2020年四川高考理科数学试题及答案
2020年高考理科数学及答案解析(全国Ⅲ卷)
2020年普通高等学校招生全国统一考试理科数学(含答案解析)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【难度】容易 【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解. 2.若(1i)2i z +=,则z = A .1i -- B .1+i -C .1i -D .1+i【答案】D 【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C 【难度】容易【点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
2024年四川高考数学(理)试题(含答案)
2024年四川高考数学(理)试题及答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9 C. {}1,2,3 D. {}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5 B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:.由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值.【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7. 函数()()2e e sin x x f x x x -=-+-在区间[2.8,2.8]-的大致图像为( )A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭,故选:B.9. 已知向量()()1,,,2a x x b x =+=,则( )A. “3x =-”是“a b ⊥”的必要条件 B. “3x =-”是“//a b”的必要条件C. “0x =”是“a b ⊥ ”的充分条件D. “1x =-”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac+=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2 B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以V h V h ====甲甲乙乙.15. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150=,用频率估计概率可得0.64p=,又因为升级改造前该工厂产品的优级品率0.5p=,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅- (2)(21)31n n T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,为所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =,故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k=-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值0,无极大值. (2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,为【故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.为[选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+ (2)34a =【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析 (2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
四川省攀枝花市2020届高三第二次统一考试理数试题及参考答案
攀枝花市2020届高三第二次统一考试 2020.1理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应顺目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,z 表示复数z 的共轭复数,若1z i =+,则z z i⋅=( ) A.2i - B.2i C.2- D.22.已知集合2{|30},{|17}M x x x N x x =->=≤≤,则()R C M N ⋂=( ) A.{|37}x x <≤ B.{|37}x x ≤≤ C.{|13}x x ≤≤ D.{|13}x x ≤<3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A. B. C. D.4.在1,2,3,4,5,6,7这组数据中,随机取出五个不同的数,则数字3是取出的五个不同数的中位数的所有取法为( )A.24种B.18种C.12种D.6种5.若3tan 4α=,则2cos 2sin 2αα+=( )A.1625B.1C.4825D.64256.261(12)()x x x +-的展开式中,含2x 的项的系数是( )A.40-B.25-C.25D.557.已知m n 、是两条不同的直线,,αβ是两个不同的平面,则//m n 的充分条件是( )A.与m n 、平面α所成的角相等B.//,//m n αα C.//,,m m n αβαβ⊂⋂= D.//,m n ααβ⋂=8.已知AB 是圆心为C 的圆的一条弦,且92AB AC ⋅=u u u r u u u r ,则||AB =u u u r ( ) A.3 B.3 C.23 D.99.函数2()()ax b f x x c +=+的图象如图所示,则下列结论成立的是( ) A.0,0,0a b c <>< B.0,0,0a b c <>>C.0,0,0a b c >>< D.0,0,0a b c <<<10.函数()sin 232f x x x =+的图象向右平移6π个单位长度得到()y g x =的图象. 命题1:()p y g x =的图象关于直线2x π=对称;命题2:(,0)4p π-是()y g x =的一个单调增区间.则在命题 112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨和412:()q p p ∧⌝中,真命题是( )A.13,q qB.14,q qC.23,q qD.24,q q11.在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,记ABC V 和四边形11ACC A 的外接圆圆心分别为12,O O ,若2AC =,且三棱柱外接球体积为323π,则2212O AO A +的值为( ) A.83 B.3 C.113D.5 12.已知函数22ln ,0()3,0x x x x f x x x x ->⎧=⎨--≤⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在1y kx =+的图象上,则实数k 的取值范围是( )A.1(,1)2B.(1,1)-C.11(,)32-D.()11,22-二、填空题:本题共4小题,每小题5分,共20分。
2020年高考理科数学全国卷2含答案(A4打印版)
绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10{2101}1{1223U A B --==-}=},,,,,,,,,,,则)(UA B = ( )A .{23-},B .{223-},,C .{2103--},,,D .{21023--},,,, 2.若α为第四象限角,则( )A .cos20α>B .cos20α<C .sin20α>D .sin20α<3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( ) A.3 699块B.3 474块C.3 402块D.3 339块4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块5.若过点(2)1,圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )ABCD6.数列{n a }中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A .2B .3C .4D .57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x yC a b a b -=>>的两条渐近线分别交于D E ,两点,若ODE △的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32 9.设函数()ln 21ln 21f x x x =+--,则()f x( )A .是偶函数,且在1()2+∞,单调递增 B .是奇函数,且在11()22-,单调递减C .偶函数,且在1()-∞-,单调递增D .是奇函数,且在1()2-∞-,单调递减10.已知ABC △的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D 11.若2233x y x y ----<,则( )A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln 0x y ->D .ln 0x y -<12.01-周期序列在通信技术中有着重要应用.若序列12na a a 满足,且存在正整数m ,使得(12)i m i a a i +==,,成立,则称其为0-1周期序列,并称满足(12)i m i a a i +==,,的最小正整数m 为这个序列的周期.对于周期为的01-序列12na a a ,11()(121)mi i k i C k a a k m m +===-∑,,,是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1234)5C k k =≤,,,的序列是 ( )A .11010B .11011C .10001D .11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a b ,的夹角为45︒,ka b -与a 垂直,则=k ________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种.15.设复数1z ,1z 满足12|=||=2z z ,12i z z +=,则12||=z z -________. 16.设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内. 2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在ABC △中,222sin sin sin sin sin A B C B C =--. (1)求A ;(2)若3BC =,求ABC △周长的最大值.18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1220i i x y i =⋯,,,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()1220i i x y i =⋯,,,,的相关系数(精确到0.01); (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数))ii nx y x y r --∑((.19.(12分)已知椭圆2221201()x y a bC a b +=>>:的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于A B ,两点,交2C 于C D ,两点,且43CD AB =.(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程.20.(12分)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA MN ∥,且平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.21.(12分)已知函数2sin n )si (2f x x x =.(1)讨论()f x 在区间(0)π,的单调性; (2)证明:()f x (3)设*n N ∈,证明:22223sin sin 2sin 4sin 24nnn x x x x ⋯≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分) 已知曲线12C C ,参数方程分别为2124cos 4sin x C y θθ⎧=⎨=⎩,:(θ为参数),21π1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12C C ,的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12C C ,的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.23.[选修4—5:不等式选讲](10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求()4f x 不等式的解集; (2)若()4f x ,求a 的取值范围.2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学答案解析一、选择题 1.【答案】A【解析】由题意可得:{}1012AB =-,,,,则{2()3UA B =-},.故选:A .【考点】并集、补集的定义与应用 2.【答案】D 【解析】当π6α=-时,πcos2cos 03α⎛⎫=- ⎪⎝⎭>,选项B 错误;当π3α=-时,2πcos 2cos 03α⎛⎫=- ⎪⎝⎭<,选项A 错误;由α在第四象限可得:sin 0cos 0αα,><,则sin22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D .【考点】三角函数的符号,二倍角公式,特殊角的三角函数值 3.【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B .【考点】函数模型的简单应用 4.【答案】C【解析】设第n 环天心石块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===.故选:C .【考点】等差数列前n 项和有关的计算 5.【答案】B【解析】由于圆上的点()21,在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()11,或()55,,圆心到直线230x y --=距离均为d =230x y --=的距离为5.故选:B . 【考点】圆心到直线距离的计算6.【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=. 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++--∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C .【考点】利用等比数列求和求参数的值 7.【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A . 【考点】根据三视图判断点的位置 8.【答案】B 【解析】22221(00)x y C a b a b-=:>,> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线22221(00)x yC a b a b-=:>,>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线22221(00)x y C a b a b-=:>,>∴其焦距为22228c ab ==当且仅当a b ==∴C 的焦距的最小值:8.故选:B .【考点】双曲线焦距的最值问题 9.【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1122x ⎛⎫∈- ⎪⎝⎭,时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1122⎛⎫- ⎪⎝⎭,上单调递增,()ln 12y x =-在1122⎛⎫- ⎪⎝⎭,上单调递减,()f x ∴在1122⎛⎫- ⎪⎝⎭,上单调递增,排除B ;当12x ⎛⎫∈-∞- ⎪⎝⎭,时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在12⎛⎫-∞- ⎪⎝⎭,上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在12⎛⎫-∞- ⎪⎝⎭,上单调递减,D 正确.故选:D . 【考点】函数奇偶性和单调性的判断 10.【答案】C【解析】设球O 的半径为R ,则24π16πR =,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC 是面积为4的等边三角形,21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解 11.【答案】A【解析】由2233x y x y ----<得:2323x x y y ----<,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD无法确定.故选:A . 【考点】数式的大小的判断问题 12.【答案】C 【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511()12345i i k i C k a a k +===∑,,,, 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=∑≤52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【考点】数列的新定义问题 二、填空题 13.【解析】由题意可得:211cos452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-= ⎪⎝⎭, 即:2202k a a bk →→→⨯-=-=,解得:2k =.故答案为:2. 【考点】平面向量的数量积定义与运算法则 14.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,∴先取2名同学看作一组,选法有:246C =.现在可看成是3组同学分配到3个小区,分法有:336A =.根据分步乘法原理,可得不同的安排方法6636⨯=种.故答案为:36. 【考点】计数原理的实际应用 15.【答案】 【解析】122z z ==,可设12cos 2sin i z θθ=+,22cos 2sin i z αα=+,()()122cos cos 2sin sin i 3i z z θαθα∴+=+++=+,()()2cos cos 2sin sin 1θαθα⎧+=⎪∴⎨+=⎪⎩()422cos cos 2sin sin 4θαθα++=,化简得:1cos cos sin sin 2θαθα+=-()()122cos cos 2sin sin iz z θαθα∴-=-+-===.故答案为:. 【考点】复数模长的求解 16.【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④. 【考点】复合命题的真假,空间中线面关系有关命题真假的判断 三、解答题 17.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-,()0πA ∈,,2π3A ∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-=++=,即()29AC AB AC AB +-=.22AC AB AC AB +⎛⎫⎪⎝⎭≤(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC ABAC AB AC AB +⎛⎫∴=+-+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴△周长3L AC AB BC =+++≤ABC ∴△周长的最大值为3+【考点】解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题 18.【答案】(1)12000; (2)0.94; (3)详见解析【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(),i i x y的相关系数为20()()0.94ii xx y y r --===≈∑ (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样,先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取 19.【答案】(1)12;(2)22113627x y C +=:,2212C y x =:.【解析】(1)()0F c ,,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =, 联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2ac =,b =,椭圆1C 的方程为2222143x yc c +=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【考点】椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程 20.【答案】(1)证明见解析;(2. 【解析】(1)M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴.在ABC△中,M 为BC 中点,则BC AM ⊥.又侧面11BB C C 为矩形,1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M =,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN .又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC .又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF∴//EF BC ∴又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN.(2)连接NP//AO 平面11EB C F ,平面AONP 平面11EB C F NP =,∴//AO NP .根据三棱柱上下底面平行,其面1A NMA平面ABC AM =,面1A NMA平面1111A B C A N =,∴//ON AP .故:四边形ONPA 是平行四边形.设ABC △边长是6m (0m >),可得:ON AP =,6NP AO AB m ===.O 为111A B C △的中心,且111A B C △边长为6m ,∴16sin 603ON =⨯⨯︒,故:ON AP =.//EF BC ,∴AP EPAM BM=,∴3EP=.解得:EP m =.在11B C 截取1B Q EP m ==,故2QN m =,1B Q EP =且1//B Q EP ,∴四边形1B QPE 是平行四边形,∴1//B E PQ .由(1)11B C ⊥平面1A AMN ,故QPN ∠为1B E 与平面1A AMN 所成角.在Rt QPN △,根据勾股定理可得:PQ =,sinQN QPN PQ ∴∠===∴直线1B E 与平面1A AMN . 【考点】证明线线平行和面面垂直,线面角21.【答案】(1)当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)证明见解析; (3)证明见解析.【解析】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()22423sin cos sin f x x x x'=-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()0f x '=在()0πx ∈,上的根为:12π2π33x x ==,,当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)注意到()()()()22πsin πsin 2πsin sin2f x x x x x f x +=+⎡+⎤==⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()0π0f f ==,2π3f ⎛⎫= ⎪⎝⎭⎝⎭,223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭()max f x ⎡⎤=⎣⎦,()min f x ⎡⎤=⎣⎦,即()f x ≤. (3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x xx233333sin sin 2sin 4sin 2nx x xx ⎡⎤=⎣⎦()()()2222123sin sin sin 2sin 2sin 4sin2sin 2sin 2n nnx x x x x x x x -⎡⎤=⎣⎦23233sin sin 28n x x ⎡⎤⨯⨯⎢⎥⎣⎦≤ 238n⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦≤34n⎛⎫= ⎪⎝⎭.【考点】导数的应用22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用23.【答案】(1)32x x ⎧⎨⎩≤或112x ⎫⎬⎭;(2)(][)13-∞-+∞,,. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-,解得:32x ≤;当34x <<时,()4314f x x x =-+-=,无解;当4x 时,()43274f x x x x =-+-=-,解得:112x;综上所述:()4f x 的解集为32x x ⎧⎨⎩≤或112x⎫⎬⎭. (2)()()()()22222121211f x x a x a x a x a aa a =-+-+---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-,解得:1a -≤或3a ,a ∴的取值范围为(][)13-∞-+∞,,. 【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值。
2020届四川省高考数学(理)模拟试题(word版,有答案)
普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) (A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A 3(B )23(C 2(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA u u u r g DB u u u r =DB u u u r g DC u u u r =DC u u u r g DA u u u r=-2,动点P ,M满足AP u u u r =1,PM u u u u r =MC u u uu r ,则2BM u u u u u r 的最大值是( )(A )434(B )494(C 3763+D 37233+第II 卷(非选择题 100分)二、填空题:本大题共5小题,每小题5分,共25分。
2020年全国统一高考数学理科试卷(附答案解析)
依圆的知识可知,四点 四点共圆,且 ,所以 ,而 ,
A. 2B. 3C. 6D. 9
【答案】C
【解析】
【分析】
利用抛物线的定义建立方程即可得到答案.
【详解】设抛物线的焦点为F,由抛物线的定义知 ,即 ,解得 .
故选:C.
【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.
5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
【答案】C
【解析】
【分析】
求得 展开式的通项公式为 ( 且 ),即可求得 与 展开式的乘积为 或 形式,对 分别赋值为3,1即可求得 的系数,问题得解.
【详解】 展开式的通项公式为 ( 且 )
所以 与 展开式的乘积可表示为:
或
在 中,令 ,可得: ,该项中 的系数为 ,
在 中,令 ,可得: ,该项中 的系数为
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据散点图的分布可选择合适的函数模型.
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 和温度 的回归方程类型的是 .
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
7.设函数 在 的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
【答案】C
四川省2024年高考理科数学真题及参考答案
四川省2024年高考理科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i z +=5,则()=+z z i ()A.i10B.i2 C.10D.-22.已知集合{}954321,,,,,=A ,{}A x xB ∈=,则()=B AC A ()A.{}9,41,B.{}9,43, C.{}3,2,1D.{}5,3,23.若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,则5z x y =-的最小值为()A.5B.12C.2-D.72-4.记n S 为等差数列{}n a 的前n 项和.已知105S S =,15=a ,则=1a ()A.27B.73C.31-D.117-5.已知双曲线()0,012222>>=-b a b x a y C :的上、下焦点分别为()4,01F ,()402-,F ,点()4,6-P 在该双曲线上,则双曲线的离心率是()A.4B.3C.2D.26.设函数()21sin 2xxe xf x ++=,则曲线()x f y =在点()1,0处的切线与两坐标轴所围成的三角形的面积为()A.61B.31C.12D.327.函数()()2e esin xxf x x x -=-+-在区间[]8.2,8.2-的图像大致为()8.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.132+B.1-C.23D.31-9.设向量()x x a ,1+=,()2,x b = ,则()A.3-=x 是b a⊥的必要条件 B.3-=x 是b a∥的必要条件C.0=x 是b a⊥的充分条件D.31+-=x 是b a∥的充分条件10.设m 、n 为两条直线,α、β为两个平面,且m =βα ,下述四个命题:①若n m ∥,则α∥n 或β∥n ;②若n m ⊥,则α⊥n 或β⊥n ;③若α∥n 且β∥n ,则n m ∥;④若n 与α,β所成的角相等,则m n ⊥,其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.记ABC △的内角A ,B ,C 所对边分别为a ,b ,c ,若3π=B ,294b ac =,则sin sin A C +=()A.23B.2C.2D.2312.已知b 是c a ,的等差中项,直线0=++c by ax 与圆01422=-++y y x 交于A,B 两点,则AB 的最小值为()A.2B.3C.4D.52二、填空题:本题共4小题,每小题5分,共20分.13.1031⎪⎭⎫⎝⎛+x 的展开式中,各项系数中的最大值为.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为()122r r -,()123r r -,则圆台甲与乙的体积之比为.15.已知1a >,8115log log 42a a -=-,则a =.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中不放回地随机抽取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m与n 差的绝对值不大于21的概率为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率5.0=p .设p 为升级改造后抽取的n 件产品的优级品率.如果()np p p p -+>165.1,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为产品线智能化升级改造后,该工厂产品的优级品率提高了?(247.12150≈)18.(12分)记n S 为数列{}n a 的前n 项和,已知434+=n n a S .(1)求{}n a 的通项公式;(2)设()n n n na b 11--=,求数列{}n b 的前n 项和n T .19.(12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,AD EF ∥,AD BC ∥,4=AD ,2===EF BC AB ,10=ED ,32=FB ,M 为AD 的中点.(1)证明:∥BM 平面CDE ;(2)求二面角E BM F --的正弦值.20.(12分)设椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)过点()4,0P 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.(12分)已知函数()()()x x ax x f -+-=1ln 1.(1)若2-=a ,求()x f 的极值;(2)当0≥x 时,()0≥x f 恒成立,求a 的极值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答。
2020年四川省高考数学诊断试卷(理科)(5月份)(附答案详解)
2020年四川省高考数学诊断试卷(理科)(5月份)一、单选题(本大题共12小题,共60.0分) 1. 设i 是虚数单位,若2−ia+i 为纯虚数,则实数a( )A. −2B. −12C. 12D. 22. 设全集U =R ,集合A ={x|log 2x <1},B ={x|x 2≥1},则将韦恩图(Venn)图中的阴影部分表示成区间是( )A. (0,1)B. (−1,1)C. (−1,2)D. (1,2)3. 在(x −1√x 3)6的展开式中,x 2项的系数为( )A. 20B. 15C. −15D. −204. 某几何体的三视图如图所示,则该几何体的体积为( )A. 21πB. 24πC. 27πD. 30π5. 设a =sin24°,b =tan38°,c =cos52°,则( )A. a <b <cB. b <a <cC. c <a <bD. a <c <b6. 已知f(x)是奇函数,且当x >0时,f(x)=e x −1,则曲线y =f(x)在x =−1处的切线方程为( )A. ex −y +1=0B. ex +y −1=0C. ex −y −1=0D. ex +y +1=07. 设O 、F 分别是抛物线y 2=4x 的顶点和焦点,点P 在抛物线上,若OP ⃗⃗⃗⃗⃗ ⋅FP⃗⃗⃗⃗⃗ =10,则|FP⃗⃗⃗⃗⃗ |=( ) A. 2 B. 3C. 4D. 58. 已知a >b >0,则c >0是ab >a+cb+c 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9. 北魏大数学家张邱建对等差数列问题的研究精深,在其著述《算经》中有如下问题:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问未到三人复应得金几A. 3.0B. 3.2C. 3.4D. 3.610. 设向量a ⃗ ,b ⃗ 满足|a ⃗ −b ⃗ |=2,且(3a ⃗ −b ⃗ )⊥(a ⃗ +b ⃗ ),则(2a ⃗ −b⃗ )⋅b ⃗ =( ) A. −1 B. 1 C. 3D. −311. 已知函数f(x)=cos(2x +φ)(0<x <π)关于直线x =π6对称,函数g(x)=sin(2x −φ),则下列四个命题中,真命题有( ) ①y =g(x)的图象关于点(π3,0)成中心对称;②若对∀x ∈R ,都有g(x 1)≤g(x)≤g(x 2),则|x 1−x 2|的最小值为π; ③将y =g(x)的图象向左平移π12个单位,可以得到y =f(x)的图象; ④∃x 0∈R.使|f(x 0)−g(x 0)|=12.A. ①③B. ②③C. ①④D. ②④12. 已知三条射线OA 、OB 、OC 两两所成的角都是60°,点M 在OA 上,点N 在∠BOC 内运动,且MN =OM =6√3,则点N 的轨迹长度为( )A. 2πB. 3πC. 4πD. 5π二、单空题(本大题共4小题,共20.0分) 13. 双曲线x 24−y 212=1的焦点到渐近线的距离为______.14. 已知数列{a n }的前n 项和S n =3a n −2n(n ∈N ∗),若{a n +λ}成等比数列,则实数λ=______.15. 已知函數f(x)={2−ax,x ≤02x 3−ax 2+1,x >0,若f(x)>0恒成立,则实数a 的取值范围是______.16. 为弘扬新时代的中国女排精神.甲、乙两个女排校队举行一场友谊比赛,采用五局三胜制(即某队先赢三局即获胜,比賽随即结束).若两队的竞技水平和比赛状态相当.且每局比赛相互独立,则比赛结束时已经进行的比赛局数的数学期望是______. 三、解答题(本大题共7小题,共82.0分)17. 在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c.已知btanA 、ctanB.、btanB 成等差数列. (1)求A 的大小;(2)设a =2,求△ABC 面积的最大值.18.如图所示,菱形ABCD与正方形CDEF所在平面相交于CD.(1)求作平面ACE与平面BCF的交线l.并说明理由;(2)若BD与CF垂直且相等,求二面角D−AE−C的余弦值.19.已知椭圆E:x2a2+y2b2=1(a>b>0)经过点A(0,−1),且离心率为√32.(1)求椭圆E的方程;(2)过点P(2,1)的直线与椭圆E交于不同两点B、C求证:直线AB和AC的斜率之和为定值.20.随着经济的快速增长、规模的迅速扩张以及人民生活水平的逐渐提高,日益剧增的垃圾给城市的绿色发展带来了巨大的压力,相关部门在有5万居民的光明社区采用分层抽样方法得到年内家庭人均GDP与人均垃圾清运量的统计数据如表:人均GDPx(万元/人)3 6 9 12 15人均垃圾清运量y(吨/人)0.13 0.23 0.31 0.41 0.52(1)已知变量y 与x 之间存在线性相关关系,求出其回归直线方程;(2)随着垃圾分类的推进,燃烧垃圾发电的热值大幅上升,平均每吨垃圾可折算成上网电量200干瓦时,右图是光明社区年内家庭人均GDP 的频率分布直方图,请补全[15,18]的缺失部分,并利用(1)的结果,估计整个光明社区年内垃圾可折算成的总上网量.[参考公式]回归方程y ̂=b ̂x +a ̂中,b ̂=∑(n i=1x i −x −)(y i −y −)∑(n i=1x i −x −)2=∑x i n i=1y i −nxy−∑x i 2n i=1−nx−2.21. 已知函数f(x)=2(x−1)x+a−lnx ,其中a >0.(2)设x 1,x 2是f(x)的两个极值点,求证:f(x 1)−f(x 2)x 1−x 2<1−aa(1+a).22. 在平面直角坐标系xOy 中,已知C 1:{x =6−t y =√3t(其中t 为参数),C 2:{x =2cosθy =2+2sinθ(其中θ为为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).(1)求C 1和C 2的极坐标方程;(2)设以O 为端点,倾斜角为α的射线l 与C 1和C 2分别交于A 、B 两点,求|OA||OB|的最小值.23. 设函数f(x)=|x −2|−2|x +1|的最大值为m .(1)求m 的值;(2)若a +b =m ,求√a +1+√2b +4的最大值.答案和解析1.【答案】C【解析】 【分析】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题. 利用复数的运算法则、纯虚数的定义即可得出. 【解答】解:2−ia+i =(2−i)(a−i)(a+i)(a−i)=2a−1a 2+1−a+2a 2+1i 为纯虚数, ∴2a−1a +1=0,−a+2a +1≠0,解得a =12. 故选:C .2.【答案】A【解析】解:由题意可知集合A 中x 必须满足log 2x <1=log 22, 即0<x <2,即A =(0,2). 集合B 中x 2≥1⇒x ≥1或x ≤−1, 所以集合B 的补集C U B =(−1,1), 图中阴影部分表示A ∩(C U B)=(0,1), 故选:A .根据所给的韦恩图,看出阴影部分所表达的是要求B 集合的补集与A 集合的交集,整理两个集合,求出B 的补集,再求出交集.本题考查韦恩图表达集合的关系及运算,本题解题的关键是正确读出韦恩图,在计算出两个集合之间的交集.3.【答案】D【解析】解:在(x −√x 3)6的展开式中,通项公式为T r+1=C 6r ⋅(−1)r ⋅x 6−4r3, 令6−4r 3=2,求得r =3,可得含x 2项的系数为−C 63=−20,在二项展开式的通项公式中,令x的幂指数等于2,求得r的值,可得展开式中x2项的系数.本题主要考查二项式定理,二项展开式的通项公式,属于基础题.4.【答案】B【解析】【分析】本题考查的知识要点:三视图和直观图的转换,几何体的体积和表面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.首先把三视图转换为几何体的直观图,进一步求出几何体的体积.【解答】解:根据几何体的三视图可得直观图为:下面为半径为3半球体和底面半径为3,高为2的圆锥组成.如图所示:故:V=23×π×33+13×π×32×2=24π,故选:B.5.【答案】D【解析】解:a=sin24°,b=tan38°,c=cos52°=sin28°,根据单位圆的三角函数线:AB=b,EF=c,CD=a,即:tan38°>sin28°>sin24°,即a<c<b,故选:D.直接利用单位元的三角函数线和诱导公式的应用求出结果.本题考查的知识要点:三角函数线的应用,三角函数诱导公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.【答案】A【解析】解:∵f(x)是奇函数,且当x>0时,f(x)=e x−1,∴f(−1)=−f(1)=1−e;又x>0时,f′(x)=e x,∴f′(−1)=f′(1)=e.故切线为:y−(1−e)=e(x+1),即ex−y+1=0.故选:A.根据奇函数的性质可知,f(−1)=−f(1),求出切点坐标,再根据f′(−1)=f(1)求出切线斜率,则切线可求.本题考查利用导数求切线的基本思路,奇函数的性质,以及学生利用转化思想解决问题的能力及运算能力.属于中档题.7.【答案】B【解析】解:∵O、F分别是抛物线y2=4x的顶点和焦点,∴O(0,0),F(1,0);则OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =10=(x,y)⋅(x −1,y)=x(x −1)+y 2; 又因为y 2=4x ;∴x(x −1)+4x =10⇒x =2 (−5舍); 故|FP ⃗⃗⃗⃗⃗ |=x +p2=2+1=3; 故选:B .设出p 的坐标,根据数量积求出点p 的横坐标,即可求解出结论.本题主要考查向量的数量积以及抛物线的定义,考查计算能力,属于基础题目.8.【答案】A【解析】【分析】本题考查了不等式的基本性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.a b>a+cb+c化为:c(a−b)b(b+c)>0,根据a >b >0,不等式化为:(b +c)c >0,进而判断出结论. 【解答】解:ab >a+cb+c 化为:c(a−b)b(b+c)>0,∵a >b >0,∴不等式化为:(b +c)c >0,则c >0⇒ba >a+cb−c ,反之不成立,例如b =1,c =−2. ∴a >b >0,则c >0是ab >a+cb+c 的充分不必要条件. 故选:A .9.【答案】B【解析】 【分析】本题考查等差数列的通项公式以及前n 项和公式的应用,关键求出等差数列的首项与公差,属于基础题.根据题意,设题目中十等人得金依次为a 1、a 2、……,a 10,由等差数列的通项公式可得{a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,解可得a 1、d ,即可得等差数列{a n }的通项公式,又由中间三人共得金S =a 5+a 6+a 7=3a 6,计算可得答案.解:根据题意,设第十等人得金a 1斤,第九等人得金a 2斤,以此类推,第一等人得金a 10斤,则数列{a n }构成等差数列, 设数列{a n }的公差为d ,{a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,即有{4a 1+6d =33a 1+24d =4,解可得a 1=813,d =778, 则中间三人共得金S =a 5+a 6+a 7=3a 6=3(a 1+5d)=8326≈3.2(斤); 故选:B .10.【答案】D【解析】 【分析】本题主要考查数量积的应用以及整体代入的数学思想,属于基础题.先根据已知条件得到a ⃗ 2−2a ⃗ ⋅b ⃗ +b ⃗ 2=4 与3a ⃗ 2+2a ⃗ ⋅b ⃗ −b ⃗ 2=0;二者联立即可求解结论. 【解答】解:因为向量a ⃗ ,b ⃗ 满足|a ⃗ −b ⃗ |=2,且(3a ⃗ −b ⃗ )⊥(a ⃗ +b ⃗ ),∴a ⃗ 2−2a ⃗ ⋅b ⃗ +b ⃗ 2=4 ①;(3a ⃗ −b ⃗ )⋅(a ⃗ +b ⃗ )=0⇒3a ⃗ 2+2a ⃗ ⋅b ⃗ −b ⃗ 2=0 ②; 由①+②可得:a ⃗ 2=1; ∴2a ⃗ ⋅b ⃗ −b ⃗ 2=−3a ⃗ 2=−3;即(2a ⃗ −b ⃗ )⋅b ⃗ =2a ⃗ ⋅b ⃗ −b ⃗ 2=−3a ⃗ 2=−3;故选:D .11.【答案】C【解析】 【分析】首先利用函数的对称性的应用求出φ的值,进一步求出函数gf(x)和函数g(x)的解析式,再利用函数的性质的应用求出函数的对称性和函数周期及最值及利用和角公式的运用和差角公式的应用求出存在具体的角,最后求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的型. 【解答】解:函数f(x)=cos(2x +φ)(0<x <π)关于直线x =π6对称,所以2×π6+φ=kπ(k ∈Z),解得φ=kπ−π3,当k =1时φ=2π3.所以f(x)=cos(2x +2π3).所以函数g(x)=sin(2x −φ)=sin(2x −2π3),令2x −2π3=kπ,解得x =kπ2+π3(k ∈Z),当k =0时,x =π3,所以:y =g(x)的图象关于点(π3,0)成中心对称;故①正确.②若对∀x ∈R ,都有g(x 1)≤g(x)≤g(x 2),即g(x)min ≤g(x)≤g(x)max ,即|x 1−x 2|的最小值为T2=π2,故②错误.③将y =g(x)的图象向左平移π12个单位,得到k(x)=sin(2x +π6−2π3)=−cos2x ,故错误.④由于f(x)−g(x)=cos(2x +2π3)−sin(2x −2π3)=(√32−12)×√2sin(2x −π4),当sin(2x −π4)=√6−√24时,|f(x 0)−g(x 0)|=12,故正确.故选:C .12.【答案】C【解析】解:如图所示:作MO 1⊥平面AOB 于点O 1,作MK ⊥OB 于点K ,连OO 1,KO 1, ∵射线OA 、OB 、OC 两两所成的角都是60°,点M 在OA 上,MO =6√3, ∴在直角三角形MKO 中,MK =OM ⋅sin60°=9,OK =OM ⋅cos60°=3√3; 在直角三角形O 1KO 中,KO 1=OK ⋅tan30°=3;在直角三角形MO 1K 中,MO 1=√92−32=6√2.∵点N 在∠BOC 内运动,且MN =6√3,∴点N 的轨迹是以点M 为球心,以6√3为半径的球被平面BOC 截得的一段圆弧EF .其圆心为点O1,半径r=√MN2−MO12=6,圆心角为∠EO1F=2∠BOC=120°,圆弧长为13×2πr=4π.故选:C.先作MO1⊥平面AOB于点O1,作MK⊥OB于点K,连OO1,KO1,利用直角三角形知识依次求出MK,OK,KO1,MO1长度,再由题设条件得出点N的轨迹是一段圆弧,求出其长度即可.本题主要考查动点的轨迹是球被平面截得的一段圆弧的弧长的计算,属于中档题.13.【答案】2√3【解析】解:由双曲线x24−y212=1,得焦点坐标为F(±4,0),渐近线方程为y=±√3x,不妨取焦点坐标为(4,0),一条渐近线方程为√3x−y=0.则焦点到渐近线的距离为d=√3|√3+1=2√3.故答案为:2√3.由双曲线方程求得焦点坐标与渐近线方程,再由点到直线的距离公式求解.本题考查双曲线的简单性质,考查点到直线距离公式的应用,是基础题.14.【答案】2【解析】解:数列{a n}的前n项和S n=3a n−2n(n∈N∗),①,则n≥2时,S n−1=3a n−1−2(n−1),②,①−②,得a n=3a n−3a n−1−2,∴2a n=3a n−1+2,∴a n=32a n−1+1,若{a n+λ}成等比数列,∴a n+λ=32(a n−1+λ),解得λ=2.故答案为:2.利用a n与S n的关系转化成a n与a n−1的关系,因为{a n+λ}成等比数列,构造a n+λ,求解λ即可.本题主要考查a n 与S n 的关系,以及构造新数列,考查了等比数列的概念,属于基础题.15.【答案】[0,3)【解析】 【分析】讨论a =0,a <0,a >0,结合函数的单调性和运用导数判断单调性、求最值,由题意可得f(x)的最小值大于0,解不等式可得所求范围.本题考查分段函数的性质,考查不等式恒成立问题解法,注意运用分类讨论思想和导数的运用:求单调性、极值和最值,考查运算能力和推理能力,属于中档题. 【解答】解:当a =0时,f(x)={2,x ≤02x 3+1,x >0,显然f(x)>0恒成立;当a <0时,x ≤0时,f(x)递增,可得f(x)≤2,显然f(x)>0不恒成立; 当a >0时,x ≤0时,f(x)递减,可得f(x)≥2;x >0时,f(x)=2x 3−ax 2+1的导数为f′(x)=6x 2−2ax =2x(3x −a), 当0<x <13a 时,f′(x)<0,f(x)递减;当x >13a 时,f′(x)>0,f(x)递增, 可得f(x)在x =13a 处取得极小值,且为最小值−a 327+1,由题意可得−a 327+1>0,解得0<a <3,综上可得a 的取值范围是[0,3). 故答案为:[0,3).16.【答案】4.125【解析】解:设比赛结束时已经进行的比赛局数为X ,则X 的可能取值为3,4,5, 甲队或乙队连胜三局:P(X =3)=C 33⋅(12)3⋅(12)3+C 30⋅(12)0⋅(12)3=14,甲队或乙队在前3局胜2局,第4局获胜:P(X =4)=C 32⋅(12)2⋅12⋅12+C 32⋅(12)2⋅12⋅12=38,甲队或乙队在前4局胜2局,第5局获胜:P(X =5)=C 42⋅(12)2⋅(12)2⋅12+C 42⋅(12)2⋅(12)2⋅12=38.∴数学期望E(X)=3×14+4×38+5×38=338=4.125.故答案为:4.125.设比赛结束时已经进行的比赛局数为X,则X的可能取值为3,4,5,然后结合独立重复事件的概率逐一求出每个X的取值所对应的概率,再利用数学期望的公式求解即可.本题考查独立重复事件的概率、离散型随机变量的数学期望,考查学生对数据的分析能力和运算能力,属于基础题.17.【答案】解:(1)△ABC中,∵btanA、ctanB、btanB成等差数列,∴btanA+btanB= 2ctanB,即b(sinAcosA +sinBcosB)=2c⋅sinBcosB,即b⋅sinAcosB+cosAsinBcosAcosB=2c⋅sinBcosB,即b⋅sin(A+B)cosAcosB =2c⋅sinBcosB,即bsinCcosAcosB=2c⋅sinBcosB.再利用正弦定理可得sinB⋅sinCcosAcosB =2sinC⋅sinBcosB,故cosA=12,∴A=π3.(2)设a=2,△ABC面积为S,则S=12⋅bc⋅sinA=√34bc.由余弦定理可得a2=4=b2+c2−2bc⋅cosA≥2bc−bc=bc,即bc≤4,当且仅当b=c时,等号成立.故,△ABC面积为S的最大值为√34⋅4=√3.【解析】(1)由题意利用等差数列的定义,同角三角函数的基本关系、两角和差的三角公式,正弦定理,求得cosA的值,可得A的值.(2)由题意利用余弦定理、基本不等式,求得,△ABC面积为S的最大值.本题主要考查等差数列的定义应用,同角三角函数的基本关系、两角和差的三角公式,正弦定理、余弦定理、基本不等式的应用,属于中档题.18.【答案】解:(1)过点C作BF的平行线l即可,下面给予证明:由已知得AB和EF都与CD平行且相等,即AB与EF平行且相等,∴四边形ABFE是平行四边形,∴AE//BF,∵BF⊄平面ACE,且AE⊂平面ACE,∴BF//平面ACE,∵BF⊂平面BCF,且平面ACE∩平面BCF=l,∴BF//l.(2)由CF ⊥BD ,CF ⊥CD ,且BD ∩CD =D ,BD ,CD ⊂平面ABCD , 得CF ⊥平面ABCD ,由BD =CF ,得△BCD 是正三角形,取BC 中点O ,则BO ⊥CD ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,设AB =2,则D(0,−1,0),A(√3,−2,0),E(0,−1,2),C(0,1,0), ∴AD ⃗⃗⃗⃗⃗⃗ =(−√3,1,0),AE ⃗⃗⃗⃗⃗ =(−√3,1,2),EC ⃗⃗⃗⃗⃗ =(0,2,−2), 设平面ADE 的法向量m⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =−√3x +y =0m ⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =−√3x +y +2z =0,取x =1,得m ⃗⃗⃗ =(1,√3,0), 设平面ACE 的一个法向量n⃗ =(a,b,c), 则{n ⃗ ⋅EC ⃗⃗⃗⃗⃗ =2b −2c =0n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =−√3a +b +2c =0,取c =1,得n ⃗ =(√3,1,1),设二面角D −AE −C 的平面角为θ, 则二面角D −AE −C 的余弦值为: cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=√32√5=√155.【解析】本题考查两平面的交线、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题(1)过点C 作BF 的平行线l ,推导出AB 与EF 平行且相等,从而四边形ABEF 是平行四边形,AE//BF ,进而BF//平面ACE ,由此推导出BF//l .(2)由CF ⊥BD ,CF ⊥CD ,且BD ∩CD =D ,得CF ⊥平面ABCD ,由BD =CF ,得△BCD 是正三角形,取BC 中点O ,则BO ⊥CD ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出二面角D −AE −C 的余弦值.19.【答案】(1)解:由题意,{b =1ca =√32a 2=b 2+c 2,解得{a =2b =1c =√3, 则椭圆E 的方程为x 24+y 2=1;(2)证明:∵直线BC 过P(2,1)且与椭圆有两个不同交点,∴直线BC 的斜率一定存在且对于0,于是设直线方程为y −1=k(x −2),即y =kx −2k +1.联立{y =kx −2k +1x 2+4y 2=4,得(4k 2+1)x 2−(16k 2−8k)x +16k(k −1)=0. △=(16k 2−8k)2−4(4k 2+1)(16k 2−16k)>0. 设B(x 1,y 1),C(x 2,y 2), 则x 1+x 2=16k 2−8k 4k 2+1,x 1x 2=16k(k−1)4k +1.设直线AB 和AC 的斜率分别为k 1,k 2, 则k 1+k 2=y 1+1x 1+y 2+1x 2=k(x 1−2)+2x 1+k(x 2−2)+2x 2=2k −2(k−1)(x 1+x 2)x 1x 2=2k −16k(k−1)(2k−1)16k(k−1)=2k −(2k −1)=1.∴直线AB 和AC 的斜率之和为定值1.【解析】(1)由已知列关于a ,b ,c 的方程组,求解可得a ,b 的值,则椭圆方程可求; (2)直线BC 过P(2,1)且与椭圆有两个不同交点,可得直线BC 的斜率一定存在且对于0,于是设直线方程为y −1=k(x −2),即y =kx −2k +1,联立直线方程与椭圆方程,化为关于x 的一元二次方程,由斜率公式及根与系数的关系化简可得直线AB 和AC 的斜率之和为定值.本题考查椭圆标准方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.20.【答案】解:(1)由表格可得,x −=3+6+9+12+155=9,y −=0.13+0.23+0.31+0.41+0.525=0.32,∑(5i=1x i −x −)2=36+9+0+9+36=90,∑(5i=1x i −x −)(y i −y −)=(−6)×(−0.19)+(−3)×(−0.09)+0×(−0.01)+3×0.09+6×0.2=6×(0.19+0.09+0.20)=6×0.48=2.88, 所以b ̂=∑(5i=1x i −x −)(y i −y −)∑(5i=1x i −x −)2=2.8890=0.032,于是a ̂=y −−b ̂x −=0.32−0.032×9=0.032,故变量y 与x 之间的回归直线方程为ŷ. (2)由频率分布直方图各小矩形的面积之和为1,得160×(1+2+4+6+5+a)×3=1,解得a=2,故最右边小矩形的高度为260=130由频率分布直方图可知,光明社区的人均GDP为x−=360(1×1.5+2×4.5+4×7.5+6×10.5+5×13.5+2×16.5)=10.2(万元/人),由(1)可知,光明社区的人均垃圾清运量约为0.032×(10.2+1)(吨/人).于是光明社区年内垃圾清运总量为5×0.032×(10.2+1)=1.792(万吨).由题意,整个光明社区年内垃圾可折算成的总上网量估计为:17920×200=3.584×106(千瓦时)即为所求.【解析】本题考查统计,及回归直线方程,属于中档题.(1)由最小二乘法,算出b̂,â,进而可得回归直线方程.(2)由频率分布直方图各小矩形的面积之和为1,得a=2,最右边小矩形的高度,人均GDP,进而得光明社区的人均垃圾清运量约为0.032×(10.2+1)(吨/人).于是光明社区年内垃圾清运总量,进而得出答案.21.【答案】(1)解:由f(x)=2(x−1)x+a −lnx,得f′(x)=2(a+1)(x+a)2−1x=−x2+2x−a2x(x+a)2(x>0).①当a≥1时,f′(x)≤−x2+2x−1x(x+a)2=−(x−1)2x(x+a)≤0恒成立,∴f(x)在(0,+∞)上单调递增,无单调减区间;②当0<a <1时,由−x 2+2x −a 2>0,解得1−√1−a 2<x <1+√1+a 2. 由−x 2+2x −a 2<0,解得0<x <1−√1−a 2或x >1+√1+a 2.∴f(x)在(0,1−√1−a 2),(1+√1+a 2,+∞)上单调递减,在(1−√1−a 2,1+√1+a 2)上单调递增;(2)证明:∵x 1,x 2是f(x)的两个极值点, 由(1)知,0<a <1,且x 1+x 2=2,x 1x 2=a 2.f(x 1)−f(x 2)=[2(x 1−1)x 1+a −2(x 2−1)x 2+a]−(lnx 1−lnx 2)=2[(x 1−1)(x 2+a)−(x 2−1)(x 1+a)](x 1+a)(x 2+a)−(lnx 1−lnx 2)=2(a +1)(x 1−x 2)x 1x 2+a(x 1+x 2)+a 2−(lnx 1−lnx 2).∴f(x 1)−f(x 2)x 1−x 2=2(a+1)2a 2+2a −lnx 1−lnx 2x 1−x 2=1a−lnx 1−lnx 2x 1−x 2.令g(t)=lnt −2(t−1)t+1(0<t <1),则g′(t)=1t −4(t+1)2=(t−1)2t(t+1)2>0.故g(t)在(0,1)内单调递增,于是g(t)<g(1)=0,即lnt <2(t−1)t+1(0<t <1).不妨令x 1<x 2,令t =√x1x 2∈(0,1),则12ln x1x 2<2(√x1x−1)√x 1x 2+1,即lnx 1−lnx 2<√x 1√x 2)x +x .于是,lnx 1−lnx 2x 1−x 2>(√x +√x )2=x +x +2√x x =42+2a=21+a.从而f(x 1)−f(x 2)x 1−x 2<1a−21+a=1−aa(1+a).【解析】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查化归与转化思想方法,换元与构造函数是解答该题的关键,属难题. (1)求出原函数的导函数f′(x)=2(a+1)(x+a)2−1x =−x 2+2x−a 2x(x+a)2(x >0),当a ≥1时,f′(x)≤0恒成立,可得f(x)在(0,+∞)上的单调性;当0<a <1时,由导函数的符号确定原函数的单调区间;(2)由x 1,x 2是f(x)的两个极值点,结合(1)知,0<a <1,且x 1+x 2=2,x 1x 2=a 2,化简可得f(x 1)−f(x 2)x 1−x 2=1a −lnx 1−lnx 2x 1−x 2,令g(t)=lnt −2(t−1)t+1(0<t <1),利用导数证明g(t)在(0,1)内单调递增,于是g(t)<g(1)=0,即lnt <2(t−1)t+1(0<t <1).不妨令x 1<x 2,令t =√x 1x 2∈(0,1),则12ln x 1x 2<2(√x1x−1)√x1x 2+1,即lnx 1−lnx 2<√x 1−√x 2)√x +√x ,可得lnx 1−lnx 2x 1−x 2>21+a,从而f(x 1)−f(x 2)x 1−x 2<1a−21+a=1−aa(1+a).22.【答案】解:(1)已知曲线C 1:{x =6−ty =√3t (其中t 为参数),转换为直角坐标方程为√3x +y =6√3,转换为极坐标方程为ρsin(θ+π3)=3√3,曲线C 2:{x =2cosθy =2+2sinθ(其中θ为为参数).转换为直角坐标方程为x 2+(y −2)2=4,转换为极坐标方程为ρ=4sinθ. (2)射线l 的极坐标方程为θ=α, 所以|OA|=√3sinα+√3cosα,|OB|=4sinα,则:|OA||OB|=√34(sin 2α+√3sinαcosα)=3√31+2sin(2α−π6),故当sin(2α−π6)=1时,|OA||OB|的最小值√3.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用极径的应用和三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果. 本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(1)f(x)=|x −2|−2|x +1|={x +4,x ≤−1−3x,−1<x <2−x −4,x ≥2,所以函数f(x)在区间(−∞,−1]内是增函数,在[−1,+∞)上是减函数.所以函数的最大值为:m =f(−1)=3. (2)由柯西不等式可得:√a +1+√2b +4=1⋅√a +1+√2⋅√2b +4≤√(1+2)(a +1+b +2),由题意a +b =3,所以√a +1+√2b +4≤3√2.当且仅当a =1,b =2时取等号.所以√a +1+√2b +4的最大值为:3√2.【解析】本题考查最值的求法,注意柯西不等式的应用,考查变形和化简整理的运算能力,属于中档题.(1)讨论x的范围:x≤−1,−1<x≤2,x>2,去掉绝对值,写出分段函数的形式,画出图象即可求得m值;(2)利用柯西不等式,转化区间函数的最值即可.。
四川省2020届高三数学下学期第一次试题理.doc
四川省校2020届高三数学下学期第一次试题 理本试卷分选择题和非选择题两部分。
第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页。
共4页。
满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.考试结束后,只将答题卡交回。
. 第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5个,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集R U =,集合{}31<<x x A -=,{}12≥-≤=x x x B 或,则=)(B C A U A .{}11<<x x - B .{}32<<x x - B .{}32<x x ≤- D .{}1-2->或x x x ≤2.已知双曲线C :)0(1222>b by x =-的焦距为4,则双曲线C 的渐近线方程为A .x y 15±=B .x y 2±=C .x y 3±=D .x y 3±= 3.已知向量)1,3(=a ,)3,3(-=b ,则向量b 在向量a 方向上的投影为 A .- 3 B . 3 C .-1 D .14.已知a,b ∈R ,条件甲:a >b >0;条件乙:1a <1b,则甲是乙的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定; ④从最近五场比赛的得分看,甲比乙更稳定。
其中所有正确结论的编号为:A .①③B .①④C .②③D .②④ 6.若),2(,ππβα∈,且552sin =α,1010)-(sin -=βα,则=βsinA .1027 B .22 C .21 D .1017.已知a,b 是两条异面直线,直线c 与a,b 都垂直,则下列说法正确的是A .若⊂c 平面α,则α⊥aB .若c ⊥平面α,则a b a //,//αC .存在平面α,使得α⊥c ,a ⊂α,a b //D .存在平面α,使得a c //,α⊥a ,a b ⊥ 8.将函数f (x )的图像上的所有点向右平移π4个单位长度,得到函数g (x )的图像,若函数g (x )=A sin)(ϕω+x (A >0,ω>0,ϕ<π2)的部分图像如图所示,则函数f (x )的解析式为 A .f (x )=sin(x +5π12)B .f (x )=-cos(2x+2π3)C .f (x )=cos(2x+π3)D .f (x )=sin(2x+7π12)9.已知定义域R 的奇函数f (x )的图像关于直线x =1对称,且当0≤x ≤1时,f (x )=x 3,则f (52)=A .-278B .-18C .18D .27810.已知R a ∈且为常数,圆:C 02222=-++ay y x x ,过圆C 内一点(1,2)的直线l 与圆C 相切交于B A ,两点,当弦AB 最短时,直线l 的方程为02=-y x ,则a 的值为A .2B .3C .4D .511.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为A .479B .480C .455D .456 12.某小区打算将如图的一直三角形ABC 区域进行改建,在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知AB =20m,AC =10m,则△DEF 区域内面积(单位:m 2)的最小值为A .25 3B .14375 C .73100 D .7375 第Ⅱ卷本卷包括必考题和选考题两部分。
2020年全国卷数学(理科)高考试题及答案
2020年全国卷数学(理科)高考试题及答案2020年普通高等学校招生全国统一考试-理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若 $z=1+i$,则 $z^2-2z=$A。
0B。
1C。
2D。
22.设集合 $A=\{x|x^2-4\leq 0\}$,$B=\{x|x^2+ax\leq 0\}$,且 $AB=\{x|-2\leq x\leq 1\}$,则 $a=$A。
$-4$B。
$-2$C。
2D。
43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。
$\frac{5-\sqrt{5}}{4}$B。
$\frac{5+\sqrt{5}}{4}$C。
$\frac{5-\sqrt{5}}{2}$D。
$\frac{5+\sqrt{5}}{2}$4.已知 $A$ 为抛物线 $C:y^2=2px(p>0)$ 上一点,点$A$ 到 $C$ 的焦点的距离为 $12$,到 $y$ 轴的距离为 $9$,则 $p=$A。
2B。
3C。
6D。
95.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据 $(x_i,y_i)(i=1,2.20)$ 得到下面的散点图:由此散点图,在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。
$y=a+bx$B。
$y=a+bx^2$C。
$y=a+be^x$D。
$y=a+b\ln x$6.函数 $f(x)=x^4-2x^3$ 的图像在点 $(1,f(1))$ 处的切线方程为A。
$y=-2x-1$B。
$y=-2x+1$C。
$y=2x-3$D。
2020年高考理科数学试卷(全国1卷)(附详细答案)
2绝密★启用前2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若z =1+i ,则22z z -=()A .0B .1C .D .2解:z =1+i ⇒z 2-2z=z (z -2)=(1+i )(i -1)=i 2-12=-2⇒|z 2-2z|=2.选D .2.设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A∩B ={x |-2≤x ≤1},则a =()A .-4B .-2C .2D .4解:A=[-2,2],B=(-∞,2a -],A ∩B=[-2,1]⇒2a-=1⇒a=-2.选B .3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.514 B.512- C.514+ D.512解:设正四棱锥的底面边长为a ,高为h ,斜高为b ,则222211154210224b b b ab h b a a a a +⎛⎫⎛⎫⎛⎫==-⇒--=⇒=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(舍负).选 C.4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9解:91262pp +=⇒=.选C.5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi ,yi )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y =a +bxB .y =a +bx 2C .y =a +bexD .y =a +b ln x解:选D .6.函数f (x )=x 4-2x 3的图像在点(1,f (1))处的切线方程为()A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解:'32'()46,(1)1,(1)2f x x x f k f =-=-==-∴切线方程为(1)2(1)y x --=--,即21y x =-+.选B .7.设函数f (x )=cos()6x πω+在[-π,π]的图像大致如下图,则f (x )的最小正周期为()A.109πB.76πC.43π D.32π解:由图可知T<π-(-π)<2T,即222212πππωωω<<⨯⇒<<又42,962k k Z πππωπ⎛⎫-+=-∈ ⎪⎝⎭⇒92(2),43k k Z ω=-∈∴当0k =时,32ω=,从而43T π=,选C .8.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中x 3y 3的系数为()A .5B .10C .15D .20解:()()()22555y y x x y x x y x y x x ⎛⎫++=+++ ⎪⎝⎭()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中含x 3y 3的项为22234455y xC x y C x yx +∴()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中x 3y 3的系数为245515C C +=,选C .9.已知α∈(0,π),且3cos2α-8cos α=5,则sin α=()A.53B.23 C.13 D.593cos2α-8cos α=5⇒3(2cos 2α-1)-8cos α-5=0⇒(3cos α+2)(cos α-2)=0∴cos α=23-这里α∈(0,π),所以2225sin 1cos 1()33αα=-=--,选A.10.已知A ,B ,C 为球O 的球面上的三个点,O 1为△ABC 的外接圆.若O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为A .64πB .48πC .36πD .32π解:设AB =BC =AC =OO 1=a ,则O 1A=33a r =又22234123O S r a πππ⎛⎫===⇒= ⎪ ⎪⎝⎭ ,从而24r =在Rt∆O 1OA 中,22216R a r =+=2464S R ππ==球选A.11.已知M ::x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当|PM ||AB|最小时,直线AB 的方程为()A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0解:22:(1)(1)4M x y -+-= 的圆心为M (1,1),半径为2PA ,PB 是 M 的切线,设PM ∩AB=C ,则PA ⊥AM ,PM ⊥ABAC AMRt PAM Rt ACM PA PM∆∆⇒= ,即1224ACAM PM AB AM PA PA PA PM =⇒== 当|PM||AB |最小时,PA 最小,此时,PM ⊥l ,AB //l,22521PM ==+由2AM MC MP = ,即225MC =,得5MC =∴555PC PM MC =-==设AB:2x+y+c =0155c =⇒=∴AB:2x+y+1=0,选D .12.若242log 42log aba b +=+,则()A .a >2bB .a <2bC .a >b 2D .a <b 2解:显然2()2log xf x x =+是R +上的增函数若a <2b ,则()(2)f a f b <,即2222log 2log 2aba b +<+………………………❶又22422log 42log 2log a b b a b b+=+=+………………………………………❷❶-❷得220log 2log 1b b <-=怛成立,选B .二、填空题:本题共4小题,每小题5分,共20分。
专题17 解三角形-2020年高考数学(理)(全国Ⅱ专版)(原卷版)
专题17解三角形【母题来源一】【2020年高考全国Ⅱ卷理数】ABC △中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【答案】(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴△周长3L AC AB BC =++≤+ABC ∴△周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.【母题来源二】【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==113sin 222ABC S ac B ==⨯=△【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【母题来源三】【2018年高考全国Ⅱ理数】在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A .BC .D .【答案】A【解析】因为2253cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.【命题意图】三角函数主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以选择、填空、解答题的形式出现,属解答题中的低档题.预测今后的高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力.【命题规律】本考点一直是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,既有直接考查两个定理应用的选择题或填空题,也有考查两个定理与和差公式、倍角公式及三角形面积公式综合应用的解答题,解题时要掌握正、余弦定理及灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用.【应试技巧】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则1.正弦定理:sin sin sin a b c==A B C.2.常见变形sin sin sin 1,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B b a B b A a C c A b C c B B b A a C c ======()2;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c A B C A B A C B C A B C+++++======+++++()3::sin :sin :sin ;a b c A B C =()3.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,4.余弦定理的推论从余弦定理,可以得到它的推论222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===5.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A .(2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B.6.正弦定理可以用来解决两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角.4==.sin sin sin a b cR R ABC A B C()正弦定理的推广:,其中为△外接圆的半径7.三角形解的个数的探究(以已知a b ,和A 解三角形为例)(1)从代数角度来看:①若sin sin 1b AB=a>,则满足条件的三角形的个数为0,即无解;②若sin sin 1b A B=a =,则满足条件的三角形的个数为1;③若sin sin 1b A B=a<,则满足条件的三角形的个数为1或2.注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”“三角形内角和等于180°”等进行讨论.(2)从几何角度来看:①当A 为锐角时,一解一解两解无解②当A 为钝角或直角时,一解一解无解无解8.利用余弦定理解三角形的步骤【解题经验分享】1.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.2.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.3.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦.1.(2020·河北新乐市第一中学高三)已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,4bc =,则ABC 的面积A .12B .1C .D .22.(2020·安徽省高三三模)在ABC 中,若3,120AB BC C ==∠= ,则AC =A .1B .2C .3D .43.(2020·横峰中学高三)在ABC 中,已知45A ∠=︒,AB =,且AB 边上的高为则sin C =A .1010BC .5D .54.(2020·广西壮族自治区高三)已知ABC 中,BC 边上的中线3AD =,4BC =,60BAC ∠=︒,则ABC ∆的周长为A 4+B .4+C .4+D .45.(2020·山东省高三)在ABC 中,cos cos A B +=,AB =当sin sin A B +取最大值时,ABC 内切圆的半径为A .3B .2C .13D .26.(2020·陕西省洛南中学高三)在ABC 中,若7a =,8b =,1cos 7B =-,则A ∠的大小为A .6πB .4πC .3πD .2π7.(2020·广东省深圳外国语学校高三月考)海伦公式是利用三角形的三条边的边长,,a b c 直接求三角形面积S 的公式,表达式为:+c2a b S p +==;它的特点是形式漂亮,便于记忆.中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它与海伦公式完全等价,因此海伦公式又译作海伦-秦九韶公式.现在有周长为的△ABC 满足sin :sin :sin 2:A B C =,则用以上给出的公式求得△ABC 的面积为A .B .C .D .128.(2020·广东省深圳外国语学校高三月考)ABC 的内角,,A B C 的对边分别为,,a b c ,已知3b a cosC sinC 3⎛⎫=+ ⎪ ⎪⎝⎭,a 2=,c 3=,则角C =A .π3B .π6C .3π4D .π49.(2020·麻城市实验高级中学高三)锐角ABC ∆中,角,,A B C ,所对的边分别为,,a b c ,若()sin 04A B C π⎛⎫+++= ⎪⎝⎭,1b c ==,则角C 的大小为A .12πB .6πC .3πD .512π10.(2020·麻城市实验高级中学高三)《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为A .2114mB .257mC .254m D .248m 11.(2020·福建省高三)设ABC 内角A ,B ,C 所对应的边分别为a ,b ,c .已知()4cos cos a c B b C -=,则cos B =______.12.(2020·青海省高三)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =4b =,120A =︒,则ABC 的面积为______.13.(2020·重庆市凤鸣山中学高三月考)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,3A π=,6a =,b =,则C =_______.14.(2020·四川省阆中中学高三二模)在ABC 中,若()22235a c b+=,则cos B 的最小值为______.15.(2020·全国高三月考)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2cos cos 0a c B b C ++=,且4ac =,则ABC 的面积为______.16.(2020·内蒙古自治区高三二模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sinsin 2B Cb a B +⋅=⋅,且2c =,则锐角ABC 面积的取值范围是______.17.(2020·赣榆智贤中学高三)在ABC 中角A ,B ,C 的对边分別为a ,b ,c ,且352115cos cos cos bc A ac B ab C==,则cos C 的值为______.18.(2020·河南省高三月考)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且满足()222cos cos b a a B b A -=+,ABC ∆的周长为)51,则ABC ∆面积的最大值为______.19.(2020·福建省厦门外国语学校高三)如图所示,三个全等的三角形ABF 、BCD 、CAE V 拼成一个等边三角形ABC ,且DEF 为等边三角形,2EF AE =,设ACE θ∠=,则sin 2θ=______.20.(2020·江苏省高三)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其接圆半径为R .已知1c =,且△ABC 的面积()()22sin sin S R B A B A =-+,则a 的最小值为______.21.(2020·山东省高三二模)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =______,ABC ∆面积的最大值为______.22.(2020·西藏自治区高三二模)在ABC 中,4a =,5b =,6c =,则cos A =________,ABC 的面积为________.23.(2020·浙江省杭州高级中学高三)在平面四边形ABCD 中,BC CD ⊥,135o B ∠=,AB =,AC =,5CD =,则sin ACB ∠=________,AD =________.24.(2020·广东省高三月考)已知锐角ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且sin cos cos b A A C =2cos A,则tan A =______;若2a =,则b c +的取值范围为______.25.(2020·浙江省高三)已知在ABC 中,1cos3B =,AB =,8AC =,延长BC 至D ,使2CD =,则AD =______,sin CAD ∠=______.26.(2020·山东省高三三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c )cos sin a b C c B -=.(Ⅰ)求角B ;(Ⅱ)若b =,sin 3sin A C =,求BC 边上的高.27.(2020·天津高三二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a 2+c 2=b 2105+ac .(1)求cosB 及tan 2B 的值;(2)若b =3,A 4π=,求c 的值.28.(2020·定远县育才学校高三)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知()2cos c a B -=.(1)求角A ;(2)若2a =,求ABC 面积的取值范围.29.(2020·黑龙江省哈尔滨市第六中学校高三三模)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知()cos 2cos a C b c A =-.(1)求角A 的大小;(2)若a =,2b =,求ABC ∆的面积.30.(2020·全国高三月考)已知ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且57b c =,4cos 5A =,ABC 的面积21S =.(1)求边b 和c ;(2)求角B .31.(2020·广东省高三)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足22sin 1cos22A B C +=-.(1)求出角C 的大小;(2)若ABC ,求ABC 的周长的最小值.32.(2020·湖北省高三)已知ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,其面积S 2224b c a +-=.(1)若a =b =cos B .(2)求sin (A +B )+sin B cos B +cos (B ﹣A )的最大值.33.(2020·四川省泸县五中高三二模)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且22212cos 2B C a b c +⎛⎫+=- ⎪⎝⎭.(1)求角C ;(2)若c =,求ABC ∆周长的最大值.34.(2020·六盘山高级中学高三)已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c +的最大值.35.(2020·宜宾市叙州区第一中学校高三二模)在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin b A B=.(1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积.36.(2020·定西市第一中学高三)在锐角ABC 中,a =,________,(1)求角A ;(2)求ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A A m n =-= ,且12m n ⋅=- ,②cos (2)cos A b c a C -=,③11()cos cos(,()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.37.(2020·天津耀华中学高三一模)在ABC △中,,,a b c 分别是三个内角,,A B C 的对边,若3,4,2b c C B ===,且a b ¹.(Ⅰ)求cos B 及a 的值;(Ⅱ)求cos 23B π⎛⎫+ ⎪⎝⎭的值.38.(2020·山东省高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin sin cos cos cos A B C A B C+=+(1)若ABC 还同时满足下列四个条件中的三个:①7a =,②10b =,③8c =,④ABC 的面积S =(2)若3a =,求ABC 周长L 的取值范围.39.(2020·广东省金山中学高三三模)已知ABC 内接于单位圆,且()()112tanA tanB ++=,()1求角C()2求ABC 面积的最大值.40.(2020·梅河口市第五中学高三)已知a ,b ,c 分别是ABC 的内角A ,B ,C 的对边,()sin sin sin sin a A C b B c C -=-,点D 在边AB 上,1BD =,且DA =.(1)求角B 的大小;(2)若BCD 的面积为2,求b 的值.41.(2020·江苏省高三三模)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若5(sin C sin B)5sin A 8sin B a b c--=+.(1)求cosC 的值;(2)若A =C ,求sinB 的值.42.(2020·湖南省高三三模)已知,,a b c 分别是ABC 内角,,A B C 的对边,()cos (cos cos )b a C c A B -=-,22b ac =.(1)求cos C ;(2)若ABC c .43.(2020·云南省云南师大附中高三)设ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且三个内角A 、B 、C 依次成等差数列.(1)若2sin sin sin B A C =,求角A ;(2)若ABC 为钝角三角形,且a c >,求21cos cos 2222A A C -+的取值范围.44.(2020·巩义市教育科研培训中心高三)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒.(1)若2a b =,求tan A 的值;(2)若ACB ∠的平分线交AB 于点D ,且1CD =,求ABC 的面积的最小值.45.(2020·甘肃省静宁县第一中学高三)在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos c B b C =,BC 边上的高12AD =,4sin 5BAC ∠=.(1)求BC 的长:(2)过点A 作AE AB ⊥,垂足为A ,且CAE ∠为锐角,AE =sin ACE ∠.46.(2020·甘肃省民乐县第一中学高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin c b A b -=.(1)证明:2A B =.(2)若3cos 4B =,求sinC 的值.47.(2020·甘肃省高三)如图所示,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且s 3c in os 3b C C a-=.(1)求A ;(2)若点P 是线段CA 延长线上一点,且3PA =,2AC =,6C π=,求PB .48.(2020·黑龙江省哈师大附中高三)在锐角ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,且直线x C =为函数()22cos sin cos f x x x x x =--图象的一条对称轴.(Ⅰ)求C ;(Ⅱ)若kc a b ≥+恒成立,求实数k 的最小值.49.(2020·甘肃省西北师大附中高三)在ABC ∆中,角、、A B C 的对边分别为a b c 、、,且)()2cos cos b A C π--=.(Ⅰ)求A 的值;(Ⅱ)若角,6B BC π=边上的中线AM =,求ABC ∆的面积.50.(2020·福建省厦门一中高三)如图,在梯形ABCD 中,AB ∥CD ,33CD AB ==.(1)若CA CD =,且tan ABC ∠=ABC 的面积S ;(2)若2cos 4DAC ∠=,3cos 4ACD ∠=,求BD 的长.51.(2020·全国高三三模)已知△ABC 的内角A ,B ,C 的对边长分别等于a ,b ,c ,列举如下五个条件:①sin sin 2B C a B b +=;sin A A +=;③cos A +cos2A =0;④a =4;⑤△ABC 的面积等于.(1)请在五个条件中选择一个(只需选择一个)能够确定角A 大小的条件来求角A ;(2)在(1)的结论的基础上,再在所给条件中选择一个(只需选择一个),求△ABC 周长的取值范围52.(2020·山东省高三二模)在①222b ac a c +=+,②cos sin B b A =cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,_________,4A π=,b =(1)求角B ;(2)求ABC 的面积.。
2020年四川省高考数学模拟试卷(理科)含答案解析
2020年四川省高考数学模拟试卷(理科)一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或12.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<13.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.166.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.20207.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.48.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:19.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为_______.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为_______.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为_______.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为_______.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.2020年四川省高考数学模拟试卷(理科)参考答案与试题解析一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或1【考点】复数的基本概念.【分析】直接由实部等于0且虚部不为0列式求得a值.【解答】解:∵(a2+2a﹣3)+(a+3)i为纯虚数,∴,解得:a=1.故选:A.2.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<1【考点】集合的包含关系判断及应用.【分析】分别化简集合M,N,对a分类讨论,利用集合之间的关系即可得出.【解答】解:集合M={x||x|≤2,x∈R}=[﹣2,2],N={x||x﹣1|≤a,a∈R},∴当a<0时,N=∅,满足N⊆M.当a≥0时,集合N=[1﹣a,1+a].∵N⊆M,∴,解得0≤a≤1.综上可得:a的取值范围为a≤1.故选:B.3.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真【考点】命题的否定.【分析】根据复合命题的真假关系进行判断即可.【解答】解:菱形的四边形的边长相等,但不一定是正方形,故命题p是真命题,当x=﹣y时,满足cosx=cosy,但x=y不成立,即命题q是假命题,故¬q为真,其余都为假命题,故选:D4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.【考点】抛物线的简单性质.【分析】抛物线x2=﹣2py(p>0)经过点(2,﹣2),代值计算即可求出p,能求出焦点坐标.【解答】解:抛物线x2=﹣2py(p>0)经过点(2,﹣2),∴4=4p,∴p=1,∴抛物线的焦点坐标为(0,﹣),故选:C.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.16【考点】计数原理的应用.【分析】小明不站排头,小张不站排尾,可按小明在排尾与不在排尾分为两类,根据分类计数原理可得.【解答】解:小明不站排头,小张不站排尾排法计数可分为两类,第一类小明在排尾,其余3人全排,故有A33=6种,第二类小明不在排尾,先排小明,有A21种方法,再排小张有A21种方法,剩下的2人有A22种排法,故有2×2×2=8种根据分类计数原理可得,共有6+8=14种,故选:A.6.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.2020【考点】程序框图.【分析】模拟执行程序框图的运行过程,写出每次循环得到的P,i的值,当i=2020>2020时,满足条件,终止循环,输出P的值.【解答】解:执行程序框图,有p=0,i=1,P=0+cosπ=﹣1,i=2,不满足条件i>2020?,有P=﹣1+cos2π=0,i=3,不满足条件i>2020,有P=0+cos3π=﹣1,,…,i=2020,不满足条件i>2020,有P=﹣1+cos2020π=0,i=2020,满足条件i>2020,输出P的值为0.故选:C.7.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z==22x﹣y,令u=2x﹣y,作出约束条件,对应的平面区域如图(阴影部分):平移直线y=2x﹣u由图象可知当直线y=2x﹣u过点A时,直线y=2x﹣u的截距最小,此时u最大,由,解得,即A(5,2).代入目标函数u=2x﹣y,得u=2×5﹣2=8,∴目标函数z==22x﹣y,的最大值是28=256.故选:B.8.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:1【考点】平面向量的基本定理及其意义.【分析】如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,由于+2+3=,可得﹣=3.又=2,可得=2.于是=,得到S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.即可得出.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,∵+2+3=,∴﹣=3.又=2,可得=2.于是=,∴S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.∴ABC,△BOC,△ACO的面积比=6:1:2.故选:C.9.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.【考点】圆与圆锥曲线的综合.【分析】由题设知,由,得2c>b,再平方,4c2>b2,;由,得b+2c<2a,.综上所述,.【解答】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.【考点】分段函数的应用.【分析】先作出函数图象然后根据图象,根据f(x1)=f(x2),确定x1的取值范围然后再根据x1f(x2)﹣f(x2),转化为求在x1的取值范围即可.【解答】解:作出函数的图象:∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2)∴0≤x1<,∵x+在[0,)上的最小值为;2x﹣1在[,2)的最小值为,∴x1+≥,x1≥,∴≤x1<.∵f(x1)=x1+,f(x1)=f(x2)∴x1f(x2)﹣f(x2)=x1f(x1)﹣f(x1)2=﹣(x1+)=x12﹣x1﹣,设y=x12﹣x1﹣=(x1﹣)2﹣,(≤x1<),则对应抛物线的对称轴为x=,∴当x=时,y=﹣,当x=时,y=,即x1f(x2)﹣f(x2)的取值范围为[﹣,).故选:B.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为15.【考点】众数、中位数、平均数.【分析】根据平均数与方差的公式即可求出数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数.【解答】解:∵样本数据x1,x2,…,x10的平均数是10,∴=(x1+x2+…+x10)=8;∴数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数是:= [(2x1﹣1)+(2x2﹣1)+…+(2x10﹣1)]=2×(x1+x2+…+x10)﹣1=2×8﹣1=15.故答案为:15.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为35.【考点】二项式定理的应用.【分析】由条件利用二项式系数的性质求得n=7,再利用二项展开式的通项公式求得x5的系数.【解答】解:由题意可得2n=128,n=7,∴=,它的通项公式为T r+1=•x21﹣4r,令21﹣4r=5,求得r=4,故展开式中x5的系数为=35,故答案为:35.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为a.【考点】棱柱的结构特征.【分析】由图形可知AC⊥平面BB1D1D,且A到平面BB1D1D的距离与C到平面BB1D1D 的距离相等,故EA=EC,所以EC就是EP+EP的最小值;【解答】解:连接AC交BD于N,连接EN,EC,则AC⊥BD,∵BB1⊥平面ABCD,∴BB1⊥AC,∴AC⊥平面BB1D1D,∴AC⊥EN,∴△AEN≌△CEN,∴EA=EC,连接EC,∴线段EC的长就是EP+EA的最小值.在Rt△EAC中,AC=a,EA=a,∴EC==a.故答案为:a.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为2π.【考点】直线与圆的位置关系.【分析】圆半径r=,a=﹣1时,r min==1,a=1时,r max==,由此能求出最大圆面积与最小圆面积的差.【解答】解:∵圆以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切,∴圆半径r===,∴a=﹣1时,r min==1,最小圆面积S min=π×12=π,a=1时,r max==,最大圆面积S max==3π,∴最大圆面积与最小圆面积的差为:3π﹣π=2π.故答案为:2π.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为[e+1,].【考点】利用导数求闭区间上函数的最值.【分析】利用导数可求得f(x)的单调区间,由f(1)=﹣1+a≥e可得a≥e+1,从而可判断f(x)在[1,e]上的单调性,得到f(x)的最大值,令其小于等于3e+2可得答案.【解答】解:f′(x)=﹣2x+a=,∵x>0,又a>0,∴x∈(0,a)时f′(x)>0,f(x)递增;x∈(a,+∞)时,f′(x)<0,f(x)递减.又f(1)=﹣1+a≥e,∴a≥e+1,∴f(x)在[1,e]上是增函数,∴最大值为f(e)=a2﹣e2+ae≤3e+2,解得:a≤,又a≥e+1,而e+1<,∴a的取值集合是[e+1,],故答案为:[e+1,].三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.【考点】平面向量数量积的运算.【分析】(I)将切化弦,利于和角公式和正弦定理化简得出cosA;(II)求出+的坐标,计算|+|2,根据B的范围解出|+|的范围.【解答】解:(I)∵=,∴,整理得cosA=.∴A=.(II)∵2cos2=1+cosC=1﹣cos(B+)=1﹣cosB+sinB,∴=(cosB,1﹣cosB+ sinB).∴=(cosB,﹣cosB+sinB),∴()2=cos2B+(﹣cosB+sinB)2=+﹣sin2B=1+cos(2B+).∵0<B<,∴<2B+<.∴﹣1≤cos(2B+)<,∴≤()2<.∴≤|+|<.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)12名学生中成绩是“优良”的学生人数为9人,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,由此能求出至少有1人成绩是“优良”的概率.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)∵随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87,根据学校体制标准,成绩不低于76的为优良,∴12名学生中成绩是“优良”的学生人数为9人,从这12名学生中任选3人进行测试,基本事件总数n==220,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,∴至少有1人成绩是“优良”的概率:p=1﹣=.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ有的分布列为:ξ0 1 2 3PEξ==.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(I)根据中位线及平行公理可得CD∥EF,于是CD∥平面EFQ,利用线面平行的性质得出CD∥GH,从而GH∥AB;(II)由AQ=2BD可得AB⊥BQ,以B为原点建立空间直角坐标系,求出,的坐标,计算,的夹角得出异面直线DP与BQ所成的角;(III)求出和平面PDC的法向量,则直线AQ与平面PDC所成角的正弦值为|cos<>|.【解答】证明:(I)∵CD是△ABQ的中位线,EF是△PAB的中位线,∴CD∥AB,EF∥AB,∴CD∥EF,又EF⊂平面EFQ,CD⊄平面EFQ,∴CD∥平面EFQ,又CD⊂平面PCD,平面PCD∩平面EFQ=GH,∴GH∥CD,又CD∥AB,∴GH∥AB.(II)∵D是AQ的中点,AQ=2BD,∴AB⊥BQ.∵PB⊥平面ABQ,∴BA,BP,BQ两两垂直.以B为原点以BA,BQ,BP为坐标轴建立空间直角坐标系如图:设BA=BP=BQ=1,则B(0,0,0),P(0,0,1),D(,,0),Q(0,1,0).∴=(﹣,﹣,1),=(0,1,0).∴=﹣,||=,||=1,∴cos<>=﹣.∴异面直线DP与BQ所成的角为arccos.(III)设BA=BP=BQ=1,则A(1,0,0),Q(0,1,0),P(0,0,1),D(,,0),C(0,,0).=(﹣1,1,0),=(,0,0),=(0,﹣,1).设平面CDP的一个法向量为=(x,y,z),则,=0,∴,令z=1,得=(0,2,1).∴=2,||=,||=,∴cos<>==,∴直线AQ与平面PDC所成角的正弦值为.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式、递推关系即可得出.(Ⅱ)S n=2×4n﹣4.不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,利用单调性求出的最小值即可得出.【解答】解:(I)∵S n=2a n﹣4,∴n=1时,a1=2a1﹣4,解得a1=4;当n≥2时,a n=S n﹣S n﹣1=2a n﹣4﹣(2a n﹣1﹣4),化为:a n=2a n﹣1.∴数列{a n}是等比数列,首项为4,公比为2,∴a n=4×2n﹣1=2n+1.∵数列{b n}满足b n+1﹣b n=1,∴数列{b n}是等差数列,公差为1.∵T2+T6=32,∴2b1+1+6b1+×1=32,解得b1=2.∴b n=2+(n﹣1)=n+1.(Ⅱ)S n=2×2n+1﹣4.∴不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,∵=(n+1)+﹣3≥2﹣3=3,当n=2时,取得最小值3,∴实数λ的取值范围是λ≤3.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.【考点】椭圆的简单性质.【分析】(Ⅰ)由条件可得到A1(﹣2,0),B(0,b),从而可以写出直线BA1的方程,这样即可得出圆心(﹣1,0)到该直线的距离为,从而可以求出b,这便可得出椭圆C的标准方程为;(Ⅱ)可设P(x1,y1),从而有,可写出直线A1P的方程为,从而可以求出该直线和直线x=的交点E的坐标,同理可得到点F的坐标,这样即可得出|DE|,|DF|,然后可求得|DE|•|DF|=3,即得出|DE|•|DF|为定值.【解答】解:(Ⅰ)由题意得A1(﹣2,0),B(0,b);∴直线BA1的方程为;∴圆心(﹣1,0)到直线BA1的距离为;解得b2=3;∴椭圆C的标准方程为;(Ⅱ)证明:设P(x1,y1),则,;∴直线A1P的方程为;∴;同理得,;∴;∴|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.【考点】利用导数研究曲线上某点切线方程.【分析】(1)由题意可得lnx﹣x2α≤0恒成立,讨论当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,求出导数,求得单调区间,可得极大值,也为最大值,由恒成立思想解不等式即可得到所求范围;(2)分别设出切点,再根导数的几何意义求出切线方程,构造方程组,消元,再构造函数F(x)=ln x+﹣(t+1),利用导数求出函数F(x)的最小值,再分类讨论,得到方程组的解得个数,继而得到切线的条数.【解答】解:(1)对任意的正实数x,恒有g(x)≤x2α成立,即为lnx﹣x2α≤0恒成立,当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,h′(x)=﹣2α•x2α﹣1,当x>时,h′(x)<0,h(x)递减;当0<x<时,h′(x)>0,h(x)递增.即有x=时,h(x)取得最大值,且为ln﹣,由ln﹣≤0,可得α≥,综上可得,实数α的取值范围是[,+∞);(2)记直线l分别切f(x),g(x)的图象于点(x1,x12﹣x1+t),(x2,ln x2),由f′(x)=2x﹣1,得l的方程为y﹣(x12﹣x1+t)=(2x1﹣1)(x﹣x1),即y=(2x1﹣1)x﹣x12+t.由g′(x)=,得l的方程为y﹣ln x2=(x﹣x2),即y=•x+ln x2﹣1.所以(*)消去x1得ln x2+﹣(t+1)=0 (**).令F(x)=ln x+﹣(t+1),则F′(x)=﹣==,x>0.由F'(x)=0,解得x=1.当0<x<1时,F'(x)<0,当x>1时,F'(x)>0,所以F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,从而F(x)min=F(1)=﹣t.当t=0时,方程(**)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条满足题意的直线;当t>0时,F(1)<0,由于F(e t+1)>ln(e t+1)﹣(t+1)=0,故方程(**)在(1,+∞)上存在唯一解;令k(x)=ln x+﹣1(x≤1),由于k'(x)=﹣=≤0,故k(x)在(0,1]上单调递减,故当0<x<1时,k(x)>k(1)=0,即ln x>1﹣,从而ln x+﹣(t+1)>(﹣)2﹣t.所以F()>(+)2﹣t=+>0,又0<<1,故方程(**)在(0,1)上存在唯一解.所以当t>0时,方程(**)有两个不同的正数解,方程组(*)有两组解.即存在两条满足题意的直线.综上,当t=0时,与两个函数图象同时相切的直线的条数为1;当t>0时,与两个函数图象同时相切的直线的条数为2.2020年9月9日。
2020四川高考数学(理科)试题及参考答案
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题(共12小题).1.已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.复数的虚部是()A.﹣B.﹣C.D.3.在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C 的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.已知向量,满足||=5,||=6,•=﹣6,则cos<,+>=()A.﹣B.﹣C.D.7.在△ABC中,cos C=,AC=4,BC=3,则cos B=()A.B.C.D.8.如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.若直线l与曲线y=和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+11.设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年四川高考理科数学试题及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为A .2B .3C .4D .62.复数113i -的虚部是 A .310- B .110-C .110D .3103.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t K I t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈ A .60B .63C .66D .695.设O 为坐标原点,直线x =2与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)6.已知向量a ,b 满足||5=a ,||6=b ,6⋅=-a b ,则cos ,=+a a b A .3135-B .1935-C .1735D .19357.在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .238.下图为某几何体的三视图,则该几何体的表面积是A .6+42B .4+42C .6+23D .4+239.已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2B .–1C .1D .210.若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为 A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +1211.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 25.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A .1B .2C .4D .812.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则A .a <b <cB .b <a <cC .b <c <aD .c <a <b二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件0201x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,,则32z x y =+的最大值为__________.14.262()x x+的展开式中常数项是__________(用数字作答).15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________. 16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2na n }的前n 项和S n .18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?空气质量不好附:K 2=()()()()2) n ad bc a b c d a c b d -++++,P (K 2≥k )0.050 0.010 0.001k3.841 6.635 10.828 .19.(12分)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =. (1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.20.(12分)已知椭圆222:1(05)25x y C m m+=<<15,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.21.(12分)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎪⎨=-+⎪⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.23.[选修4—5:不等式选讲](10分)设a ,b ,c ∈R ,0a b c ++=,1abc =. (1)证明:0ab bc ca ++<;(2)用max{,,}a b c 表示a ,b ,c 的最大值,证明:max{,,}a b c .2020年普通高等学校招生全国统一考试理科数学试题参考答案选择题答案 一、选择题 1.C 2.D 3.B 4.C 5.B 6.D 7.A 8.C 9.D 10.D11.A12.A非选择题答案 二、填空题13.7 14.240 15 16.②③三、解答题17.解:(1)235,7,a a ==猜想21,n a n =+由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级 1 2 3 4 概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:人次≤400人次>400 空气质量好 33 37 空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 19.解:设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.20.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=.(2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ =11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为110510222⨯⨯=. 22||130PQ =,直线22P Q 的方程为71093y x =+,点A 到直线22P Q 的距离为13026,故22AP Q △的面积为113051302262⨯⨯=. 综上,APQ △的面积为52. 21.解:(1)2()3f x x b '=+.依题意得1()02f '=,即304b +=.故34b =-.(2)由(1)知3(3)4f x x x c -=+,2()334f x x '=-. 令)0(f x '=,解得12x =-或12x =.()f x '与()f x 的情况为:x1()2-∞-,12- 11()22-, 12 1()2∞,+ ()f x ' + 0 – 0 + ()f x14c +14c -因为11(1)()24f f c =-=+,所以当14c <-时,()f x 只有大于1的零点.因为11(1)()24f f c -==-,所以当14c >时,f (x )只有小于–1的零点.由题设可知1144c -≤≤,当1=4c -时,()f x 只有两个零点12-和1.当1=4c 时,()f x 只有两个零点–1和12.当1144c -<<时,()f x 有三个等点x 1,x 2,x 3,且11(1,)2x ∈--,211(,)22x ∈-,31(,1)2x ∈.综上,若()f x 有一个绝对值不大于1的零点,则()f x 所有零点的绝对值都不大于1. 22.解:(1)因为t ≠1,由220t t --=得2t =-,所以C 与y 轴的交点为(0,12);由2230t t -+=得t =2,所以C 与x 轴的交点为(4,0)-.故||AB =(2)由(1)可知,直线AB 的直角坐标方程为1412x y+=-,将cos sin x y ρθρθ==,代入, 得直线AB 的极坐标方程3cos sin 120ρθρθ-+=.23.解:(1)由题设可知,a ,b 均不为零,所以22221[()()]2ab bc ca a b c a b c ++=++-++2221()2a b c =-++0<.(2)不妨设max{a ,b ,c }=a ,因为1,()abc a b c ==-+,所以a >0,b <0,c <0.由2()4b c bc +≤,可得34a abc ≤,故a ≥,所以max{,,}a b c ≥.。