肝的生物转化作用
肝的代谢功能—肝的生物转化作用(正常人体机能课件)
目录
CONTANTS
01
生物转化 的概念
02
非营养物 质的概念
03
生物转化 的意义
学习目标
1.掌握生物转化的概念
2.熟悉非营养物质肝的的组概织结念构和化学构成特征:
1. 具有肝动脉和门静脉双重血供; 2. 具有丰富的血窦;
3.熟悉生物转化的意3.义有两条输出通道; 4. 亚细胞结构丰富,含有丰富的酶类。
构成组织细胞成分,又不能氧化供能的物质。
肝的组织结构和化学构成特征:
分类:
1. 具有肝动脉和门静脉双重血供; 2. 具有丰富的血窦;
. 有两条输出通道;
内源性:激素4、. 亚神细胞经结构递丰富质,含、有丰胺富的、酶胆类。红素等
外源性:药物、毒物、色素、食品添加剂、环境
污染物等
二、生物转化的意义
①使非营养物质极性增强,溶解度增加,易于 排出体外。 肝的组织结构和化学构成特征:
2. 具有丰富的血窦;
¯ 产物:各种葡萄糖酸苷3. 有两条输出通道;
4. 亚细胞结构丰富,含CO有O丰H富的酶类。
OH
UDPGT
O
O
苯酚
UDPGA
UDP
苯-β-葡萄糖醛酸苷(醚型)
2. 硫酸结合反应
¯酶:硫酸转移酶
¯硫酸供体:3ˊ-磷酸腺苷5ˊ-磷酰硫酸(PAPS)
¯产物:硫酸酯化合肝物的组织结构和化学构成特征:
肝的组织结构和化学构成特征:
5. 其他
1. 具有肝动脉和门静脉双重血供; 2. 具有丰富的血窦;
*谷胱甘肽结合反应4.:亚许细胞多3.结卤有构两丰代条富输,化出含合通 有道丰物;富和的酶环类氧。 化物可在谷胱甘肽
-S-转移酶催化下与之结合,解除它们对机体的毒性作用。
肝的生物转化作用(精)
(2)单胺氧化酶系(monoamine oxidase, MAO)
存在于线粒体内,可催化胺类生成相应的醛类。
催化的主要反应:
RCH2NH2+O2+H2O RCHO+NH 2 3+H2O (3)脱氢酶系
内源性:如激素、胺类、胆红素、氨等 非营养物质 外源性:如色素、药物、毒物等
*生物转化的主要场所
肝是生物转化最重要器官,但在肺、肾、胃肠道
和皮肤也有一定生物转化功能 。
*生物转化的意义
对体内的非营养物质 (xenobiotics) 进行转化,使 其灭活 (inactivate),或解毒(detoxicate);更为重要的 是可使这些物质的溶解度增加,易于排出体外。
第十四章 肝脏生化
第一节 肝的生物转化作用
一、生物转化的概念与意义
二、生物转化的类型及酶系
三、影响生物转化的因素
一、生物转化的概念与意义 (一) 生物转化的概念
非营养物质经氧化、还原、水解、结合反应使其 极性增强,水溶性增加,易随胆汁或尿液排出体 外,这一过程称为生物转化(biotransformation)。
COOH
乙酰水杨酸 (阿司匹林)
水杨酸
乙酸
(二)第二相反应
1. 葡萄糖醛酸结合反应——是体内生物转化最重要、
最普遍的结合反应。
葡糖醛酸基的直接供体是—— 尿苷二磷酸葡萄糖醛酸 (UDPGA)
2NAD+
2NADH+ 2H+
UDPG脱氢酶
经过葡萄糖醛酸结合反应,物质极性增强,水溶性提高, 毒性减弱,易于排泄。
肝的生物转化作用
肝的生物转化作用一、肝的生物转化作用是机体重要的保护机制(一)生物转化的概念人体内不可避免地存在许多非营养物质,这些物质既不能作为构建组织细胞的成分,又不能作为能源物质,其中一些还对人体有一定的生物学效应或潜在的毒性作用,长期蓄积则对人体有害。
机体在排出这些非营养物质之前,需对它们进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程称为生物转化作用(biotrans—formation)。
肝是机体内生物转化最重要的器官。
体内进行生物转化的非营养物质按其来源分为内源性和外源性两类。
内源性物质包括体内物质代谢的产物或代谢中间物(如胺类、胆红素等)以及发挥生理作用后有待灭活的激素、神经递质等一些对机体具有强烈生物学活性的物质。
外源性物质系人体在日常生活和(或)生产过程中不可避免接触的异源物(xenobiotits),如药物、毒物、环境化学污染物、食品添加剂等和从肠道吸收来的腐败产物。
这些物质多系脂溶性,均需经过生物转化作用才能排出体外。
(二)生物转化的生理意义生物转化的生理意义在于:一则生物转化可对体内的大部分非营养物质进行代谢转化,使其生物学活性降低或丧失(灭活),或使有毒物质的毒性减低或消除(解毒)。
另则通过生物转化作用可增加这些非营养物质的水溶性和极性,从而易于从胆汁或尿液中排出。
但应该指出的是,有些非营养物质经过肝的生物转化作用后,虽然溶解性增加,但其毒性反而增强;有的还可能溶解性下降,不易排出体外。
如多环芳烃类化合物——苯丙芘,其本身没有直接致癌作用,但经过生物转化后反而成为直接致癌物。
有的药物如环磷酰胺、百浪多息、水合氯醛和中药大黄等需经生物转化才能成为有活性的药物。
因此,不能将肝的生物转化作用简单地称为“解毒作用”(detoxificat ion),这体现了肝生物转化作用的解毒与致毒的双重性特点。
二、肝的生物转化包括两相反应肝的生物转化可分为两相反应。
第一相反应包括氧化(oxidation)、还原(redtJction)和水解(hydr01ysis)。
肝的生物转化作用
2.生物转化的生理意义
(1)消除外来异物。通过呼吸、 肠道、皮肤等进入人体的环境污 染物、色素、防腐剂等外来异物 可经血液运输至肝、皮肤等部位 进行生物转化而排出体外。
01
(3)灭活体内的活性物质。机体 自身合成的活性物质(如激素、 神经递质等)在体内发挥生理功 能后需经生物转化而灭活,便于 维持机体代谢功能与调节的正常。
பைடு நூலகம்生物化学
2.生物转化的部位 肺、肾、肠道、皮肤等器官也能
将少量非营养物质进行生物转化,然 后使其随胆汁或尿液排出。由于肝内 代谢非营养物质的酶类含量高、种类 多,所以机体的生物转化主要在肝进 行。
1.2 生物转化反应的主要类型
肝的生物转化反应可分为两类,即 第一相反应和第二相反应。第一相反应 包括氧化、还原和水解反应。第二相反 应为结合反应,主要跟极性较强的物质, 如葡糖醛酸、硫酸、乙酰基、甲基和谷 胱甘肽等结合。
2.第二相反应 结合反应是第二相反应的主要形式。
一些含羟基、巯基、氨基的非营养物质可 以与某些极性较强的物质结合,既增强了 水溶性,利于排泄,又掩盖了非营养物质 的某些基团,因此第二相反应常常使其产 物的活性和毒性降低,被认为是体内的解 毒过程。结合反应的供体有尿苷二磷酸葡 糖醛酸(UDPGA)、活性硫酸、谷胱甘 肽、氨基酸、乙酰CoA、S-腺苷甲硫氨酸 等。
03
02
(2)改变药物的活性或毒性。大 多数药物经过生物转化后活性、 毒性降低或消失,如磺胺类、阿 司匹林类药物等。
04
(4)指导临床合理用药。新 生儿肝蛋白质合成功能不够完 善,微粒体酶系活性较成人低 对非营养物质的代谢能力较差 对某些药物敏感,易发生药物 中毒。
生物化学
12肝脏的生物转化作用
-6-
医学生物化学
国家开放大学
性体内半衰期约为 13.4 h,而在女性体内半衰期只有 10.3 h。 肝功能低下可降低肝的生物转化能力,故对肝病患者用药要慎重;单加氧酶系特异性较差,
能催化多种物质进行不同类型的氧化反应。例如,长期服用苯巴比妥的病人,对氨基比林等药 物的转化能力也增强,产生耐药性。用药时还应考虑用药配伍对药物生物转化的影响。另外利 用苯巴比妥能诱导葡萄糖醛酸基转移酶的合成,此酶可催化脂溶性的游离胆红素转变为水溶性 的胆红素葡萄糖醛酸酯(结合胆红素),故临床用苯巴比妥治疗新生儿高胆红素血症,以防止发 生“核黄疸”(胆红素脑病)。
-3-
医学生物化学
国家开放大学
烷基反应、氧化反应等,故有重要的生理意义。 单加氧酶系催化分子氧中的一个氧原子掺入底物,而另一个氧原子被 NADPH 还原为水分
子。由于一个氧分子发挥了两种功能,故又称其为混合功能氧化酶。又由于其氧化产物是羟化 物,故又称其为羟化酶。
单加氧酶系由细胞色素 P450、NADPH-细胞色素 P450 还原酶(其辅酶为 FAD)和细胞色 素 b5 还原酶组成。
-7-
(一)内源性 内源性物质为体内代谢产生的各种生物活性物质,如激素、神经递质和其他胺类物质,还 有一些对机体有毒的代谢产物,如胺和胆红素等。 (二)外源性 外源性物质为外界进入体内的药物、食品添加剂、色素、误服的毒物及蛋白质在肠道的腐 败产物(如胺类物质)等。
二、生物转化作用概述 (一)生物转化作用的概念 非营养物质在肝脏内进行氧化、还原、水解和结合反应后,其极性(水溶性)增强,更易
-4-
医学生物化学
国家开放大学
过上述氧化、还原或水解的第一相反应后,还需要进一步进行第二相的结合反应才能完成生物 转化作用。
肝的生物化学
肝的生物化学1.生物转化作用:来自体内外的非营养物质(药物、毒物、染料、添加剂,以及肠管内细菌的腐败产物)在肝进行氧化、还原、水解和结合反应,这一过程称为肝的生物转化作用。
2.初级胆汁酸:初级胆汁酸是胆固醇在肝细胞内分解生成的具有24碳的胆汁酸,包括胆酸和鹅脱氧胆酸及其与甘氨酸和牛磺酸的结合产物。
3.次级胆汁酸:由初级胆汁酸在肠道中经细菌作用氧化生成的胆汁酸,包括脱氧胆酸和石胆酸及其与甘氨酸和牛磺酸的结合产物。
4.单胺氧化酶(MAO):单胺氧化酶存在于线粒体中,从肠道吸收来的腐败产物胺类可由此酶氧化脱氨,生成醛与过氧化氢。
5.结合胆红素:胆红素在肝微粒体中与葡糖醛酸结合生成的葡糖醛酸胆红素称为结合胆红素,它水溶性大,易从尿中排出。
6.胆色素:胆色素是体内铁卟啉化合物的分解代谢产物,主要是衰老的红细胞在网状内皮系统中分解产生血红蛋白,血红蛋白进一步分解而来。
包括胆红素、胆绿素、胆素原和胆素。
7.胆素原的肠肝循环生理情况下,肠中产生的胆素原约有10%-20%重吸收,经门静脉入肝,其中大部分又以原形随胆汁再次排入肠道,此过程称为胆素原的肠肝循环。
8.胆汁酸的肠肝循环在肝细胞合成的初级胆汁酸,随胆汁进入肠道,转变为次级胆汁骏。
肠道中约95%胆汁酸经门静脉被重吸收入肝,并同新合成的胆汁酸一起再次被排人肠道,此循环过程称胆汁酸的肠肝循环。
9.黄疸胆红素为金黄色物质,大量的胆红素扩散进人组织,可造成组织黄染,这一体症称为黄疸。
根据胆红素生成的原因可将黄疸分为三种类型。
即溶血性黄疸、肝细胞性黄疸和阻塞性黄疸。
10.胆汁:是肝细胞分泌的一种液体,分为肝胆汁和胆囊胆汁,主要成分是胆汁酸盐,另外还含有多种酶类肝脏在物质代谢中的作用:肝脏在糖代谢中的作用,是通过肝糖原的合成、分解与糖异生作用来维持血糖浓度的恒定,确保全身各组织的能量供应; 肝脏在脂类的消化、吸收、分解、合成及运输等过程中均起重要作用; 肝脏能合成多种血浆蛋白质,并在蛋白质的分解代谢中也起重要作用; 肝脏在维生素的吸收、贮存和转化等方面均有重要作用; 肝脏参与激素的灭活胆汁酸的生理功能:作为较强的乳化剂促进脂类的消化吸收; 抑制胆固醇结石的形成; 维持胆汁的液态胆色素的正常代谢过程:1.衰老的红细胞被网状内皮系统破坏后释出的血红素,在血红素加氧酶催化下,生成胆绿素,再在胆绿素还原酶催化下生成脂溶性的胆红素。
肝的生物转化作用
肝的生物转化作用一、生物转化的概念人体在生命活动中,一些非营养物质进入体内,经过氧化、复原、水解、结合等化学反响,使其极性增强,水溶性增加,以利于随胆汁、尿液排出体外的作用叫生物转化作用 (biotransformation)。
机体内需要进行生物转化的非营养物质可分为内源性和外源性两类。
内源性物质包括激素、神经递质、和其他胺类等一些对机体具有强烈生物学活性的物质,以及氨、胆红素等对机体有毒性的物质。
外源性物质包括药物、毒物、食品添加剂、环境污染物、体内微生物的代谢产物等。
上述非营养物质经过生物转化后,其生物学效应降低或消除〔灭活作用〕,但也有一些物质〔特别是一些外源性的药物和毒物〕经生物转化后生物学效应反而加强。
其更重要的生物学意义是有利于这些物质排出体外。
肝脏是机体内生物转化的主要器官。
二、生物转化反响的类型生物转化过程所包括的许多化学反响可以归纳为两相。
第一相反响包括氧化、复原、水解反响。
第二相反响是结合反响。
(一) 第一相反响——氧化、复原和水解反响大多数药物、毒物等进入肝细胞后,常首先进行氧化反响,有些可被水解,少数物质被复原。
1.氧化反响 肝细胞的线粒体、微粒体及胞液中含有参与生物转化的不同氧化酶系。
(1)加单氧酶系 此酶系存在于肝细胞的微粒体中,由细胞色素P 450与NADPH —P 450复原酶共同组成。
能催化多种有机物质进行氧化反响。
加单氧酶能直接激活分子氧,使氧分子中的一个氧原子掺入到底物分子中氧化底物,而另一个氧原子被NADPH 复原为水分子。
即一个氧分子发挥了两种功能,故又称为混合功能氧化酶,亦可称为羟化酶。
在生物转化过程中,其作用最为重要。
反响通式为:(2)胺氧化酶系 此酶存在于肝细胞的线粒体中,催化的底物为组胺、酪胺、尸胺、腐胺等肠道腐败产物,经氧化脱氨生成相应的醛类。
反响通式为:RH+O 2+NADPH+HROH+NDAP ++H 2O(3)脱氢酶系 以NAD +为辅酶,存在于肝细胞的胞液及微粒体中,有醇脱氢酶及醛脱氢酶,分别作用于醇类及醛类,使其氧化,最终生成羧酸。
肝的生物转化
汁排出,而引起胆红素反流入血。
Thanks!
---By Medal
肝在维生素吸收,贮存,运输和代谢方 面具有重要作用。
1.胆汁酸盐促进脂溶性维生素吸收 2.是维生素A,E,K,B12的主要贮存场所
3.直接参与多种维生素的代谢转化 4.多种维生素在肝内合成辅酶
肝的生物转化 非营养物质→脂溶性物质变水溶性→随胆汁成尿液排出体外
转化反应包括两项: 1相:氧化,还原,水解 2相:结合反应(葡糖醛酸结合反应,酰基化反应,硫酸结合反应,谷胱甘肽 结合反应,甘氨酸羧化,甲基化反应)
影响因素 1.诱导剂---药物和毒物可诱导酶合成促进自身代谢
2.遗传因素---遗传变异使转化酶结构与含量有差异
3.年龄---新生儿肝脏发育不完善,老年人器官退化。
4.营养---食物常含有诱导和抑制生物转化酶的物质。高蛋白质饮 食可增加肝细胞整体酶的活性
5.疾病---肝病会影响生物转化酶类及NADPH的合成
肝在脂类消化吸收,合成,分解和运输 过程的重要作用。
1.胆汁酸合成-----促进脂类的消化吸收
2.脂酸代谢-----脂酸氧化,合成脂酸,合成胴体,合成甘油 三酯。
3.胆固醇代谢----合成胆固醇,促血浆胆固醇酯化,排泄胆 固醇。
4.脂蛋白代谢----合成LDL,VLDL,HDL,apo2,降解LDL
血清胆红素升高可出现黄亘
黄亘:某些疾病使病人血中胆红素的含量异常升高,大量 胆红素扩散进入组织,造成组织黄染,其中巩膜和皮肤最
为明显,这种体征为黄亘。
溶血性黄亘:红细胞被破坏,胆红素过多超过了肝脏的处 理能力。
肝源性黄亘:肝脏功能严重损伤,肝细胞摄取,转运,结 合和排泄胆红素的能力下降,引起血中未结合的胆红素含
肝的物质代谢及生物转化
( Biochemistry in Liver )
目录
第一节 肝在物质代谢中的作用 第二节 肝的生物转化作用
肝的结构特点
肝具有肝动脉和门静脉双重血液供应
肝存在肝静脉和胆道系统双重输出通道 肝具有丰富的肝血窦 肝细胞含有丰富的细胞器如内质网、线粒体、溶酶体、过
更为重要的是可使这些物质的水溶性和极性增加,易于从尿或胆汁排出体外
※ 肝的生物转化作用≠解毒作用
二、肝的生物转化包括两相反应
第一相反应:氧化、还原、水解反应 第二相反应:结合反应
有些物质经过第一相反应,使其某些基团转化或分解,理化性质改变,即
可顺利排出体外
有些物质即使经过第一相反应后,极性改变不大,必须与某些极性更强的
※ 脂肪动员↑→酮体合成↑ →节省葡萄糖
二、肝在脂类代谢中占据中心地位
作用: 在脂类的消化、吸收、合成、分解与运输均具有重要作用。 回顾: 肝内进行的脂类代谢途径主要有哪些?
脂肪酸的氧化
脂肪酸的合成及酯化 酮体的生成
胆固醇的合成与转变
脂蛋白与载脂蛋白的合成 ( VLDL、HDL、apo CⅡ ) 脂蛋白的降解 ( LDL )
迄今已鉴定出57余种编码CYP的基因。按氨基酸序列同源性在55%60%,
分为A、B、C等亚族 按氨基酸序列同源性在40%以上分类,可将人肝细胞P450分为5个家族: CYP1、 CYP2、CYP3、CYP7和CYP27
对异源物进行生物转化的主要CYP是CYP1、CYP2和CYP3。其中又以微粒
肝微粒体乙醇氧化系统(microsomal ethanol oxidizing system, MEOS)
药物在肝内的生物转化[整理版]
药物在肝内的生物转化一、药物在肝内的生物转化肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。
肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。
另一方面,药物的代谢过程中的产物,可以造成肝损害。
药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。
(一)第一相反应多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。
此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。
有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。
其反应可概括如下:D+A→DANADPH+DA+H+→DAH2+NADP-DAH2+O2+HADPH→A+DOH+H2O+NADP-(注:D=药物;A=CYP450)药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是CYP450,其他有关的酶和辅酶包括:NADPHCYP450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。
CYP450是一种铁卟啉蛋白,能进行氧化和还原。
当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPHCYP450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。
后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。
CYP450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。
P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。
药物与P450结合位点与血红素分子非常接近,有利于电子的转移。
2022年医学院生化课知识点汇总-17章 肝生物化学
第17章肝的生物化学学习要求1. 掌握肝在物质代谢中的作用。
掌握肝的生物转化作用、胆汁酸代谢、胆色素代谢。
2. 熟悉高胆红素血症与黄胆。
3. 了解肝生化与临床的关系和肝功能检查原则。
基本知识点独特的组织结构和化学组成特点,赋予了肝复杂多样的生物化学功能。
肝不仅是物质代谢的中枢,而且具有生物转化、分泌和排泄等功能。
肝通过肝糖原合成与分解、糖异生维持血糖的相对稳定。
肝在脂类代谢中占据中心地位。
肝将胆固醇转化为胆汁酸,协助脂类的消化与吸收。
肝是体内合成甘油三酯、磷脂与胆固醇的重要器官.肝能合成VLDL、HDL,参与甘油三酯与胆固醇的转运.肝是氧化脂肪酸并产生酮体的器官.肝是除支链氨基酸外所有氨基酸分解代谢的重要器官,也是氨在体内合成尿素的主要场所。
肝在维生素的吸收、储存、运输和代谢转化方面起重要作用。
肝还是许多激素灭活的场所。
肝通过生物转化对内、外源性的非营养物质进行化学改造,提高其水溶性和极性,有利于从尿液和胆汁排出。
肝的生物转化第一相包括:包括氧化、还原、水解;第二相包括结合反应,并具有转化反应的连续性、反应类型的多样性和解毒与致毒的双重性特点。
胆汁是肝细胞分泌的兼具消化液和排泄液的液体。
作为胆汁主要成分的胆汁酸是胆固醇的代谢产物,是肝清除体内胆固醇的主要形式。
胆汁酸有初级胆汁酸和次级胆汁酸之分。
初级胆汁酸包括胆酸和鹅脱氧胆酸。
初级胆汁酸经肠菌作用生成次级胆汁酸,包括脱氧胆酸和石胆酸。
胆汁酸还有游离型和结合型之分。
结合型胆汁酸是游离胆汁酸和甘氨酸或牛磺酸在肝内合成的产物。
胆汁酸的肠肝循环使有限的胆汁酸库反复利用以满足脂类消化、吸收的需要。
胆色素是铁卟啉化合物的主要分解产物。
胆色素主要来自衰老红细胞内血红素的降解。
血红素加单氧酶和胆绿素还原酶催化血红素经胆绿素生成胆红素。
胆红素为脂溶性,在血液中与清蛋白结合而运输。
在肝细胞胆红素和葡萄糖醛酸结合生成水溶性的胆红素,后者由肝主动分泌,经胆管排入小肠。
在肠菌酶的作用下,胆红素被还原成胆素原。
(整理)肝的生物转化作用
肝的生物转化作用一、肝的生物转化作用是机体重要的保护机制(一)生物转化的概念人体内不可避免地存在许多非营养物质,这些物质既不能作为构建组织细胞的成分,又不能作为能源物质,其中一些还对人体有一定的生物学效应或潜在的毒性作用,长期蓄积则对人体有害。
机体在排出这些非营养物质之前,需对它们进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程称为生物转化作用(biotrans—formation)。
肝是机体内生物转化最重要的器官。
体内进行生物转化的非营养物质按其来源分为内源性和外源性两类。
内源性物质包括体内物质代谢的产物或代谢中间物(如胺类、胆红素等)以及发挥生理作用后有待灭活的激素、神经递质等一些对机体具有强烈生物学活性的物质。
外源性物质系人体在日常生活和(或)生产过程中不可避免接触的异源物(xenobiotits),如药物、毒物、环境化学污染物、食品添加剂等和从肠道吸收来的腐败产物。
这些物质多系脂溶性,均需经过生物转化作用才能排出体外。
(二)生物转化的生理意义生物转化的生理意义在于:一则生物转化可对体内的大部分非营养物质进行代谢转化,使其生物学活性降低或丧失(灭活),或使有毒物质的毒性减低或消除(解毒)。
另则通过生物转化作用可增加这些非营养物质的水溶性和极性,从而易于从胆汁或尿液中排出。
但应该指出的是,有些非营养物质经过肝的生物转化作用后,虽然溶解性增加,但其毒性反而增强;有的还可能溶解性下降,不易排出体外。
如多环芳烃类化合物——苯丙芘,其本身没有直接致癌作用,但经过生物转化后反而成为直接致癌物。
有的药物如环磷酰胺、百浪多息、水合氯醛和中药大黄等需经生物转化才能成为有活性的药物。
因此,不能将肝的生物转化作用简单地称为“解毒作用”(detoxificat ion),这体现了肝生物转化作用的解毒与致毒的双重性特点。
二、肝的生物转化包括两相反应肝的生物转化可分为两相反应。
第一相反应包括氧化(oxidation)、还原(redtJction)和水解(hydr01ysis)。
【高中生物】肝的生物化学第十七章肝的生物化学
(生物科技行业)肝的生物化学第十七章肝的生物化学第十七章肝的生物化学第一节肝的物质代谢特点一、肝脏在糖代谢中的作用1.作用:维持血糖浓度的相对恒定,从而保障全身各组织,特别是大脑和红细胞的能量供应。
2.机制:在神经体液因素的调控下,肝通过糖原的合成与分解及糖异生作用来实现对血糖的调节。
1)当血糖浓度增高时(如进食后),血中葡萄糖在肝中合成肝糖原储存,使血糖保持正常水平。
2)当血糖浓度降低时(如饥饿时),肝糖原迅速分解为葡萄糖释放入血以补充血糖,从而防止血糖降低。
在饥饿10多小时后,绝大部分肝糖原被消耗,此时糖异生作用成为肝供应血糖的主要途径。
故肝病时容易导致血糖含量变化,可以引起肝源性低血糖症,甚至出现低血糖昏迷。
二、肝脏在脂类代谢中的作用1.作用:肝脏在脂类消化、吸收、转运、分解和合成代谢中都有重要作用。
2.机制:1)肝细胞可将胆固醇转变为胆汁酸盐,随胆汁排入肠腔,可乳化脂肪,以利于脂类消化和吸收。
肝病或胆道阻塞时,脂类消化吸收障碍,可产生厌油腻和脂肪泻等症状。
2)血浆中的VLDL主要在肝细胞合成,它在血浆中可转化为LDL。
HDL也主要在肝细胞合成。
脂蛋白是脂类在血浆中的转运形式,故肝脏积极参与体内各种脂类的转运和代谢。
3)甘油三脂在肝分解代谢十分活跃。
如脂肪酸在肝旺盛地进行β-氧化分解,且因其特有的酮体合成酶系,将之转变为酮体,并经血液循环转运至肝外组织,供大脑、肾、心脏、骨胳肌等组织氧化利用获取能量。
4)肝脏是合成脂肪、胆固醇、磷脂旺盛的器官。
磷脂是脂蛋白的重要组成部分。
当肝功能障碍或磷脂合成原料缺乏时,肝细胞合成磷脂减少,肝内脂肪运出障碍,过多的脂肪存积在肝细胞内而形成脂肪肝。
三、肝在蛋白质代谢中的作用1.作用:肝活跃地进行着蛋白质的合成代谢与分解代谢。
2.机制:肝是合成蛋白质的重要器官,肝除合成其本身所需的蛋白质外,还能合成大部分血浆蛋白。
血浆中的清蛋白、纤维蛋白原、凝血酶原及多种载脂蛋白在肝脏合成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肝的生物转化作用一、肝的生物转化作用是机体重要的保护机制(一)生物转化的概念人体内不可避免地存在许多非营养物质,这些物质既不能作为构建组织细胞的成分,又不能作为能源物质,其中一些还对人体有一定的生物学效应或潜在的毒性作用,长期蓄积则对人体有害。
机体在排出这些非营养物质之前,需对它们进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程称为生物转化作用(biotrans—formation)。
肝是机体内生物转化最重要的器官。
体内进行生物转化的非营养物质按其来源分为内源性和外源性两类。
内源性物质包括体内物质代谢的产物或代谢中间物(如胺类、胆红素等)以及发挥生理作用后有待灭活的激素、神经递质等一些对机体具有强烈生物学活性的物质。
外源性物质系人体在日常生活和(或)生产过程中不可避免接触的异源物(xenobiotits),如药物、毒物、环境化学污染物、食品添加剂等和从肠道吸收来的腐败产物。
这些物质多系脂溶性,均需经过生物转化作用才能排出体外。
(二)生物转化的生理意义生物转化的生理意义在于:一则生物转化可对体内的大部分非营养物质进行代谢转化,使其生物学活性降低或丧失(灭活),或使有毒物质的毒性减低或消除(解毒)。
另则通过生物转化作用可增加这些非营养物质的水溶性和极性,从而易于从胆汁或尿液中排出。
但应该指出的是,有些非营养物质经过肝的生物转化作用后,虽然溶解性增加,但其毒性反而增强;有的还可能溶解性下降,不易排出体外。
如多环芳烃类化合物——苯丙芘,其本身没有直接致癌作用,但经过生物转化后反而成为直接致癌物。
有的药物如环磷酰胺、百浪多息、水合氯醛和中药大黄等需经生物转化才能成为有活性的药物。
因此,不能将肝的生物转化作用简单地称为“解毒作用”(detoxificat ion),这体现了肝生物转化作用的解毒与致毒的双重性特点。
二、肝的生物转化包括两相反应肝的生物转化可分为两相反应。
第一相反应包括氧化(oxidation)、还原(redtJction)和水解(hydr01ysis)。
许多物质通过第一相反应,其分子中的某些非极性基团转变为极性基团,水溶性增加,即可大量排出体外。
但有些物质经过第一相反应后水溶性和极性改变不明显,还须进一步与葡糖醛酸、硫酸等极性更强的物质相结合,以得到更大的溶解度才能排出体外,这些结合反应(conj•agation)属于第二相反应。
实际上,许多物质的生物转化反应非常复杂。
一种物质有时需要连续进行几种反应类型才能实现生物转化目的,这反映了生物转化反应的连续性特点。
如阿司匹林常先水解成水杨酸后再经结合反应才能排出体外。
同一种或同一类物质可以进行不同类型的生物转化反应,产生不同的产物,则体现了生物转化反应类型的多样性特点。
例如,阿司匹林水解生成水杨酸,后者既可与甘氨酸反应,又可与葡糖醛酸结合。
肝内参与生物转化的酶类列于表17—2。
(一)氧化反应是最多见的生物转化第一相反应1.单加氧酶系是氧化异源物最重要的酶肝细胞中存在多种氧化酶系,其中最重要的是定位于肝细胞微粒体的依赖细胞色素P4s c,的单加氧酶系(cytochrome P45。
monooxy—genase,CYP)。
单加氧酶系是一个复合物,至少包括两种组分:一种是细胞色素P4s0(血红素蛋白);另一种是NADPH一细胞色素。
P450还原酶(以FAD为辅基的黄酶)。
该酶催化氧分子中的一个氧原子加到许多脂溶性底物中形成羟化物或环氧化物,另一个氧原子则被NADPH还原成水。
故该酶又称羟化酶或混合功能氧化酶(mixed function oxidase,MF())(详见第六章)。
该酶是目前已知底物最广泛的生物转化酶类。
据估计,人类基因组至少编码14个家族的CYP。
迄今已鉴定出30余种人类编码cYP的基因。
单加氧酶系催化的基本反应如下:其中许多化合物不稳定,再经分子内部的变换,生成稳定的化合物。
例如,苯胺在单加氧酶系催化下生成对氨基苯酚。
单加氧酶系的羟化作用不仅增加药物或毒物的水溶性,有利于排泄,而且还参与体内许多重要物质的羟化过程。
如维生素n羟化成为具有生物学活性的维生素1,25一(oH)zI)3,胆汁酸和类固醇激素合成过程中的羟化作用等。
然而应该指出的是,有些致癌物质经氧化后丧失其活性,而有些本来无活性的物质经氧化后却生成有毒或致癌物质。
例如,黄曲霉素B-经单加氧酶作用生成的黄曲霉素2,3一环氧化物可与DNA分子中的鸟嘌呤结合,引起DNA 突变,成为原发性肝癌发生的重要危险因素。
2.单胺氧化酶类氧化脂肪族和芳香族胺类存在于肝细胞线粒体内的单胺氧化酶(monoanline oxidase,MAo)是另一类参与生物转化的氧化酶类。
属于黄素酶类,可催化蛋白质腐败作用等产生的脂肪族和芳香族胺类物质(如组胺、酪胺、色胺、尸胺、腐胺等)以及一些肾上腺素能药物(如5一羟色胺、儿茶酚胺类等)的氧化脱氨基作用生成相应的醛类,后者进一步在胞液中醛脱氢酶催化下进一步氧化成酸,使之丧失生物活性。
RCH2NH2+02+H20—————÷RC:HO+NH3+:H202胺醛RCHO+NAD’+H20———呻RCOOH+NADH+H’醛酸3.醇脱氢酶与醛脱氢酶将乙醇最终氧化成乙酸肝细胞胞液存在非常活跃的以NAD’为辅酶的醇脱氢酶(alcolc•01 det,ydrc~genase,ADH),可催化醇类氧化成醛,后者再由线粒体或胞液醛脱氢酶(alde[wde dehydI’ogenase,AI。
DH)催化生成相应的酸类。
RCH20H+NAD+壁堕鱼堕,RCHO+NADH+I{+RCHO+NAD++H20醛堕鱼堕,:RCOOH+NADH+H+乙醇(ethan01)作为饮料和调味剂广为人类所利用。
人类摄人的乙醇可被胃(吸收30%)和小肠上段(吸收70%)迅速吸收。
饮人体内的乙醇约有2%不经转化便从肺呼出或随尿排出,其余部分在肝进行生物转化,由醇脱氢酶与醛脱氢酶将乙醇最终氧化成乙酸。
乙醇在体内的氧化速度约为2.2mmol/(kg•h)[100mg/。
(kg•h)],相当于70公斤体重的人每小时氧化纯乙醇ll毫升。
长期饮酒或慢性乙醇中毒除经ADH氧化外,还可使肝内质网增殖并启动肝微粒体乙醇氧化系统(micrOSOInal ethanol oxidizing system,ME()s)。
MEos是乙醇一P4s(,单加氧酶,产物是乙醛,仅在血中乙醇浓度很高时起作用。
值得注意的是,乙醇诱导ME()S不但不能使乙醇氧化产生ATP,还可增加对氧和NAD—PH的消耗,而且还可催化脂质过氧化产生羟乙基自由基,后者可进一步促进脂质过氧化,引发肝损伤。
ADH与MEoS 的细胞定位及特性见表17—3。
乙醇经上述两种代谢途径氧化均生成乙醛,后者约90%以上在AI。
DH的催化下氧化成乙酸。
人体肝内ALDH活性最高。
AI。
DH的基因型有正常纯合子、无活性型纯合子和两者的杂合子3型。
东方人这3种基因型的分布比例是45:10:45。
无活性型纯合子完全缺乏ALDH 活性,杂合子型部分缺乏AIJ)H活性。
值得提及的是东方人群大约有30%~40%的人AI。
DI-{基因有变异,部分AI。
DI-{活性低下,此乃该人群饮酒后乙醛在体内堆积,引起血管扩张、面部潮红、心动过速、脉搏加快等反应的重要原因。
此外,乙醇的氧化使肝细胞胞液NADH/NAD’比值升高,过多的NADH可将胞液中丙酮酸还原成乳酸。
严重酒精中毒导致乳酸和乙酸堆积可引起酸中毒和电解质平衡紊乱,还可使糖异生受阻引起低血糖。
(二)硝基还原酶和偶氮还原酶是第一相反应的主要还原酶硝基化合物多见于食品防腐剂、工业试剂等。
偶氮化合物常见于食品色素、化妆品、纺织与印刷工业等。
有些可能是前致癌物。
这些化合物分别在微粒体硝基还原酶(ni—troreductase)和偶氮还原酶(az()redt】ctase)的催化下,从NADH或NADPH接受氢,还原生成相应的胺类。
例如,硝基苯和偶氮苯经还原反应均可生成苯胺,后者再在单胺氧化酶的作用下,生成相应的酸。
又如,百浪多息是无活性的药物前体,经还原生成具有抗菌活性的氨苯磺胺。
(三)酯酶、酰胺酶和糖苷酶是生物转化的主要水解酶肝细胞的胞液与内质网中含有多种水解酶类,主要有酯酶(esterase)、酰胺酶(ami—dase)和糖苷酶(ghacosidase),分别水解酯键、酰胺键和糖苷键类化合物,以减低或消除其生物活性。
这些水解产物通常还需进一步反应,以利排出体外。
例如,阿司匹林的生物转化过程中,首先是水解反应生成水杨酸,然后是与葡糖醛酸的结合反应。
(四)结合反应是生物转化的第二相反应第一相反应生成的产物可直接排出体外,或再进一步进行第二相反应,生成极性更强的化合物。
有些非营养物质也可不经过第一相反应而直接进入第二相反应。
肝细胞内含有许多催化结合反应的酶类。
凡含有羟基、羧基或氨基的药物、毒物或激素均可与葡糖醛酸、硫酸、谷胱甘肽、甘氨酸等发生结合反应或进行酰基化和甲基化等反应。
其中,以与葡糖醛酸、硫酸和乙酰基的结合反应最为重要,尤以与葡糖醛酸的结合最为普遍。
1.葡糖醛酸结合是最重要、最普遍的结合反应糖代谢过程中产生的尿苷二磷酸葡糖(UDPG)可在肝进一步氧化生成尿苷二磷酸葡糖醛酸(uridine diph(}sphate glucuronk:acid,UDPGA)。
肝细胞微粒体的葡糖醛酸基转移酶(uDP glucuronyl trarisfelas.e,uGT),以UDP—GA 为葡糖醛酸的活性供体,可催化葡糖醛酸基转移到醇、酚、胺、羧酸类化合物的羟基、羧基及氨基上形成相应的13一【)-葡糖醛酸苷,使其极性增加易排出体外。
据研究,有数千种亲脂的内源物和异源物可与葡糖醛酸结合,如胆红素、类固醇激素、吗啡和苯巴比妥类药物等均可在肝与葡糖醛酸结合进行转化,进而排出体外。
2.硫酸结合也是常见的结合反应肝细胞胞液存在硫酸基转移酶(sulfotra-asferase,SUI,T),以3’一磷酸腺苷5’一磷酸硫酸(PAPS)为活性硫酸供体,可催化硫酸基转移到醇、酚或芳香胺类等含有一0H的内、外源非营养物质上,生成硫酸酯,使其水溶性增强,易于排出体外。
例如雌酮即由此形成硫酸酯而灭活。
3.乙酰基化是某些含胺非营养物质的重要转化反应肝细胞胞液富含乙酰基转移酶(acetyltransferase),以乙酰(20A为乙酰基的直接供体,催化乙酰基转移到含氨基或肼的内、外源非营养物质(如磺胺、异烟肼、苯胺等),形成乙酰化衍生物。
例如,抗结核病药物异烟肼在肝内乙酰基转移酶催化下经乙酰化而失去活性。
该酶表达呈多态性,使得个体有快速或迟缓乙酰化之分,影响诸如异烟肼等药物在血液中的清除速率,迟缓乙酰化个体对异烟肼的某些毒性反应较之快速乙酰化个体敏感。