地震子波极性

合集下载

地震资料极性判别技术在储层预测中的应用_吴俊刚

地震资料极性判别技术在储层预测中的应用_吴俊刚

只是旁瓣的能量较强,可以利用零相位子波地震资
料极性的判别方法,但工作中应使用视极性的概念。
地震资料在处理过程中,往往需要对地震资料
对于零相位地震剖面极性的判别方法主要有:
进行零相位化处理,这是因为零相位子波的旁瓣比
合成记录法: 该方法主要利用人工合成地震记
最小相位子波小,能量主要集中在较小的时间范围 录制作过程中,地震子波极性是已知的,分别作出
图 3 合成地震记录 Fig. 3 Synthetic seismogram
极性,应统计工区内多口井的合成记录的子波极性, 通过大多数井来判别地震资料极性。该方法的缺点 是判断结果的准确性受到工区内钻井多少的限制, 在钻井较少的区域应用时应予以慎重。
“单双轨”判别法: 一个正反射系数( 如基岩面、 火成岩层顶面等) 对应波峰,在地震剖面上呈一个 “单轨”反射,或负反射系数界面( 如油页岩或气层 顶面) 对应波谷,在地震剖面呈“双轨状”反射,那么 此剖面是正极性剖面。反之,如果一个正反射系数 界面对应波 谷,在 地 震 剖 面 上 呈“双 轨 状 ”反 射,或 负反射系数界面对应波峰,则该剖面为负极性剖面。 图 4 为渤海某油田的一口钻井,该井在井深2 230 m 处钻遇厚达 120 m 的古生界的地层,其上覆地层为 新生界东营组,通过本井 VSP 资料标定表明,古生 界顶界面是一正反射系数界面,在地震反射特征上 为一“单轨”反射特征,由此可以判定此反射界面为 正极性。
此外,还可以利用 VSP 资料对比法、正演模型 法等[4]来判断地震资料的极性,但在实际工作中人 工合成地震记录法和单双轨判别法较为实用。需要 说明的是从井旁地震道提取子波只能改善合成记录 与实际记录的相似程度,有利于储层的准确标定,并 不能用于判断地震资料的实际记录极性状态。

jason反演 第三讲 子波及其极性 100403

jason反演 第三讲 子波及其极性 100403

地震数据的准备--地震数据的极性认识
地震数据的极性判断: 1、SEGY格式规定,初至波起跳向下,记录数值是负值,对应正反 射系数界面,此称“正常极性地震记录”。即波谷对应正反射系数 (Normal Format); 2、地震子波是混合相位的; 3、不同的处理方法可以得到不同相位的子波,……地震数据的“视极 性”也就各异; 4、通常处理技术还很难解决子波的零相位化; 5、有一些资料处理模块是可以改变相位的。 (据李庆忠院士《走向精确勘探的道路》P134) 所以:子波是未知的!判断地震数据的极性有一定的困难。 平常我们拿到手的地震数据,其极性是什么?没有答案。因为野外 是保证极性下跳;处理中心数据入站,极性没有变化;但处理流程中, 每一个处理环节没有进行相位监控,所以到数据出站时,地震数据的相 位被改造成什么样?这是一笔糊涂帐。所以很难说清地震数据的极性是 什么,也就是子波相位是说不清楚的。这给我们的反演带来困惑。(解 决办法见合成记录)。
从上面两个例子来看,如果不注意子波的极性(即 相位),那么可能把阻抗计算反了,在九十年代初期, 曾发生过这种事情。也就是从那个时候起,才引起我们 的注意,可是目前还有许多解释员,只简单的用零相位 雷克子波做合成记录,然后用这个子波进行反演,这种 做法是不对的,有可能把高速与低速层做反了,那么地 震反演的结果就全错了,因此,子波的相位是至关重要 的!
《地震勘探数据处理规范》中关于极性的规定:

记录初至下跳(负值),称正常极性:反之,称为反正常极性。数据 处理中通常采用正常极性。 对于没有提供极性信息的测线,应放大显示少许单炮记录的初至,以 鉴定其极性。对反正常极性记录应进行反极性处理。在成果剖面中应 标注清楚记录道的极性。
地震子波的极性(SEGY格式规定:normal格式,正反射系数,负子波)

地震资料解释中的极性判断

地震资料解释中的极性判断

地震资料解释中的极性判断首先,规定:一、1975年第42届SEG年会中规定:野外记录统一标准为——初至波向下起跳、记录数值是负的,称为SEG“正常记录”。

二、地震子波的极性:零相位地震子波主瓣向右跳为正极性,向左跳为负极性。

三、地震剖面的极性:在零相位地震剖面上,如果是一个较大反射系数且相对孤立的地层界面,正反射系数界面对应波峰,负反射系数对应波谷,这种剖面被称为正极性剖面;与其相反的被称为负极性剖面。

四、对于非零相位地震剖面使用视极性的概念,即视正极性、视负极性。

五、地震勘探的正反射和负反射:上覆为疏介质、下覆为密介质,反射系数为正,反之为负。

其次,方法:一、声波合成地震记录法1、制作人工合成地震记录(井位越多越可靠)2、确定井与地震剖面的关系:(1)正极性相关好;(2)负极性相关好;(3)正负极性都好或都不好3、去掉不定性的无效井(井深太小、正负极性与地震剖面相关性太差或都较好,按有效井的多数确定剖面极性二、单轨、双轨剖面判别法正极性剖面上:典型的正反射系数界面表现为单轴强峰,如基岩顶面、火成岩顶面;而典型的负反射系数界面表现为双轨强峰,如大套油页岩顶面。

如果发现典型的“单轨强峰”且有井通过的剖面,可追查该井在强峰对应深度典型反射系数的类型。

三、提取子波判别法对所分析的地震剖面提取一个子波,以子波的波形确定地震剖面的极性。

四、合成地震记录反求平均速度法在合成地震记录与地震剖面波组对比确认后,在地震剖面与合成地震记录上分别读取多对时间与深度值,分别计算出平均速度,进一步拟合成平均速度曲线,将正负极性合成地震记录分别求取的平均速度曲线与综合速度曲线进行比较,与综合速度最接近的平均速度曲线所代表的极性即是此剖面的极性。

五、模型判别法例如:对于围岩为泥岩的透镜状砂岩体,其顶界面由低速到高速是正反射系数界面,在正极性剖面上该界面为波峰,在负极性剖面上位波谷,底界与其相反。

所以透镜状砂岩体在正极性剖面上顶部呈单轨上凸反射特征,而负极性剖面上,砂岩底部呈单轨下凹反射特征。

[]地震勘探原理

[]地震勘探原理

名词解释:1、布格重力异常:是野外重力观测数据经过布格校正以后得到的重力异常,它是由地下矿体或构造等局部地质因素在测点处引起的引力的垂向分量。

2、磁异常:地下含有磁性的地质体在其周围空间引起的磁场变化。

3、地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造、地层岩性等,为寻找油气田或其它勘探目的服务的一种物探方法。

4、地震子波:当地震波传播一定距离后,其形状逐渐稳定,具有2-3个相位,有一定的延续时间的地震波,称为地震子波,它是地震记录的基本元素。

5、纵波(P波):质点的振动方向与波的传播方向一致的波,有时也称为压缩波或疏密波。

6、横波(S波):质点的振动方向与波的传播方向垂直的波,有时也称为切变波。

7、体波:当纵波和横波在介质的整个立体空间中传播时合称体波。

8、面波:在自由表面或不同弹性介质的分界面上传播的一类特殊波。

最常见的面波是沿地面传播的瑞利波。

其特点是低速(通常小于横波速度)、低频、强振,是一种干扰波。

9、多次波:在一个或几个界面中经过两次或两次以上重复反射或折射而到达地面的地震波。

多次波是一种干扰波。

10、波阻抗:地震波传播速度与介质密度的乘积(Z=ρ·V)。

它是研究界面上地震波反射强度的一个重要参数。

11、地震波运动学:研究地震波波前的空间位置与其传播时间关系的一门学科,也叫几何地震学,主要用于地震资料的构造解释。

12、时距曲线:波从震源出发,传播到测线上各观测点的传播时间t与观测点相对于激发点(坐标原点)距离x之间的关系曲线。

t=f(x)=f(x,v,h)13、自激自收:激发点和接收点在同一位置上的野外工作方式。

14、炮检距:观测点相对于激发点(坐标原点)距离x15、地震波动力学:研究地震波在运动状态中的能量、波形、频谱等特征及其变化规律的一门学科,它是地震资料地层、岩性解释的基础。

16、频谱:组成一个复杂振动的各个谐振动分量的特性与其频率关系的总和称为该振动的频谱,包括振幅谱和相位谱。

极性

极性

正反射系数、 、 正反射系数、初至下跳、 初至下跳 磁带为负 波谷为正 处理剖面正常极性显示
零相位资料
极性示意图
有关标准对极性的规定
《地震勘探采集技术规范》中关于极性的规定: 地震勘探采集技术规范》中关于极性的规定:
年度开工前或每次改变大线、检波器和仪器输入电路时, 年度开工前或每次改变大线、检波器和仪器输入电路时,必须采用炸 药激发,检查地震数据采集系统的极性(包括仪器、 药激发,检查地震数据采集系统的极性(包括仪器、地震有关标准对 极性的规定电缆、检波器串),并将极性记录记带, ),并将极性记录记带 极性的规定电缆、检波器串),并将极性记录记带,磁带上的能量初 至应为负值。 至应为负值。 经计算机显示,要求初至下跳,宽行打印初至样值是一负值。 经计算机显示,要求初至下跳,宽行打印初至样值是一负值。
有关极性的约定
SEG极性标准: SEG极性标准: 极性标准
1、对炸药震源,当爆炸压缩开始时初至下跳,产生一负数,图形显示下 对炸药震源,当爆炸压缩开始时初至下跳,产生一负数, 跳(即初至相当正反射系数,处理剖面正常极性显示为波谷); 即初至相当正反射系数,处理剖面正常极性显示为波谷); 对零相位子波,正反射系数由波峰中心表示。 2、对零相位子波,正反射系数由波峰中心表示。
从上面两个例子来看,如果不注意子波的极性(即 从上面两个例子来看,如果不注意子波的极性( 极性 相位),那么可能把阻抗计算反了,在九十年代初期, ),那么可能把阻抗计算反了 相位),那么可能把阻抗计算反了,在九十年代初期, 曾发生过这种事情。也就是从那个时候起, 曾发生过这种事情。也就是从那个时候起,才引起我们 的注意,可是目前还有许多解释员, 的注意,可是目前还有许多解释员,只简单的用零相位 雷克子波做合成记录,然后用这个子波进行反演,这种 雷克子波做合成记录,然后用这个子波进行反演, 做法是不对的,有可能把高速与低速层做反了, 做法是不对的,有可能把高速与低速层做反了,那么地 震反演的结果就全错了,因此, 震反演的结果就全错了,因此,子波的相位是至关重要 的!

地震资料极性判别技术在储层预测中的应用

地震资料极性判别技术在储层预测中的应用
学 术 研 究 C h i n a S c i e n c e & T e c h n o l o g y O v 判别技术在储层预测中的应用
张 瑞 雪 ( 辽河油田勘探 开发研究 院海洋勘探研究所, 辽宁盘锦 1 2 4 0 1 0 ) 【 摘 要】 石 油勘探 技术的快速发展 , 使 得石油 开采 水平得到快速提 升, 随着 高科技信 息技 术的不 断推 广和运 用, 储层地 震属性预测技 术取得 了一 定成 效, 大大提 高了储层预测 的准确性和 可靠性, 对 于促进 油气开采 工作 正常进行具 有重要 意义。 本 文对地震 资料 极性判 别的方法进行介 绍, 提 出地震 资料 极性 判别技 术在 储层预 测 中的 实际应 用, 促 进我 国储层 预测技 术水 平不 断提 高。
2地震资料极性 判别技术在储层预测中的实际应用
与之相对 应的反射系数界面的地震波子波 , 以确定子波的极 性 , 从 便于 油气 开采正常进行 。 而判别地震剖面的极性 ; 最后根据相关标记和地震剖面的相 关特征 3结 语 进行综合分析 , 以确定地震剖面的极性 , 保证判别结果的准确性和 根据上述对地 震资料极 睦判别方法的介绍, 可以知道地震剖面 可靠性 。 ( 3 ) 单双轨剖面判 别法 。 在地 震剖面 中, 正极性 剖面的特点
是, 正反射系数对应的波峰 叫做单轨反射 , 如基岩面和火成岩层顶 面等 ; 负反射 系数 界面对应 的波谷 叫做双 轨反 射 , 如油页岩和气层 顶面等。 如果剖面 的情况与上述情况相反 , 那么这个地震剖面是 负 极性剖面。 因此 , 在实 践过程 中, 发现 单双轨情 况时 , 根据反射系数 和井的具体情况来判别剖 面的极性 , 从而确 定地震 资料 的极性 。 ( 4 ) 模型判别法 。 在进行钻井勘探 的过程 中, 遇到透镜状砂岩 体时, 正反 射系数 的界面是 以岩 体顶界面 由低速到高速来确定 的, 当出现波峰 情况 , 则为正极性剖面 ; 反之 , 则为负极性剖 面。 因此, 在实际预测过 程中 , 透镜状砂岩体的顶部 出现单轨上 凸的现象时 , 判别为正极性 剖面 ; 砂岩底部出现单轨 下凹情况时, 判别为负极性剖面。 在地震资 极性 的判 别需要综合运 用不 同方法 , 进行 多次极性 判别 , 才能提高 判别 结果 的准 确性 和可靠性 。 在储层预测 中, 运用地震资料极性判 别技术 , 要先对地 震资料的极性进行 判别, 然后 结合 储层地震属性 预测技术 , 避免 对其它生 产工作 造成 影响 , 最终达到提 高预 测结 果 有效性的 目的 , 促进油气开 采工作正常进行 。

地震极性判断(地震剖面原理)

地震极性判断(地震剖面原理)

17/80
三、地震波频率的应用
未做滤波的正常剖面,同相轴形态清楚,
18/80
三、地震波频率的应用
高频滤波剖面,同相轴形态变胖,分辨率降低
19/80
三、地震波频率的应用
低频滤波剖面,同相轴形态变细,分辨率提高,同相轴形态不能分辨
20/80
三、地震波频率的应用
21/80
三、地震波频率的应用
频率为18HZ时,地下断裂的显示效果(最好)
正反射系数 界面为单轨
正反射系数 界面为双轨
15/80
二、地震剖面极性判断
对不同时段地震剖面提取子波,均为正极性地震子波。
500~1000ms 1000~3000ms
3)、提取地震子波判别法
3000~7000ms
16/80
汇 报 提 纲
一、地震剖面子波相位 二、地震剖面极性判断 三、地震波频率的应用 四、地震波形的应用
技术交流
地震剖面极性判断(地震剖面原理)
1/80
汇 报 提 纲
一、地震剖面子波相位 二、地震剖面极性判断 三、地震波频率的应用 四、地震波形的应用
2/80
一、地震剖面子波相位
零相位子波 最小相位子波
1)、地震子波类型
最大相位子波
混合相位子波
3/80
一、地震剖面子波相位
2)、实际地震子波
4/80
4、 对于非零相位地震剖面使用视极性的概念, 即视正极性、 视负极性; 5、 对于处理资料的极性,最终要标明
8/80
二、地震剖面极性判断
正极性
1、极性的规定
负极性
9/80
二、地震剖面极性判断
2、极性的判断方法
1)、声波人工合成地震记录法

【地震子波的再认识】

【地震子波的再认识】

地震子波的再认识一、地震子波概念:地震子波是地震记录褶积模型的一个分量,通常指由2至3个或多个相位组成的地震脉冲,确切地说,地震子波就是地震能量由震源通过复杂的地下路径传播到接收器所记录下来的质点运动速度(陆上检波器)或压力(海上检波器)的远场时间域响应。

一个子波可以由它的振幅谱和相位谱来定义,相位谱的类型可以是零相位、常数相位、最小相位、混合相位等;对零相位和常数相位子波而言,可简单将其看作是一系列不同振幅和频率的正弦波的集合,所有的正弦波都是零相位或常数相位的(如90°);在频率域中,子波提取问题由两部分组成:确定振幅谱和相位谱,确定相位谱更加困难,并且是反演中误差的主要来源。

二、子波提取方法:子波提取方法分为三个主要类型:1)、纯确定法:即用地表检波器或其它仪器直接测量子波;2)、纯统计法:即只根据地震数据测定子波,这种方法很难测定可靠性的相位谱;3)、使用测井曲线法:即使用测井曲线与地震数据结合,理论上这种方法能够提取井点位置精确的相位信息,但问题是该方法要求测井和地震间必须要有良好的对应关系,而将深度域样点转换为双程旅行时的深时转换可能产生不恰当的对应关系,而这种不恰当的对应关系必将影响子波提取的结果。

子波在各地震道之间是变化的,而且是旅行时间函数,即子波是时变和空变的,也就是说,对每个地震剖面而言,都应该能提取大量的子波,但在实际应用中提取可变子波可能会引起更多的不确定性,比较实用的做法是对整个剖面或某个目的层只提取单一的平均子波。

三、零相位子波和常数相位子波:零相位子波和常数相位子波(Zero Phase and Constant Phase Wavelets.) 首先,让我们来考虑雷克子波(Ricker Wavelet),雷克子波由一个波峰和两波谷,或叫两个旁瓣组成, 雷克子波依赖它的主频,也就是说,它的振幅谱的峰值频率,或主周期在时间域的反函数(主周期可以通过测量波谷到波谷的时间来获得)。

地震勘探复习参考资料

地震勘探复习参考资料

地震勘探复习参考资料地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带。

最后使离震源较远的介质产生弹性变形,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)延续时间60-100毫秒。

其振幅有大小,极性有正有负,到达接收点的时间有先后。

时距曲线:波从震源出发,传播到测线上各观测点的旅行时间t,同观测点相对于激发点的距离x之间的关系曲线。

正常时差:水平界面时,对界面上某点以炮检距x进行观测得到的反射旅行时同以零炮检距(自激自收)进行观测得到的反射旅行时之差。

这是由于炮检距不为零引起的时差动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到x/2处的t0时间。

这一过程叫正常时差校正,或称动校正静校正:由于地形高低、激发井深、低速带等因素引起的反射波旅行时间的畸变进行的校正。

倾角时差:地震勘探中激发点两侧对称位置观测到的来自同一倾斜界面的反射波旅行时差。

视速度:当波的传播方向与观测方向不一致(夹角)时,观测到的速度并不是波前的真速度V,而是视速度Va。

滑行波:由透射定律可知,如果V2>V1,即sinθ2>sinθ1, θ2>θ1,当θ1还没到90度时,θ2到达90度,此时透射波在第二种介质中沿界面滑行。

此时这种波称为滑行波。

折射波:当入射波大于临界角时,出现滑行和全反射。

在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。

在地震勘探中,由滑行波引起的波叫折射波,也叫首波。

随机干扰:没有一定的规律,没有一定的传播方向,在地震记录上形成杂乱无章的干扰背景。

多次波:对被追踪界面的观测次数而言,n次覆盖即对界面追踪n次。

共反射点叠加:将不同接收点接收到的来自地下同一反射点的地震记录,经过动校正后叠加起来。

剩余时差:把某个波按水平界面一次反射波作动校正后的反射时间与其共中心点处的t0之差叫剩余时差。

等效速度:倾斜界面共中心点反射波时距曲线用水平界面来代替所对应的速度,适用于倾斜界面均匀覆盖介质情况。

地震属性含义

地震属性含义

常见地震属性含义响应相位•由反射强度波瓣附近的瞬时相位导出。

•对地震子波在时间和空间中的变化的另一种追踪方法视极性•定义为反射强度的极性。

•用来检查沿反射层位极性横向变化。

常与反射强度联合使用波谷振幅最大值•时窗内记录波谷振幅的最大值。

•用来确定由于岩性和烃类聚集的变化引起的振幅异常。

绝对振幅积分•时窗内记录振幅绝对值之和。

•表征层序和确定由于岩性和烃类聚集的变化引起的振幅异常绝对振幅积分•时窗内记录振幅绝对值之和。

•表征层序和确定由于岩性和烃类聚集的变化引起的振幅异常优势频率估计•使用自相关的FFT和时窗平滑函数,以测量时窗内的采样点的优势频率。

为了获得稳定的频谱,对这个属性和其它谱特性计算,至少要取8-12个采样点。

•因为子波频率在空间相当稳定,这个属性的变化主要是由于岩性和流体变化引起的。

•烃类常引起高频成分的衰减。

优势频率的降低,表示存在含气砂体。

这个属性常用来表征有意义区段的横向变化中心频率估计•时窗内峰值频率的统计量度。

它对时窗内的反射率灵敏。

•除非资料不好,这个频率接近或追随优势频率,因而它可表示像含气砂体类的吸收异常。

不奇怪,它的数值可以比子波预期值高或低许多。

有限带宽能量•在用户指定的一个高截频和低截频之间的能量。

•与低频带宽能量一起用来检测天然气和裂隙,特别是对薄储层很好。

功率谱的对称性•它描述谱的分布和相对中心频率的对称形态。

•由于高频衰减而引起的对称谱形态与周围地区比发生变化,用于检验天然气异常。

指定带宽能量•在低截频和由用户指定的特定的频率边界间包含的能量。

衰减灵敏频率宽度•有进也称为烃类灵敏带宽。

定义为有限频带宽度内的能量除以频谱优势频率。

•油气聚集经常引起高频衰减而产生这个频带宽度的变化。

用于延三维(4D)较好。

响应频率•由反射强度波瓣附近的瞬时频率导出。

•对地震子波在时间和空间中主频变化的另一种追踪方法。

KLPC1相关值•多道第一主元素分量及互相关矩阵时移量。

KLPC是主元素分析法,或称为导自Karhunen&Love的K—L变换。

地震资料子波、极性与相位

地震资料子波、极性与相位

没有子波时的子波处理:
各种各样的统计性反褶积方法
利用声波测井数据提取地震子波 工作流程
同一剖面段不同深度统计的子波特征不同,子波是时变的
井下不同 深度记录 的直达波 波形基本 保持不变
当这个子 波在地层 中传播时, 由于地层 吸收衰减, 子波发生 了变化, 据此我们 可以进行
地层滤 波模拟
子波频 率误差 对子波 处理效 果影响
零相位子波,线性相位谱
线性相位谱,零相位子波 负的斜率,时移向正的方向移动 斜率越大,时移越大
线性相位谱,零相位子波 正的斜率,时移向负的方向移动 斜率越大,时移越大
混合相位子波,常相位谱
零相位子波,常相位移动,常相位谱,混合相位子波 常相位移1800,子波反向 常相位移为 00 和 3600,子波一样
道反演要求道上的正值对应正的反射系数
反演时,正值反演结果是速度增加,对应正的反射系数,因 此反演之前要作极性检查,确定是否为正极性,否则要作极 性处理
二、相位和子波相位特性图解
零相位子波,零相位谱 零相位子波,线性相位谱 混合相位子波,常相位谱 混合相位子波,常相位谱 + 线性相位谱
零相位子波,零相位谱
数据处理目标是使子波成为冲激函数,但由于S/N和原 始记录带宽,实际只能得到频带有限的子波 处理常用两种子波:带通子波和 Ricker(雷克)子波
带通子波由通带范围内各个频率谐波合成,每个谐波长度
无限,在相当长时间段内不能相互抵消,是旁瓣形状复 杂的基本原因
脉冲反褶积后进行带通滤波,理论上子波就成为带通滤 波器的因子
层位标定制作合成记录,用理论雷克子波,其合成记录可视 为正极性状态,可邦助判断记录的极性状态 从井旁实际记录中提取子波,可改善合成记录与实际记录的 相似程度,有利于标定准确,但不能用于判断实际记录的极 性状态 用合成记录进行层位标定,不仅要注意子波特性的确定,而 且要注重反射系数序列的可靠性:

地震资料解释中的极性判别技术简介

地震资料解释中的极性判别技术简介

地震资料解释中的极性判别技术简介地震资料解释是地震勘探领域中的重要技术之一,通过对地震资料的处理和分析,可以获取地下结构的信息,为油气勘探、地质灾害预测等提供重要依据。

在地震资料解释中,极性判别技术是一种常用的手段,用于识别地震记录中的正负相位。

一、极性判别技术的基本原理地震记录是利用地震仪器在地表或井下接收到的地震波信号的记录,其中包含了地震波的振幅、频率、振动周期等信息。

地震记录中的正负相位可以用来判断地震波传播的方向,从而帮助解释地下结构及地震事件的发生机理。

极性判别技术基于以下基本原理:地震波传播路径在地下结构中会受到反射、折射和散射的影响,当地震波从地下结构中传播至地表或井口时,受到了多次反射和折射,形成一系列到达地面的地震记录。

根据绕射波和直射波的爆发时刻和振幅变化规律,可以判断地震波传播路径的正负相位,从而确定地震源的位置和地下结构的特征。

二、极性判别技术的主要方法极性判别技术主要有以下几种方法:1. 直观判断法:需要考虑地震记录中的振幅变化规律、振动周期、震源位置等因素,通过人眼观察和分析地震记录的特征,判断正负相位。

这是一种直观的方法,但是受到观察者主观意识和经验的影响。

2. 波峰波谷交替法:通过计算地震记录中相邻的波峰和波谷的相对位置,判断正负相位。

如果相邻波峰之间的波谷位置较高,则为正相位;如果相邻波峰之间的波谷位置较低,则为负相位。

这种方法通过数值计算来判断正负相位,减少了主观因素的影响。

3. 互相关方法:通过计算地震记录之间的互相对比及相关性,判断正负相位。

互相关方法能够考虑到地震记录之间的相位差异,从而提高了判断的准确性。

4. 极性滤波法:将地震记录进行滤波处理,将正相位和负相位的地震波分离出来。

这种方法最大限度地减少了人为因素的影响,提高了判断的准确性。

三、极性判别技术的应用极性判别技术在地震资料解释中有着广泛的应用。

它可以帮助地震学家确定地震源的位置和能量释放方式,进而推断地下的构造和岩石性质。

子波的零相位,最小相位,混合相位

子波的零相位,最小相位,混合相位

子波的零相位,最小相位,混合相位子波是地震波在地下传播时激发的复杂波形,在地震勘探中起到了重要的作用。

在地震勘探中,子波的信息可以用来了解地下结构,进行地震处理和解释。

子波有三种形式:零相位子波、最小相位子波和混合相位子波。

接下来,我们将详细介绍这三种子波的特点和应用。

首先是零相位子波。

零相位子波又称为纯实信号,它的相位谱是一个常数,即各个频率分量的相位都是零。

这意味着零相位子波是非带通的,其频谱范围是从直流到无限大。

零相位子波是地震波的极限情况,一般在理论分析中使用。

它具有宽频带、短时间的特点,可以用来表示瞬态信号。

最小相位子波是一种具有最小相位谱的子波。

最小相位谱指的是在给定幅度谱相同的情况下,具有最小相位谱的子波。

最小相位子波具有狭窄的频带、宽延迟和长时间的特点,可以用来近似地表示地震记录中的真实地震波形。

最小相位子波是地震记录的有效信号。

混合相位子波是介于零相位子波和最小相位子波之间的一种子波形式。

混合相位子波的相位谱介于零相位子波和最小相位子波的相位谱之间。

混合相位子波既有零相位子波的宽频带特性,又有最小相位子波的稳定性。

因此,混合相位子波在地震勘探中被广泛应用于地震处理和解释。

通过对地震记录进行混合相位子波叠加,可以提高地震信息的分辨率和解释能力。

在地震勘探中,选择合适的子波形式对地震数据进行处理和解释非常重要。

零相位子波可以用来分析地下结构的反射特性,最小相位子波可以用来近似地还原地震记录中的原始地震波形,混合相位子波则结合了两者的优点,可以提高地震处理和解释的能力。

为了更好地了解子波的特点和应用,我们需要对子波的频谱、振幅、相位进行分析。

在频域上,子波的频谱决定了子波的带宽,即频率范围;在时域上,子波的振幅和相位决定了子波的波形。

通过分析子波的频谱、振幅和相位,我们可以把子波应用到地震数据的处理和解释中。

子波的零相位、最小相位和混合相位是地震波形分析中的重要概念。

零相位子波是理论分析的基础,最小相位子波可以近似地还原地震记录中的地震波形,混合相位子波结合了两者的优点。

jason反演 第三讲 子波及其极性 100403

jason反演 第三讲 子波及其极性 100403

《地震勘探数据处理规范》中关于极性的规定:

记录初至下跳(负值),称正常极性:反之,称为反正常极性。数据 处理中通常采用正常极性。 对于没有提供极性信息的测线,应放大显示少许单炮记录的初至,以 鉴定其极性。对反正常极性记录应进行反极性处理。在成果剖面中应 标注清楚记录道的极性。
地震子波的极性(SEGY格式规定:normal格式,正反射系数,负子波)
极性示意图
有关标准对极性的规定
《地震勘探采集技术规范》中关于极性的规定:


年度开工前或每次改变大线、检波器和仪器输入电路时,必须采用炸 药激发,检查地震数据采集系统的极性(包括仪器、地震有关标准对 极性的规定电缆、检波器串),并将极性记录记带,磁带上的能量初 至应为负值。 经计算机显示,要求初至下跳,宽行打印初至样值是一负值。
从地震数据中估算子波的三种方法:振幅谱子波、 相位谱子波和振幅谱相位的振幅谱来自于子波自相关的付氏变换,这一计算是通过地 震自相关的付氏变换除以反射系数来实现的,反射系数来自声阻抗曲线;通过 子波长度和能量衰减来减少旁瓣,将估算的子波的自相关截短。
相位谱子波:一个不随频率变化的常相位输入子波,是通过输入的地震数据和 声阻抗曲线来估算的,振幅谱与输入的子波相同。子波估算过程由相关步骤完 成:首先,输入的反射系数从声阻抗曲线中导出,然后,最初始的子波的关键 参数,如相位、时移和比例因子等,是通过对反射系数和地震数据做最小平方 运算得到的,这些系数用于产生子波,接下来,在井周围的数据道上对子波进 行稀疏脉冲反演处理,得到的结果是一个改进了的声阻抗模型和一个改进的反 射系数估算,这一过程可以反复迭代,直到子波达到要求为止。 振幅和相位谱子波:输入的地震数据中的子波,其振幅谱和随频率变化的相位 谱被同时估算,提供一个优先的子波用于分析。在连续的处理步骤中,声阻抗 曲线用于导出反射系数,然后从这些反射系数和地震数据中得出一个最好的最 小平方子波,接下来用到White(1980)方法,然后用得到的子波做稀疏脉冲反 演,这一结果是一个新的改进了的声阻抗模型和一个改进的反射系数估算,第 一步可以按要求反复迭代,其它在子波估算中的关键输入参数是子波长度、子 波时移和数据中最大的有效频率,子波长度一定要足够长,与子波的能量相适 应。当所选的输入地震与井曲线没有优化结合时,子波开始时间就代表子波的 时移时间,依据Jason习惯,如果一个子波的开始时间与一半的子波长度的负 值相同的话,子波不做时移处理。

地震数据处理中关于地震子波相位特性的探讨

地震数据处理中关于地震子波相位特性的探讨

2008年12月第43卷 增刊2*河北省涿州市东方地球物理公司研究院,072751本文于2008年3月20日收到。

#处理技术#地震数据处理中关于地震子波相位特性的探讨苏贵仕*¹沈克非º 丁学垠º(¹东方地球物理公司研究院,河北涿州072751;º东方地球物理公司研究院海外业务部,河北涿州072751)苏贵仕,沈克非,丁学垠.地震数据处理中关于地震子波相位特性的探讨.石油地球物理勘探,2008,43(增刊2):121~124摘要 本文就实际地震数据处理中常用的地震子波最小相位化、预滤波、叠前反褶积和叠后地震子波零相位化等四个处理模块对地震子波相位特性的影响进行了探讨。

当地震记录是由可控震源激发得到时,其地震子波是可控震源扫描信号的自相关,呈零相位子波特性,此时需将零相位子波转化为最小相位子波,为后续的反褶积处理做准备;当地震记录是由炸药震源激发得到时,其地震子波一般被认为是最小相位子波,在对此地震数据进行叠前反褶积处理之前首先使用一个高通滤波器对其进行预滤波处理(这个滤波器必须是最小相位的,因为最小相位地震子波只有经过最小相位滤波器滤波后才是最小相位的),然后进行叠前反褶积处理(主要包括脉冲反褶积、地表一致性反褶积等,该处理过程要求输入地震数据的地震子波是最小相位的),经过这些反褶积处理后的地震数据的子波也认为是最小相位的;因零相位子波的地震剖面分辨率最高,所以最后还需再对叠后数据的最小相位子波进行零相位化处理。

以上认识已在巴基斯坦E 工区二维地震资料的处理中得到验证。

关键词 地震子波 最小相位 预滤波 叠前反褶积 零相位化1 引言地震数据处理的目的是将野外采集的地震记录用处理模块进行处理后得到成像好、分辨率高的地震剖面,地震记录可描述为地震子波与地层脉冲响应或地下反射系数系列的褶积。

就某种意义上说,地震数据处理实际上是一个对地震子波不断改造的过程。

关于地震波极性判断问题

关于地震波极性判断问题

第一节关于地震波极性判断问题地震反射波的极性是正还是负,它直接影响到反演波阻抗后,速度变高还是变低,因此是一个重要的问题。

但是这个很简单的问题,到目前为止,尚未完全争论清楚。

按理说,问题是再简单不过的,即:SEG格式规定,初至波起跳向下,记录数值是负的,此称“正常记录”。

那末,这种记录作波阻抗时,应该把极性反过来。

但在实际中,往往不反过来,反而能在解释中与地层对得更好。

奇哉!现在看来,这个问题很复杂。

仔细思考起来,本人有以下几点认识。

(1)地震子波是混合相位的,包括可控震源的子波,也因为大地的吸收作用,回到地面的子波已变成混合相位。

它的第一个向下跳的波谷很小,而跟着来的波峰及波谷很大。

请读者参看图72。

注意该图72的子波起跳是朝上的,不过这并不妨碍对问题的分析。

脉冲反褶积及预测反褶积都假设子波是最小相位,而当子波是混合相位时,反褶积后子波的波形向前压缩得不够好。

因而随着原始子波形态的不同以及所采用白噪系数的不同,反褶积后的子波有时波峰最大,有时波谷最大,见图72中我已用+-符号标出。

并且最大值并不在起跳的位置上,而有不同程度的延迟,见图72(注意该图子波的起跳朝上)。

以SEG规定的正常极性记录为例(起跳朝下),如果反褶积作得效果较好,那么第一个起跳波谷可能还是小于后面的第一波峰。

这时候,整个记录看起来似乎是“正极性”的。

如果反褶积用了较大的自噪系数,或者子波的相位谱离开零相位较远,那末,反褶积后可能以第二波谷为最强,剖面上看起来似乎是“负极性”的。

(2)如果叠后加作预测反褶积或谱白化,则频谱成分又起了变化,波形又明显变瘦,视周期变小。

加上最后还要采用时变滤波,滤波门的不同又会造成子波波形的进一步变化。

因此,不同的处理方法可以得到不同的子波波形,有时两个相位可变成三个相位。

剖面形态也可以各不相同,“视极性”也就各异。

这样一说,是否天下大乱了呢?是的!的确有些乱套。

有一个搞解释的人拿着两张不同流程的剖面给我看:一条剖面上T g波是两个相位,中间波谷最强。

利用相位扫描方法判定地震剖面极性

利用相位扫描方法判定地震剖面极性

利用相位扫描方法判定地震剖面极性贺佩;曾庆才;黄家强;姜仁;陈胜;郭晓龙;王秀姣;杨亚迪【摘要】合成地震记录标定是构造解释和储层预测的基础,合成地震记录标定的结果是否准确直接决定着后续构造解释与储层预测的准确性,只有准确判断地震剖面对应子波的极性,合成记录标定才会准确,因此,地震资料极性的判断是最基础的工作.在实际生产应用中,采用正极性子波和负极性子波分别制作合成地震记录,然后对比二者与地震道的对应关系这种常规的判断地震资料极性的方法很难判别地震剖面的极性.笔者以苏里格气田地震剖面极性判定为例,根据相位扫描原理,通过正演模拟以及公式推导表明:地震剖面的相位与相位校正量互为相反数.在实际资料分析中,利用相位扫描方法,对比井阻抗与井旁道反演的相对阻抗,得到相位校正量进而得到地震剖面的相位,帮助判断地震剖面的极性,该方法直观,在实际应用中具有较好的操作与推广性.【期刊名称】《物探与化探》【年(卷),期】2018(042)004【总页数】7页(P759-765)【关键词】地震剖面极性;地震剖面相位;相位校正量;相位扫描【作者】贺佩;曾庆才;黄家强;姜仁;陈胜;郭晓龙;王秀姣;杨亚迪【作者单位】中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007;中国石油勘探开发研究院,河北廊坊065007【正文语种】中文【中图分类】P631.40 引言在地震资料解释中,合成地震记录标定是构造解释和储层预测的基础,合成地震记录标定的结果是否准确直接决定着后续构造解释与储层预测的准确性,可以说标定差之毫厘,解释则缪之千里[1-2]。

由于不能认知地震剖面的极性而导致将二者(子波和地震剖面)极性相反标定使用的情况屡见不鲜[3-4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档