n a <<. 故选:B4.(2020·江西·鹰潭一中高三期中(文))数列{}n a 通项公式为:2202122021n n a n +=--,则{}n a 中的最大项为( )A .第1项B .第1010项C .第1011项D .第1012项【答案】B【分析】数列{}n a 的通项公式为2202122021n n a n +=--,所以0n a >.由1111nn n n a a a a -+⎧⎪⎪⎨⎪⎪⎩得1010n =,从而求得结果.【详解】解:依题意,数列{}n a 的通项公式为2202122021n n a n +=--,所以0n a >.由1111nn n n a a a a -+⎧⎪⎪⎨⎪⎪⎩,即220212202112201922023n n n n +--+--且220232201912202122021n n n n +--+--,n Z ∈,解得1010n =,故最大项为第1010项, 故选:B . 二、多选题5.(2022·全国·高三专题练习)在数列{an }中,an =(n +1)7()8n ,则数列{an }中的最大项可以是( )A .第6项B .第7项C .第8项D .第9项【答案】AB【分析】假设an 最大,则有11,,n n n n a a a a +-≥⎧⎨≥⎩解不等式组,可求出n 的范围,从而可得答案【详解】假设an 最大,则有11,,n n n n a a a a +-≥⎧⎨≥⎩即177(1)()(2)()88n n n n +++≥且177(1)()()88n n n n -+≥,所以7(1)(2)()87(1)()8n n n n⎧+≥+⎪⎪⎨⎪+≥⎪⎩,即6≤n ≤7,所以最大项为第6项和第7项.故选:AB6.(2022·全国·高三专题练习)已知数列{}n a 满足()*,01n n a n k n N k =⋅∈<<,下列命题正确的有( )A .当12k =时,数列{}n a 为递减数列 B .当45k =时,数列{}n a 一定有最大项 C .当102k <<时,数列{}n a 为递减数列 D .当1kk-为正整数时,数列{}n a 必有两项相等的最大项 【答案】BCD 【分析】分别代入12k =和45k =计算判断AB 选项;再利用放缩法计算判断C 选项;按k 的范围分类,可判断D ;【详解】当12k =时,1212a a ==,知A 错误;当45k =时,1415n n a n a n ++=⋅,当4n <,11n n a a +>,4n >,11n n a a +<, 所以可判断{}n a 一定有最大项,B 正确; 当102k <<时,11112n n a n n k a n n +++=<≤,所以数列{}n a 为递减数列,C 正确; 当1k k -为正整数时,112k >≥,当12k =时,1234a a a a =>>>,当112k >>时,令*1k m N k =∈-, 解得1mk m =+,则()()111n n m n a a m m ++=+,当n m =时,1n n a a +=, 结合B ,数列{}n a 必有两项相等的最大项,故D 正确; 故选:BCD.7.(2020·河北·沧州市民族中学高三阶段练习)已知数列{}n a 的前n 项和为n S ,且0n a >,22n n n S a a =+,著不等式()4111n nn S ka +≥-对任意的*n N ∈恒成立,则下列结论正确的为( ) A .n a n = B .()12n n n S +=C .k 的最大值为232D .k 的最小值为15-【答案】ABC【分析】先用两式相减的方法消去n S ,求出n a ,判断A 选项;再代入已知求出n S ,判断B 选项;然后将恒成立问题转化为最值问题,最后利用数列的单调性,求出最值即可判断C ,D 选项.【详解】依题意得当1n =时,21112a a a =+,由于20n a >,解得11a =;当2n ≥时,21112n n n S a a ---=+,因此有:22112n n n n n a a a a a --=-+-;整理得:11n n a a --=,所以数列{}n a 是以11a =为首项,公差1d =的等差数列, 因此n a n =,故A 正确; ()12n n n S +=,故B 正确; 由()4111n nn S ka +≥-得:()11221nn k n++≥-, 令1122n c n n=++,则n 取2时,n c 取最小值,所以 ①当n 为偶数时,1123222n n ++≥,232k ∴≤, ②当n 为奇数时,1135223n n ++≥, 353k ∴-≤,353k ∴≥-,352332k ∴-≤≤故C 正确,D 错误.所以A 、B 、C 正确;D 错误. 故选:ABC【点睛】知识点点睛:(1)已知n S 求n a ,利用前n 项和n S 与通项公式n a 的关系()()1*112,n nn S n a S S n n N -⎧=⎪=⎨-≥∈⎪⎩,此时一定要注意分类讨论.(2)数列与不等式的恒成立问题常用构造函数的方式,通过函数的单调性、最值解决问题,注意n 只能取正整数. 三、填空题8.(2022·安徽亳州·高三期末(理))已知数列{}n a 满足14a =,()1222nn n a a n -=+≥,若不等式()2231n n n a λ--<-对任意*n ∈N 恒成立,则实数λ的取值范围是___________.【答案】5,8⎛⎫-∞ ⎪⎝⎭【分析】分析可知数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得n a ,由参变量分离法可得出2312n n λ-->,利用数列的单调性求得数列232n n -⎧⎫⎨⎬⎩⎭的最大项的值,可得出关于实数λ的不等式,进而可求得实数λ的取值范围.【详解】当2n ≥时,在等式122nn n a a -=+两边同时除以2n 可得11122n n n n a a ---=且122a =, 故数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,以1为公差的等差数列,则2112n n a n n =+-=+,()12nna n ∴=+⋅, 因为()()()2123231n a n n n n λ->--=-+对任意*n ∈N 恒成立,即2312nn λ-->, 令232n n n b -=,则()()1111212232123522222n nn n n n n n n n nb b ++++-------=-==. 当12n ≤≤时,1n n b b +>,即123b b b <<; 当3n ≥时, 1n n b b +<,即345>>>b b b .故数列{}n b 中的最大项为333328b ==,318λ∴->,解得58λ<. 故答案为:5,8⎛⎫-∞ ⎪⎝⎭.9.(2021·湖北·高三阶段练习)已知数列{}n a 的首项119a =-,其前n 项和为n S ,且满足()11(1)110n n n n n n a a a a +++-+=,则当n S 取得最小值时,n =___________.【答案】5【分析】首先根据()11(1)110n n n n n n a a a a +++-+=得到11111111n n a n a n ++=++,令111n n b a n=+得到2n b =,从而得到211n na n =-,再求当n S 取得最小值时n 的值即可.【详解】由题意,()11(1)110n n n n n n a a a a +++-+=可得111111111(1)1n n a a n n n n +-==-++,11111111n n a n a n++=++. 令111n n b a n=+,则1n n b b +=,即{}n b 是常数列, 所以111111112n n b b a n a =+==+=,故211n n a n =-. 当05n <≤时,0n a <;当6n ≥时,0n a >. 故当5n =时,n S 取得最小值. 故答案为:5 四、解答题10.(2022·全国·模拟预测(理))已知数列{}n a 满足11a =,且()*123n a a a a n n N ⋅⋅⋅⋅⋅=∈⋅.(1)求数列{}n a 的通项公式;(2)设()()11,221,1n nn a n n n b n n ⎧-⋅+≥⎪=⎨⨯⎪=⎩,且数列{}n b 的前n 项和为n S ,若()32n S n λ≥-+恒成立,求λ的取值范围.【答案】(1)(),211,1n nn a n n ⎧≥⎪=-⎨⎪=⎩(2)23λ≥ 【分析】(1)当2n ≥时,有12211n n a a a a n --⋅⋅⋅⋅⋅⋅⋅=-,两式作商求得,21n na n n =≥-,进而求得数列{}n a 的通项公式;(2)由(1)得到12n nn b +=,结合乘公比错位相减法求得111322nn n n S -+=--,进而求得()322n n n λ+≥+⋅,再根据()()322n n g n n +=+⋅的单调性,即可求解.(1)解:数列{}n a 满足11a =,且()*123n a a a a n n N ⋅⋅⋅⋅⋅=∈⋅,当2n ≥时,有12211n n a a a a n --⋅⋅⋅⋅⋅⋅⋅=-, 两式作商,可得,21n na n n =≥-,又由11a =,得,211,1n nn a n n ⎧≥⎪=-⎨⎪=⎩. (2)解:当2n ≥时,()()111122n n nnn n n n b n -⋅++-==⋅,当1n =时,111212b a ===,所以对任意的*n N ∈,均有12nn n b +=, 则12231222n nn S +=++⋅⋅⋅+, 可得2312312222n n S n ++=++⋅⋅⋅+②, 两式相减可得123111111421111131111122222222212n n n n n n n n n S n -+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+++⎢⎥⎣⎦=+++⋅⋅⋅+-=+-=---,求得111322n n n n S -+=--,由()32nS n λ≥-+,可得()322n n n λ+≥+⋅, 令()()322n n g n n +=+⋅,则()()()()()()()124132********n n n g n n n n n g n n n ++++⋅++==<+++⋅, 因为()0g n >,所以()()1g n g n +<,即随着n 增大,()g n 减小, 所以()()max 213g n g λ≥==. 11.(2022·全国·高三专题练习)数列{}n a 满足()*121224N 2n n n a a na n -+++=-∈, (1)求3a 的值;(2)求数列{}n a 前n 项和n T ; (3)令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+. 【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)证明见解析.【分析】(1)根据已知条件,分别取n =1,2,3即可依次算出123,,a a a ; (2)用作差法求出{}n a 的通项公式,再求其前n 项和; (3)求123,,S S S ,猜想n S ,用数学归纳法证明n S ;用导数证明()ln 1(0)1x x x x<+>+,令1x n =,得11ln 11n n ⎛⎫+> ⎪+⎝⎭,用这个不等式对n S 放缩即可得证. (1)依题()()312312312132223323244224a a a a a a --++⎛⎫=++-+=---= ⎪⎝⎭,314a ∴=; (2)依题当2n ≥时,()()121211212122144222n n n n n n n n nna a a na a a n a ----++⎛⎫⎡⎤=++-++-=---= ⎪⎣⎦⎝⎭, 112n n a -⎛⎫∴= ⎪⎝⎭,又1012412a +=-=也适合此式, 112n n a -⎛⎫∴= ⎪⎝⎭,∴数列{}n a 是首项为1,公比为12的等比数列,故1111221212nn n T -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-; (3)111b a ==,1111S b T ∴==⨯,1221122T b a ⎛⎫=++ ⎪⎝⎭, ()1212121221111112222T S S b T a T a T ⎛⎫⎛⎫⎛⎫∴=+=+++=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2323232331111111111123232323T S S b T a T a T ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++++=+++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,猜想:1112n n S T n ⎛⎫=+++ ⎪⎝⎭① 下面用数学归纳法证明: (i)当n =1,2时,已证明①成立;(ii)假设当n k =时,①成立,即1112k k S T k ⎛⎫=+++ ⎪⎝⎭.从而1111111112121k k k k k k T S S b T a k k k +++⎛⎫⎛⎫=+=++++++++ ⎪ ⎪++⎝⎭⎝⎭ ()111121kk T a k +⎛⎫=++++ ⎪+⎝⎭111121k T k +⎛⎫=+++⎪+⎝⎭. 故①成立. 先证不等式()ln 1(0)1xx x x<+>+ ② 令()()ln 11xg x x x=+-+, 则()22110(0)1(1)(1)x g x x x x x '=-=>>+++.。

第40招-数列最值的求法(含答案)

第40招-数列最值的求法(含答案)

【知识要点】一、数列是一个函数,所以函数求最值的很多方法同样适用于它,又由于数列是一个特殊的函数,在求最值时,又表现出它的特殊性.有些特殊的方法要理解并记住.二、数列求最值常用的方法有函数、数形结合、基本不等式、导数、单调性等,特殊的方法有夹逼法等. 【方法讲评】方法一 函数的方法使用情景 比较容易求出函数的表达式解题步骤一般先求出函数的表达式,再利用函数的方法求出数列的最值.【例1】在等差数列}{n a 中,1,101-==d a ,n S 为}{n a 前n 项和,求n S 的最大值.【点评】数列是一个特殊的函数,等差数列的前n 项和可以看作是一个关于n 的二次函数2n S An Bn =+,利用图像解答.【反馈检测1】 设等差数列{n a }的前n 项和为n S ,已知3a =12,12s >0,130s <, (1)求公差d 的取值范围;(2)指出1s ,2s ,…,12s 中哪一个值最大,并说明理由.方法二 数形结合法 使用情景 比较容易求出数列的通项解题步骤先求数列的通项,再对通项的图像进行研究.【例2】在等比数列{}n a 中,)(0*N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a ,3a 与5a 的等比中项为2.(1)求数列{}n a 的通项公式;(2)设n n a b 2log =,数列{}n b 的前n 项和为S n ,当nS S S n +++ 2121最大时,求n 的值.【点评】(1)等差数列的通项n a 可以看作是一个关于n 的一个一次函数,画出函数的图像,比较直观地看出数列的哪些项是正数,哪些项是负数,从而得到前多少项的和最大或最小.(2)注意数列{}n a 中,由于9a 0=,所以前8项的和和前9项的和相等,且都最大,所以在考虑问题时,注意那些“零”项,以免得出错误的结论. 学.科.网 【例3】已知数列{}n a 中,79()80n n a n N n *-=∈-则在数列{}n a 的前n 项中最小项和最大项分别是( )A.150,a aB. 18,a aC. 89,a aD.950,a a【点评】该题中的函数是双曲线,画出函数的图像,可以看出在靠近渐近线的地方函数取到最小值或最大值.【反馈检测2】已知等差数列{n a },*n a N ∈,n S =212)8n a +(.若1302n n b a =-,求数列 {n b }的前n 项和的最小值.方法三 单调性法使用情景数列的单调性比较容易确定解题步骤先求数列的通项,再对通项的单调性进行研究.【例4】已知数列}{na的通项公式nnna)10)(1(+=,)(Nn∈,求}{na的最大值.【点评】(1)数列按照单调性分可以分为单调增函数、单调减函数、非单调函数.(2)判断数列的单调性一般有两种方法,方法一是作差判断,如果110{}0{}n n n n n na a a a a a++->⇒-<⇒单调递增;单调递减.方法二是作商判断,如果111(0){}1(0){}n nn n n nn na aa a a aa a++>>⇒<>⇒单调递增;单调递减.【例5】设单调递增函数()f x的定义域为()0,+∞,且对任意的正实数,x y有:()()()f xy f x f y=+且1()12f=-.⑴一个各项均为正数的数列{}n a满足:()()(1)1n n nf s f a f a=++-其中nS为数列{}n a的前n项和,求数列{}n a的通项公式;⑵在⑴的条件下,是否存在正数M使下列不等式:1212221(21)(21)(21)nn na a a M n a a a⋅≥+---对一切*n N∈成立?若存在,求出M的取值范围;若不存在,请说明理由.⑵假设M 存在满足条件, 即121221(21)(21)(21)n nn M n a a a ≤+---对一切*n N ∈恒成立.令1212()21(21)(21)(21)n nn g n n a a a =+---,∴1(1)2313(21)(21)n g n n n n ++=+⨯⨯⨯⨯-+,故22(1)4841()4832123g n n n g n n n n n +++==>++++, (1)()g n g n ∴+>,∴()g n 单调递增,*n N ∴∈,()(1)g n g ≥=23. ∴230M <≤【点评】(1)本题就是利用作商法判断数列的单调性,再求数列的最值;(2)是选择作差法判断函数的单调性,还是选择作商法判断数列的单调性,主要看数列的形式,如果数列是商的形式,一般利用作商法判断数列的单调性,如果数列是和的形式,一般选择作差法判断数列的单调性.【反馈检测3】 已知数列{}n a 中,,11=a 且点()()1,n n P a a n N *+∈在直线10x y -+=上.(1)求数列{}n a 的通项公式;(2)若函数()1231111(),nf n n N n a n a n a n a *=++++∈++++求函数)(n f 的最小值; (3)设n nn S a b ,1=表示数列{}n b 的前n 项和, 试证明:1231(1),(,2)n n S S S S n S n N n *-++++=-∈≥.方法四 基本不等式法使用情景 有一正二定三相等的数学情景解题步骤先求函数的表达式,再利用基本不等式解答.【例6】广州市某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引进该设备可获得的年利润为50万元. (1)引进该设备多少年后,开始盈利? (2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.【点评】基本不等式同样可以求数列的最值.如果n 取等时的值不是正整数,可以求它附近的点的函数值,比较就可以了. 学.科.网【反馈检测4】某大学毕业生响应国家“自主创业”的号召,今年年初组织一些同学自筹资金196万元购进一台设备,并立即投入生产自行设计的产品,计划第一年维修、保养费用24万元,从第二年开始,每年所需维修、保养费用比上一年增加8万元,该设备使用后,每年的总收入为100万元,设从今年起使用n 年后该设备的盈利额为()f n 万元.(Ⅰ)写出()f n 的表达式;(Ⅱ)求从第几年开始,该设备开始盈利;(Ⅲ)使用若干年后,对该设备的处理方案有两种:方案一:年平均盈利额达到最大值时,以52万元价格处理该设备;方案二:当盈利额达到最大值时,以16万元价格处理该设备.问用哪种方案处理较为合算?请说明理由.方法五 导数法使用情景 函数比较复杂,单调性一般方法不行. 解题步骤先求函数,再求导,再研究函数的单调性.【例7】在数列}{n a 中,nn a •a k•a n n +-+=+=+2111,1(n *∈N ),其中k 是常数,且3625≤≤k . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)求数列}{n a 的最小项.以上1n -个式子相加得)11(11n k n a a n ---=-,即)11(11nk n a a n ---+=. 又k a +=11,所以)11(11n k n k a n ---++=,即(2,3,)n ka n n n=+=. 当1n =时,上式也成立.所以数列}{n a 的通项公式为(1,2,3,)n ka n n n=+=. (Ⅱ)为考查数列}{n a 的单调性,注意到(1,2,3,)n k a n n n =+=,可设函数)1)()(≥+=x xkx x f ,则21)(xkx f -=',即22)(x k x x f -='.可知)1,x k ⎡∈⎣时,0)(<'x f ;k x =时,0)(='x f ;(,)x k ∈+∞时,0)(>'x f .所以函数xkx x f +=)(在[1,k ]上是减函数;在),k ⎡+∞⎣上是增函数.因为3625≤≤k ,所以65≤≤k .(3)当56a a =,即6655kk +=+,即30k =时, 12345567,a a a a a a a a >>>>=<<. 所以数列}{n a 的最小项为11630665=+==a a . (4)当65a a <且5>k 时,6655kk +<+且25>k ,则3025<<k , 12345567,a a a a a a a a >>>>><<. 所以数列}{n a 的最小项为555ka +=.(5)当665<>k a a 且时,6655kk +>+且36k <,则3630<<k ,<<>>>>>76654321,a •a •a a a a a a .所以数列}{n a 的最小项为666k a +=. 综上所述:当25k =时,数列}{n a 的最小项为5a =10;当3025<<k 时,数列}{n a 的最小项为555ka +=;当30k =时,数列}{n a 的最小项为56a a ==11;当3036k <<时,数列}{n a 的最小项为666ka +=;当36k =时,数列}{n a 的最小项为612a =.【点评】(1)利用导数求数列的最值,不能直接求,必须先构造数列对应的函数,因为数列是离散型函数,不可导.(2)注意数列对应的函数的单调性和数列本身的单调性是有区别的,有人认为“数列对应的函数在),0(a 上单调递增,在),(+∞a 上单调递减,则数列在最靠近a x =的地方取得最大值”.如下图所示,数列对应的连续函数在),0(a 上单调递增,在),(+∞a 上单调递减,但是数列并不是在最靠近c x a x ==的处取得最大值,而是在b x =处取得最大值(其中)0,,>∈*a N c b .所以可知当数列对应的函数在),0(a 上单调递增,在),(+∞a 上单调递减,则数列不一定在最靠近a x =的地方取得最大值,必须把a x =附近的整数值代进去比较,才可以判断谁是最大值.所以一般不利用导数求数列的最值.【反馈检测5】求数列}{n n n a =的最大项与最小项.【例8】已知二项式122nx ⎛⎫+ ⎪⎝⎭.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.【点评】利用数列离散的特点,考察⎩⎨⎧≥≥-+11k k k k a a a a 或⎩⎨⎧≤≤-+11k k k k a a a a ,然后判断数列}{n a 的最值情况.(1)、若数列}{n a 中的最大项为k a ,则⎩⎨⎧≥≥-+11k kk k a a a a ;(2)、若数列}{n a 中的最小项为k a ,则⎩⎨⎧≤≤-+11k k k k a a a a .注意:这只是k a 为数列最值的必要不充分条件,不是充要条件,若k 不止一解时,需要代入检验. 学.科.网【反馈检测6】已知n x x 223)(+的展开式的系数和比n x )13(-的展开式的系数和大992,求n xx 2)12(-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项.高中数学常见题型解法归纳及反馈检测第40讲:数列最值的求法参考答案【反馈检测1答案】(1)(-247,-3);(2)当6n =时,n S 最大.解法二:由题意可得:n S =1na +(1)2n n d -=(122)n d -+22n n d -=25(12)22d n d n +- 显然0d ≠, n S 是关于自变量n 的二次函数, 由(1)知:0d <,二次函数的图像抛物线的对称轴为5122n d=-, 由(1)知:2437d -<<-, 所以6<5122d -<132,又因为n *N ∈,故当6n =时,n S 最大,即6s 最大.【反馈检测2答案】225-因此等差数列{n a }的公差大于0.1a =1s =2112)8a +(,解得1a =2.所以42n a n =-,则1302312n n b a n =-=-.即数列{n b }也为等差数列且公差为2.由23102(1)310{n n -≤+-≥,解得293122n ≤≤,因为n *N ∈,所以15n =, 故{n b }的前15项为负值, 因此15s 最小, 可知1b =-29,d =2,所以数列 {n b }的前n 项和的最小值为15s =1529215312-+⨯-()=-225.【反馈检测3答案】(1)n a n =;(2))(n f 的最小值是1(1)2f =;(3)见解析. 【反馈检测3详细解析】(1)由点P ),(1+n n a a 在直线01=+-y x 上,即11=-+n n a a ,且11=a ,数列{n a }是以1为首项,1为公差的等差数列1(1)1n a n n =+-⋅=,∴n a n =(2)n n n n f 212111)(+++++=11111(1)2342122f n n n n n n +=++++++++++ 111111(1)()021********f n f n n n n n n n +-=+->+-=++++++所以)(n f 是单调递增,故)(n f 的最小值是1(1)2f =()()()()123111111231231n S S S S n n n n n n -∴++++=-⋅+-⋅+-⋅++--⋅⎡⎤⎣⎦-()1111111111231231n n n n n n n ⎛⎫⎛⎫=+++--=++++- ⎪ ⎪--⎝⎭⎝⎭()1n n nS n n S =-=-.(,2)n N n *∈≥【反馈检测4答案】(Ⅰ)()2480196f n n n =-+-(n *∈N );(Ⅱ)从第三年开始盈利;(Ⅲ)采用方案一合算.【反馈检测4详细解析】(Ⅰ)2(1)()100196[248]480196()2n n f n n n n n n N *-=--+=-+-∈. (Ⅱ)由()0f n >得:24801960n n -+->即220490n n -+<,解得10511051n -<<,由n N*∈知,317n ≤≤,即从第三年开始盈利 (Ⅲ)方案①:年平均盈利为()f n n ,则()49494()80428024f n n n n n n =-++≤-⋅⋅=,当且仅当49n n=,即7n =时,年平均利润最大,共盈利24×7+52=220万元.方案②:2()4(10)204f n n =--+,当10n =时,取得最大值204,即经过10年盈利总额最大,共计盈利204+16=220万元两种方案获利相等,但由于方案二时间长,所以采用方案一合算. 【反馈检测5答案】331{}3, 1.n a a a ==的最大项为最小项为学.科.网【反馈检测6答案】(1)8064)1()2(555106-=-⋅⋅=x x C T ;(2)437310415360)1()2(x xx C T -=-=。

高中数列知识点总结归纳

高中数列知识点总结归纳

一、等差数列1、等差数列概念:一样地,若是一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么那个数列就叫等差数列,那个常数叫做等差数列的公差,公差通经常使用字母d 表示。

用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。

2、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

3、等差中项的概念:概念:若是a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

其中2a b A +=a ,A ,b 成等差数列⇔2a bA +=。

4、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+。

5、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项为哪一项它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP ,如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m a a d n m -=-()m n ≠;(4)在等差数列{}n a 中,假设m ,n ,p ,q N +∈且m n p q +=+,那么m n p q a a a a +=+;说明:设数列{}n a 是等差数列,且公差为d ,(Ⅰ)假设项数为偶数,设共有2n 项,那么①S 奇-S 偶nd =; ②1n n S aS a +=奇偶;(Ⅱ)假设项数为奇数,设共有21n -项,那么①S 偶-S 奇n a a ==中;②1S n S n =-奇偶。

6、数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①假设已知n S ,可用二次函数最值的求法(n N +∈);②假设已知n a ,那么n S 最值时n 的值(n N +∈)可如下确信10n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】一、数列是一个函数,所以函数求最值的很多方法同样适用于它,又由于数列是一个特殊的函数,在求最值时,又表现出它的特殊性.有些特殊的方法要理解并记住.二、数列求最值常用的方法有函数、数形结合、基本不等式、导数、单调性等,特殊的方法有夹逼法等.【方法讲评】方法一函数的方法使用情景比较容易求出函数的表达式解题步骤一般先求出函数的表达式,再利用函数的方法求出数列的最值.【例1】在等差数列中,,为前项和,求的最大值.}{n a 1,101-==d a n S }{n a n n S【点评】数列是一个特殊的函数,等差数列的前项和可以看作是一个关于的二次函数n n ,利用图像解答.2n S An Bn =+【反馈检测1】 设等差数列{}的前项和为,已知=12,>0,,n a n n S 3a 12s 130s <(1)求公差的取值范围;d (2)指出,,…,中哪一个值最大,并说明理由.1s 2s 12s方法二数形结合法使用情景比较容易求出数列的通项解题步骤先求数列的通项,再对通项的图像进行研究.【例2】在等比数列中,,公比,且,与{}n a )(0*N n a n ∈>)1,0(∈q 252825351=++a a a a a a 3a 的等比中项为2.5a (1)求数列的通项公式;{}n a (2)设,数列的前项和为S n ,当最大时,求的值.n n a b 2log ={}n b n nS S S n +++ 2121n【点评】(1)等差数列的通项可以看作是一个关于的一个一次函数,画出函数的图像,比较直观n a n 地看出数列的哪些项是正数,哪些项是负数,从而得到前多少项的和最大或最小.(2)注意数列中,{}n a由于,所以前8项的和和前9项的和相等,且都最大,所以在考虑问题时,注意那些“零”项,以免9a 0=得出错误的结论. 学.科.网【例3】已知数列中,则在数列的前项中最小项和最大项分别是({}n a )n a n N *=∈{}n a n )A. B. C. D.150,a a 18,a a 89,a a 950,a a【点评】该题中的函数是双曲线,画出函数的图像,可以看出在靠近渐近线的地方函数取到最小值或最大值.【反馈检测2】已知等差数列{},,=.若,求数列 {}的前项n a *n a N ∈n S 212)8n a +(1302n n b a =-n b n 和的最小值.方法三单调性法使用情景数列的单调性比较容易确定解题步骤先求数列的通项,再对通项的单调性进行研究.【例4】 已知数列的通项公式,,求的最大值.}{n a nn n a )109)(1(+=)(N n ∈}{n a 【点评】(1)数列按照单调性分可以分为单调增函数、单调减函数、非单调函数.(2)判断数列的单调性一般有两种方法,方法一是作差判断,如果方法二是作商判断,如果110{}0{}n n n n n n a a a a a a ++->⇒-<⇒单调递增;单调递减.111(0){}1(0){}n n n n n n n na a a a a a a a ++>>⇒<>⇒单调递增;单调递减.【例5】设单调递增函数的定义域为,且对任意的正实数有:()f x ()0,+∞,x y 且.()()()f xy f x f y =+1()12f =-⑴一个各项均为正数的数列满足:其中为数列的前项和,{}n a ()()(1)1n n n f s f a f a =++-n S {}n a n 求数列的通项公式;{}n a ⑵在⑴的条件下,是否存在正数M 使下列不等式:121221)(21)(21)n n n a a a M a a a ⋅≥---对一切成立?若存在,求出的取值范围;若不存在,请说明理由.*n N ∈M ⑵假设存在满足条件,M 即对一切恒成立. 1212221(21)(21)(21)n nn a a a M n a a a ≤+--- *n N ∈令,12122()21(21)(21)(21)n nn a a a g n n a a a =+--- , ∴1212(1)(1)2313(21)(21)n n n g n n n n +⨯⨯⨯⨯⨯++=+⨯⨯⨯⨯-+ 故,22(1)224841()4832123g n n n n g n n n n n ++++==>++++,单调递增,,.(1)()g n g n ∴+>∴()g n *n N ∴∈()(1)g n g ≥=. ∴0M <≤【点评】(1)本题就是利用作商法判断数列的单调性,再求数列的最值;(2)是选择作差法判断函数的单调性,还是选择作商法判断数列的单调性,主要看数列的形式,如果数列是商的形式,一般利用作商法判断数列的单调性,如果数列是和的形式,一般选择作差法判断数列的单调性.【反馈检测3】 已知数列中,且点在直线上.{}n a ,11=a ()()1,n n P a a n N *+∈10x y -+=(1)求数列的通项公式;{}n a (2)若函数求函数的最小值;()1231111(),nf n n N n a n a n a n a *=++++∈++++ )(n f (3)设表示数列的前项和,n nn S a b ,1={}n b n 试证明:.1231(1),(,2)n n S S S S n S n N n *-++++=-∈≥ 方法四基本不等式法使用情景有一正二定三相等的数学情景解题步骤先求函数的表达式,再利用基本不等式解答.【例6】广州市某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引进该设备可获得的年利润为50万元.(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.【点评】基本不等式同样可以求数列的最值.如果n 取等时的值不是正整数,可以求它附近的点的函数值,比较就可以了. 学.科.网【反馈检测4】某大学毕业生响应国家“自主创业”的号召,今年年初组织一些同学自筹资金万196元购进一台设备,并立即投入生产自行设计的产品,计划第一年维修、保养费用万元,从第二年开始,24每年所需维修、保养费用比上一年增加万元,该设备使用后,每年的总收入为万元,设从今年起使8100用年后该设备的盈利额为万元.n ()f n (Ⅰ)写出的表达式;()f n (Ⅱ)求从第几年开始,该设备开始盈利;(Ⅲ)使用若干年后,对该设备的处理方案有两种:方案一:年平均盈利额达到最大值时,以万元52价格处理该设备;方案二:当盈利额达到最大值时,以16万元价格处理该设备.问用哪种方案处理较为合算?请说明理由.方法五导数法使用情景函数比较复杂,单调性一般方法不行.解题步骤先求函数,再求导,再研究函数的单调性.【例7】在数列中,(),其中是常数,且}{n a nn k a a k a n n +-+=+=+2111,1n *∈N k .3625≤≤k (Ⅰ)求数列的通项公式;(Ⅱ)求数列的最小项.}{n a }{n a以上个式子相加得,即.1n -)11(11n k n a a n ---=-)11(11n k n a a n ---+=又,所以,即.k a +=11)11(11n k n k a n ---++=(2,3,)n ka n n n=+= 当时,上式也成立.1n =所以数列的通项公式为.}{n a (1,2,3,)n ka n n n=+= (Ⅱ)为考查数列的单调性,注意到,可设函数,}{n a (1,2,3,)n k a n n n =+= )1)()(≥+=x xkx x f则,即.21)(xkx f -='22)(x k x x f -='可知时,;时,;时,.x ⎡∈⎣0)(<'x f k x =0)(='x f )x ∈+∞0)(>'x f所以函数在[1,]上是减函数;在上是增函数.xkx x f +=)(k )+∞因为,所以.3625≤≤k 65≤≤k(3)当,即,即时,56a a =6655kk +=+30k =. 所以数列的最小项为12345567,a a a a a a a a >>>>=<< }{n a .11630665=+==a a (4)当且时,且,则,65a a <5>k 6655kk +<+25>k 3025<<k . 所以数列的最小项为.12345567,a a a a a a a a >>>>><< }{n a 555ka +=(5)当时,且,则,665<>k a a 且6655kk +>+36k <3630<<k .<<>>>>>76654321,a a a a a a a a 所以数列的最小项为.}{n a 666k a +=综上所述:当时,数列的最小项为=10;当时,数列的最小项为25k =}{n a 5a 3025<<k }{n a ;当时,数列的最小项为=11;当时,数列的最小项为555ka +=30k =}{n a 56a a =3036k <<}{n a ;当时,数列的最小项为.666ka +=36k =}{n a 612a =【点评】(1)利用导数求数列的最值,不能直接求,必须先构造数列对应的函数,因为数列是离散型函数,不可导.(2)注意数列对应的函数的单调性和数列本身的单调性是有区别的,有人认为“数列对应的函数在上单调递增,在上单调递减,则数列在最靠近的地方取得最大值”.如下图所),0(a ),(+∞a a x =示,数列对应的连续函数在上单调递增,在上单调递减,但是数列并不是在最靠近),0(a ),(+∞a 处取得最大值,而是在处取得最大值(其中.所以可知当数列对应的c x a x ==的b x =)0,,>∈*a N c b 函数在上单调递增,在上单调递减,则数列不一定在最靠近的地方取得最大值,必须),0(a ),(+∞a a x =把附近的整数值代进去比较,才可以判断谁是最大值.所以一般不利用导数求数列的最值.a x =【反馈检测5】求数列的最大项与最小项.}{nn n a =方法六夹逼法使用情景二项展开式中研究最值问题.解题步骤利用数列离散的特点,考察或,然后判断数列的最值情况.⎩⎨⎧≥≥-+11k k k k a a a a ⎩⎨⎧≤≤-+11k k k k a a a a }{n a 【例8】已知二项式.122nx ⎛⎫+ ⎪⎝⎭(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.【点评】利用数列离散的特点,考察或,然后判断数列的最值情况.(1)、⎩⎨⎧≥≥-+11k k k k a a a a ⎩⎨⎧≤≤-+11k k k k a a a a }{n a 若数列中的最大项为,则;(2)、若数列中的最小项为,则.注意:}{n a k a ⎩⎨⎧≥≥-+11k kk k a a a a }{n a k a ⎩⎨⎧≤≤-+11k k k k a a a a 这只是为数列最值的必要不充分条件,不是充要条件,若k 不止一解时,需要代入检验. 学.科.网k a 【反馈检测6】已知nx x 223)(+的展开式的系数和比nx )13(-的展开式的系数和大992,求nx x 2)12(-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项.高中数学常见题型解法归纳及反馈检测第40讲:数列最值的求法参考答案【反馈检测1答案】(1)(-,-3);(2)当时,最大.2476n =n S解法二:由题意可得:=+=+=n S 1na (1)2n n d -(122)n d -22n n d -25(12)22d n d n +-显然, 是关于自变量的二次函数,0d ≠n S n 由(1)知:,0d <二次函数的图像抛物线的对称轴为,5122n d =-由(1)知:,2437d -<<-所以6<<,5122d -132又因为,n *N ∈故当时,最大,即最大.6n =n S 6s【反馈检测2答案】225-因此等差数列{}的公差大于0.n a ==,解得=2.1a 1s 2112)8a +(1a 所以,则.42n a n =-1302312n n b a n =-=-即数列{}也为等差数列且公差为2.n b 由,解得,23102(1)310{n n -≤+-≥293122n ≤≤因为,所以,n *N ∈15n =故{}的前15项为负值,n b 因此最小,15s 可知=-29,=2,1b d 所以数列 {}的前项和的最小值为n b n ==-225.15s 1529215312-+⨯-()【反馈检测3答案】(1);(2)的最小值是;(3)见解析.n a n =)(n f 1(1)2f =【反馈检测3详细解析】(1)由点P 在直线上,即,),(1+n n a a 01=+-y x 11=-+n n a a 且,数列{}是以1为首项,1为公差的等差数列,11=a n a 1(1)1n a n n =+-⋅=∴n a n =(2)nn n n f 212111)(+++++=11111(1)2342122f n n n n n n +=++++++++++ 111111(1)()021********f n f n n n n n n n +-=+->+-=++++++所以是单调递增,故的最小值是 )(n f )(n f 1(1)2f =()()()()123111*********n S S S S n n n n n n -∴++++=-⋅+-⋅+-⋅++--⋅⎡⎤⎣⎦- ()1111111111231231n n n n n n n ⎛⎫⎛⎫=+++--=++++- ⎪ ⎪--⎝⎭⎝⎭.()1n n nS n n S =-=-(,2)n N n *∈≥【反馈检测4答案】(Ⅰ)();(Ⅱ)从第三年开始盈()2480196f n n n =-+-n *∈N 利;(Ⅲ)采用方案一合算.【反馈检测4详细解析】(Ⅰ).2(1)()100196[248]480196()2n n f n n n n n n N *-=--+=-+-∈(Ⅱ)由得:即,解得,由()0f n >24801960n n -+->220490n n -+<1010n <<+知,,即从第三年开始盈利n N *∈317n ≤≤(Ⅲ)方案①:年平均盈利为,则,当且仅当()f n n()494(8048024f n n n n =-++≤-⋅+=,即时,年平均利润最大,共盈利24×7+52=220万元.49n n=7n =方案②:,当时,取得最大值204,即经过10年盈利总额最大,共计盈2()4(10)204f n n =--+10n =利204+16=220万元两种方案获利相等,但由于方案二时间长,所以采用方案一合算.【反馈检测5答案】学.科.网31{} 1.n a a a ==【反馈检测6答案】(1)8064)1()2(555106-=-⋅⋅=x x C T ;(2)437310415360)1()2(x x x C T -=-=。

相关文档
最新文档