《实数》精品课件2
最新湘教版八年级数学上册精品课件-3.3实数(第2课时)
【方法总结】在实数运算中,如果遇到无理数,并
且需要求出结果的近似值时,可按要求的精确度用
相应的近似有限小数代替无理数,再进行计算.
2019/8/318单击此处编母版标题样式
例3 用计算器计算:2 × (5 精确到小数点后面
• 单击第此二处位编)辑. 母版文本样式
解•:
第二级
按• 第键三:级
• 第四级
2.熟练掌握实数的大小比较方法.(难点)
单击此处编母版标题样式
导入新课
回顾与思考
• 单实击数此也处可编以辑进母行版加文法本、样减式法、乘法、除法(除
数不•为第0二)级、乘方运算,而且有理数的运算法则和运
• 第三级
算律对于实• 第数四• 级仍第五然级 适用.
有理数可以做加、减、乘、除、 乘方运算,实数可以吗?
为什么?
2019/8/31
13
单击此处编母版标题样式
当堂练习
1. 计算:
• 单(击1)此3处2编2辑2母- 2版;文(本2样)3式5-5 5 .
解• 第: 二(1级) 原式=4
• 第三级
(2•)原第四式级=-2
2 5
; .
• 第五级
2. 用计算器计算(精确到0.01):
(1) 2 3 ; (2)3 5 -1 ; (3) 5π .
(10)对• 第于•三每第级四一级 个非零实数a,存在一个实数b,
满足a·b
=
•
b·a
=第1五,级 我们把b叫作a的__倒_数__;
(11)实数的除法运算(除数b≠0),规定为
a÷b = a·b1 ;
(12)实数有一条重要性质:如果a ≠ 0,b ≠ 0,
那么ab__≠ _0.
人教版七年级数学下册 (平方根)实数课件教学(第2课时)
(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
实数 (2) —初中数学课件PPT
其总长大约为6700000m.将6700000用科学记
数法表示为( B )
A.6.7×105 B.6.7×106
C.0.67×107 D.67×108
6.(2017•益阳)目前,世界上能制造出的最
小晶体管的长度只有0.000 000 04m,将
0.000 000 04用科学记数法表示为( B )
A.4×108 B.4×10﹣8
C.0.4×108 D.﹣4×108
数学
首页
末页
课堂精讲
考点2 科学记数法
7.(2017•凉山州)2017年端午节全国景区 接待游客总人数8260万人,这个数用科学记数 法可表示为 8.2考点3 实数的大小比较、数轴、估计无理数的 大小
8.(2017•济南)在实数0,﹣2, ,3中,最 大的是( D ) A.0 B.﹣2 C. D.3
数学
首页
末页
广东中考
26.(2017广东)计算: |﹣7|﹣(1﹣π)0+( )﹣1.
解:原式=7﹣1+3=9.
数学
首页
末页
谢谢!
数学
首页
末页
第一章 数与式
第1节 实 数
课前预习 考点梳理 课堂精讲 广东中考
数学
首页
末页
课前预习
1.(2017湘潭)2 017的倒数是(A)
A. B.-
C.2 017 D.-2 017
2.(2017连云港)2的绝对值是(B)
A.-2 B.2 C.-
D.
数学
首页
末页
课前预习
3.(2017广元)- 的相反数是(D)
(2)用式子表示a的绝对值. a
0 -a
不论有理数a取何值,它的绝对值总是非负数. 即|a|≥0.
《实数》PPT课件(沪科版)2
无理数的特征:
1.圆周率 及一些含有 的数
2.开不尽方的数
3 有一定的规律,但是 属于不循环的无限小数
注意:带根号 的数不一定是 无理数
有理数和无理数统称为实数
归纳
实数的分类 (定义式)
整数
有理数
实
分数
数
无理数
有限小数或 无限循环小数
无限不循环小数
你还有其它分类方法吗?
2.无理数都是无限不循环小数。( )
3.无理数都是无限小数。( )
4.带根号的数都是无理数( × ) 5.无理数一定都带根号。( ×)
6.两个无理数之积不一定是无理数( )
7.两个无理数之和一定是无理数。(× )
8.有理数与无理数之和一定是无理数 ( )
巩固 4、在 ,
,,
, , 中,无理数分别
是
下面方格网中,它们相邻的行距、列距都是1.横纵线相 交形成的点叫做格点,以其中4个格点为顶点连接成一 个正方形,叫做格点正方形。
(1)有面积分别为1、4、9的格点正方形吗?
(2)有面积为2的格点正方形吗?
探究: 是一个怎样的数呢?
把下列各数写成小数的情势:
上面这些数都是无限不循环小数 无限不循环小数叫做无理数
你认识下列各数吗?
有理数的定义和分类:
整数和分数统称为有理数
正整数
整数 零
有 理
负整数
数 分数 正分数
负分数
正整数
ቤተ መጻሕፍቲ ባይዱ正数
有
正分数
理零
数 负数 负整数
负分数
引入 把下列各数写成小数的情势:
无
有 限 小 数
限 循 环 小 数
《实数》 一等奖-完整版课件
实数
正无理数
无理数
负无理数
(无限不循 环小数)
1)在 1,,0 ,3 .1, 42,0 .3 ,4,8 9 .13 , 2 1,5 2中2,
3
97
属于有理数的:
1,0,3.14,0.3,49,8.131, 3
25,22 97
属于无理数的: , 2
属于实数的有:,2,1 3,0 ,3 .1 4 ,0 .3 ,4 9,8 .1 3 1 , 2 9 5,2 7 2
2 =1.
1.42=1.96 ( 2 )2=2, 1.52=2.25 1.4< 2 <1.5 2 =1.4
1.412=1.9881, ( 2 )2=2, 1.422=2.0164
1.41< 2 <1.42
2 =1.41
用这种方法可以得到一系列越来越接近
2
的 近似值。
=
2 1.414 213 562 373 095 048 801 688 724 209 6……
2
,1
3
…
负分数 1ቤተ መጻሕፍቲ ባይዱ
2
, 22 …
7
有理数还有分类方法吗? 有理数的分类:
正有理数
零
负有理数
• 小数的分类: 有限小数 有理数 无限循环小数 (均可化为分数)
无限小数
无限不循环小数—不可化为分数 是一个无限不循环小数,因此它不是一个有理数
2
有理数和无理数统称实数.
正有理数
有理数 零 负有理数
(有限小数或无 限循环小数)
A
D
B
C
在数轴上作出 5 的对应点.
2
1 -1 0
1 25 3
数学七级人教版下册 6.3.2实数(二) 优秀课件
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
3.实数的分类 (1)按定义分类:
实数
有理数:有限小数或无限循环小数 无理数:无限不循环小数
(2)按性质分类:
正实数
正有理数 正无理数
ቤተ መጻሕፍቲ ባይዱ实数
0
负实数
负有理数 负无理数
4.实数与数轴上的点的对应关系
(1)实数与数轴上的点是_一__一__对__应_的. 即每个实数都可以用数轴上的一个__点__来表示; 反过来,数轴上的每一个点都表示一个__实__数__. (2)在数轴上的两个点,右边的点表示的实数总比左边的点 表示的实数大.
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( ×)
课堂小结
《实数》精品课件精品公开课
《实数》精品课件精品公开课一、教学内容本节课选自《数学》八年级下册教材第五章“实数”的第一节“实数的概念与性质”。
详细内容包括:实数的定义与分类、实数与数轴的关系、实数的性质(包括大小比较、运算律等)。
二、教学目标1. 理解实数的定义,掌握实数的分类,能将实数与数轴上的点一一对应。
2. 掌握实数的大小比较方法,了解实数的运算律,并能应用于实际计算。
3. 培养学生的数感和逻辑思维能力,提高解决实际问题的能力。
三、教学难点与重点教学难点:实数的性质及其在数轴上的应用。
教学重点:实数的定义与分类,实数的大小比较和运算。
四、教具与学具准备1. 教具:多媒体课件、黑板、实数教学挂图。
2. 学具:直尺、圆规、练习本、铅笔。
五、教学过程1. 实践情景引入(5分钟)通过播放一段关于温度计的视频,引导学生关注温度计上的实数,引出实数的概念。
2. 新课导入(15分钟)(1)讲解实数的定义与分类,让学生了解实数包括有理数和无理数。
(2)通过数轴上点的移动,让学生理解实数与数轴的关系。
3. 例题讲解(20分钟)讲解实数的大小比较、实数的运算等性质,结合例题进行分析。
4. 随堂练习(10分钟)让学生完成教材上的练习题,巩固所学知识。
六、板书设计1. 实数的定义与分类2. 实数与数轴的关系3. 实数的性质① 大小比较② 运算律七、作业设计1. 作业题目:(2)比较下列各组实数的大小:2. 答案:(1)实数:有理数、无理数;不是实数:虚数。
(2)根据实数的大小比较法则进行判断。
(3)根据实数的运算规律进行计算。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解实数在生活中的应用,激发学生的学习兴趣。
在讲解实数的性质时,结合例题进行分析,让学生掌握实数的运算方法。
课后,教师应关注学生对实数概念的理解,加强个别辅导,提高学生的数学素养。
拓展延伸方面,可以引导学生研究实数在实际问题中的应用,如物理、化学等领域的计算问题。
重点和难点解析1. 实数的定义与分类2. 实数与数轴的关系3. 实数的大小比较方法4. 实数的运算规律5. 教学过程中的实践情景引入6. 作业设计中的题目难度与答案解析一、实数的定义与分类实数的定义:实数包括有理数和无理数,有理数是可以表示为两个整数之比的数,无理数则不能表示为两个整数之比。
14.3 实数 - 第2课时课件(共16张PPT)
第十四章 实数
学习目标
1.认识无理数存在的普遍性.2.知道实数与数轴上的点一一对应.3.理解实数绝对值、相反数、倒数的意义.
学习重难点
理解实数与数轴上的点一一对应.
难点
重点
能在数轴上找到无理数对应的点.
复习回顾
1.什么是相反数?2.什么是绝对值?3.什么是倒数?
实数
参照有理数的有关概念,谈谈实数的下列概念:1.实数的绝对值.2.互为相反数的实数.3.一个实数的倒数.
谈一谈
一个正实数的绝对值是它本身.一个负实数的绝对值是它的相反数.0的绝对值是0.
实数
有理数
无理数
实数
正实数
负实数
0
实数分类:
正有理数
负有理数
0
正无理数
负无理数
随堂练习
1.在数轴上,到原点距离为 的点所表示的数是 .
有理数
无理数
绝对值相等,符号不同的两数叫做相反数,其中一个是另一个的相反数.
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
如果两个数的积是1,则这两个数互为倒数 .
问题引入
我们知道,任意一个有理数都可以用数轴上的一个点来表示.那么,无理下列各数填入相应横线上:正实数: .负实数: .有理数: .无理数: .
拓展提升
归纳小结
实数性质
实数与数轴上的点一一对应
思考二:
事实上,每个有理数或无理数都可以用数轴上的点来表示;反过来,数轴上的点表示的数是有理数或无理数.
实数和数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
任意一个实数都有绝对值、相反数和倒数(0没有倒数),它们和有理数的绝对值、相反数和倒数的意义是一样的.
《实数的基本概念》课件 (2)
六、近似数与有效数字: 近似数与有效数字:
3、精确度 、 整数
个位
整数带单位的数 带什么单位就叫精确到哪一位。 小数带单位的数 一位小数消掉一个最高位。 小数 分位
科学记数法表示的数还原后数到的末位为止。
(1)、当把一个实数精确到十位、百位、千位、 万位等时,先用科学记数法表示,再根据指定 的精确度四舍五入取近似值。 (2)、保留的有效数字的个数比准确数的整数 部分的位数少时也如此。 例如:用科学记数法表示下列各数并要求保留 例如:用科学记数法表示下列各数并要求保留 两位有效数字: 两位有效数字: (1) 12033.4 (2)0.0000102 练习
1、写出一个无理数,使它与 2 的积是有理 、写出一个无理数, 数:________ 下列说法中, 2、下列说法中,错误的个数是 ( c )
①无理数都是无限小数;②无理数都是开方开不尽的数; 无理数都是无限小数; 无理数都是开方开不尽的数; 带根号的都是无理数; 无限小数都是无理数。 ③带根号的都是无理数;④无限小数都是无理数。
1 互为倒数,则满 4、(2006年杭州)已知a与 2 a −2 足条件的实数a的个数是( c )
A.0
B.1
C.2
D.3
五、绝对值: 绝对值: 一个数a 一个数a的绝对值就是数轴上 表示数a的点与原点的距离。 表示数a的点与原点的距离。 1)一个正数的绝对值是它 本身, 本身,一个负数的绝对 值是它的相反数, 值是它的相反数,零 的绝对值是零。 的绝对值是零。
c d 0 b a
3、用作图的方法在数轴上找出表示的点B数是_, 3 体现了________的思想方法. ________的思想方法 体现了________的思想方法. 数形结合
二、实数的基本概念 三.相反数 只有符号不同的两个数,其中一个 只有符号不同的两个数, 是另一个的相反数。 是另一个的相反数。 1)数a的相反数是-a (a是任意一个实数); 的相反数是是任意一个实数); 2)0的相反数是0. 的相反数是0. 3)若a、b互为相反数 <====> a+b=0. -4 4
6.3 实数(2)ppt课件
5 4)
2 (5 2 5)10 2 2 5==10 4 5
=18.94427191≈18.94
计算:
3 7 2 (结果保留 7 (1) 3个有效数字)
(2)
(3)
2 1
4个有效数字) 5 2 (结果保留 2
3 (精确到 2 0.01)
3) = 9 8 2 3 1 2 3 =
=-2.464101615≈-2.464
计算:
(1)
(2 )
4 18 (精确到0.01)
(结果保留3各有效数字) 2
(3) 3
10
( 精确到0.01) 7
典型例题
例2:计算
2 9 2 5 2
解:原式= 2 (9 2 =
实数的运算顺序
先算乘方和开方,再算乘除,最 后算加减。如果遇到括号, 则先进行 括号里的运算
典型例题
例1 计算:
(1)
8 9(精确到0.001)
3
(2) 9 2(4
3)
(结果保留4个有效数字)
解:(1) 8 3 9 = 0.748343301≈0.748 (2)9 2(4
6.3 实数(2)
合作学习
请同学们总结有理数的运算律和运算法则
1.交换律 : 加法 a+b=b+a 乘法a×b=b×a 2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c) 3.分配律: a× (b+c)= a×b+ a×c 注:有理数的运算律和运算法则在实数范围内同样适用
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
《实数》课件精品 (公开课)2022年数学PPT
情境引入2
两位同学背靠背,规定向前为正,
一人向前走3步,记作
,
一人向后走3步 ,记作
.
对照数轴,说出-3与+3两数的相同点和不同点. 你还能说出具备这些特征的成对的数吗?
一 相反数
探究一 相反数的概念
活动1:观察下列一组数+1和-1,+2.5和-2.5, +4和-4,并把它们在数轴上表示出来.
思考: 1)上述各对数之间有什么特点? 2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗? 4)表示各对数的点在数轴上有什么位置关系?
9 35
64
π
•
0.6
3 4
3 9
0.13
(1)有理数: {
9
64
•
0.6
3
4
3 0.13
π (2)无理数: { 3 5
3 9
(3)整数: { 9
(4)负数: { 3
4
(5)分数: {
•
0.6
(6)实数: {
64 3
3 9
3 0.13
4
3
}
}
} } }
}
5. 比较 3 7 与6的大小.
解: ∵37 >36 ∴ 3 7 > 6.
二 多重符号的化简 问题1:a的相反数是什么?
a 的相反数是-a , a可表示任意有理数. 问题2:如何求一个数的相反数?
在这个数前加一个“-”号.
问题3:若把 a分别换成+5,-7,0时,这些数的相 反数怎样表示?
a = +5, a = -7, a = 0,
- a = -(+5) - a = -(-7) -a = 0
思考 由此你可以得到什么结论? 有理数都可以化成有限小数或无限循环
人教版七年级数学下册教学课件《实数》(第2课时)
(3) 11 的相反数是- 11 ,绝对值是 11.
探究新知
6.3 实数
知识点 2 实数的运算
填空:设a,b,c是任意实数,则
(1)a+b = b+a (加法交换律); (2)(a+b)+c = a+(b+c) (加法结合律);
4. - 17是 17的相反数;2π-6.28的相反数是 6.28-2π.
课堂检测
5.计算:(1)1 3 3 (-4)3 3 3
1 3(- 4) 3
=-4 (2) (15)2 ( 15)2
=15-15 =0
6.3 实数
课堂检测
(3) (2)3 (2)2 2 (9)2 3 (8)2
探究新知
6.3 实数
实数的平方根与立方根的性质: 1.每个正实数有且只有两个平方根,它们互为相反数. 0的平方根是0. 2.在实数范围内,负实数没有平方根. 3.在实数范围内,每个实数有且只有一个立方根, 而且与它本身的符号相同.
此外,前面所学的有关数、式、方程的性质、法 则和解法,对于实数仍然成立.
=-8×2-9+4 =-21
(4) 225 196 3 64
=15-14+4 =5
6.3 实数
课堂检测
能力提升题
6.3 实数
3 的整数部分与小数部分的差是多少? (结果保留3位小数)
解: 整数部分:1
小数部分: 3-1
整数部分与小数部分的差是:
1-( 3-1) 2- 3 0.286
课堂检测
学习目标
6.3 实数
3. 掌握实数的运算法则,熟练地利用计算器去解 决有关实数的运算问题.
《实数 》课件
1 3 3 的相反数是 3 3 1. (3)3 64 的绝对值是4. (4) 绝对值是 3 的数是 3 或 3 .
3.运用新知
例2 计算下列各式的值: (1) ( 3 2 ) 2
3 2 2(加法结合律)
3 0 3; (2) 3 3 2 3
3 2 (3 分配律)
5 3.
3.运用新知
例3 计算(结果保留小数点后两位): (1) 5 π ;(2) 3 2 .
解:(1) 5 π 2.236 3.142 5.38; (2) 3 2 1.7321.414 2.45 .
3.运用新知
6.3 实数
课件说明
本节在引入无理数后,数的范围从有理数 扩充到实数,这个扩充过程既体现了概念、运 算等的一致性,又体现了它们的发展变化.
课件说明
学习目标: 会求实数的相反数与绝对值,会对实数进行 简单的运算.
学习重点: 知道有理数的运算律和运算性质同样适合于 实数的运算,并会进行简单的运算.
1.复习引入 有理数关于相反数和绝对值的意义是什么?
a,当a 0时; a 0, 当a 0时;
- a,当a 0时.
3.运用新知
例1 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5,1 3 3 是什么数的相反数; (3)求 3 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这个数.
3 .运用新知
解: (1) 6 的相反数是 6 ;
2.探究新知
你能解答下列问题吗?
(1) 2 的相反数是 ,
π 的相反数是 ,
0 的相反数是
;
(ห้องสมุดไป่ตู้) 2 =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》精品课件2
《实数》精品课件2
3. 实数的分类: (1)按定义分类:
实数
有理数
无理数
整数 分数
正整数 0
负整数 正分数
负分数
有限小数或无 线循环小数
正无理数 负无理数
无线不循环小数
《实数》精品课件2
《实数》精品课件2
(2)按性质分类:
正实数
实数
0
负实数
正有理数 正无理数
负有理数 负无理数
知1-讲
1. 定义:无限不循环小数叫做无理数. 判断标准:小数位数无限,小数形式为不循环.
2. 三种常见形式: (1)开方开不尽的数,如 3 ,3 5 ,…; (2)含有π的一类数: 1 π, 1 π,π+1,…;
35 (3)类似0.101 001 000 1…(每相邻两个1之间依次多1个0)
这样的无限不循环小数.
知1-讲
3. 无理数与有理数的区别: (1)有理数是有限小数和无限循环小数,而无理数是无
限不循环小数; (2)所有的有理数都可以写成分数的形式(整数可以看成
分母为1的分数),而无理数不能写成分数的形式. 4. 易错警示:(1)带根号的数不一定是无理数,不带根
号的数也不一定是有理数;(2)无理数都是无限小数, 但无限小数不一定是无理数.
《实数》精品课件2
《实数》精品课件2
归纳
知3-导
数a的相反数是-a,这里a表示任意一个实数.
一个正实数的绝对值是它本身;一个负实数的绝对值
是它的相反数;0的绝对值是0. 即设a表示一个实数,
则
a,当a>0时;
|a|= 0,当a=0时;
-a,当a<0时;
《实数》精品课件2
《实数》精品课件2
知3-讲
例3 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5 ,1 3 3 分别是什么数的相反数; (3)求 3 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这个数.
6.3 实数
第六章 实数
第1课时 实数及其性质
1 课堂讲解 无理数
实数及其分类
2 课时流程 实数的性质
逐点 导讲练
课堂 小结
作业 提升
问题: (1)什么是有理数?有理数怎样分类? (2)什么是无理数?带根号的数都是无理数吗?
知识点 1 无理数
知1-导
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
《实数》精品课件2
总结
知2-讲
从两个方面看,一是判断正负情况,二是判断 是整数还是分数.有限小数和无限循环小数都属于 分数.
《实数》精1 请将下列实数分别填入相应的括号内:
0,
2 015,
. 3.144,-
3
,-
,(-4)3,-
43
2 ,3 27,
0.9 ,5.212 112 111 2…(每相邻两个2之间依次多1
5 , 3 , 27 , 11 ,
9 .
2 5 4 9 11
知1-导
我们发现,上面的分数都可以写成有限小数或者
无限循环小数的形式,即 5 2.5, 3 0.6, 27 6.75,
2
5
4
11
. =1.2,
9
.. =0.81.
9
11
事实上,如果把整数看成小数点后是0的小数(例
如,将3看成3.0), 那么任何一个有理数都可以写成有
(3)因为 3 64 3 64 4 , 所以 3 64 4 4 ;
(4)因为 3 3, 3 3 , 所以绝对值为 3的数是 3 或 3 .
《实数》精品课件2
《实数》精品课件2
1 在实数范围内,下列判断正确的是( ) A.若|m|= |n| ,则m=n B.若a2>b2,则a>b C.若 a2 ( b)2,则a=b D.若|a| <b,则a2<b2
(2) π是无理数,化简后含π的数也是无理数.
《实数》精品课件2
《实数》精品课件2
知1-练
1 在- ,30 ,|-5|, 9 ,0.808 008…(每相邻两个8
37 之间依次多1个0),- 12,3 216 ,3.14中,无理数 有________个.
《实数》精品课件2
《实数》精品课件2
2 下列语句正确的是( ) A.0.101 001 000 1是无理数 B.无限小数不能转化成分数 C.无理数分为正无理数、零、负无理数 D.无限不循环小数是无理数
限小数或无限循环小数的形式. 反过来,任 何有限小
数或无限循环小数也都是有理数.
归纳
知1-导
通过前两节的学习,我们知道,很多数的平方根 和立方根都是无限不循环 小数,无限不循环小数又叫 做无理数( irrational number).例如 2 , 5 , 3 2 , 3 3 等都是无理数,π=3. 141 592 65…也是无理数.
《实数》精品课件2
《实数》精品课件2
解:正数:{13,+6, ,0.8,4 5 ,…}; 6
负数:{- 1 ,-12,-4.2,…}; 3
正整数:{13,+6,…};
正分数:{ 5 ,0.8, 4 5 ,…};
8
6
负整数: { -12,…};
负分数:{ - 1 ,-4.2,…}. 3
知2-讲
《实数》精品课件2
知3-练
《实数》精品课件2
《实数》精品课件2
2 (2016·随州)- 2 的相反数是( )
A.- 2
C. 2 3 - 5 是 5的( )
B. 2
2
D.-
2 2
A.相反数
B.倒数
C.负平方根
D.绝对值
知3-练
《实数》精品课件2
《实数》精品课件2
1. 无理数的特征: (1)无理数的小数部分位数无限; (2)无理数的小数部分不循环,不能表示成分数的形式. 2. 常见的无理数的形式: (1)无限不循环小数; (2)特殊字母如“π”; (3)它an=b(n为大于1的自然数)中b为有理数,则a可能
个1).
有理数集合:{
…};
无理数集合:{
…};
整数集合:{
…};
分数集合:{
…};
正数集合:{
…};
负数集合:{
…}.
《实数》精品课件2
《实数》精品课件2
2 (2016·贺州)下列实数中,属于有理数的是(
A.- 2
B. 3 4
C.π
1 D.
11
3 (2015·扬州)实数0是( )
A.有理数
B.无理数
∴
25 是有理数.∵
1 是分数,∴ 1 是有理
7
7
数.∵0.131 131 113…(每相邻两个3之间依次多1
个1),-π都是无限不循环小数,∴0.131 131
113…(每相邻两个3之间依次多1个1),-π是无理
数,故选B.
《实数》精品课件2
总结
知1-讲
(1) 对有理数和无理数进行区分时,应先对某些数进行计 算或化简,然后根据最后结果进行分类,不能仅看到 用根号表示的数就认为是无理数.
有理数
实数
整数 分数
正整数 0
负整数 正分数
负分数
有限小数或无 限循环小数
无理数
正无理数 负无理数
无限不循环小数
《实数》精品课件2
《实数》精品课件2
知2-讲
(2)按性质分类: 正实数
实数
0
负实数
正有理数 正无理数
负有理数 负无理数
3. 易错警示:分类标准不同,分法也就不同,但不管
哪种分法都要做到不重不漏;0既不是正实数也不是
3 下列说法正确的是( ) A.无理数包括正无理数、0和负无理数 B.无理数是用根号形式表示的数 C.无理数是开方开不尽的数 D.无理数是无限不循环小数
《实数》精品课件2
知1-练
《实数》精品课件2
知识点 2 实数及其分类
知2-讲
1. 实数的概念:有理数和无理数统称实数.
2. 实数的分类: (1)按定义分类:
负实数.
《实数》精品课件2
《实数》精品课件2
知2-讲
例2 把下列各数分别填在相应的括号内.
-
1 3
,13,-12,+6,
5 8
,0,0.8,
4
5 6
,-4.2.
正数:{ ,…};负数:{ ,…};
正整数:{ ,…};正分数:{ ,…};
负整数:{ ,…};负分数:{ ,…}.
分析:以前学过的0以外的数就是正数,正数前面加上 “-”号就是负数,再看它们是整数还是分数.
C.正数
D.负数
知2-练
)
《实数》精品课件2
《实数》精品课件2
知识点 3 实数的性质
知3-导
思考 (1) 2 的相反数是____2__,-π的相反数是___π___,
0的相反数是___0___; (2) 2 ____2___, |-π| =___π___, |0|= ___0___.
《实数》精品课件2
知1-讲
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
25
,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
知1-讲
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5,
《实数》精品课件2
《实数》精品课件2
知3-讲