高三数学一轮复习统计与概率练习题
高考数学一轮复习《统计》练习题(含答案)
高考数学一轮复习《统计》练习题(含答案)一、单选题1.已知条件p :11x -<<,q :x >m ,若p 是q 的充分不必要条件,则实数m 的取值范围是( ) A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-2.下表为随机数表的一部分:08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237已知甲班有60位同学,编号为00~59号,规定:利用上面的随机数表,从第1行第4列的数开始,从左向右依次读取2个数,则抽到的第8位同学的编号是( ) A .11B .15C .25D .373.一组数据的方差为()20S S ≥,将该组数据都乘以2,所得到的一组新数据的标准差为( )A .22S B .SC .2SD .2S4.甲、乙两所学校的男女生比例如图所示,已知甲校学生总数为1500,乙校学生总数为1000,下列结论错误的是( )A .甲校女生比乙校女生多B .乙校男生比甲校男生少C .乙校女生比甲校男生少D .甲校女生比乙校男生少5.某校共有学生3000人,为了解学生的身高情况,用分层抽样的方法从三个年级中抽取容量为100的样本,其中高一抽取40人,高二抽取30人,则该校高三学生人数为( ) A .600B .800C .900D .12006.设某高中的男生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据()(12)i i x y i n =,,,,,用最小二乘法建立的回归方程为ˆ0.8580.71y x =-,则下列结论中不正确的是( ) A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(),x yC .若该高中某男生身高增加1cm ,则其体重约增加0.85kgD .若该高中某男生身高为170cm ,则可断定其体重必为63.79kg 7.x 是12100,,,x x x 的平均值,5为4120,,,x x x 的平均值,10为4142100,,,x x x 的平均值,则x =( ) A .8B .9C .15D .1528.某学校有男生400人,女生600人.为调查该校全体学生每天睡眠时间,采用分层抽样的方法抽取样本,计算得男生每天睡眠时间均值为7.5小时,方差为1,女生每天睡眠时间为7小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为( ). A .0.45B .0.62C .0.7D .0.769.某样本点)()(,1,2,,i i x y i n =⋅⋅⋅的经验回归方程为ˆ0.50.7yx =+,当8x =时,y 的实际值为4.5,则当8x =时,预测值与实际值的差值为( ). A .0.1B .0.2C .0.3D .0.410.若数据9,m ,6,n ,5的平均数为7,方差为2,则数据11,9,21m -,17,21n -的平均数和方差分别为( ) A .13,4B .14,4C .13,8D .14,811.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A .甲的化学成绩领先年级平均分最多.B .甲有2个科目的成绩低于年级平均分.C .甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果.12.冬末春初,乍暖还寒,人们容易感冒发热,若发生群体性发热,则会影响到人们的身体健康,干扰正常工作生产,某大型公司规定:若任意连续7天,每天不超过5人体温高于37.3℃,则称没有发生群体性发热,下列连续7天体温高于37.3℃人数的统计特征数中,能判定该公司没有发生群体性发热的为( )(1)中位数为3,众数为2 (2)均值小于1,中位数为1(3)均值为3,众数为4 (4)均值为2 A .(1)(3)B .(3)(4)C .(2)(3)D .(2)(4)二、填空题13.某校高一、高二、高三年级的学生人数之比为5:5:4,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生人数为20,则抽取的样本容量为______.14.已知具有线性相关的变量x 、y ,设其样本点为()(1,2,,,8)i i i A x y i =,回归直线方程为1ˆ2yx b =+,若128(6,2)OA OA OA +++=(O 为原点),则b =_______.15.已知一组数据按顺序排列为:12,16,20,n ,46,51,58,60.若这组数据的第30百分位数的两倍与这组数据的第50百分位数相等,则n 的值为___________.16.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中的数据得线性回归方程为y bx a =+,其中20b =-,预测当产品价格定为9.5(元)时,销量约为__________件.三、解答题17.某区政府组织了以“不忘初心,牢记使命”为主题的教育活动,为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参与主题教育活动时间(单位:h )的频率分布直方图如图所示,已知参与主题教育活动时间在(]12,16内的人数为92.(1)求n 的值;(2)以每组数据所在区间的中点值作为本组的代表,估算这些党员干部参与主题教育活动时间的中位数(中位数精确到0.01).(3)如果计划对参与主题教育活动时间在(]16,24内的党员干部给予奖励,且在(]16,20,(]20,24内的分别评为二等奖和一等奖,那么按照分层抽样的方法从获得一、二等奖的党员干部中选取5人参加社区义务宣讲活动,再从这5人中随机抽取2人作为主宣讲人,求这2人均是二等奖的概率.18.由于疫情影响,今年我们学校开展线上教学,高一年级某班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20,0.05,则根据直方图所提供的信息:(1)这一天上网学习时间在100~119分钟之间的学生有多少人?(2)估计这40位同学的线上平均学习时间(同一组中的数据用该组区间的中点值为代表)以及中位数分别是多少?(精确到0.1)(3)如果只用这40名学生这一天上网学习时间作为样本去推断该校高一年级全体学生该天的上网学习时间,这样推断是否合理?为什么?19.省政府坚持以习近平新时代中国特色社会主义思想为指导,落实全国、全省教育大会部署,坚持社会主义办学方向,落实立德树人根本任务,发展素质教育,推进育人方式变革,引导全社会树立科学的教育质量观和人才培养观,切实减轻有损中小学生身心健康的过重学业负担,遵循教育教学规律,促进中小学生健康成长,培养德智体美劳全面发展的社会主义建设者和接班人.从某市抽取1000名一年级小学生进行调查,统计他们每周做作业的时长(单位:小时),根据结果绘制的频率分布直方图如下:(1)根据频率分布直方图,求所有被抽查小学生每周做作业的平均时长和中位数;(同一组中的数据用该组区间的中点值作代表)(2)①为了进一步了解,现采用分层抽样的方法从[8,10]和[10,12]组中抽取50名学生,则两组各抽取多少人?②再利用分层抽样从抽取的50人中选5人参加一个座谈会.现从参加座谈会的5名学生中随机抽取两人发言,求[8,10]小组中恰有2人发言的概率?20.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.21.道德与法律的联系:法律、道德都是行为规范,都是为规范人们的行为而规定的行动准则.1.法律需要道德的奠基和撑持;2.道德的实施需要法律的强制保障.某校进行了一次道德与法律的相关测试(满分:100分),并随机抽取了50个统计其分数,得到的结果如下表所示: 成绩/分 [)0,20[)20,40[)40,60[)60,80[)80,100人数/个 44102210(1)若同一组数据用该区间中点值作代表,试估计这次测试的平均分和中位数(所得结果四舍五入保留整数);(2)假设处于[)20,40的4个人的成绩分别为20,26,35,38,求表中成绩的10%分位数; (3)以频率估计概率,若在这个学校中,随机挑选3人,记3人的成绩在[)80,100间的数量为随机变量X ,求X 的分布列和数学期望()E X .22.某校从高三年级学生中随机抽取100名学生的某次数学考试成绩,将其成绩分成[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的5组,制成如图所示的频率分布直方图.(1)求图中x 的值;(2)估计这组数据的平均数;(3)若成绩在[)50,60内的学生中男生占40%.现从成绩在[)50,60内的学生中随机抽取2人进行分析,求2人中恰有1名女生的概率.23.某校从高三学生中选取了50名学生参加数学质量检测,成绩(单位:分)分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出频率分布表;(2)画出频率直方图及频率折线图.24.某农业科学研究所为检验某农作物种子的培育有效率,进行了如下试验:一是对该农作物的10000粒种子进行培育,发现有20粒种子未发芽;二是将未进行培育的该农作物的2500粒种子种植在5块试验田中,各试验田种植的种子数及未发芽数如下表:(1)求y 关于x 的回归直线方程; (2)在上述试验下,若以1nN-表示该农作物种子的培育有效率,其中n 为进行培育的10000粒种子的未发芽数,N 为依据上述回归方程估算的未进行培育的10000粒种子的未发芽数,请估计该农作物种子的培育有效率(结果保留3位有效数字).参考公式;在回归方程ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx==-⋅=-∑∑,ˆˆa y bx=-参考答案1.D2.A3.D4.D5.C6.D7.A8.D9.B10.C11.A12.D 13.7014.18-##-0.12515.34 16.6017.(1)由已知可得,0.25(0.02500.04750.05000.0125)0.1150a =-+++=. 则0.1150492n ⨯⨯=,得922000.11504n ==⨯.(2)设中位数为x ,则0.050040.01254(16)0.11500.5x ⨯+⨯+-⨯=,得13.83x ≈.(3)按照分层抽样的方法从(16,20]内选取的人数为0.050540.05000.0125⨯=+,从(20,24]内选取的人数为0.0125510.05000.0125⨯=+.记二等奖的4人分别为a ,b ,c ,d ,一等奖的1人为A ,事件E 为“从这5人中抽取2人作为主宣讲人,且这2人均是二等奖”.从这5人中随机抽取2人的基本事件为(,)a b ,(,)a c ,(,)a d ,(,)a A ,(,)b c ,(,)b d ,(,)b A ,(,)c d ,(,)c A ,(,)d A ,共10种,其中2人均是二等奖的情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种, 由古典概型的概率计算公式得()63105P E ==. 18.(1)因为频数=样本容量⨯频率,一天上网学习时间在100119分钟之间的学生所占频率为0.35,所以一天上网学习时间在100~119分钟之间的学生人数为400.3514⨯=(人) (2)40位同学的线上学习时间估计值为:0.1569.90.2589.90.35109.90.20129.90.05149.9104.9⨯+⨯+⨯+⨯+⨯=分钟在中位数左边和右边的小长方形的面积和是相等的,设在99.9~119.9靠近左侧长度为x ,则0.15+0.25+0.350.5x =解得0.27x ≈; 所以中位数估计值是99.9+0.27=100.17100.2≈(3)因为该样本的选取只在高一某班,不具有代表性,所以这样推断不合理. 19.(1)设抽查学生做作业的平均时长为x ,中位数为y ,0.0510.130.2550.370.1590.1110.0513 6.8x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 0.050.10.250.15(6)0.5y y =+++⨯-=,解得203y =即抽查学生做作业的平均时长为6.8,中位数为203. (2)①[8,10]组的人数为10000.15150⨯=人,设抽取的人数为a ,[]10,12组的人数为10000.1100⨯=人, 设抽取的人数为b ,则50150100250a b ==,解得30a =,20b = 所以在[8,10]和[]10,12两组中分别抽取30人和20人,②再抽取5人,其中[8,10]和[]10,12两组中分别抽取3人和2人,将[8,10]组中被抽取的工作人员标记为1A ,2A ,3A ,将[]10,12中的标记为1B ,2B . 设事件C 表示从[8,10]小组中恰好抽取2人,则抽取的情况如下:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B 共10种情况;其中在[8,10]中恰好抽取2人有3种,则3()10P C =. 20.(1)由题意得,()20.040.080.0651a +++⨯=,解得0.01a =,故所求平均数为17.50.427.50.332.50.0537.50.0524.25⨯0.2+22.5⨯+⨯+⨯++=(元); (2)由题意得,消费在[)15,20,[)20,25的高中女生分别有3人和6人,故X 的可能取值为0,1,2,3,∴()6033395021C C P X C ===,()21633915128C C P X C ===,()1263393214C C P X C ===,()0363391384C C P X C ===, 故X 的分布列为:∴()515310123121281484E X =⨯+⨯+⨯+⨯=; 故答案为:1. 21.(1)估计这次测试的平均分为1043045010702290106250x ⨯+⨯+⨯+⨯+⨯==(分);设这次测试的中位数为0x ,显然()060,80x ∈,则060441022200.550x -+++⋅=,解得066x ≈(分). 即估计这次测试的中位数为66.(2)由于5010%5⨯=,所以表中成绩的10%分位数为2026232+=. (3)X 所有可能取值为0,1,2,3.由表中数据可知,任意挑选一人,成绩在[)80,100间的概率为101505=. 所以()346405125P X ⎛⎫=== ⎪⎝⎭,()21341481C 55125P X ⎛⎫=== ⎪⎝⎭, ()122341122C 55125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()31135125P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为故X 的数学期望()6448121301231251251251255E X =⨯+⨯+⨯+⨯=. 22.(1)由频率分布直方图得()0.0050.0350.0300.010101x ++++⨯=,解得0.020x =, 所以图中x 的值是0.020.(2)由频率分布直方图得这组数据的平均数: (550.005650.020750.03585x =⨯+⨯+⨯+⨯)0.030950.0101077+⨯⨯=, 所以这组数据的平均数为77.(3)数学成绩在[)50,60内的人数为0. 005101005⨯⨯=(人),其中男生人数为540%2⨯=(人),则女生人数为3人,记2名男生分别为1A ,2A ,3名女生分别为1B ,2B ,3B ,从数学成绩在[)50,60内的5人中随机抽取2人进行分析的基本事件为:121112132122A A A B A B A B A B A B ,,,,,,23121323A B B B B B B B ,,,,共10个不同结果,它们等可能, 其中2人中恰有1名女生的基本事件为111213212223,,,,,A B A B A B A B A B A B ,共6种结果, 所以2人中恰有1名女生的概率为为63105=. 23.(1)解:频率分布表如下:(2) 频率直方图及频率折线图如图所示.24. (1)依题意,3004005006007005005x ++++==,2466755y ++++==, 513002400450066006700713700ii i x y ==⋅+⋅+⋅+⋅+⋅=∑, 52222221(34567)100001350000i i x==++++⋅=∑, 于是得512252113700550051200ˆ0.01213500005500100000i ii i i x y nx y b x nx==-⋅-⋅⋅====-⋅-∑∑,ˆˆ50.0125001ay bx =-=-⨯=-, 所以y 关于x 的回归直线方程为ˆ0.0121yx =-; (2)由(1)知,估计未进行培育的10000粒种子的未发芽数N 约为:ˆ0.012100001119y =⨯-=,而已培育的10000粒种子有20粒种子未发芽,即20n =, 所以该农作物种子的培育有效率为209910832119119-=≈。
高考数学第一轮复习概率专项练习(含答案)
高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是高考数学第一轮复习概率专项练习,请考生掌握。
一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。
一轮复习专题55 统计与概率综合练习
专题55统计与概率综合练习一、选择题:本题12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某校高一、高二、高三年级学生人数分别是400、320、280。
采用分层抽样的方法抽取50人,参加学校举行的社会主义核心价值观知识竞赛,则样本中高三年级的人数是()。
A 、14B 、16C 、18D 、20【答案】A【解析】高三年级的人数是1450280320400280=⨯++(人),故选A 。
2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为15,乙组数据的平均数为8.16,则x 、y 的值分别为()。
A 、2、5B 、5、5C 、5、8D 、8、8【答案】C【解析】∵甲组数据的中位数为15,∴5=x ,乙组数据的平均数为8.16,∴8.165241810159=+++++y ,∴8=y ,故选C 。
3.万达中心购物广场在“双11”开展的“买三免一”促销活动异常火爆,对当日8时至22时的销售额进行统计,以组距为2小时的频率分布直方图如图所示。
已知12时至16时的销售额为90万元,则10时至12时的销售额为()。
A 、60万元B 、80万元C 、100万元D 、120万元【答案】A【解析】该商场“双11”8时至22时的总销售额为2002125.0100.090=⨯+万元,∴10时至12时的销售额为60)2150.0(200=⨯⨯万元,故选A 。
4.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()。
(注:结余=收入-支出)A 、收入最高值与收入最低值的比是13:B 、结余最高的月份是7月C 、1至2月份的收入的变化率与4至5月份的收入的变化率相同D 、前6个月的平均收入为40万元【答案】D【解析】收入最高值为90万元,收入最低值为30万元,其比是13:,A 对,结余最高为7月份,为602080=-,B 对,1至2月份的收入的变化率与4至5月份的收入的变化率相同,C 对,前6个月的平均收入为45)605030306040(61=+++++万元,D 错,故选D 。
数学一轮复习高频考点集中练概率统计含解析
高频考点集中练概率统计1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0。
45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0。
3B.0。
4C。
0。
6D。
0.7【解析】选B.方法一:画Venn图,如图设只用非现金支付(不用现金支付)的概率为x,则0。
45+0.15+x=1,解得x=0。
4,所以不用现金支付的概率为0。
4.方法二:记“用现金支付”为事件A,“用非现金支付”为事件B,则“只用非现金支付(不用现金支付)”为事件B—(A∩B),由已知,P(A)=0.45+0。
15=0。
6,P(A∩B)=0。
15,又P(A∪B)=P(A)+P(B)—P(A∩B)=0。
6+P(B)-0。
15=1,所以P(B)=0。
55,P(B—(A∩B))=P(B)—P(A∩B)=0.55—0.15=0。
4。
【真题拾贝】解决此类问题:①判断事件的基本关系利用概率的计算公式计算;②若事件为互斥事件的和,则由公式P(A∪B)=P(A)+P(B)+P(AB)计算可得;③若事件为独立事件的积,则由公式P(AB)=P(A)P(B)计算可得。
2。
(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数字特征是()A。
中位数B。
平均数 C.方差 D.极差【命题思维分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【解析】选A.由于去掉1个最高分、1个最低分,不影响中间的数值,故中位数不变。
【真题拾贝】本题旨在考查学生对中位数、平均数、方差、极差本质的理解。
理解概念即可.3。
(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2。
小题专练11-2023届高考数学一轮复习新高考版
小题专练11计数原理、概率与统计(A)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1..(考点:古典概型的应用,★)有编号分别为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为().A.1 3B.56C.23D.8272.(考点:随机数表的应用,★)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为().A.21B.09C.02D.173(考点:二项分布的期望与方差,★)已知随机变量ξ~B(n,p),且E(ξ)=6,D(ξ)=3,则n的值为().A.10B.8C.16D.124.(考点:组合和计数原理的应用,★★)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有().A.60种B.64种C.65种D.66种5.(考点:二项式定理的应用,★★)设(1-2x)n=a0+a1x+a2x2+…+a n x n,若a3+a4=0,则a5=().A.256B.-128C.64D.-326.(考点:排列组合的应用,★★)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买4袋该食品,能获奖的概率为().A.4 27B.827C.49D.897.(考点:条件概率的应用,★★)若全体Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(B|A)的值为().A.2 3B.13C.12D.358.(考点:线性回归方程,★★)具有相关关系的两个量x 、y 的一组数据如下表,回归方程是y ^=0.67x+54.9,则m=( ).x 10 20 30 40 50 y62m758189A.65B.67C.68D.70二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:正态分布与线性回归,★★)下列说法中正确的是( ).A .已知随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,则P (2<ξ<4)=0.16B .以模型y=c e kx去拟合一组数据时,为了求出回归方程,设z=ln y ,将其变换后得到线性回归方程z ^=0.3x+4,则c ,k 的值分别是e 4和0.3C .已知两个变量具有线性相关关系,其回归直线方程为y ^=a+bx ,若b=2,x −=1,y −=3,则a=1 D .若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为1610.(考点:扇形统计图,★★)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ). A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半11.(考点:独立性检验的应用,★★)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”做了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数的35,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有( )人. 附:P (K 2≥k 0) 0.050 0.010 k 03.8416.635K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ). A .25 B .45C .60D .7512.(考点:概率的求解公式,★★)下列对各事件发生的概率判断正确的是( ).A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该学生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29三、填空题:本题共4小题,每小题5分,共20分.13.(考点:分层抽样的应用,★★)某公司的老年人、中年人、青年人的比例为2∶6∶4,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则n= . 14.(考点:二项式定理的应用,★★)若二项式(√x +m x 2)n 的展开式的二项式系数之和为32,常数项为10,则实数n 的值为 ,实数m 的值为 .15.(考点:正态分布的应用,★★)已知在某市的高二期末考试中,该市学生的数学成绩X~N (90,σ2),若P (70≤X≤90)=0.4,则从该市学生中任选一名学生,该学生的数学成绩小于110分的概率为 .16.(考点:离散型随机变量的数学期望,★★★)某袋中装有5个除编号外完全相同的小球,编号为1,2,3,4,5.现从该袋内随机取出3个小球,记被取出的小球的最大号码数为ξ,则E (ξ)= .答案解析:1.(考点:二项分布的期望与方差,★)已知随机变量ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则n 的值为( ). A .10 B .8 C .16 D .12【解析】依题意,由二项分布的期望和方差公式得{E (ξ)=np =6,D (ξ)=np (1-p )=3,解得{n =12,p =12. 【答案】D2.(考点:随机数表的应用,★)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( ).A .21B .09C .02D .17【解析】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33的数字以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02. 【答案】C3.(考点:古典概型的应用,★)有编号分别为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为( ). A .13 B .56 C .23 D .827【解析】以(a ,b ,c )表示编号为1,2,3的盒子分别放编号为a ,b ,c 的小球,则所有的基本事件有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),共6种,其中,事件“小球的编号与盒子编号全不相同”所包含的基本事件有(2,3,1),(3,1,2),共2个,因此“小球的编号与盒子编号全不相同”的概率为26=13. 【答案】A4.(考点:组合和计数原理的应用,★★)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .64种C .65种D .66种【解析】从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,有3种情况:4个偶数,2个偶数2个奇数,4个奇数.所以不同的取法共有C 44+C 42C 52+C 54=66(种).【答案】D5.(考点:二项式定理的应用,★★)设(1-2x )n =a 0+a 1x+a 2x 2+…+a n x n ,若a 3+a 4=0,则a 5=( ). A .256B .-128C .64D .-32【解析】∵a 3+a 4=C n 3·(-2)3+C n 4·(-2)4=0,∴n=5,则a 5=C 55·(-2)5=-32.【答案】D6.(考点:排列组合的应用,★★)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买4袋该食品,能获奖的概率为( ). A .427 B .827 C .49 D .89【解析】由分步乘法计数原理可知,3种不同的精美卡片随机放进4袋食品中共有34=81种不同放法,4袋食品中有3种不同的卡片的放法有C 42·A 33=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C . 【答案】C7.(考点:条件概率的应用,★★)若全体Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P (B|A )的值为( ). A .23 B .13 C .12 D .35【解析】由题意可得P (A )=36=12,事件AB={2,5},则P (AB )=26=13,由条件概率公式得P (B|A )=1312=23. 【答案】A8.(考点:线性回归方程,★★)具有相关关系的两个量x 、y 的一组数据如下表,回归方程是y ^=0.67x+54.9,则m=( ).A.65B.67C.68D.70 【解析】∵x −=10+20+30+40+505=30,y −=62+m+75+81+895=307+m5,将点(30,307+m 5)代入回归直线方程得0.67×30+54.9=307+m 5,解得m=68.故选C. 【答案】C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:正态分布与线性回归,★★)下列说法中正确的是( ).A .已知随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,则P (2<ξ<4)=0.16B .以模型y=c e kx去拟合一组数据时,为了求出回归方程,设z=ln y ,将其变换后得到线性回归方程z ^=0.3x+4,则c ,k 的值分别是e 4和0.3C .已知两个变量具有线性相关关系,其回归直线方程为y ^=a+bx ,若b=2,x −=1,y −=3,则a=1 D .若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为16 【解析】∵随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,∴P (2<ξ<4)=P (ξ<4)-0.5=0.84-0.5=0.34,故A 错误; ∵y=c e kx ,∴ln y=ln(c e kx )=kx+ln c ,∵z ^=0.3x+4,∴ln y=0.3x+4,从而k=0.3,ln c=4,∴k=0.3,c=e 4,故B 正确; ∵直线y ^=a+bx 过点(x −,y −),∴3=a+b ,∵b=2,∴a=1,故C 正确;∵样本数据x 1,x 2,…,x 10的方差为2,∴数据2x 1-1,2x 2-1,…,2x 10-1的方差为2×22=8,故D 错误.【答案】BC10.(考点:扇形统计图,★★)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ). A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解析】设新农村建设前,农村的经济收入为a ,则新农村建设后,农村经济收入为2a.新农村建设前后,各项收入的对比如下表:故选BCD.【答案】BCD11.(考点:独立性检验的应用,★★)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”做,女生喜欢抖音的人数占了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有()人.女生人数的35附:K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ). A .25 B .45 C .60 D .75【解析】设男生的人数为5n (n ∈N *),根据题意列出2×2列联表如下:则K 2的观测值k=10n×(4n×2n -3n×n )25n×5n×7n×3n=10n 21,由于有95%的把握认为是否喜欢抖音和性别有关,则3.841≤k<6.635,即3.841≤10n21<6.635,解得8.0661≤n<13.9335.因为n ∈N *,则n 的可能取值有9,10,11,12,13,所以调查人数中男生人数的可能值为45,50,55,60,65,故选BC . 【答案】BC12.(考点:概率的求解公式,★★)下列对各事件发生的概率判断正确的是( ).A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该学生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29【解析】对于A 选项,该学生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为(1-13)2×13=427,故A 正确;对于B 选项,用A ,B ,C 分別表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35,故B 错误;对于C 选项,设“从甲袋中取到白球”为事件A ,则P (A )=812=23,设“从乙袋中取到白球”为事件B ,则P (B )=612=12,故取到同色球的概率为23×12+13×12=12,故C 正确;对于D 选项,易得P (A ∩B −)=P (B ∩A −),即P (A )·P (B −)=P (B )·P (A −),即P (A )[1-P (B )]=P (B )·[1-P (A )],所以P (A )=P (B ).又P (A −∩B −)=19,所以P (A −)=P (B −)=13,所以P (A )=23,故D 错误.【答案】AC三、填空题:本题共4小题,每小题5分,共20分.13.(考点:分层抽样的应用,★★)某公司的老年人、中年人、青年人的比例为2∶6∶4,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则n= .【解析】用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则100n=42+6+4,解得n=300. 【答案】30014.(考点:二项式定理的应用,★★)若二项式(√x +m x 2)n的展开式的二项式系数之和为32,常数项为10,则实数n 的值为 ,实数m 的值为 . 【解析】由题意得2n =32,即n=5, 则(√x +m x 2)n 的展开式的通项公式为T r+1=C 5r ·(√x )5-r ·(m x2)r =m r ·C 5r ·x 5-5r2. 令5-5r 2=0,可得r=1,则(√x +m x 2)n展开式中的常数项为T 2=m ·C 51=5m ,故5m=10,解得m=2. 【答案】5 215.(考点:正态分布的应用,★★)已知在某市的高二期末考试中,该市学生的数学成绩X~N (90,σ2),若P (70≤X≤90)=0.4,则从该市学生中任选一名学生,该学生的数学成绩小于110分的概率为 . 【解析】∵X~N (90,σ2),∴μ=90,又P (70≤X ≤90)=0.4,∴P (90≤x ≤110)=0.4,∴P (X ≥110)=1-0.4×22=0.1,则P (X<110)=1-0.1=0.9.∴该学生的数学成绩小于110分的概率为0.9.【答案】0.916.(考点:离散型随机变量的数学期望,★★★)某袋中装有5个除编号外完全相同的小球,编号为1,2,3,4,5.现从该袋内随机取出3个小球,记被取出的小球的最大号码数为ξ,则E (ξ)= . 【解析】由题意可知ξ的可能取值为3,4,5, 则P (ξ=3)=C 33C 53=0.1,P (ξ=4)=C 32C 53=0.3,P (ξ=5)=C 42C 53=0.6,所以E (ξ)=0.1×3+0.3×4+0.6×5=4.5. 【答案】4.5。
浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析
§11。
4 抽样方法与总体分布的估计基础篇固本夯基【基础集训】考点一随机抽样1.在简单随机抽样中,某一个个体被抽到的可能性()A。
与第几次有关,第一次可能性最大 B。
与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案D2.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是1,则该单位员工总数为45()A。
110B。
100 C.900D。
800答案B3.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示。
若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手"称号的人数为()A.2B.4C.5D。
6答案B4.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案10考点二用样本估计总体5.甲、乙两组数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A。
极差 B.方差C。
平均数 D.中位数答案C6。
为比较甲、乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月5天11时的平均气温比乙地该月5天11时的平均气温高1 ℃,则甲地该月5天11时的气温数据的标准差为()甲乙9 82 6 892 m 03 1 1 A 。
2 B 。
√2 C 。
10 D 。
√10答案 B7.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100的产品为优质产品。
高考数学一轮复习概率与统计单元专项练习题附参考答案
高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。
如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。
【通用版】2023届高考数学一轮复习计数原理与概率统计专练(5)分类加法计数原理与分步乘法计数原理
(5)分类加法计数原理与分步乘法计数原理1.某校高一年级有四个班,四位老师各教一个班的数学在该年级某次数学考试中,要求每位数学老师均不在本班监考,则不同的安排监考的方法种数为( )A.8B.9C.12D.242.从6人中选出4人参加某大学举办的数学、物理、化学、生物比赛,每人只能参加其中一项,且每项比赛都有人参加,其中甲、乙两人都不能参加化学比赛,则不同的参赛方案的种数为( )A.94B.180C.240D.2863.某同学有7本不同的书,其中语文书2本、英语书2本、数学书3本.现在该同学把这7本书放到书架上排成一排,要求2本语文书相邻、2本英语书相邻、3本数学书中任意2本不相邻,则不同的排法种数为( )A.12B.24C.48D.7204.旅游体验师小李受某网站邀请,决定在甲、乙、丙、丁这四个景区进行体验式旅游.已知他不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则他可选的旅游路线数为( )A.24B.18C.16D.105.如图为我国数学家赵爽在为《周髀算经》作注时验证勾股定理的示意图,现提供5种颜色给其中5个小区域A,B,C,D,E涂色,规定每个区域只涂1种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A.120种B.260种C.340种D.420种6.已知从东、西、南、北四面通往山顶的路分别有2,3,3,4条,若要从其中面上山,从剩余三面中的任意一面下山,则不同的走法最多时应( )A.从东面上山B.从西面上山C.从南面上山D.从北面上山7.用1,2,3三个数字组成一个四位数,规定这三个数字必须都使用,且同一数字不能相邻出现,则这样的四位数有( )A.6个B.9个C.18个D.36个8.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全(每组号买一注),需要( )A.3360元B.6720元C.4320元D.8640元9.由中华人民共和国商务部和上海市人民政府主办的第三届中国国际进口博览会于2020年11月5日至10日在中国上海国家会展中心举办,本届进口博览会新设了公共卫生防疫、节能环保、智慧出行和体育用品及赛事等四大专区.将甲、乙、丙、丁等5名志愿者分派到新设的四个专区,要求每个新设的专区至少分到一人,则甲被分派到公共卫生防疫专区的分法种数为( )A.24B.36C.60D.7210.某旅行社共有5名专业导游,其中3人会英语,3人会日语,若在同一天要接待3个不同的外国旅游团,其中有2个旅游团要安排会英语的导游,1个旅游团要安排会日语的导游,则不同的安排方法种数有( )A.12B.13C.14D.1511.某新闻采访组由5名记者组成,其中甲、乙、丙、丁为成员,戊为组长.甲、乙、丙、丁分别来自A,B,C,D四个地区.现在该新闻采访组要到A,B,C,D四个地区去采访,在安排采访时要求:一地至少安排一名记者采访且组长不单独去采访;若某记者要到自己所在地区采访时必须至少有一名记者陪同.则所有采访的不同安排方法有___________种. 12.用数字0,1,2,3,4,5组成没有重复数字的四位数,其中百位上的数字是5的四位数共有___________个.(用数字作答)13.某栏目组在一节目中拿出两个信箱,信箱中放着观众的来信,甲箱中有30封,乙箱中有20封.现由主持人不放回地抽取来信,若先从两箱中抽取一封确定来信者为幸运之星,再从两箱中各抽取一封确定来信者为幸运观众,则有__________种不同的结果.14.有A,B,C三个城市,每天上午从A城去B城有5班汽车,2班火车,都能在12:00前到达B城,下午从B城去C城有3班汽车,2班轮船.某人上午从A城出发去B城,要求12:00前到达,下午从B城去C城,则不同的走法有__________种.15.从甲、乙、丙等10名学生中选派4人参加某项活动,若甲入选则乙一定入选,若甲不入选则丙一定入选,则共有_________种选派方案.答案以及解析1.答案:B解析:设四个班分别是A 、B 、C 、D ,对应的数学老师分别是a 、b 、c 、d.让a 老师先选,可从B 、C 、D 班中选一个,有3种选法,不妨假设a 老师选的是B ,则b 老师从剩下的三个班级中任选一个,有3种选法,剩下的两位老师都只有1种选法.由分步乘法计数原理,知共有33119⨯⨯⨯=种不同的安排方法.故选:B.2.答案:C解析:第一步,因为甲、乙两人都不能参加化学比赛,所以从剩下的4人中选1人参加化学比赛,共有4种选法;第二步,在剩下的5人中任选3人参加数学、物理、生物比赛,共有54360⨯⨯=种选法. 由分步乘法计数原理,得不同的参赛方案的种数为460240⨯=,故选:C.3.答案:C解析:先将2本语文书看成一个元素,2本英语书看成一个元素,然后排成一排,有22A 种不同的排法,再将3本数学书插到这2个元素形成的3个空隙中,有33A 种不同的排法,再排2本语文书,有22A 种不同的排法,最后排2本英语书,有22A 种不同的排法.根据分步乘法计数原理,得共有23222322A A A A 48=种不同的排法.故选C.4.答案:D解析:小李可选的旅游路线分两种情况:①最后去甲景区旅游,则可选的路线有33A 种;②不最后去甲景区旅游,则可选的路线有1222C A ⨯种.所以小李可选的旅游路线数为312322A C A 10+⨯=.5.答案:D解析:分四步:①区域A 涂色方案有5种;②区域B 涂色方案有4种;③区域C 涂色方案有3种;④对于区域D ,E ,若D 与B 颜色相同,则区域E 涂色方案有3种,若D 与B 颜色不同,则区域D ,E 涂色方案均有2种,所以区域D ,E 涂色方案共有3227+⨯=(种).故不同的涂色方案有5437420⨯⨯⨯=(种).故选D.6.答案:D解析:从东面上山,不同的走法共有2(334)20⨯++=(种);从西面上山,不同的走法共有3(234)27⨯++=(种);从南面上山,不同的走法共有3(234)27⨯++=(种);从北面上山,不同的走法共有4(233)32⨯++=(种).所以应从北面上山.故选D.7.答案:C解析:由题意,知1,2,3中必有某一个数字使用2次,第一步,确定谁被使用2次,有3种情况;第二步,把这2个相同的数字放在四位数不相邻的两个数位上,有3种情况;第三步,将余下的2个数字放在四位数余下的两个数位上,有2种情况.故符合题意的四位数有33218⨯⨯=(个).故选C.8.答案:D解析:从01至10中选3个连续的号,有8种选法;从1l 至20中选2个连续的号,有9种选法;从21至30中选1个号,有10种选法;从31至36中选1个号,有6种选法.故总的选法有891064320⨯⨯⨯=(种),可得需要243208640⨯=(元).故选D. 9.答案:C解析:若甲被单独分派到公共卫生防疫专区,则有2343C A 36=种分法,若甲没有被单独分派到公共卫生防疫专区,则有44A 24=种分法,根据分类加法计数原理可得,共有362460+=种分法.10.答案:C解析:由题意知有1名导游既会英语又会日语,记甲为既会英语又会日语的导游,按照甲是否被安排到需要会英语的旅游团可分为两类:第一类,甲被安排到需要会英语的旅游团,则可分两步进行:第一步,从会英语的另外2人中选出1人,有2种选法,将选出的人和甲安排到2个需要会英语的旅游团,有2种安排方法,所以有224⨯=种安排方法;第二步,从会日语的另外2人中选出1人安排到需要会日语的旅游团,共2种选法. 故此时共有428⨯=种安排方法;第二类,甲没有被安排到需要会英语的旅游团,则可分两步进行:第一步,将会英语的另外2人安排到需要会英语的旅游团,有2种安排方法;第二步,从会日语的3人(包括甲)中选出1人安排到需要会日语的旅游团,有3种选法.故此时共有236⨯=种选法.综上,不同的安排方法种数为8614+=.故选:C.11.答案:44解析:分两类:①甲,乙,丙,丁都不到自己的地区,组长可任选一地有()3311436⨯⨯⨯⨯=; ②甲,乙,丙,丁中只一人到自己的地区,并有组长陪同有()21148⨯⨯⨯=.所以总数36844+=.故答案为:44.12.答案:48解析:依题意,组成的没有重复数字的四位数的百位上的数字为5,分两步进行分析:①组成的四位数的千位上的数字不能为0,则千位上的数字有4种选法;②在剩下的4个数字中选出2个,分别安排在十位和个位上,不同的安排方法共有24A 12=(种).则符合条件的四位数共有12448⨯=(个).13.答案:28800解析:分两类:①当幸运之星在甲箱中抽取时,不同的结果有30292017400⨯⨯=(种);②当幸运之星在乙箱中抽取时,不同的结果有20193011400⨯⨯=(种).所以不同的结果共有174001140028800+=(种).14.答案:35解析:由题意,知从A 城到B 城的走法有527+=(种);从B 城到C 城的走法有325+=(种).故不同的走法有7535⨯=(种).15.答案:84解析:当甲入选时,乙一定入选,另外2人可从剩余的8人中选取,共有28C 种方案;当甲不入选时,丙一定入选,另外3人可从剩余的8人中选取,共有38C 种方案.根据分类加法计数原理,得选派方案共有233889C C C 84+==(种).。
2021届高三数学一轮复习第十二单元训练卷概率与统计(理科) A卷(详解)
② ;
③事件 与事件 相互独立;
④ 是两两互斥的事件;
⑤ 的值不能确定,因为它与 中哪一个发生有关.
三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(10分)甲、乙两人进行围棋比赛,比赛要求双方下满五盘棋,开始时甲每盘棋赢的概率为 ,由于心态不稳,甲一旦输一盘棋,他随后每盘棋赢的概率就变为 .假设比赛没有和棋,且已知前两盘棋都是甲赢.
A. B. C. D.
6.某外卖企业两位员工今年 月某 天日派送外卖量的数据(单位:件),如茎叶图所示针对这 天的数据,下面说法错误的是()
A.阿朱的日派送量的众数为 B.阿紫的日派送量的中位数为
C.阿朱的日派送量的中位数为 D.阿朱的日派送外卖量更稳定
7.已知 的展开式中第 项与第 项的二项式系数相等,则 ()
根据以上数据,绘制如图所示的散点图.
观察散点图,两个变量不具有线性相关关系,现考虑用对数函数模型 和指数函数模型 分别对两个变量的关系进行拟合.
(1)根据散点图判断, 与 ( , 均为大于零的常数)哪一个适宜作为非原料总成本 关于生产该产品的数量 的回归方程类型;(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表 中的数据,建立 关于 的回归方程;
【解析】(1)法1:记抽取红球的事件为 ,抽取白球的事件为 ,
且每次取到红球的概率均为 ,每次取到白球的概率均为 .
则至少抽到 个红球的概率表示为:
.
(2)由题意,随机变量 可能的取值为 ,
, ,
, ,
所以随机变量 的分布表为:
从中任取 把能将该锁打开包含的基本事件个数 ,
∴从中任取 把能将该锁打开的概率 ,故选A.
高考数学一轮复习题库:第十一章概率与统计11.9回归分析与独立性检验
5.甲、乙、丙、丁四位同学各 自对 A,B 两变量的线性相关性做试验,并用回归分析方 法分别求得相关系数 r 与残差平方和 m 如下表:
甲
乙
丙
丁Hale Waihona Puke r 0.82 0.78 0.69 0.85
m 106 115 124 103
则哪位同学的试验结果体现 A,B 两变量更强的线性相关性 ( ).
A.甲
随机抽取了 100 名观
众进行调查,其中女性有 55 名.下面是根据调查结果绘制的观众日均收看该体育节目时间
的频率分布直方图:
将日均收看该体育节 目时间不低于 40 分钟的观众称为“体育迷”,已知“体育迷”中 有 10 名女性.
(1)根据已知条件完成下面的 2× 2 列联表,并据此资料你是否认为“体育迷”与性别有 关?
年份 /年
2007 2008 2009 2010 2011
收入 x/万元
11.5 12.1
13
13.3
15
支出 Y/万元
6.8
8.8
9.8
10
12
根据统计资料, 居民家庭年平均收入的中位数是 __________ ,家庭年平均收入与年平均
支出有 __________ 线性相关关系.
三、解答题
11.电视传媒公司为了解某地区观众对某类体育节目的收视情况,
非体育迷
体育迷
合计
男
女
合计
(2)将日均收看该体育节目不低于 50 分钟的观众称为“超级体育迷”,已知“超级体育
迷”中有 2 名女性.若从“超级体育迷”中任意选取
附: K 2=
n ad- bc 2
.
a+ b c+ d a+ c b+ d
高三数学练习题:概率与统计
高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。
现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。
问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。
现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。
问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。
而星期一和星期二都下雨的概率是0.15。
现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。
问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。
现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。
问题5:
某打印店收到100份订单,其中有20份订单有错误。
现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。
广东省2020届高三数学复习典型题专项训练:统计与概率
广东省2020届高三数学一轮复习典型题专项训练统计与概率一、选择、填空题 1、(广州市2018高三一模)若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位 同学不相邻的概率为A .45B .35C .25D .152、(珠海市2019届高三9月摸底考试)如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值 ②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值 ③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍 A. ①②③ B. ②③④ C. ①③④ D. ①④3、(华附、省实、广雅、深中2019届高三上学期期末联考).如图,在正方形区域内任取一点,则此点取自阴影部分的概率是A.21-B.()2421π-C.()2421π+D.164、(深圳市宝安区2019届高三9月调研)某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A.1 10B.16C.15D.565、(佛山市2019届高三教学质量检测(二))下图是1990年~2017年我国劳动年龄(15~64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确...的是()A.2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B.2010年后我国人口数量开始呈现负增长态势C.2013年我国劳动年龄人口数量达到峰值D.我国劳动年龄人口占总人口比重极差超过6%6、(广州市2019年普通高中毕业班综合测试(二))某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A 种型号的轿车比B种型号的轿车少8辆,则n=A. 96B. 72C. 48D. 367、(广州市2019年普通高中毕业班综合测试(二))从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为,则数学期望=A. B.1 C. D.28、(揭阳市2019届高三第二次模拟)某公司2018年在各个项目中总投资500万元,右图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占821,那么不少于3万元的项目投资共有A.56万元B.65万元C.91万元D.147万元5千元至1万元的项目投资(占33%)1万元以上的项目投资5千元以下的项目投资(占46%)9、(湛江市2019届高三调研)已知某地区中小学生人数如图所示,用分层抽样的方法抽取200名学生进行调查,则抽取的高中生人数为A .10B .40C .30D .2010、(汕尾市2019届高三上学期期末)下图是某地某月1日至15日的日平均温度变化的拆线图,根据该拆线图,下列结论正确的是A .这15天日平均温度的极差为15︒CB .连续三天日平均温度的方差最大的是7日,8日,9日三天C .由拆线图能预测16日温度要低于19 ︒CD .由拆线图能预测本月温度小于25 ︒C 的天数少于温度大于25︒C 的天数 11、(韶关市2019届高三上学期期末)A ,B 两名同学在5次数学考试中的成绩统计如右边的茎叶图所示,若A ,B 两人的平均成绩分别是x A ,x B ,观察茎叶图,下列结论正确的是 A 、x A <x B ,B 比A 成绩稳定 B 、x A >x B ,B 比A 成绩稳定 C 、x A <x B ,A 比B 成绩稳定 D 、x A >x B ,A 比B 成绩稳定12、(肇庆市2019届高三上学期期末)太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被sin3y x π=的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为1,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为A.89 B. 29 C. 19 D. 11813、(珠海市2019届高三上学期期末)在(0,2π)上随机取一个数x ,使得0<tanx <1成立的概率是( ) A 、18 B 、13 C 、12 D 、2π14、(雷州市2019届高三上学期期末)赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设22==AF DF ,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是 A .134 B .13132 C .269D .2613315、(茂名市2019届高三上期末)七巧板是我国古代劳动人民发明的一种智力玩具,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图1是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( ) A 、14 B 、 38 C 、 316 D 、 71616、(汕头市2019届高三上学期期末)如图所示, 半径为1的圆 O 是正方形 MNPQ 的内切圆、将一颗豆子随机地扔到正方形 MNPQ 内, 用 A 表示事件 “ 豆子落在圆 O 内”, B 表示事件“ 豆子落在扇形 OEF ( 阴影部分) 内”, 则 P (B |A ) =A.4πB.14C.16πD.1817、(广东省2019届高三3月一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足==512-≈0.618.后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A .512- B .﹣2 C .51- D .52- 18、(广州市2019届高三3月综合测试(一))刘徽是我因魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法,如图所示,圆内接正十二边形的中心为圆心O ,圆O 的半径为2,现随机向圆O 内段放a 粒豆子,其中有b 粒豆子落在正十二边形内(,,a b N b a *∈<),则圆周率的近似值为 A.b a B.a b C.3a b D.3b a19、(深圳市2019届高三第一次(2月)调研考试)己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为$ 6.5y x a =+,则预计当广告费用为6万元时的销售额为(A )42万元 (B )45万元 (C )48万元 (D )51万元20、(肇庆市2019高三二模)太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为1,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为( )A .B .C .D .21、(湛江2019高三一模)某人连续投篮6次,其中3次命中,3次未命中,则他第1次、第2次两次均未命中的概率是 A 、12 B 、310 C 、14 D 、1522、(汕头市2019届高三第一次(3月)模拟考试)将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A .320 B .340 C .920 D .94023、(湛江2019高三一模)已知空间直角坐标系中的四个点A (4,1,1),B (4,-2,-1),C (-2,-2,-1),D (-2,1,-1),经过A ,B ,C ,D 四点的球记作球M 。
高考数学一轮复习概率与统计的综合问题
(2)由题意得 X 的可能取值为 0,1,2,
P(X=0)=12×32×21=16,P(X=2)=21×32×12+12×13×13=29,P(X=1) =1-61-92=1118,
所以 X 的分布列为
X
0
1
2
P
1 11 2 6 18 9
所以 E(X)=0×16+1×1118+2×29=1198.
[方法技巧] 高考常将求概率与等可能事件、互斥事件、相互独立事件、超几何 分布、二项分布、频率分布直方图等交汇在一起进行考查,因此在解答 此类题时,准确把题中所涉及的事件进行分解,明确所求问题所属的事 件类型是关键.特别是要注意挖掘题目中的隐含条件.
[针对训练] (2023·聊城模拟)某校高二年级发起了“发扬奥林匹克精神,锻炼健 康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.
x2i -6 x 2
i=1
3.92-(-0.26)×3.5=4.83.
所以^z=ln ^y=-0.26x+4.83,即 y 关于 x 的经验回归方程为 y=e- 0.26x+4.83.
令 e-0.26x+4.83<10=eln 10≈e2.3,所以-0.26x+4.83<2.3,解得 x>9.73. 由于 x∈N ,所以 x≥10,所以从第十个月开始,该年级体重超重的 人数降至 10 人以下.
[针对训练] 已知A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场 分析,X1和X2的分布列如下:
X1
5%
10%
P
0.6
0.4
X2
2% 8% 12%
P
0.1
0.5
0.4
(1)在 A,B 两个项目上各投资 200 万元,Y1 和 Y2(单位:万元)分别 为投资项目 A 和 B 所获得的利润,求 D(Y1)和 D(Y2);
概率与统计的综合问题(高三一轮复习)
i=1
∴a^= y -b^ x =0.3-0.14×4.5=-0.33,故y关于x的经验回归方程为^y=0.14x-
0.33.
数学 N
— 18 —
(2)①当x=7时,^y=0.14×7-0.33=0.65,
∴估计该市政府需要给E大学毕业生选择自主创业的人员发放补贴金总额为
0.65×1 00021年的毕业生人数及自主创业人数(单位:千人),得到如下表格:
A大学 B大学 C大学 D大学
当年毕业人数
x(千人)
3
4
5
6
自主创业人数
y(千人)
0.1 0.2 0.4 0.5
数学 N
— 15 —
(1)已知y与x具有较强的线性相关关系,求y关于x的经验回归方程^y=a^+b^x;
(2)假设该市政府对选择自主创业的大学生每人发放1万元的创业补贴. ①若该市E大学2021年毕业生人数为7千人,根据(1)的结论估计该市政府要给E 大学选择自主创业的毕业生创业补贴的总金额;
①若n=5,写出X5的分布列和数学期望; ②请写出Xn的数学期望的表达式(不需证明),根据你的理解说明Xn的数学期望的 实际意义.
数学 N
附:
α 0.1 0.05 0.01 0.005 0.001 xα 2.706 3.841 6.635 7.879 10.828
参考公式:χ2=a+bcn+add-ab+cc2b+d,其中n=a+b+c+d.
,a^= y -b^x.
n
x2i -n x 2
i=1
数学 N
— 17 —
解
(1)由题意得
x
=
3+4+5+6 4
=4.5,
y
=
0.1+0.2+0.4+0.5 4
江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析
江苏专版2020届高三数学一轮复习典型题精选精练统计与概率一、填空题1、(南京市2018高三9月学情调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为▲.2、(南京市2019高三9月学情调研)已知某地连续5天的最低气温(单位:摄氏度)依次是18,21,22,24,25,那么这组数据的方差为▲.3、(南京市2019高三9月学情调研)不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是▲.4、(南京市六校联合体2019届高三12月联考)若一组样本数据3,4,8,9,a的平均数为6,则该组数据的方差s2=▲.5、(南京市六校联合体2019届高三12月联考)从1,2,3,4这四个数中一次性随机地取出2个数,则所取2个数的乘积为奇数的概率是____▲__.6、(南京市13校2019届高三12月联合调研)已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是▲.7、(南京市13校2019届高三12月联合调研)如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在[6,10)内的频数为▲.8、(南师附中2019届高三年级5月模拟)某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是.9、(南师附中2019届高三年级5月模拟)3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是.10、(苏州市2018高三上期初调研)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2: 3,第2小组的频数为12,则报考飞行员的学生人数是.11、(徐州市2019届高三上学期期中)某水产养殖场利用100个网箱养殖水产品,收获时测量各箱水产品的产量(单位:kg),其频率分布直方图如图所示,则该养殖场有▲个网箱产量不低于50 kg.12、(海安市2019届高三上学期期中)已知某民营车企生产A,B,C三种型号的新能源汽车,库存台数依次为120,210,150,某安检单位欲从中用分层抽样的方法随机抽取16台车进行安全测试,则应抽取B型号的新能源汽车的台数为.13、(海安市2019届高三上学期期中)有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是.14、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)如图是某次青年歌手大奖赛上5位评委给某位选手打分的茎叶图,则这组数据的方差为▲15、(如皋市2019届高三上学期期末)为了解某地区的中小学生视力情况,从该地区的中小学生中用分层抽样的方法抽取300位学生进行调查,该地区小学、初中、高中三个学段学生人数分别为1200、1000、800,则从高中抽取的学生人数为▲16、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为.17、(南京市、盐城市2019届高三上学期期末)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中样本中A型号产品有16件,那么此样本的容量n=▲18、(泰州市2019届高三上学期期末)从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为19、(无锡市2019届高三上学期期末)史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,先从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为.20、(宿迁市2019届高三上学期期末)春节将至,三个小朋友每人自制1张贺卡,然后将3张贺卡装在一盒子中,再由三人依次任意抽取1张,则三人都没抽到自己制作的贺卡的概率为▲.21、(南京市、盐城市2019届高三第二次模拟)某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组、,第二组,……,第五组,右图市根据实验数据制成的频率分布直方图,已知第一组于第二组共有20人,则第三组钟人数为.22、(南京市2019届高三第三次模拟)已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为▲.23、(南通、如皋市2019届高三下学期语数英学科模拟(二))随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60)年龄段抽取的人数为__24、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为▲.25、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为▲.26、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为▲.27、(苏锡常镇四市2019届高三教学情况调查(二))口装中有形状大小完全相同的四个球,球的编号分别为1,2,3,4.若从袋中随机抽取两个球,则取出的两个球的编号之积大于6的概率为.28、(苏锡常镇四市2019届高三教学情况调查(一))箱子中有形状、大小都相同的3只红球、1只白球,一次摸出2只球,则摸到的2只球颜色相同的概率为.29、(盐城市2019届高三第三次模拟)现有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加同一个兴趣小组的概率为_____.30、(江苏省2019年百校大联考)某路口一红绿灯东西方向的红灯时间为45s,黄灯时间为3s,绿灯时间为60s.从西向东行驶的一辆公交车通过该路口,遇到红灯的概率为.二、解答题1、(南京市2018高三9月学情调研)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.2、(南京市六校联合体2019届高三上学期12月联考)将4名大学生随机安排到A,B,C,D四个公司实习.(1)求4名大学生恰好在四个不同公司的概率;(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).3、(南京市13校2019届高三12月联合调研)在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;ξ=-,求随机变量ξ的分布列及数学(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y期望.4、(徐州市2018高三上期中考试)某同学在上学路上要经过A 、B 、C 三个带有红绿灯的路口.已知他在A 、B 、C 三个路口遇到红灯的概率依次是13、14、34,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.5、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.6、(镇江市2018届高三第一次模拟(期末)考试)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立,规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级加5分,记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值。
2015届高考数学一轮总复习 阶段性测试题10(统计与概率)
阶段性测试题十(统计与概率)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)某学校进行问卷调查,将全校4200名同学分为100组,每组42人按1~42随机编号,每组的第34号同学参与调查,这种抽样方法是()A.简单随机抽样B.分层抽样C.系统抽样D.分组抽样[答案] C(理)(2013·郑州质量预测)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.84,则P(ξ≤-2)=()A.0.16B.0.32C.0.68 D.0.84[答案] A[解析]因为ξ服从正态分布N(1,σ2),所以P(ξ≤4)=P(ξ≥-2)=0.84,故P(ξ≤-2)=1-P(ξ≥-2)=1-0.84=0.16.2.(2014·武汉市调研)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的平均数为17,乙组数据的中位数为17,则x,y的值分别为()A.2,6 B.2,7C.3,6 D.3,7[答案] D[解析]x=17×5-(9+12+10+27+24)=3,∵15<10+y<18且中位数为17,∴y=7,故选D.3.(文)(2014·银川九中一模)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310 C.35 D.910[答案] D[解析] 将3个红球记作A 、B 、C,2个白球记作D 、E ,从中任取3个球,不同的取法有(A ,B ,C ),(A ,B ,D ),(A ,B ,E ),(A ,C ,D ),(A ,C ,E ),(A ,D ,E ),(B ,C ,D ),(B ,C ,E ),(B ,D ,E ),(C ,D ,E ),共10种,其中所取3个球全是红球的只有1种,∴所求概率P =1-110=910,故选D.(理)(2014·合肥八中联考)将4个颜色互不相同的球全部收入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种[答案] A[解析] 根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有C 24种放法,第二类,2号盒子里放3个球,有C 34种放法,剩下的小球放入1号盒中,共有不同放球方法C 24+C 34=10种.4.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)设函数f (x )=-x +2,x ∈[-5,5].若从区间[-5,5]内随机选取一个实数x 0,则所选取的实数x 0满足f (x 0)≤0的概率为( )A .0.5B .0.4C .0.3D .0.2 [答案] C[解析] 令f (x 0)≤0得x 0≥2,∴所求概率P =5-25-(-5)=0.3,故选C.(理)(2014·成都七中模拟)已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,f (x )g (x )=a x ,f (1)g (1)+f (-1)g (-1)=52,则关于x 的方程abx 2+2x +52=0(b ∈(0,1))有两个不同实根的概率为( )A.35B.25 C.15 D.12 [答案] B[解析] 令h (x )=f (x )g (x )=a x ,则h ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,∴h (x )是减函数,∴0<a <1.又f (1)g (1)+f (-1)g (-1)=52,∴a +1a =52,∴a =12.由Δ>0得b <25.又b ∈(0,1),由几何概型概率公式得:p =25,选B.5.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.8 B .84,1.6 C .85,4 D .85,1.6 [答案] D[解析] 去掉最高分93分和最低分79后,所剩数据的平均分为:x -=80+15(4×3+6+7)=85,方差为:S 2=15[(85-84)2×3+(85-86)2+(85-87)2]=1.6.(理)(2014·长安一中质检)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 [答案] B[解析] 有两个重复数字时,①含2个0,有9种,②含1个0,0不能排在百位,∴有C 12C 19=18种;③不含0,有C 19C 13C 18=216种(或C 29C 12C 13=216种);有三个重复数字时,有C 19=9种,∴共有含重复数字的三位数9+18+216+9=252个,故选B.6.(2014·湖南益阳市箴言中学模拟)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ② y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④ [答案] D[解析] y 与x 正(或负)相关时,线性回归直线方程y =b ^x +a ^中,x 的系数b ^>0(或b ^<0),故①④错. 7.(2014·北京市海淀区期末)为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为( )A .10000B .20000C .25000D .30000 [答案] C[解析] 设估计该水池中鱼的尾数为n ,根据题意可得2000n =40500,解得n =25000.故C 正确. 8.(文)(2014·长沙市重点中学月考)已知正方形ABCD 的边长为2,H 是边DA 的中点.在正方形ABCD 内部随机取一点P ,则满足|PH |<2的概率为( )A.π8 B.π8+14 C.π4 D.π4+14[答案] B [解析]取AB 的中点E ,∵正方形边长为2,H 为AD 的中点,∴HE =2,以H 为圆心,HE 为半径画弧交CD 于F ,当点P 落在扇形HEF 和△AHE 、△DHF 内时,|PH |< 2.这是面积型几何概型,∴所求概率P =2×(12×1×1)+14×π·(2)22×2=π+28,故选B.(理)(2014·广东执信中学期中)在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π4[答案] B[解析] ∵f (x )有零点,∴Δ=(2a )2-4(-b 2+π2)≥0,∴a 2+b 2≥π2,∵a ,b ∈[-π,π], ∴所求概率P =4π2-π·π24π2=1-π4,故选B. 9.(2014·云南景洪市一中期末)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C10.(文)(2014·宝鸡市质检)定义函数y =f (x ),x ∈D ,若存在常数c ,对任意x 1∈D ,存在唯一x 2∈D 的,使得f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c ,已知f (x )=lg x ,x ∈[10,100],则函数f (x )=lg x 在x ∈[10,100]上的均值为( )A.32B.34C.710 D .10[答案] A[解析] 根据定义,函数y =f (x ),x ∈D ,若存在常数c ,对任意的x 1∈D ,存在唯一的x 2∈D ,使得f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c ,令x 1x 2=10×100=1000,当x 1∈[10,100]时,选定x 2=1000x 1∈[10,100]可得:c =lg (x 1x 2)2=32,故选A.(理)(2014·开滦二中期中)二项式(x 2+2x)10的展开式中的常数项是( ) A .第10项 B .第9项 C .第8项 D .第7项[答案] B[解析] 通项T r +1=C r 10·(x 2)10-r ·(2x )r =2r ·C r 10x 20-5r 2,令20-5r 2=0得r =8,∴常数项为第9项. 11.(2014·安徽示范高中联考)给出下列五个命题:①将A 、B 、C 三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体为9个,则样本容量为30;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲; ④已知具有相关关系的两个变量满足的回归直线方程为y =1-2x ,则x 每增加1个单位,y 平均减少2个单位;⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为0.4.其中真命题为( ) A .①②④ B .②④⑤ C .②③④ D .③④⑤ [答案] B[解析] ①样本容量为9÷36=18,①是假命题;②数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,②是真命题;③x -乙=5+6+9+10+55=7,s 2乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=15×(4+1+4+9+4)=4.4,∵s 2甲>s 2乙,∴乙稳定,③是假命题;④是真命题;⑤数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求概率为410=0.4,⑤是真命题.12.已知x ,y 的取值如下表:从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a =( ) A .2.5 B .2.6 C .2.7 D .2.8 [答案] B[解析] x -=2,y -=4.5, ∵回归直线过样本点中心(2,4.5), ∴4.5=0.95×2+a ^, ∴a ^=2.6,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·佛山市质检)一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为________.[答案] 180[解析] 因为分层抽样中每个个体被抽到的概率相等,故总体中的个体数为20÷19=180.(理)(2014·长沙市重点中学月考)从某500件产品中随机抽取50件进行质检,利用随机数表法抽取样本时,先将这500件产品按001,002,003,…,500进行编号.如果从随机数表第7行第4列的数2开始,从左往右读数,则依次抽取的第4个个体的编号是________.(下面摘录了随机数表第6行至第8行各数)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 72 06 50 25 83 42 16 33 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 [答案] 206[解析] 按规定的读数方法,依次读取的数是:217,157,245,217,206,…,由于重复的数字应只保留1个,故读取的第4个个体的编号为206.14.(文)(2014·海南省文昌市检测)在区域M =(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x +y <4y >xx >0内撒一粒豆子,落在区域N={(x ,y )|x 2+(y -2)2≤2}内的概率为________.[答案] π4[解析] ∵⊙C :x 2+(y -2)2=2的圆心C (0,2)与直线y =x 和x +y =4都相切. ∴区域M 中落在区域N 内的部分为半圆.由⎩⎪⎨⎪⎧y =x ,x +y =4,得A (2,2),∴S △OAB =12×4×2=4,又S 半圆=π,∴所求概率P =π4.(理)(2014·浙江省五校联考)若对任意的实数x ,有x 4=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3+a 4(x+2)4,则a 3的值为________.[答案] -2[解析] ∵x 4=[(x +2)-2]4=(x +2)4-2(x +2)3+4(x +2)2-8(x +2)+16,∴a 3=-2.15.(2014·安徽示范高中联考)在三棱锥P -ABC 中,任取两条棱,则这两条棱异面的概率是________.[答案] 15[解析] 三棱锥中两条相对的棱所在直线是异面直线,共有3对,从6条棱中任取两条,可知有15种取法,∴取到两条棱异面的概率P =315=15.16.(文)(2014·北京朝阳区期末)某校为了解高一学生寒假期间的阅读情况,抽查并统计了100名学生的某一周阅读时间,绘制了频率分布直方图(如图所示),那么这100名学生中阅读时间在[4,8)小时内的人数为________.[答案] 54[解析] 这100名学生中阅读时间在[4,8)小时内的人数为100×[(0.12+0.15)×2]=54.(理)(2014·浙北名校联盟联考)一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为X ,Y ,设ξ=Y -X ,则E (ξ)=________.[答案] 43[解析] 由题意知ξ的取值为0,1,2,ξ=0,表示X =Y ,ξ=1表示X =1,Y =2;或X =2,Y =3;ξ=2表示X =1,Y =3.∴P (ξ=0)=333=19,P (ξ=1)=2×2×333=49,P (ξ=2)=2×3+A 3333=49, ∴E (ξ)=0×19+1×49+2×49=43.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·海南省文昌市检测)某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99 乙:110,115,90,85,75,115,110 (1)画出这两组数据的茎叶图;(2)求出这两组数据的平均值和方差(用分数表示);并说明哪个车间的产品较稳定.(3)从甲中任取一个数据x (x ≥100),从乙中任取一个数据y (y <100),求满足条件|x -y |≤20的概率.[解析] (1)茎叶图如图:(2)x -甲=17(102+101+99+98+103+98+99)=100;x -乙=17(110+115+90+85+75+115+110)=100;S 2甲=17(4+1+1+4+9+4+1)=247; S 2乙=17(100+225+100+225+625+225+100)=16007, ∵S 2甲<S 2乙,故甲车间产品比较稳定.(3)所有可能的情况有:(102,90),(102,85),(102,75),(101,90),(101,85),(101,75),(103,90),(103,85),(103,75),不满足条件的有:(102,75),(101,75),(103,75),所以P (|x -y |≤20)=1-39=23.18.(本小题满分12分)(文)(2014·广东执信中学期中)某校高三文科分为五个班.高三数学测试后,随机地在各班抽取部分学生进行成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了18人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率. [解析] (1)由频率分布条形图知,抽取的学生总数为50.05=100人. ∵各班被抽取的学生人数成等差数列,设其公差为d , 由5×18+10d =100,解得d =1.∴各班被抽取的学生人数分别是18人,19人,20人,21人,22人.(2)在抽取的学生中,任取一名学生,则分数不小于90分的频率为0.35+0.25+0.1+0.05=0.75. 用频率作为概率的估计值知所求概率约为0.75.(理)(2014·抚顺二中期中)在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,选课情况如下表:(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望. [解析] (1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B .由于事件A 、B 相互独立, 且P (A )=C 25C 26=23,P (B )=C 24C 26=25,所以选出的4人均选科目乙的概率为 P (A ·B )=P (A )·P (B )=23×25=415.(2)由条件知ξ可能的取值为0,1,2,3.P (ξ=0)=415,P (ξ=1)=C 25C 26·C 12C 14C 26+C 15C 26·C 24C 26=2245,P (ξ=3)=C 15C 26·1C 26=145,P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=29,ξ的分布列为:∴ξ的数学期望E (ξ)=0×415+1×2245+2×29+3×145=1.19.(本小题满分12分)(文)(2014·抚顺市六校联合体期中)用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)(1)求x ,y ;(2)若从高二、高三年级抽取的人中选2人,求这二人都来自高二年级的概率. [解析] (1)由题意可得x 99=y 27=218,所以x =11,y =3.(2)记从高二年级抽取的3人为b 1,b 2,b 3,从高三年级抽取的2人为c 1,c 2,则从这两个年级中抽取的5人中选2人的基本事件有:(b 1,b 2),(b 1,b 3),(b 1,c 1),(b 1,c 2),(b 2,b 3),(b 2,c 1),(b 2,c 2),(b 3,c 1),(b 3,c 2),(c 1,c 2)共10种,设选中的2人都来自高二的事件为A ,则A 包含的基本事件有:(b 1,b 2),(b 1,b 3),(b 2,b 3)共3种. 因此P (A )=310=0.3.故选中的2人都来自高二的概率为0.3.(理)(2014·泸州市一诊)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.(1)计算样本的平均成绩及方差;(2)现从10个样本中随机抽出2名学生的成绩,设选出学生的分数为90分以上的人数为ξ,求随机变量ξ的分布列和均值.[解析] (1)样本的平均成绩x -=92+98×2+85×2+74×3+60×210=80,方差s 2=110[(92-80)2+(98-80)2×2+(85-80)2×2+(74-80)2×3+(60-80)2×2]=175.(2)由题意知选出学生的分数为90分以上的人数为ξ,得到随机变量ξ=0,1,2.P (ξ=0)=C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 210=115,分布列为:E (ξ)=0×715+1×715+2×115=35.20.(本小题满分12分)(文)(2013·沈阳联考)某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:(1)(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额. [解析] (1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为y ^=b ^x +a ^.则b ^=∑i =15(x i -x -)(y i -y -)∑i =15(x i -x -)2=1020=0.5,a ^=y --b ^x -=0.4, ∴年推销金额y 关于工作年限x 的线性回归方程为y ^=0.5x +0.4. (3)由(2)可知,当x =11时,y ^=0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年销售金额为5.9万元.(理)(2014·河南淇县一中模拟)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).[解析] (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=2466=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 212=111, 于是P (ξ=1)=1-P (ξ=0)-P (ξ=2) =1-411-111=611,所以随机变量ξ的分布列是因此E (ξ)=1×611+21.(本小题满分12分)(文)(2014·绵阳市南山中学检测)某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为100+1102=105.)作为这组数据的平均分,据此,估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.[解析] (1)分数在[120,130)内的频率为:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3. (2)估计平均分为x -=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121. (3)由题意,[110,120)分数段的人数为60×0.15=9(人),[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本, ∴需在[110,120)分数段内抽取2人,并分别记为m ,n ; 在[120,130)分数段内抽取4人并分别记为a ,b ,c ,d ;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,则基本事件有:(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d )共15种.事件A 包含的基本事件有:(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d )共9种.∴P (A )=915=35.(理)(2014·保定市八校联考)某班同学利用寒假在三个小区进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这两族人数占各自小区总人数的比例如下:(1)从A ,B ,(2)在B 小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X ,求X 的分布列和期望E (X ).[解析] (1)记这3人中恰好有2人是低碳族为事件A ,P (A )=12×45×13+12×15×23+12×45×23=715,(2)在B 小区中随机选择20户中,“非低碳族”有4户,P (X =k )=C k 4C 3-k 16C 320,(k =0,1,2,3),E (X )=0×2857+1×819+2×895+3×1285=0.6.22.(本小题满分14分)(文)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:(1)试分析估计两个班级的优秀率;(2)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.[甲班优秀人数为30人,优秀率为3050=60%,乙班优秀人数为25人,优秀率为2550=50%,所以甲、乙两班的优秀率分别为60%和50%.(2)因为K 2=100×(30×25-20×25)50×50×55×45=10099≈1.010,所以由参考数据知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.(理)(2014·浙江省五校联考)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(1)打满4局比赛还未停止的概率;(2)比赛停止时已打局数ξ的分布列与期望E (ξ).[解析] 令A k ,B k ,C k 分别表示甲、乙、丙在第k 局中获胜.(1)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满4局比赛还未停止的概率为P (A 1C 2B 3A 4)+P (B 1C 2A 3B 4)=124+124=18.(2)ξ的所有可能值为2,3,4,5,6,且 P (ξ=2)=P (A 1A 2)+P (B 1B 2)=122+122=12,P (ξ=3)=P (A 1C 2C 3)+P (B 1C 2C 3)=123+123=14.P (ξ=4)=P (A 1C 2B 3B 4)+P (B 1C 2A 3A 4)=124+124=18.P (ξ=5)=P (A 1C 2B 3A 4A 5)+P (B 1C 2A 3B 4B 5)=125+125=116.P (ξ=6)=P (A 1C 2B 3A 4C 5)+P (B 1C 2A 3B 4C 5)=125+125=116.故分布列为∴E (ξ)=2×12+3×14+4×18+5×116+6×116=4716.。
四川省高三数学理一轮复习专题突破训练:统计与概率(含答案解析)
四川省 2017 届高三数学理一轮复习专题打破训练统计与概率一、选择、填空题1、( 2016 年四川省高考)同时投掷两枚质地均匀的硬币,当起码有一枚硬币正面向上时,就说此次试验成功,则在 2 次试验中成功次数X 的均值是.2、(成都市 2016 届高三第二次诊疗)某校高三(1) 班在一次单元测试中,每位同学的考试分数都在区间[100,128] 内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112), [112,116), [116,120), [120,124),[124 , 128] .绘制出频次散布直方图以下图,已知分数低于112 分的有 18 人,则分数不低于120分的人数为(A)10(B)12(C)20(D)403、(成都市都江堰2016 届高三 11 月调研)设会合A{1,2} ,B {1,2,3} ,分别从会合A和B 中随机取一个数 a 和b,确立平面上的一个点P(a, b) ,记“点 P(a, b) 落在直线x y n 上”为事件C n (2 n 5,n N ) ,若事件 C n的概率最大,则最大值为;4 、(成都市都江堰2016 届高三11 月调研)已知随机变量X 听从正态散布N (3,1) ,且P(2 X 4) 0.6826 ,则 P( X 4)()A . 0.1588B. 0.1587C. 0.1586D. 0.15855、(绵阳中学 2017 届高三上学期入学考试)把一枚硬币连续抛两次,记“第一次出现正面”为事件 A ,“第二次出现正面”为事件 B ,则P B | A()1111 A.B.C.D.24686、(内江市 2016 届高三第四次( 3 月)模拟)以下图的茎叶图表示甲、乙两人在5 次综合测评中的成绩,此中一个数字被污损,则甲的均匀成绩超出乙的均匀成绩的概率为(C )27 4A .B .C .5105D .9107、(成都市双流中学 2016 届高三 5 月月考) 某单位为了认识用电量 y 度与气温 x C 之间的关系,随机统计了某4 天的用电量与当日气温,并制作了比较表气温( C )1813 10 1用电量(度)24343864由表中数据得回归直线方程? ? ? 2bx ?中 b,展望当气温为4 C 时,用电量的度数y a是 .8、(成都市双流中学 2017 届高三 9 月月考)在 6 道题中有 4 道理科题和 2 道文科题,假如不放回的挨次抽取2 道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率 .9、(资阳市资阳中学 2017 届高三上学期入学考试)现有5 人参加抽奖活动,每人挨次从装有 5 张奖票(此中3 张为中奖票) 的箱子中不放回地随机抽取一张, 直到 3 张中奖票都被抽... 出时活动结束,则活动恰幸亏第 4 人抽完后结束的概率为( ).A .1B .1105C .3D .210510[ 1,1]上随机的取一个数k,则事件“直线y = kx与圆 ( x - 5) + y = 9订交”发、在 -22生的概率为二、解答题1、( 2016 年四川省高考)我国是世界上严重缺水的国家,某市政府为了鼓舞居民节俭用水,计划调整居民生活用水收费方案,拟确立一个合理的月用水量标准x (吨)、一位居民的月用水量不超出x 的部分按平价收费,高出x 的部分按议价收费.为了认识居民用水状况,通过抽样,获取了某年100 位居民每人的月均用水量(单位:吨),将数据依据[0,0.5),[0.5,1),,[4,4.5) 分红 9 组,制成了以下图的频次散布直方图.( I )求直方图中 a 的值;( II )设该市有30 万居民,预计全市居民中月均用水量不低于 3 吨的人数,并说明原因;( III )若该市政府希望使85%的居民每个月的用水量不超出标准x (吨),预计 x 的值,并说明原因 .2、( 2015 年四川省高考)某市A,B 两所中学的学生组队参加争辩赛, A 中学介绍 3 名男生,2 名女生, B 中学介绍了 3 名男生, 4 名女生,两校介绍的学生一同参加集训,因为集训后队员的水平相当,从参加集训的男生中随机抽取 3 人,女生中随机抽取 3 人构成代表队( 1)求 A 中学起码有 1 名学生当选代表队的概率.( 2)某场比赛前。
高中数学高考2022届高考数学一轮复习(新高考版) 第10章 高考专题突破六 高考中的概率与统计问题
(1)求表中10个销售数据的中位数和平均数;
解 中位数为43+2 46=44.5, 平均数为35+46+32+42+431+050+39+52+51+60=45.
(2)明年花市期间甲、乙两位同学想合租一个摊位销售同样的精品,其中 甲、乙分别承包白天、晚上的精品销售,承包时间段内销售所获利润归 承包者所有.如果其他条件不变,以今年的数据为依据,甲、乙两位同学 应如何分担租金才较为合理?
跟踪训练3 某项大型赛事需要从高校选拔青年志愿者,某大学学生实 践中心积极参与,在8名学生会干部(其中男生5名,女生3名)中选3名参 加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列及 均值.
解 因为8名学生会干部中有5名男生,3名女生,
所以X服从参数N=8,M=3,n=3的超几何分布. X 的所有可能取值为 0,1,2,3,其中 P(X=i)=C3iCC3835-i(i=0,1,2,3). 由公式可得 P(X=0)=CC03C38 35=258, P(X=1)=CC13C38 25=2185, P(X=2)=CC23C38 15=5165,
(2)求抽取的x人的年龄的中位数(结果保留整数);
解 设中位数为a,则0.01×5+0.07×5+(a-30)×0.06=0.5, ∴a=935≈32,则中位数为 32.
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样 的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这 5个按年龄分的组和5个按职业分的组中每组各选派1人参加“一带一路” 知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为 93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90. ①分别求5个年龄组和5个职业组成绩的平均数和方差;
高三数学一轮专题突破训练:《统计与概率》(文)及答案
山东省2016届高三数学文一轮复习专题突破训练统计与概率一、选择、填空题1、(2015年高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )(A)①③ (B) ①④ (C) ②③ (D) ②④2、(2015年高考)在区间[0,2]上随机地取一个数x,则事件“121-1log2x≤+≤()1”发生的概率为( )(A)34(B)23(C)13(D)143、(2014年高考)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa频率 / 组距0.360.240.160.08171615141312(A)6(B)8(C)12(D)184、(2013年高考)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示.则7个剩余分数的方差为( )8 7 79 4 0 1 0 x 9 1图1-4A.1169B.367C.36 D.6 775、(滨州市2015届高三一模)根据如下样本数据得到的回归方程为1212ˆ55y x=+,则m的值为()A.1 B.32C.4 D.56、(德州市2015届高三一模)某校对全校1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知女生比男生少抽10人,则该校的女生人数是____人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 第3节一、选择题1.(文)(2010·重庆文,5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ) A .7 B .15 C .25D .35[答案] B[解析] 抽取比例为=,因为青年职工抽取7人,所以中年职工抽取5人,老年职工抽取3人,所以样本容量为7+5+3=15人,故选B.(理)设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,则P(ξ=0)和D(ξ)的值依次为( ) A .1,6 B.12,12 C.13,29D.14,516[答案] C[解析] 由题意,设ξ的分布列为即“ξ=0”表示试验失败,“ξ=1”表示试验成功, 由p +2p =1,得p =13, ∴P(ξ=0)=13, 又E(ξ)=0×13+1×23=23,∴D(ξ)=⎝⎛⎭⎫0-232×13+⎝⎛⎭⎫1-232×23=29,故选C.2.(2010·安徽江南十校联考)最小二乘法的原理是( ) A .使得∑i =1n[yi -(a +bxi)]最小B .使得∑i =1n[yi -(a +bxi)2]最小C .使得∑i =1n[yi2-(a +bxi)2]最小D .使得∑i =1n [yi -(a +bxi)]2最小[答案] D[解析] 根据回归方程表示到各点距离最小的直线方程,即总体偏差最小,亦即∑i =1n[yi -(a +bxi)]2最小.3.(2010·银川模拟)下列四个命题正确的是( )①线性相关系数r 越大,两个变量的线性相关性越强,反之,线性相关性越弱; ②残差平方和越小的模型,拟合的效果越好;③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好; ④随机误差e 是衡量预报精确度的一个量,它满足E(e)=0. A .①③ B .②④ C .①④D .②③[答案] B[解析] 线性相关系数r 满足|r|≤1,并且|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱,故①错误;相关指数是度量模型拟合效果的一种指标.相关指数R2越接近于1,模型的拟合效果越好,R2越大,残差平方和就越小,故残差平方和越小的模型,拟合效果越好,故②对③错.故选B. 4.若两个分类变量x 、y 的列联表为则变量y 与x 有关系的可能性为( ) A .99%以上B .95%以上C .99.5%以上D .95%以下[答案] B[解析] n =15+45+30+40=130, ∴χ2=-60×70×45×85≈4.55>3.841,∴有95%以上的把握认为y 与x 有关系,故选B.5.(2010·北京延庆县模考)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为,第三组的频数为12,则本次活动参加评比作品总数、上交作品数量最多的组的作品件数依次为 ( )A .60、18B .60、20C .80、18D .80、30[答案] A6.(文)已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A.y ^=1.23x +4 B.y ^=1.23x +0.08 C.y ^=1.23x +0.8D.y ^=1.23x -0.08[答案] B[解析] 由条件知,x -=4,y -=5, 设回归直线方程为y ^=1.23x +a ,则 a =y --1.23x -=0.08.(理)(2010·延边州质检)两个相关变量满足如下关系:x则两变量的回归方程为( ) A.y ^=0.56x +997.4 B.y ^=0.63x -231.2 C.y ^=0.56x +501.4D.y ^=60.4x +400.7[答案] A[解析] x -=20,y -=1008.6,代入公式b ^=∑i =15-x--y-∑i =15-x-,及a ^=y --b ^x -中可得:b ^=0.56,a ^=997.4,故选A.7.(2010·山东省实验中学)设有n 个样本x1,x2,…,xn ,其标准差是Sx ,另有n 个样本y1,y2,…,yn ,且yk =3xk +5,(k =1,2,…,n),其标准差为Sy ,则下列关系正确的是 ( )A .Sy =3Sx +5B .Sy =3SxC .Sy =3SxD .Sy =3Sx +5[答案] B[解析] Sy2=32Sx2,∴Sy =3Sx.[点评] 一般的数据x1,x2,…,xn 的平均数为x -,方差为S2,则kx1+b ,kx2+b ,…,kxn +b 的平均数为k x -+b ,方差为k2S2.8.(2010·福州市质检)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 ( ) A .y =2x -2 B .y =12(x2-1) C .y =log3xD .y =2x -2[答案] B[解析] 把表格中的数据代入选择项的解析式中,易得所求的最接近的一个函数是y =12(x2-1).9.(文)(2010·厦门三中阶段训练)某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x 应该是( )A.5B .4C .3D .2[答案] D[解析] 去掉最低分87,去掉最高分94(假设x≤4),则7×91=80×2+9+8+90×5+2+3+2+1+x ,∴x =2,符合题意,故选D.(理)(2010·福建省龙岩市质检)一位同学种了甲、乙两种树苗各1株,分别观察了9次、10次后,得到树苗高度的数据的茎叶图如图(单位:厘米),则甲、乙两种树苗高度数据的中位数之和是( )A.44 B .54 C .50D .52[答案] D[解析] 根据茎叶图可得,观察甲树苗9次得到的树苗高度分别为:19,20,21,23,24,37,33,32,31;观察乙树苗10次得到的树苗高度分别为:10,14,10,26,24,30,44,46,46,47,易得甲树苗高度的中位数为24,乙树苗高度的中位数为26+302=28,因此24+28=52.[点评] 在茎叶图中找中位数时,n 为奇数,前后各去掉n -12个,剩下一个即是;n 为偶数,前后各去掉n -22个,剩下两个的平均数即是,用这种方法找中位数,必须注意,茎叶图中数据是按规则从小到大排列的,否则去掉两端数字时,大的从大到小找,小的从小到大找. 10.(09·上海)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为3 [答案] D[解析] 逐项验证,由0,0,0,2,4,4,4,4,4,8可知,A 错;由0,0,0,0,0,0,0,0,2,8可知,B 错;由0,0,1,1,2,2,3,3,3,8可知,C 错.故选D. [点评] x -=2时,-+-+…+-10=3.即(x1-2)2+(x2-2)2+…+(x10-2)2=30.显然(xi -2)2≤30(i =1,2,…,10),∵xi ∈N*,即xi≤7. 二、填空题11.(2010·广东文)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:20根据统计资料,居民家庭平均收入的中位数是________,家庭年平均收入与年平均支出有________线性相关关系. [答案] 13 正[解析] 找中位数时,将样本数据按大小顺序排列后奇数个时中间一个是中位数,而偶数个时须取中间两数的平均数,由统计资料可以看出,中位数为13万元,且年平均收入增多时,年平均支出也增多,因此两者正相关. 12.观察两相关变量得到如下数据:则两变量的回归直线方程为________. [答案] y ^=0.179+0.905x [解析] x -=4.5,y -=4.25,∑i =18xi2=204,∑i =18xiyi =191,b ^=∑i =18xiyi -8x -y-∑i =18xi2-8x -2=191-8×4.5×4.25204-8×4.52≈0.905,a ^=y --b ^x -=4.25-0.905×4.5≈0.179, ∴所求回归直线方程为y ^=0.179+0.905x.13.(2010·湖南考试院调研)在某赛季篮球比赛中,甲、乙两名运动员每场比赛的得分统计茎叶图如图所示,则发挥较稳定的运动员是________.[答案] 甲14.(2010·辽宁省实验中学模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有________%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.独立性检验临界值表0.001独立性检验随机变量χ2值的计算公式:χ2=-++++.[答案]97.5三、解答题15.(2010·广东文,17)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.[解析](1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,∴大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共十个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),∴P(A)=610=3 5.16.(文)(2010·新课标全国理,19)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:χ2=-++++[解析] (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%. (2)χ2=-200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.(理)(09·辽宁)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸的结果如下表: 甲厂乙厂(1)试分别估计两个分厂生产的零件的优质品率;(2)由于以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”..[解析] (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=-500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.17.(文)在10瓶饮料中,有2瓶是不合格产品,现质检员从这10瓶饮料中任意抽取2瓶进行检验.(1)求质检员检验到不合格产品的概率;(2)若把这10瓶饮料分成甲、乙两组,对其容量进行测量,数据如下表所示(单位:mL):请问哪组饮料的容量更稳定些?并说明理由.[解析] (1)把10瓶饮料分别编号为1,2,3,4,5,6,7,8,a ,b.其中a ,b 表示不合格产品.则从中任意抽取两瓶饮料的基本事件有45个,即:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,a),(1,b);(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,a),(2,b);(3,4),(3,5),(3,6),(3,7),(3,8),(3,a),(3,b);(4,5),(4,6),(4,7),(4,8),(4,a),(4,b);(5,6),(5,7),(5,8),(5,a),(5,b);(6,7),(6,8),(6,a),(6,b);(7,8),(7,a),(7,b);(8,a),(8,b);(a ,b). 其中抽到不合格的事件有17个.∴质检员检验到不合格产品的概率为P =1745. (2)x -甲=257+259+260+261+2635=260, x -乙=258+259+259+261+2635=260, ∴S 甲2=15[(257-260)2+(259-260)2+(260-260)2+(261-260)2+(263-260)2]=4, S 乙2=15[(258-260)2+(259-260)2+(259-260)2+(261-260)2+(263-260)2]=3.2. ∵S 甲2>S 乙2,∴乙组饮料的容量更稳定些.(理)(2010·广东佛山)为了对2007年佛山市中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排列是60、65、70、75、80、85、90、95,物理分数从小到大排列是72、77、80、84、88、90、93、95.(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(2)若这8位同学的数学、物理、化学分数事实上对应如下表:用变量y 与x 、z 与x 的相关系数说明物理与数学、化学与数学的相关程度;(3)求y 与x 、z 与x 的线性回归方程(系数精确到0.01),并用相关指数比较所求回归模型的效果.参考数据:x -=77.5,y -=85,z -=81,∑i =18(xi -x -)≈1050,∑i =18 (yi -y -)2≈456,∑i =18(zi -z -)≈550,∑i =18 (xi -x -)(yi -y -)≈688,∑i =18 (xi -x -)(zi -z -)≈755,∑i =18 (yi -y ^i)≈7,∑i =18(zi -z ^i)2≈94,1050≈32.4,456≈21.4,550≈23.5.[解析] (1)这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选出3个与数学优秀分数对应,种数是C43A33(或A43),然后将剩下的5个数学分数和物理分数任意对应,种数是A55.根据乘法原理,满足条件的种数是C43A33A55. 这8位同学的物理分数和数学分数分别对应的种数共有A88. 故所求的概率P =C43A33A55A88=114. (2)变量y 与x 、z 与x 的相关系数分别是 r =68832.4×21.4≈0.99,r′=75532.4×23.5≈0.99可以看出,物理与数学、化学与数学的成绩都是高度正相关. (3)设y 与x 、z 与x 的线性回归方程分别是y ^=bx +a ,z ^=b′x +a′根据所给的数据可以计算出,b =6881050=0.65,a =85-0.65×77.5=34.63, b′=7551050=0.72,a′-81-0.72×77.5=25.20 所以y 与x 和z 与x 的回归方程分别是 y ^=0.65x +34.63,z ^=0.72x +25.20,又y 与x 、z 与x 的相关指数是R2=1-7456≈0.98, R′2=1-94550≈0.83故回归模型y ^=0.65x +34.63比回归模型z ^=0.72x +25.20的拟合的效果好.。