生物化学讲义(7)
《生物化学》实验讲义
![《生物化学》实验讲义](https://img.taocdn.com/s3/m/92fa6f13e009581b6ad9ebb3.png)
实验一蛋白质及氨基酸的颜色反应一、目的意义1、学习几种鉴定氨基酸与蛋白质的一般方法及其原理。
2、学习和了解一些鉴定蛋白质的特殊颜色反应及其原理。
二、实验原理1、双缩脲反应当尿素加热到180℃左右时,2分子尿素发生缩合放出1分子氨而形成双缩脲.双缩脲在碱性溶液中与铜离子结合生成复杂的紫红色化合物,这一呈色反应称为双缩脲反应。
蛋白质分子中含有多个与双缩脲相似的键,因此也具有双缩脲的颜色反应.借此可以鉴定蛋白质的存在或测定其含量。
应当指出,双缩脲反应并非蛋白质的特异颜色反应,因为凡含有肽键的物质并不都是蛋白质.2、茚三酮反应蛋白质与茚三酮共热,产生蓝紫色化合物,此反应为一切蛋白质及α-氨基酸(除脯氨酸和羟脯氨酸)所共有。
含有氨基酸的其他化合物也呈此反应.该反应十分灵敏,1:1500000浓度的氨基酸水溶液就能呈现反应。
因此,此反应广泛用于氨基酸的定量测定.3、黄色反应含有苯环侧链的(特别是含酪氨酸)蛋白质溶液与硝酸共热时,呈黄色(硝基化合物),再加碱则变为橙黄色,此反应也称为黄蛋白反应。
OH+HNO3HO NO2+H2OHO NO2+O NOH三、仪器与试剂1、试剂(1) 蛋白质溶液:取10mL鸡蛋清,用蒸馏水稀释至100mL,搅拌均匀后用纱布过滤得上清液。
(2) 0。
3%色氨酸溶液、0。
3%酪氨酸溶液、0。
3%脯氨酸溶液、0。
5%甘氨酸溶液、0.5%苯酚溶液。
(3) 0.1%茚三酮-乙醇溶液:称取0。
1g茚三酮,溶于100mL 95%乙醇。
(4) 10%NaOH溶液、1%硫酸铜溶液、尿素、浓硝酸.2、仪器:试管及试管夹、酒精灯。
四、操作方法1、双缩脲反应(1) 取一支干燥试管,加入少量尿素,用微火加热使之熔化,待熔化的尿素开始变硬时停止加热。
此时,尿素已缩合为双缩脲并放出氨气(可由气味辨别).待试管冷却,加入约1mL10%NaOH溶液,振荡使其溶解,再加入1滴1%硫酸铜溶液。
混匀后观察出现的粉红色. (2)另取1支试管,加入1mL蛋白质溶液,再加入2mL 10%NaOH溶液摇匀,然后再加入2滴1%的硫酸铜溶液。
2021届苏高中生物竞赛实验辅导讲义-生物化学实验(基础)07小麦萌发前后淀粉酶活力的比较
![2021届苏高中生物竞赛实验辅导讲义-生物化学实验(基础)07小麦萌发前后淀粉酶活力的比较](https://img.taocdn.com/s3/m/03086472f8c75fbfc77db2b5.png)
2021届高中生物竞赛实验辅导讲义生物化学实验(基础部分)实验七小麦萌发前后淀粉酶活力的比较一、目的1.学习分光光度计的原理和使用方法。
2.学习测定淀粉酶活力的方法。
3.了解小麦萌发前后淀粉酶活力的变化。
二、原理种子中贮藏的碳水化合物主要以淀粉的形式存在。
淀粉酶能使淀粉分解为麦芽糖。
2(C6H10O5)n+H2O-------nC12H22O11麦芽糖有还原性,能使3,5-二硝基水杨酸还原成棕色的3-氨基5-硝基水扬酸。
后者可用分光光度计法测定。
休眠种子的淀粉酶活力很弱,种子吸胀萌动后,酶活力逐渐增强,并随着发芽天数的增长而增加。
本实验观察小麦种子萌发前后淀粉酶活力的变化。
三、器材1.25毫升刻度试管。
2.吸管。
3.乳体。
4.离心管。
5.分光光度计。
6.离心机。
7.恒温水浴。
四、试剂1. 0.1%标准麦芽糖溶液20毫升:精确称量100毫克麦芽糖,用少量水溶解后,移入100ml容量瓶中,加蒸馏水至刻度。
2.pH 6.9,0.02摩尔/L磷酸缓冲液100毫升3.l%淀粉溶液100毫升:1克可溶性淀粉溶于100毫升0.02摩尔/L磷酸缓冲液,其中含有0.006摩尔/L氯化钠。
4.l%3,5-二硝基水杨酸试剂: 1g 3,5-二硝基水杨酸溶于20毫升2摩尔/L的氢氧化钠溶液和50毫升水中;再加人30克酒石酸钾钠,定客至100毫升。
若溶液混浊,可过滤。
5.l%氯化钠溶液300毫升6.海砂5克五、操作步骤1.种子发芽:小麦种子浸泡2.5小时后,放人25℃恒温箱内或在室温下发芽。
2.酶液提取:取发芽第三天或第四天的幼苗15株,放人乳钵内,加海砂200毫克,加1%氯化钠溶液10毫升,用力磨碎。
在室温下放置20分钟,搅拌几次。
将提取液离心(l500转/min)6-7分钟。
将上清液倒人量筒,测定酶提取液的总体积。
进行酶活力测定时,将酶提取液稀释10倍。
取干燥种子或浸泡2.5小时后的种子15粒作为对照(提取步骤同上)。
生物化学讲义第七章氨基酸代谢
![生物化学讲义第七章氨基酸代谢](https://img.taocdn.com/s3/m/2c08881e59eef8c75fbfb36b.png)
第七章氨基酸代谢【目的和要求】1、掌握体内氨基酸的来源与去路;氨的来源与去路;掌握氨基酸脱氨基方式及基本过程;2、掌握一碳单位的定义、种类、载体和生物学意义。
3、熟悉必需氨基酸的种类和蛋白质的营养价值与临床应用。
4、了解个别氨基酸代谢,了解氨基酸代谢中某个酶缺陷或活性低时所导致的氨基酸代谢病。
【本章重难点】1氨基酸的来源和去路2.氨的来源和去路3.鸟氨酸循环4.联合脱氨基作用学习内容第一节蛋白质的营养作用第二节氨基酸的一般代谢第三节个别氨基酸的代谢第一节蛋白质的营养作用一氨基酸的来源和去路㈠氨基酸的来源氨基酸是蛋白质的基本组成单位。
参加体内代谢的氨基酸,除经食物消化吸收来以外,还来自组织蛋白质分解和自身合成。
这些氨基酸混为一体,分布在细胞内液和细胞外液,构成氨基酸代谢库。
体内的氨基酸的来源和去路保持动态平衡,它有三个来源:⒈食物蛋白质经消化吸收进入体内的氨基酸。
组成蛋白质的氨基酸有二十种,其中有8种是人体需要而不能自身合成,必需由食物供给的,称为必需氨基酸。
它们为苏氨酸、色氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸,苯丙氨酸及蛋氨酸。
其余十二种氨基酸在体内可以合成或依赖必需氨基酸可以合成,称为非必需氨基酸。
食物蛋白质营养价值的高低取决于食物蛋白质所含必需氨基酸的种类、数量和比例。
种类齐全、数量大、比例与人体需要越接近,其营养价值越高。
为提高蛋白质的营养价值,把几种营养价值较低的蛋白质混合食用,必需氨基酸相互补充,从而提高氨基酸的利用率,称为蛋白质营养的互补作用。
蛋白质具有高度种属特异性,不能直接输入人体,否则会产生过敏现象。
进入机体前必先在肠道水解成氨基酸,然后吸收入血。
蛋白质的消化作用主要在小肠中进行,由内肽酶(胰蛋白酶、糜蛋白酶及弹性蛋白酶)和外肽酶(羧基肽酶、氨基肽酶)协同作用,水解成氨基酸,水解生成的二肽也可被吸收。
未被吸收的氨基酸及蛋白质在肠道细菌的作用下,进行分解代谢,其代谢过程可产生许多对人体有害的物质(吲哚、酚类、胺类和氨),此过程称为蛋白质的腐败作用。
生物化学讲义(最新整理)
![生物化学讲义(最新整理)](https://img.taocdn.com/s3/m/e1fc44bca417866fb94a8e9f.png)
第一章绪论一、生物化学的概念生物化学是从分子水平研究生物体中各种化学变化规律的科学。
因此生物化学又称为生命的化学(简称:生化),是研究生命分子基础的学科。
生物化学是一门医学基础理论课。
二、生物化学的主要内容1.研究生物体的物质组织、结构、特性及功能。
蛋白质、核酸2.研究物质代谢、能量代谢、代谢调节。
研究糖、脂、蛋白质、核酸等物质代谢、代谢调节等规律,是本课程的主要内容。
3.遗传信息的贮存、传递和表达,研究遗传信息的贮存、传递及表达、基因工程等,是当代生命科学发展的主流,是现代生化研究的重点。
三、生物化学的发展史四、生物化学与健康的关系生化是医学的基础,并在医、药、卫生各学科中都有广泛的应用。
本课程不仅是基础医学如生理学、药理学、微生物学、免疫学及组织学等的必要基础课,而且也是医学检验、护理等各医学专业的必修课程。
五、学好生物化学的几点建议1.加强复习有关的基础学科课程,前、后期课程有机结合,融会贯通、熟练应用。
2.仔细阅读、理解本课程的“绪论”,了解本课程重要性,激发起学习生物化学的兴趣和求知欲望。
3.每次学习时,首先必须了解教学大纲的具体要求,预读教材,带着问题进入学习。
4.学习后及时做好复习,整理好笔记。
5.学生应充分利用所提供的相关网站,从因特网上查找学习资料,提高课外学习和主动学习的能力。
6.实验实训课是完成本课程的重要环节。
亲自动手,认真、仔细完成每步操作过程,观察各步反应的现象,详细、科学、实事求是地记录并分析实验结果,独立完成实验报告。
第一章蛋白质的化学一、蛋白质的分子组成(一)蛋白质的元素组成蛋白质分子主要元素组成:C、H、O、N、S。
特征元素:N元素(含量比较恒定约为16%) 故所测样品中若含1克N,即可折算成6.25克蛋白质。
(实例应用)(二)组成蛋白质的基本单位——氨基酸(AA)(一)编码氨基酸的概念和种类:蛋白质合成时受遗传密码控制的氨基酸,共有20种(二)氨基酸的结构通式:L-α-氨基酸(甘氨酸除外)(三)氨基酸根据R基团所含的基团,可分为酸性氨基酸(羧基)、碱性氨基酸(氨基及其衍生基团)和极性的中性氨基酸(羟基、巯基和酚羟基)。
生物化学实验讲义
![生物化学实验讲义](https://img.taocdn.com/s3/m/4401bdd528ea81c758f57880.png)
目录1.生物化学实验室规则2.实验一可溶性糖含量的测定——蒽酮法3.实验二蛋白质含量的测定4.实验三去污剂对红血球细胞膜稳定性的影响5.实验四盘状聚丙烯酰胺凝胶电泳分离血清蛋白6.实验五动物组织核糖核酸的制备及测定7.实验六脲酶K m值的简易测定8.实验七粗脂肪提取9.实验八 ATP的生物合成10.实验九动物肝脏RNA的制备(苯酚法)和纯度测定11.实验十胰岛素、肾上腺素对血糖浓度的影响生物化学实验室规则1 每个同学都应该自觉遵守课堂纪律,维护课堂秩序,不迟到,不早退,不大声谈笑。
2 实验前必须认真预习,熟悉本次实验的目的、原理、操作步骤,懂得每一操作步骤的意义和了解所用仪器的使用方法,否则不能开始实验。
3 实验过程中要听从教员的指导,严肃认真地按操作规程进行实验,并把实验结果和数据及时、如实记录在实验记录本上,文字要简练、准确。
完成实验后经教员检查签字同意,方可离开实验实。
4实验台面应随时保持整洁,仪器、药品摆放整齐。
公用试剂用毕,应立即盖严放回原处。
勿使试剂、药品洒在实验台面和地上。
实验完毕,仪器洗净放好,将实验台面抹拭干净,才能离开实验室。
5使用仪器、药品、试剂和各种物品必须注意节约。
洗涤和使用仪器时,应小心仔细,防止损坏仪器。
使用贵重精密仪器时,应严格遵守操作规程,发现故障须立即报告教员,不得擅自动手检修。
6 实验室内严禁吸烟!注意水电安全,离开实验室前,必须关好水龙头,拉下电闸,严防发生事故!7 废液倒入专门的废液桶,固体废物和带残渣的废物不得倒入水槽或到处乱扔。
8 仪器损坏时,应如实向教员报告,并填写损坏仪器登记表,然后补领。
9 实验室内一切物品,未经本室负责教员批准,严禁携出室外,借物必须办理登记手续。
10每次实验课由班长负责安排值日生。
值日生的职责是负责当天实验室的安全、卫生和一切服务性的工作。
实验一可溶性糖含量的测定——蒽酮法实验目的1了解蒽酮法测定可溶性糖含量的原理2学习求标准曲线方程—最小二乘法3掌握分光光度计的使用实验原理蒽酮比色定糖法是一个快速而方便的定糖方法,在强酸性条件下,蒽酮可以与游离的或多糖中存在的己糖、戊糖及己糖醛酸(还原性和非还原性)作用生成蓝绿色的糖醛衍生物,其颜色的深浅与糖的含量在一定范围内成正比。
《生物化学》(张洪渊)川大
![《生物化学》(张洪渊)川大](https://img.taocdn.com/s3/m/64be64ac01f69e3142329492.png)
《生物化学》(张洪渊)川大《生物化学》(张洪渊)讲义-川大第一章绪论(1-2节)一. 如何学好生化课 1.生物化学的特点.内容分布:生物化学这门课,从教材上看,通常都分为上下两集,上集谈的是生物分子的结构、性质、功能,很少涉及它们的变化,这些生物分子包括糖、脂、蛋白质、核酸、酶、激素、维生素以及抗生素等,叫做静态生化,以DNA结构为例。
而下集则讲的是这些生物分子的来龙去脉,即合成与分解,叫动态生化,以DNA的复制为例。
.特点:概念性描述性的内容居多,很少有推导性或计算性的内容,因此,它不同于理科而更近似于文科,记忆的东西多,女生常常比男生学得好,巧妙记忆成为学好生化的一个重要方法,学完生化课后,你们应该有一种意外的惊喜,阿,我的脑子咋变得这样好使呢? 2.师生合作.老师备课:由于生物化学是我院最重要的课程(课时多以及研考跑不掉),所以我得竭尽全力准备,既要完成大纲规定的内容又不能照本宣科,注意理论和实践、经典与前沿的融合,使生化课变得兴趣盎然而不是枯燥无味,要做到这些,备课是相当辛苦的,且听我来表一表,我在四川大学上了320节生化课(200节理论,120节实验),上课笔记成了现在的讲课笔记的一部分,后来临时抱佛脚,又到南大进修了200学时的生化理论课(生化专业用)以及120学时的理论课(非生化专业用),讲课教师叫杨荣武,是个教书天才(合作文章(在我几十篇文章中,这是最得意的一篇)、同学的师弟、上海生化所),听课笔记真是一摞一摞,从中精炼出我们现在的6-70学时理论课(难呐),还要增补一些名人趣闻、科学前沿之类的味精,总的算来,我给你们讲一节课,自己要听7节课,再准备三小时,代价不菲,所以我常挂在嘴边的一句话就是,你们一定要学好这门课,学不好很对不起人,在你最对不起的人里面,我应该列在前三名。
.学生学习:看小说似的预习几遍,尤其上课要用心听讲(省时省力),当场或课后整理笔记(重要性),择重记忆(注意方法),几个小窍门:早上多吃糖(原因,脑血糖),站立听课(肾上腺,恐怖电影,我讲课)。
《生物化学》全套PPT课件
![《生物化学》全套PPT课件](https://img.taocdn.com/s3/m/c6e23915814d2b160b4e767f5acfa1c7ab008244.png)
目录•生物化学概述•蛋白质结构与功能•酶学原理与应用•糖代谢途径与调控机制•脂类代谢途径与调控机制•基因表达调控与疾病关系生物化学概述生物化学定义与研究对象生物化学定义研究生物体内化学分子与化学反应的科学,探讨生命现象的化学本质。
研究对象生物大分子(蛋白质、核酸、多糖等)及其相互作用;生物小分子(氨基酸、脂肪酸、糖类等)及其代谢;生物体内能量转化与传递等。
生物化学发展历史及现状发展历史从19世纪末到20世纪初,生物化学逐渐从生理学和有机化学中独立出来,成为一门独立的学科。
随着科学技术的不断发展,生物化学的研究领域和深度不断拓展。
现状生物化学已经成为生命科学领域的重要分支,与分子生物学、遗传学、细胞生物学等学科相互渗透,共同揭示生命的奥秘。
同时,生物化学在医学、农业、工业等领域的应用也越来越广泛。
ABDC疾病诊断生物化学方法可用于检测血液中特定生物分子的含量或结构异常,从而辅助疾病的诊断,如血糖、血脂检测等。
药物研发通过对生物体内代谢途径和药物作用机制的研究,有助于设计和开发新的药物,提高治疗效果和降低副作用。
营养与健康生物化学在营养学领域的应用有助于了解食物中营养成分的代谢和利用,为合理膳食和营养补充提供科学依据。
遗传性疾病研究生物化学方法可用于研究遗传性疾病的发病机制和治疗方法,如基因疗法和干细胞疗法等。
生物化学在医学领域重要性蛋白质结构与功能0102 03氨基酸种类20种常见氨基酸,包括甘氨酸、丙氨酸、缬氨酸等。
氨基酸性质具有氨基和羧基的有机酸,呈两性,等电点下溶解度最低。
氨基酸分类根据侧链R基团的性质可分为脂肪族、芳香族、杂环族等。
氨基酸种类、性质及分类通过逐步去除N-末端氨基酸并测定其种类,推断蛋白质序列。
Edman 降解法质谱法cDNA 测序法利用蛋白质分子在电场或磁场中的运动规律进行测定。
通过测定编码蛋白质的cDNA 序列,间接推断蛋白质序列。
030201蛋白质一级结构测定方法主要依靠氢键维持的局部空间结构,包括α-螺旋、β-折叠等。
生物化学实验讲义
![生物化学实验讲义](https://img.taocdn.com/s3/m/49afc975168884868762d6c6.png)
的多肽都有双缩脲反应,但有双缩脲反应的物质不一定都是蛋白质或多肽。
2. 材料与试剂
① 尿素。
-8-
② 10%氢氧化钠溶液。 ③ 1%硫酸铜溶液。 ④ 2%卵清蛋白溶液。 3. 操作方法 ① 取少量尿素结晶,放在干燥试管中。用微火加热使尿素熔化。当熔化的 尿素开始硬化时,停止加热,这时尿素放出氨,形成双缩脲。将得到的物质放置 冷却后,加 10%氢氧化钠溶液约 1mL,振荡混匀,再加 1%硫酸铜溶液 1 滴,边振 荡边观察出现的粉红颜色。实验中避免添加过量硫酸铜,否则生成的蓝色氢氧化 铜溶液会掩盖粉红色的出现。 ② 向另一试管加卵清蛋白溶液约 1mL 和 10%氢氧化钠溶液约 2mL,摇匀后 加入 1%硫酸铜溶液 2 滴,边加边振荡并观察紫玫瑰色的出现。
1.使用方法
(1)将温度计插入插孔内(一般在箱顶放气调节器中部)。 (2)通电,打开电源开关,红色指示灯亮,开始加热。开启鼓风开关,促 使热空气对流。 (3)注意观察温度计。当温度计温度将要达到需要温度时,调节自动控温 旋钮,使绿色指示灯正好亮。10min 后再观察温度计和指示灯,如果温度计上所 指温度超过所需温度,而红色指示灯仍亮,则将自动控温旋钮略向反时针方向旋 转,直调到要需要的温度上,并且指示灯轮番显示红色和绿色为止。自动恒温器 旋钮在箱体正面左上方或右下方。它的刻度板不能作让温度标准指示,只能作为 调节的标记。
具体反应如下:
双缩脲反应不仅在含有两个以上肽键的物质出现,在含有一个肽键和一个 -CS-NH2,-CH2-NH2-,-CRH-NH2-,-CH2-NH2-CHNH2-CH2OH 或-CHOHCH2NH2 等基团及含
有乙二酰二氨(
)等物质也有此反应。另外,NH3 能干扰此反应,
因为 NH3 与 Cu2+可生成暗蓝色的络离子 Cu(NH3)42+,因此,一切蛋白质或二肽以上
生物化学讲义
![生物化学讲义](https://img.taocdn.com/s3/m/1a555018366baf1ffc4ffe4733687e21af45ffeb.png)
第一章绪论一、生物化学的概念生物化学是从分子水平研究生物体中各种化学变化规律的科学;因此生物化学又称为生命的化学简称:生化,是研究生命分子基础的学科;生物化学是一门医学基础理论课;二、生物化学的主要内容1.研究生物体的物质组织、结构、特性及功能; 蛋白质、核酸2.研究物质代谢、能量代谢、代谢调节;研究糖、脂、蛋白质、核酸等物质代谢、代谢调节等规律,是本课程的主要内容;3.遗传信息的贮存、传递和表达,研究遗传信息的贮存、传递及表达、基因工程等,是当代生命科学发展的主流,是现代生化研究的重点;三、生物化学的发展史四、生物化学与健康的关系生化是医学的基础,并在医、药、卫生各学科中都有广泛的应用;本课程不仅是基础医学如生理学、药理学、微生物学、免疫学及组织学等的必要基础课,而且也是医学检验、护理等各医学专业的必修课程;五、学好生物化学的几点建议1.加强复习有关的基础学科课程,前、后期课程有机结合,融会贯通、熟练应用;2.仔细阅读、理解本课程的“绪论”,了解本课程重要性,激发起学习生物化学的兴趣和求知欲望;3.每次学习时,首先必须了解教学大纲的具体要求,预读教材,带着问题进入学习;4.学习后及时做好复习,整理好笔记;5.学生应充分利用所提供的相关网站,从因特网上查找学习资料,提高课外学习和主动学习的能力;6.实验实训课是完成本课程的重要环节;亲自动手,认真、仔细完成每步操作过程,观察各步反应的现象,详细、科学、实事求是地记录并分析实验结果,独立完成实验报告;第一章蛋白质的化学一、蛋白质的分子组成一蛋白质的元素组成蛋白质分子主要元素组成:C、H、O、N、S;特征元素:N元素含量比较恒定约为16%故所测样品中若含1克N,即可折算成克蛋白质;实例应用二组成蛋白质的基本单位——氨基酸AA一编码氨基酸的概念和种类:蛋白质合成时受遗传密码控制的氨基酸,共有20种二氨基酸的结构通式:L-α-氨基酸甘氨酸除外三氨基酸根据R基团所含的基团,可分为酸性氨基酸羧基、碱性氨基酸氨基及其衍生基团和极性的中性氨基酸羟基、巯基和酚羟基;二、蛋白质的结构与功能一蛋白质的基本结构1.肽键和肽1肽键:一个氨基酸的α-羧基与另一氨基酸的α-氨基脱水缩合而成的共价键称肽键,肽键是蛋白质分子中氨基酸之间相互连接的主键;2肽:氨基酸通过肽键而成的化合物称肽;3生物活性肽2.蛋白质的一级结构概念:蛋白质肽链中氨基酸残基的排列顺序,是蛋白质分子的基本结构;意义:是空间结构及其功能的基础;实例分析:胰岛素、分子病等二蛋白质的空间结构蛋白质在一级结构的基础上进一步折叠、盘曲而成的三维结构,又称构象;维系空间结构的化学键:氢键、盐键、疏水键和二硫键等空间结构可分下列层次:1.蛋白质的二级结构α-螺旋、β-折叠、β-转角和无规卷曲;2.蛋白质的三级结构特点是多肽链中疏水的氨基酸一般集中在分子内部;有些蛋白质仅有一条三级结构的多肽链,其表面可形成活性中心,具有活性;3.蛋白质的四级结构亚基的概念、数目、种类三、蛋白质的理化性质和分类一、蛋白质的理化性质1.两性电离与等电点蛋白质是两性离子,其分子所带电荷受环境pH的影响;蛋白质的等电点:蛋白质分子呈电中性时的溶液pH值称蛋白质的等电点pI;1蛋白质在pH小于其等电点的溶液中呈阳离子,2蛋白质在pH大于其等电点的溶液中呈阴离子,3蛋白质在pH和其等电点相同的溶液中不带电,此时溶解度最低,易于沉淀析出;临床应用:电泳技术电泳:带电颗粒在电场中朝与其所带电荷相反的方向泳动,称电泳electrophoresis;电泳技术是目前分离、提纯、鉴定蛋白质最常用的方法之一;2.蛋白质的亲水胶体性质临床应用:盐析salt precipitaion、有机溶剂沉淀法3.蛋白质的沉淀1盐析法2有机溶剂沉淀法3生物碱试剂法4重金属沉淀法4.蛋白质的变性:蛋白质在理化因素作用下,使蛋白质分子的空间结构破坏,理化性质及生物学活性丧失的过程;引起蛋白质变形的因素:举例:物理因素、化学因素和生物因素变性的本质:非共价键断裂,使蛋白质分子从严密有规则的空间结构变成松散紊乱的结构状态;蛋白质变性的实际应用举例:应用变性的实例、防止变性的实例5.紫外吸收性质及呈色反应在280 nm具有紫外吸收的特点临床应用:用280nm 吸收值测定对蛋白质进行定性和定量;二蛋白质的分类1.按分子形状分类球状蛋白质、纤维状蛋白质2.按组成分类单纯蛋白质、结合蛋白质第二章核酸的化学核酸的分类、分布与生物学功能一组成成份1.碱基 A G C U T2.戊糖3.磷酸比较两类核酸的化学组成组成成分DNA RNA磷酸磷酸磷酸戊糖2-脱氧核糖核糖碱基 A G C T A G C U二组成核酸的基本单位——核苷酸1.核苷2.核苷酸二、核酸的分子结构一核酸分子的一级结构二核酸分子的空间结构1.DNA的二级结构——双螺旋结构,其主要特点是:1两条链方向相反、相互平行、主链是磷酸戊糖链,处于螺旋外侧;2碱基在螺旋内侧并配对存在,A与T配对的G与C配对,A与T之间二个氢键相连A-T,G与C之间三个氢键相链G-C;3螺旋直径2nm,二个碱基对平面距,10bp为一螺距,距离为;4稳定因素主要是碱基之间的氢键和碱基对平面之间的堆积力;DNA的二级结构的生物学意义:1提出了遗传信息的贮存方式、DNA的复制机理2是DNA复制、转录和翻译的分子基础2.RNA的空间结构tRNA二级结构特点:呈三叶草形,有三环四臂;第三章酶一、酶的概述一酶的概念1.酶的定义:酶是由活细胞产生的生物催化剂,本质为蛋白质,具有高度专一性和高效的催化作用;2.酶促反应、底物和作用物二酶促反应的特点1.高度的催化效率在常温常压及中性pH条件下,酶比一般催化剂的催化效率高107 -1013 倍;2.高度催化专一性酶对所作用的底物有严格的选择性,从酶对底物分子结构要求不同,可分三种专一性:1对专一性:一种E只能催化一种S 脲酶2相对专一性:一种E只能催化一类S 一种化学键/水解酶类3立体异构专一性:一种E只能催化一种S的某一种特定构型LDH --- 乳酸脱氢酶3.高度的不稳定性易受变性因素影响而失活二、酶的结构与功能一酶的分子组成1.单纯蛋白酶如蛋白酶、淀粉酶、脂酶等水解酶;2.结合蛋白酶:酶蛋白+ 辅助因子结合成全酶才有活性1酶蛋白:决定催化反应的特异性选择E催化的S2辅助因子:决定催化反应的类型递电子、氢或一些基团主要有金属离子和有机小分子辅基/辅酶参与组成二酶的活性中心与必需基团1.活性中心:存在于酶分子表面的局部空间区域构象,由必需基团所组成功能:结合底物并催化底物进行反应2.必需基团:与酶活性中心有关的功能基团酶发挥催化作用所需要基团,一般指分布在酶分子表面的极性基团,包括-COOH、-NH2、-OH、 -SH、咪唑基等;功能:在活性中心内活性中心的组份——有结合基团和催化基团在活性中心外——维持构象稳定三酶原与酶原激活1.概念:在细胞内合成或初分泌时,只是酶的无活性前体——酶原2.酶原激活:在一定条件下,使酶原转化成活性的酶,称酶原的激活;酶原激活的过程通常是在酶原分子中切除部分肽段,从而有利于酶活性中心的形成或暴露;3.意义:在特定条件下被激活,可调节代谢、保护自体避免细胞自身消化,保持血流畅通许多蛋白水解酶如消化腺分泌的蛋白酶、参于血液凝固的酶和溶解纤维蛋白凝块的酶均以酶原形式存在,发挥作用前需先经过加工;实例:胰蛋白酶原激活四同工酶1.概念:催化功能相同,但酶蛋白的组成与结构等均不同的一组酶特点:a. 存在于同一种属或同一个体的不同组成或同一组织同一细胞中;b. 一级结构不同,理化性质包括带电性质不同,免疫学性质不同,但空间结构中的活性中心相同或相似;c. 往往是四级结构的酶类;d. 已发现一百多种酶具有同工酶性质;发现最早研究最多的是乳酸脱氢酶,它有五种同工酶;临床测定同工酶酶谱的变化,多用于疾病的诊断和鉴别诊断;2.组成、分型、分布、命名和医学应用以乳酸脱氢酶为例:LDH是由2种亚基组成的四聚体,共有5种分型;LDH同工酶在诊断中的意义:心肌炎:LDH1↑,肺梗塞:LDH3↑,肝炎:LDH5↑三、酶催化反应的动力学影响酶促反应的因素有酶浓度、底物浓度、pH、温度、激活剂等;必需采用测定反应初速度的条件;一底物浓度的影响——矩形双曲线二酶浓度的影响在底物浓度足够高时,酶促反应速度与酶浓度呈正比;三pH的影响酶活性最高时的pH值称酶的最适pH;大多数酶最适pH值在7左右,亦有偏酸和偏碱的例外;四温度的影响最适温度:最大酶促反应速度时的温度;五激活剂对反应速度的影响1.凡能提高酶活性的物质称激活剂activator;2.通常分必需激活剂和非必需激活剂两类,前者多为金属离子;六抑制剂对酶促反应速度的影响凡使酶活性降低或丧失的作用称抑制作用,使酶活性起抑制作用的物质称抑制剂;根据抑制剂与酶结合的方式不同,抑制作用可分为不可逆抑制和可逆抑制两大类;1.不可逆抑制:例子:重金属离子对巯基酶的抑制作用;有机磷农药对羟基酶如胆碱酯酶的抑制作用; 2.可逆抑制:1竞争性抑制:重要实例:丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物的抑菌作用;2非竞争性抑制作用:抑制剂可逆地与酶的非活性中心区结合,由于抑制剂不与底物竞争酶的活性中心,故称非竞争性抑制作用;四、酶与医学的关系一酶与疾病发生酶的质、量异常可致疾病白化病/ 蚕豆黄二酶与疾病诊断酶活性高低可反映疾病主要是血浆中的细胞酶类三酶与疾病治疗多酶片:治疗消化不良尿激酶酶:治疗血栓、抢救心梗糜蛋白酶:治疗老慢支、清创溶酶片:治疗口腔溃疡维生素维生素是人体必需的小分子有机物,在体内不能合成或合成不足,必需由食物提供,一旦缺乏会导致缺乏症;维生素分为脂溶性和水溶性两种;脂溶性维生素包括A、D、K、E;缺乏维生素A易导致夜盲症和干眼病;缺乏维生素D会导致佝偻病及软骨病;维生素E是体内重要的抗氧化剂;维生素K促进多重凝血因子形成;水溶性维生素包括B族维生素和维生素C两大类;缺乏维生素B1会导致脚气病;缺乏维生素B2可引起口角炎等;缺乏维生素PP易导致癞皮病;维生素B6构成转氨酶的辅酶磷酸吡哆醛;生物素是羧化酶辅酶;泛酸构成的HSCoA 是酰基转移酶辅酶;叶酸是一碳单位的载体,维生素B12是甲基转移酶辅酶,缺乏叶酸和B12都会导致巨幼红细胞性贫血;维生素C是羟化酶辅酶,参与胶原蛋白形成及体内多种氧化还原反应,缺乏维生素C导致坏血病;维生素、辅酶与相关酶之间的关系维生素活性形式辅助因子形式相关酶B1焦磷酸硫胺素TPPα-酮酸脱氢酶复合体B2黄素单核苷酸FMN黄素腺嘌呤二核苷酸FAD黄素酶PP 尼克酰胺腺嘌呤二核苷酸NAD+尼克酰胺腺嘌呤二核苷酸磷酸NADP+不需氧脱氢酶B6磷酸吡哆醛、磷酸吡哆胺转氨酶、脱羧酶泛酸辅酶AHSCoA酰基转移酶生物素生物素羧化酶叶酸四氢叶酸FH4一碳单位转移酶B12甲基B12CH3- B12甲基转移酶C L-抗坏血酸羟化酶第四章糖代谢一、糖的分解代谢一糖的酵解1.糖酵解的概念:糖的无氧分解是指葡萄糖或糖原在无氧条件下,分解成乳酸的过程;因其反应过程与酵母的生酵发酵相似,故又称糖酵解;反应部位:在细胞浆内进行,因酵解过程中所有的酶均存于胞浆;2.反应过程:可分二个阶段:第一阶段:葡萄糖分解生成丙酮酸的过程第二阶段:丙酮酸还原成乳酸3.糖无氧氧化的生理意义1糖无氧氧化是机体在缺氧或无氧条件下迅速获得能量的有效方式;2有些组织细胞,如神经、白细胞、骨髓、成熟红细胞、肿瘤等,即使氧供充足,也主要依靠糖无氧氧化获得能量;3成熟红细胞因缺乏线粒体不能依靠糖的有氧氧化来获得能量,所需能量的90%——95%来自于糖酵解;二糖的有氧氧化1.糖的有氧氧化的概念:在有氧情况下,葡萄糖或糖原彻底氧化成C02和H20的过程;是糖氧化产能的主要方式;2.糖有氧氧化的过程:分为三个阶段:3.糖有氧氧化的生理意义 1在有氧条件下,人体内大多数组织细胞主要利用糖的有氧氧化获得能量 1分子葡萄糖经有氧氧化可净得38或36分子ATP,是无氧氧化的19或18倍 2三羧酸循环是糖、脂肪和蛋白质彻底氧化分解的共同途径3三羧酸循环是糖、脂肪和蛋白质三大物质代谢相互联系与转化的枢纽; 三磷酸戊糖途径二、糖原合成与分解一糖原的合成由单糖合成糖原的过程称为糖原合成; 二糖原的分解由糖原分解为葡萄糖的过程称为糖原分解,习惯上指肝糖原的分解;三、 糖异生作用糖异生作用是指非糖物质转变为葡萄糖或糖原的过程; 一糖异生途径糖异生途径基本上是糖无氧氧化的可逆过程, 二糖异生的生理意义1.维持空腹或饥饿情况下血糖浓度的相对恒定 2.有利于乳酸的利用 3.调节酸碱平衡;四、 血糖一血糖的来源与去路1.血糖:血液中的葡萄糖;空腹血糖浓度为~L 葡萄糖氧化酶法2.血糖恒定的意义:血糖浓度的相对稳定对保证组织器官,特别是对脑组织的正常生理活动具有重要意义; 二血糖浓度的调节1.组织器官的调节 肝 2.激素的调节调节血糖的激素有两大类,一类是降低血糖的激素,即胰岛素;另一类是升高血糖的激素,有胰高血糖素、肾上腺素、糖皮质激素和生长素等; 三高血糖和低血糖 1.高血糖和糖尿临床上将空腹血糖浓度高于L 称为高血糖;当血糖浓度超过肾糖阈~L 时,一部分葡萄糖从尿中排出,称之为糖尿;引起高血糖和糖尿的原因有生理性和病理性两种; 2.低血糖空腹血糖浓度低于L 称为低血糖;低血糖影响脑组织的功能,会出现头晕、心悸、倦怠无力等,严重时血糖浓度低于L 出现昏迷,称为低血糖休克;如不及时给病人静脉补充葡萄糖,可导致死亡;CO 2+H 2O+ATP葡萄糖或糖原丙酮酸丙酮酸乙酰辅酶A胞液 线粒体第一阶段第二阶段引起低血糖的病因有:①胰性胰岛β-细胞功能亢进、胰岛α-细胞功能低下等;②肝性肝癌、糖原累积病等;③内分泌异常垂体功能低下、肾上腺皮质功能低下等;④肿瘤胃癌等;⑤饥饿或不能进食者等;第六章脂类代谢脂类包括三脂酰甘油甘油三酯及类脂;一、概述一脂类的分布与含量二脂类的生理功能必需脂肪酸:亚油酸、亚麻酸、花生四烯酸;二、甘油三脂的中间代谢一三脂酰甘油的分解代谢1.三脂酰甘油动员2.脂肪酸的氧化产物:二氧化碳和水3.酮体的生成和利用:酮体是脂肪酸在肝内氧化不完全所产生的一类中间产物的统称,包括乙酰乙酸、β-羟丁酸和丙酸1.酮体的生成:生成部位:肝脏2.酮体的利用:利用部位:肝外组织意义:当糖供应不足时,酮体是脑组织的主要能源;饥饿、糖尿病等情况下,脂肪动员增加,肝内生酮增加,血中酮体增加,可产生酮血症、酮尿症甚至酮症酸中毒;二甘油三脂的合成代谢三、类脂代谢一甘油磷脂代谢二胆固醇代谢1. 胆固醇的合成合成部位肝脏合成原料乙酰辅酶A合成过程 1.二羟戊酸的合成 2.鲨烯的生成 3.胆固醇的生成2.胆固醇的转化与排泄转化为:胆汁酸;转化为类固醇激素;转化为维生素D3四、血脂与血浆脂蛋白一血脂的组成与含量血浆中的脂质,包括甘油三酯、磷脂、胆固醇及其酯以及游离脂肪酸;二血浆脂蛋白1.血浆脂蛋白的分类1电脉分类法α-脂蛋白、前β-脂蛋白、β-脂蛋白、乳糜微粒2超速离心法高密度脂蛋白、低密度脂蛋白、极低密度脂蛋白、乳糜微粒2.血浆脂蛋白的性质、组成、功能见表6-2三高脂血症又称高脂蛋白血症;标准:空腹12-14小时血甘油三酯>2;26mmol/L200mg/dl,血胆固醇>6;21mmol/L240mg/dl为标准;第七章氨基酸分解代谢一、蛋白质的营养作用一蛋白质的生理功能1.维持组织细胞的生长、更新和修复2.参与体内各种生理活动3.氧化供能二蛋白质的需要量1.氮平衡 16%2.蛋白质的需要量 80克/天二、氨基酸的一般代谢一氨基酸代谢概况血中氨基酸的来源和去路来源1食物蛋白质消化吸收2组织蛋白质降解3体内合成的非必需氨基酸去路:1合成组织蛋白质此为蛋白质的主要生理功能2分解成CO2 + H2O + 尿素 + 能量;3转变成其它含氮化合物;二氨基酸的脱氨基作用1.转氨基作用重要的转氨酶:谷丙转氨酶/ALT肝脏活性最强和谷草转氨酶/ASP心肌细胞活性最强,这两种酶均为细胞内酶,借此用于临床疾病的诊断;2.氧化脱氨基作用3.联合脱氨基作用——主要方式联合脱氨基作用是指转氨基作用由转氨酶催化和谷氨酸的氧化脱氨基作用由谷氨酸脱氢酶催化偶联的过程;这是体内主要的脱氨基方式;三氨的代谢1.体内氨的来源氨对机体有毒,因此机体必需及时消除氨的毒性作用;氨的来源有三:1氨基酸脱氨生成是NH3的主要来源,2肠道NH3的吸收,此途径的NH3由蛋白质的腐败作用及尿素的肠肝循环产生,酸性的肠道环境可减少NH3的吸收;3肾脏产NH3,部分可吸收入血;2.氨的主要去路——合成尿素尿素生成部位:肝脏生成过程:鸟氨酸循环;尿素合成的意义:NH3有毒,尿素是中性无毒高度溶解的化合物,可随血由肾排出,故尿素的生成是体内解除氨毒的最主要方式,是NH3的主要去路;四α–酮酸的代谢1.合成非必需氨基酸2.转化为糖和脂质3.氧化供能三、个别氨基酸代谢一氨基酸脱羧基作用1.组胺来自于组胺酸组胺有扩血管降血压,促进胃液分泌等作用2.GABA 来自于谷氨酸γ-氨基丁酸为抑制性神经递质3.5-HT 来自于色氨酸 5-羟色胺与睡眠疼痛和体温调节有关二一碳单位的代谢:1.概念:指蛋白质代谢中所生成的含有一个碳原子的有机基团如:-CH3、-CH2-、-CH=、-CHO等;2.转运载体:四氢叶酸FH4;3.生理功用:参与嘌呤、嘧啶和某些重要物质的合成;三芳香族氨基酸的代谢1.苯丙氨酸代谢先天性缺乏苯丙氨酸羟化酶,引起苯丙酮酸尿症;2.酷氨酸代谢先天性缺乏酪氨酸酶,可导致白化病;肝脏生化肝是人体内最大的实质器官,成人约1500克,占体重的%左右;肝有“物质代谢中枢”之称,不仅影响食物的消化、吸收,而且在物质代谢、生物转化及排泄中均具有十分重要作用;溶血性黄疸、肝细胞性黄疸及阻塞性黄疸的鉴别指标正常 溶血性黄疸 肝细胞性黄疸 阻塞性黄疸 血清总胆红素浓度 <1mg/dl >1mg/dl>1mg/dl >1mg/dl 结合胆红素 极少 ↑ ↑↑ 未结合胆红素 0~dl ↑↑ ↑ 尿三胆尿胆红素 - - ++ ++ 尿胆素原 少量 ↑ 不一定 ↓ 尿胆素 少量 ↑ 不一定 ↓ 粪胆素原 40~280mg/24h↑ ↓或正常 ↓或-粪便颜色正常 深变浅或正常完全梗阻时白陶土色肝胆生化。
生物化学实验讲义
![生物化学实验讲义](https://img.taocdn.com/s3/m/e251471ef18583d049645973.png)
生物化学实验讲义2009年5月实验一糖的颜色反应和还原反应1.糖的颜色反应[实验目的及要求]1. 掌握莫式(Molisch)试验鉴定糖的原理和方法。
2. 掌握塞式(Seliwanoff)试验鉴定酮糖的原理和方法。
3. 掌握杜式(Tollen)试验鉴定戊糖的原理和方法。
[实验原理]1.莫式试验:糖经无机酸(浓硫酸、浓盐酸)脱水产生糠醛或糠醛衍生物,后者在浓无机酸作用下,能与а-萘酚生成紫红色缩合物。
2.塞式试验:酮糖在浓酸的作用下,脱水生成5-羟甲基糠醛,后者与间苯二酚作用,呈红色反应;有时亦同时产生棕红色沉淀,此沉淀溶于乙醇,成鲜红色溶液。
3.杜式试验:戊糖在浓酸溶液中脱水生成糠醛,后者与间苯三酚结合成樱桃红色物质。
[实验仪器及用品]仪器:水浴锅。
器皿:吸管、试管。
实验药品:蔗糖、葡萄糖、淀粉、果糖、阿拉伯糖、半乳糖、а-萘酚、浓硫酸、95%乙醇、间苯二酚、盐酸、间苯三酚。
[实验试剂]莫式试剂:а-萘酚5g,溶于95%乙醇并稀释至100ml。
现用现配,并贮于棕色试剂瓶中。
塞式试剂:间苯二酚50mg,溶于100ml盐酸(V H2O:V HCl=2:1),现用现配。
杜式试剂:2%间苯三酚乙醇溶液(2g间苯三酚溶于100ml95%乙醇中)3ml,缓缓加入浓盐酸15ml及蒸馏水9ml。
临用时配制。
[实验内容及步骤]一、莫式实验于4支试管中,分别加入1 ml1%葡萄糖溶液、1%蔗糖溶液、1%淀粉溶液和少许纤维素(棉花或滤纸浸在1 ml水中),然后各加莫式试剂2滴,摇匀,将试管倾斜,沿管壁慢慢加入浓硫酸1.5 ml(切勿振摇!),硫酸层沉于试管底部与糖溶液分成两层,观察液面交界处有无紫色环出现。
二、塞式试验于4支试管中,分别加入0.5 ml1%葡萄糖溶液、1%蔗糖溶液、1%果糖溶液,然后各加塞式试剂2.5ml,摇匀,同时置沸水浴内,比较各管颜色及红色出现的先后顺序。
三、杜式试验于3支试管中加入杜式试剂1ml,再分别加入1滴1%葡萄糖溶液、1%半乳糖溶液和1%阿拉伯糖溶液,混匀。
生物化学实验讲义2011
![生物化学实验讲义2011](https://img.taocdn.com/s3/m/c89d1673ed630b1c59eeb5d1.png)
生物化学实验讲义石河子大学生命科学学院生物化学实验基本要求一、生物化学实验室规则1. 每个同学都应该自觉遵守课堂纪律,维护课堂秩序,不迟到,不早退,不大声谈笑。
2. 实验前必须认真预习,熟悉本次实验的目的、原理、操作步骤,懂得每一操作步骤的意义和了解所用仪器的使用方法,否则不能开始实验。
实验过程中要严肃认真地按操作规程进行实验,并把实验结果和数据及时、如实记录在实验记录本上,文字简练、准确,要求同学们记录完整准确的实验数据,养成良好的实事求是的工作作风和求真务实的科学态度,严禁伪造实验数据,弄虚作假。
3. 实验台面应随时保持整洁,仪器、药品摆放整齐,公用试剂用毕,应立即盖严放回原处。
勿使试剂、药品洒在实验台面和地上。
实验完毕,仪器须洗净放好,将实验台面抹试干净,才能离开实验室。
4. 使用仪器、药品、试剂和各种物品必须注意节约。
洗涤和使用仪器时,应小心细致,防止损坏仪器。
使用贵重精密仪器时,应严格遵守操作规程,发现故障须立即报告教员,不得擅自动手检修。
5. 实验室内严禁吸烟!煤气灯应随用随关,严格做到:人在火在,人走火灭。
乙醇、丙酮、乙醚等易燃品不能直接加热,并要远离火源操作和放置。
实验完毕,应立即关好煤气开关和水笼头,拉下电闸。
离开实验室以前应认真、负责地进行检查,严防发生安全事故。
6. 所有实验用的废液,废弃物等,都要收集在适当的容器内,加以储存再处理,不能倒在水槽内或到处乱扔。
7. 仪器损坏时,应如实向教员报告,并填写损坏仪器登记表,然后补领。
8. 实验室内一切物品,未经本室负责教员批准,严禁携出室外,借物必须办理登记手续。
9. 每次实验课由班长负责安排值日生。
值日生的职责是负责当天实验室的卫生、安全和一切服务性的工作及填写《实验情况登记卡》和《实验记录》。
二、实验报告要求及格式实验结束后,应及时整理和总结实验结果,写出实验报告。
下面简单介绍实验报告的格式。
(实验名称)姓名学号日期目的和要求原理试剂配制及仪器操作方法实验结果讨论与分析在实验报告中,目的和要求、原理以及操作方法部分应简单扼要的叙述,但是对于实验条件(试剂配制及仪器)和操作的关键环节必须写清楚。
生物化学讲义
![生物化学讲义](https://img.taocdn.com/s3/m/fd268b8f02d276a200292e26.png)
蛋白质元素组成C、H、O、N、S、P、Fe、Zn¡¡每100份蛋白质中约含16份N(即:每1gN相当于6.25g蛋白质)2.1 蛋白质的分类按蛋白质的分子组成,分子形状,溶解度,生物功能等进行分类。
2.1.1 根据分子形状分类①球状蛋白②纤尘维状蛋白③膜蛋白2.1.2 根据分子组成分类(1)简单蛋白质;(2)结合蛋白质; 2.1.3 根据功能分类2.2 蛋白质的组成的单位-----氨基酸•完全水解的产物是各种AA的混合物。
部分水解的产物是各种大小不等的肽段和AA。
氨基酸与蛋白质AA、非蛋白质AA。
2.2.1 AA的结构通式氨基酸的立体异构体: D-AA ; L-AA2.2.2 AA的分类(1)蛋白质中常见的氨基酸见表2-2依AA的极性状况及其在PH = 6~7间是否带电而分为①非极性氨基酸②极性不带电荷③极性带负电荷④极性带正电荷(2)蛋白质中不常见的氨基酸(3)非蛋白质氨基酸2.2.3 AA的重要理化性质(1)两性解离和等电点①何谓氨基酸的等电点PI? ②PI值:(2)AA的化学性质①与水合茚三酮反应;②与甲醛反应;③与2,4-二硝基氟苯(DNFB)反应;⑤与亚硝酸反应;⑥与荧光胺反应;⑦与5,5’-双硫基-双(2-硝基苯甲酸)反应。
2.3 肽寡肽;多肽;蛋白质。
2.3.2 生物活性肽的功能生物活性肽:谷光甘肽;催产素和升压素。
促肾上腺皮质激素。
2.3.3活性肽的来源(1)体内途径(2)体外途径2.3.4 活性肽的应用第一个被阐明化学结构构的蛋白质--胰岛素一级结构确定的原则:2.4.2蛋白质的空间构象(构象或高级结构)概念、肽键与酰胺平面(1)稳定蛋白质空间结构的作用力1 共价键: 肽键,二硫键。
维持一级结构2 次级键: 氢键,疏水键,盐键,范德华力等。
维持空间(高级)结构。
(2)蛋白质的二级结构概念①а-螺旋结构;②B-折叠;③β凸起;④ß-转角(β-弯曲、发夹结构);⑤无规卷曲(3)超二级结构与结构域;(4)蛋白质的三级结构;(5)蛋白质的四级结构及亚基。
生物化学教程全套讲义-授课内容及课程安排
![生物化学教程全套讲义-授课内容及课程安排](https://img.taocdn.com/s3/m/1fac3ac551e79b8969022633.png)
授课内容及课程安排章节重点第二章1.掌握脂质的定义、分类和生物学作用;2.熟悉脂肪酸的结构和性质,和重要的脂肪酸;3.熟悉三酰甘油和腊的结构和性质;4.掌握脂质过氧化的机制、对机体的损伤及抗氧化剂的作用机制;5.熟悉磷脂和糖脂的结构和生物学意义;6.熟悉萜和类固醇的结构特点和生物学意义;7.掌握脂蛋白的结构特点和功能;8.熟悉脂类的研究方法。
第三章1.掌握氨基酸的一般结构和氨基酸的分类;2.掌握氨基酸的酸碱性质和等电点的计算方法;3.熟悉氨基酸的常见化学反应的应用价值;4.熟悉分离和分析氨基酸的常用方法。
第四章1.掌握蛋白质的分类和功能多样性;2.掌握肽的结构特点和基本性质;3.熟悉蛋白质一级结构的测定方法;4.掌握蛋白质一级结构与生物学功能的关系,熟悉有关的典型例子。
5.熟悉蛋白质人工合成的基本步骤。
第五章1.熟悉研究蛋白质构象的主要方法。
2.掌握稳定蛋白质三级结构的作用力。
3.熟悉多肽主链折叠的空间限制。
4.掌握蛋白质的二级结构。
5.熟悉主要的纤维状蛋白质的结构特点。
6.掌握超二级结构和结构域含义,熟悉其结构特点。
7.掌握球状蛋白质的三级结构的特征。
8.熟悉膜蛋白的结构特点。
9.掌握蛋白质的变性和复性,了解蛋白质折叠的动力学、热力学和结构预测。
10.熟悉蛋白质四级结构的特点。
第六章1.熟悉肌红蛋白的结构与功能。
2.掌握血红蛋白的结构与功能。
3.熟悉血红蛋白分子病。
4.熟悉免疫系统和免疫球蛋白。
5.熟悉肌球蛋白丝、肌动蛋白丝与肌肉收缩。
6.了解蛋白质的结构与功能的进化。
第七章1.掌握蛋白质的酸碱性质。
2.掌握测定蛋白质相对分子质量的常用方法。
3.掌握蛋白质的胶体性质与蛋白质沉淀的方法和原理。
4.掌握蛋白质分离纯化的一般原则。
5.熟悉蛋白质分离纯化的常用方法。
6.掌握蛋白质含量测定与纯度鉴定的常用方法。
第八章1.掌握酶催化作用的特点。
(重点)2.掌握酶的化学本质及其组成。
(重点)3.熟悉酶的命名和分类。
生物化学讲义
![生物化学讲义](https://img.taocdn.com/s3/m/d553152b02d8ce2f0066f5335a8102d277a26152.png)
生物化学讲义《生物化学》课程教学讲义1.课程简介21世纪是生命科学的世纪,《生物化学》是现代生物学的基础,是生命科学发展的支柱,是生命科学领域的“世界语”因此奠定坚实的生物化学基础是农业科学生命科学学生和科技工作者的共同需要。
生物化学的内容:生物化学是生命的化学。
生物是一个高度复杂和组织化的分子系统。
这个分子系统主要是由生物大分子—糖类、脂类、蛋白质和核酸组成的。
生物的多样性是生物体中生物分子多样性及其结构复杂性(一级结构和空间结构)决定的。
但生物体内生物分子及其化学变化不是无序的。
生命的化学有着自己的规律。
生命最突出的属性是自我复制和新陈代谢。
自我复制依赖的遗传信息都存在于由核酸序列组成的基因中。
代谢包含生物体内发生的所有化学反应-四大物质代谢,酶是反应的催化剂,物质代谢伴随着能量的生成和利用。
总之生物化学的内容可划分为两部分:静态生物化学—生物分子的化学组成、结构和性质;生物分子的结构、功能与生命现象的关系。
动态生物化学—生物分子在生物机体中的相互作用及其变化规律。
生物化学的发展史:19世纪末,德国化学家李比希(J.Liebig)初创了生理化学,德国的霍佩赛勒(E.F.Hoppe-seyler)将生理化学建成一门独立的学科,并于1877年提出“Biochemie”一词,译成英语为“Biochemistry”,即生物化学。
生物化学的发展大体可分为三个阶段:静态生物化学阶段(static biochemistry stage) 时期:19世纪末到20世纪30年代特点:发现了生物体主要由糖、脂、蛋白质和核酸四大类有机物质组成,并对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。
动态生物化学阶段(dynamic biochemistry stage) 时期:20世纪30~60年代主要特点:研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。
现代生物化学阶段(modern biochemistry stage) 时期:从20世纪60年代开始特点:探讨各种生物大分子的结构与其功能之间的关系。
侯英健生物化学讲义
![侯英健生物化学讲义](https://img.taocdn.com/s3/m/84b460e3d0f34693daef5ef7ba0d4a7302766cf5.png)
侯英健生物化学讲义一、介绍侯英健生物化学讲义是生物化学领域的经典教材之一。
作者侯英健教授是生物化学领域的知名专家,以其深厚的学识和教学经验编写了这本讲义。
本讲义可作为高等院校生物化学课程的教材,也可供从事生物化学研究的科研人员参考。
二、内容概述侯英健生物化学讲义内容丰富,全面介绍了生物化学的基本概念、原理和应用。
讲义共分为六个章节,分别涵盖了生物化学的核心内容。
1. 生物化学基础这一章节主要介绍了生物化学的基本概念和生物分子的组成结构。
包括蛋白质、核酸、糖类和脂类等生物分子的结构和特性,以及生物分子在生物体内的功能和相互作用。
2. 酶与代谢这一章节主要介绍了酶的结构和功能,以及酶在生物代谢中的作用。
包括酶的分类、酶促反应的动力学和热力学原理,以及酶在代谢途径中的催化机制和调节方式。
3. 生物膜与细胞信号传导这一章节主要介绍了生物膜的结构和功能,以及细胞内外信号传导的机制。
包括细胞膜的组成和特性,膜蛋白的结构和功能,以及细胞内信号传导的多种途径和调节方式。
4. 核酸与基因表达这一章节主要介绍了核酸的结构和功能,以及基因表达的过程和调控机制。
包括DNA和RNA的结构和特性,DNA复制、转录和翻译的详细过程,以及基因调控的多种方式和调节因子。
5. 生物能量转换这一章节主要介绍了生物体内能量的产生和转化过程。
包括葡萄糖的氧化过程(糖酵解、细胞呼吸)和有机物的氧化过程(β-氧化、三羧酸循环),以及产生ATP能量的机制和调节方式。
6. 生物化学技术与应用这一章节主要介绍了生物化学领域的一些常用技术和应用。
包括蛋白质纯化和分析技术、核酸杂交和PCR技术、蛋白质相互作用分析技术等等。
同时还介绍了生物化学在医药研发、基因工程和生物能源等领域的应用。
三、思考与展望侯英健生物化学讲义系统地介绍了生物化学的基本理论和实践应用,为读者提供了全面的知识体系。
读者通过学习本讲义,可以深入了解生物分子的结构和功能,了解生物代谢的机制和调节方式,了解细胞信号传导和基因表达的过程,以及掌握生物化学领域的一些常用技术和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章糖代谢(10学时)第一节概述糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物。
在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn)。
葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。
葡萄糖与糖原都能在体内氧化提供能量。
食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。
机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等。
本章重点介绍葡萄糖在机体中血糖浓度动态平衡的维持和前五种主要代谢的途径、生理意义及其调节。
一、糖的主要生理功能①氧化供能:糖类占人体全部供能的70%。
(1g糖可提供约16.7kJ的能量)②构成组织细胞的基本成分:核糖:构成核酸;糖脂:生物膜成分③转变为体内的其它成分:转变为脂肪;转变为非必需氨基酸一、糖酵解二、糖的消化吸收食物中的糖主要是淀粉,另外包括一些双糖及单糖。
多糖及双糖都必须经过酶的催化水解成单糖才能被吸收。
食物中的淀粉经唾液中的α淀粉酶作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。
淀粉的主要消化部位在小肠。
糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程,这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。
当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞单向葡萄糖转运体(unidirectional glucose transporter)顺浓度梯度被动扩散到血液中。
三、糖代谢是指葡萄糖在体内的复杂化学反应,葡萄糖吸收入血后,依赖一类葡萄糖转运体(glucose transporter, GLUT)而进入细胞内代谢。
第一节糖的无氧酵解(糖酵解)当机体处于相对缺氧情况(如剧烈运动)时,葡萄糖或糖原分解生成乳酸和少量ATP的过程称之为糖的无氧酵解。
这个代谢过程常见于运动时的骨骼肌,因与酵母的生醇发酵非常相似,故又称为糖酵解。
糖的无氧酵解途径,亦称为EMP途径。
因Meyerhof (M)、Embden (E)和Parnaas (P)的工作对阐明糖酵解的关键步骤起着直接重要的作用,因此酵解途径也被称为MEP途径。
反应过程:参与糖酵解反应的一系列酶存在在细胞质中,因此糖酵解的全部反应过程均在细胞质中进行。
根据反应特点,可将整个过程分为三个阶段,十步反应。
(一)糖酵解过程(Embden-Meyerhof Pathway,EMP)1. 活化阶段(1)葡萄糖磷酸化形成G-6-P此反应基本不可逆,调节位点。
以G-6-P形式将Glc限制在细胞内。
催化此反应的激酶有,已糖激酶和葡萄糖激酶。
已糖激酶:专一性不强。
己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。
葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。
Glc激酶是一个诱导酶,由胰岛素促使合成,肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。
进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。
(2)G-6-P异构化为F-6-P此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。
(3)F-6-P磷酸化,生成F-1.6-2P此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。
磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶。
2.裂解阶段(4)F-1.6-2P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。
同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。
(5)磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛由磷酸丙糖异构酶催化。
已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-2P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P。
3.放能阶段(6)3-磷酸甘油醛氧化成1.3—二磷酸甘油酸(高能化合物)和NADH+H+由磷酸甘油醛脱氢酶催化。
此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。
碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)。
(7)1.3-二磷酸甘油酸转化成3-磷酸甘油酸和ATP由磷酸甘油酸激酶催化,是酵解过程中的第一次底物水平磷酸化反应,也是酵解中第一次产生ATP的反应。
一分子Glc产生二分子三碳糖,共产生2ATP。
(8)3-磷酸甘油酸转化成2-磷酸甘油酸磷酸甘油酸变位酶催化,磷酰基从C3移至C2。
(9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)(高能化合物)2-磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。
(10)磷酸烯醇式丙酮酸生成ATP和丙酮酸。
不可逆,调节位点。
由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸。
这是无氧酵解过程第二次生成ATP,产生方式也是底物水平磷酸化。
由于是1分子葡萄糖产生2分子丙酮酸,所以在这一过程中,1分子葡萄糖可产生2分子ATP。
(11)EMP总反应式1葡萄糖+2Pi+2ADP+2NAD+ → 2丙酮酸+2ATP+2NADH+2H++2H2O(二)2分子丙酮酸还原为2分子乳酸在无氧条件下,丙酮酸被还原为乳酸。
此反应由乳酸脱氢酶催化,乳酸脱氢酶有多种同工酶(详见第四章),骨骼肌中主要含有LDH5,它和丙酮酸亲和力较高,有利于丙酮酸还原为乳酸,LDH5的辅酶是NAD+。
还原反应所需的NADH+H+是3-磷酸甘油醛脱氢时产生,作为供氢体脱氢后成为NAD+,再作为3-磷酸甘油醛脱氢酶的辅酶。
因此,NAD+来回穿梭,起着递氢作用,使无氧酵解过程持续进行。
在有氧的条件下,3-磷酸甘油醛脱氢产生的NADH+H+从细胞质中通过穿梭系统进入线粒体经电子传递链传递生成水,同时释放出能量(详见“第八章”)。
(三)糖酵解过程的能量变化1分子葡萄糖在缺氧的条件下转变为2分子乳酸,同时伴随着能量的产生,净产生2分子ATP;糖原开始1分子葡萄糖单位糖酵解成乳酸,净产生3分子ATP。
(四)糖酵解的生理意义(1) 主要的生理功能是在缺氧时迅速提供能量(2)正常情况下为一些细胞提供部分能量(3) 糖酵解是糖有氧氧化的前段过程,其一些中间代谢物是脂类、氨基酸等合成的前体。
(五)糖酵解的调节1.已糖激酶调节别构抑制剂(负效应调节物):G-6-P和ATP;别构激活剂(正效应调节物):ADP。
2.磷酸果糖激酶调节(关键限速步骤)抑制剂:ATP、柠檬酸、脂肪酸和H+,激活剂:AMP、F-2.6-2P;ATP。
细胞内含有丰富的ATP时,此酶几乎无活性。
高含量的柠檬酸是碳骨架过剩的信号。
3.丙酮酸激酶调节抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP;激活剂:F-1.6-P。
共价修饰调节:(六)丙酮酸的去路1.进入三羧酸循环2.生成乳酸在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3-磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。
总反应:Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O动物体内的乳酸循环(Cori)循环:肌肉收缩,糖酵解产生乳酸。
乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。
Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。
3.生成乙醇酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。
总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。
巴斯德效应( Pasteur effect):有氧氧化抑制生醇发酵(或糖酵解)的现象4.进行糖异生5.合成氨基酸(七)其它单糖进入糖酵解途径糖原降解产物G-1-P,D-果糖,D-半乳糖,D-甘露糖均转化为糖酵解的中间物。
第二节糖的异生作用糖异生作用(gluconeogenesis)是指非糖物质如生糖氨基酸、乳酸、丙酮酸及甘油等转变为葡萄糖或糖原的过程。
糖异生的最主要器官是肝脏。
糖异生起源于细胞线粒体内。
由丙酮酸生成Glc是糖异生的主要途径。
一、糖异生反应过程糖异生反应过程基本上是糖酵解反应的逆过程。
由于糖酵解过程中由己糖激酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障,因此这三个反应是不可逆的。
①Glc到G-6-P ,②F-6-P到F-1.6-P ③PEP到丙酮酸。
这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行,完成糖异生反应过程。
(一)丙酮酸转变为磷酸烯醇式丙酮酸丙酮酸生成磷酸烯醇式丙酮酸的反应包括丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化的两步反应,构成一条所谓“丙酮酸羧化支路”使反应进行。
这个反应是糖酵解过程中丙酮酸激酶催化的磷酸烯醇式丙酮酸生成丙酮酸的逆过程。
1. 丙酮酸羧化生成草酰乙酸(线粒体内)此反应由丙酮酸羧化酶催化,辅酶是生物素,ATP、Mg2+(Mn2+)参与羧化反应,CO2通过生物素使丙酮酸羧化生成草酰乙酸。
此酶存在于线粒体中,故丙酮酸必须进入线粒体才能被羧化为草酰乙酸,这也是体内草酰乙酸的重要来源之一。
丙酮酸羧化酶还催化三羧酸循环的回补反应,所以,草酰乙酸既是糖异生的中间物,又是三羧酸循环的中间物,丙酮酸羧化酶联系着三羧酸循环和糖异生作用。
丙酮酸羧化酶是别构酶,受乙酰CoA和高比值ATP/ADP的激活。
若细胞内ATP含量高,则三羧酸循环的速度降低,糖异生作用加强。
2.草酰乙酸脱羧生成磷酸烯醇式丙酮酸(PEP)(线粒体内)此反应由磷酸烯醇式丙酮酸羧激酶催化,由GTP提供能量,释放CO2。