一元线性回归模型的置信区间与预测

合集下载

第三章 一元线性回归模型

第三章  一元线性回归模型

第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。

为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。

y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。

定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。

其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。

误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。

在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。

给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。

【线性回归】线性回归模型中几个参数的解释

【线性回归】线性回归模型中几个参数的解释

【线性回归】线性回归模型中⼏个参数的解释【线性回归】线性回归模型中⼏个参数的解释R ⽅1. 决定系数/拟合优度类似于⼀元线性回归,构造决定系数。

称为y 关于⾃变量的样本复相关系数。

其中,,有SST=SSR+SSE总离差平⽅和记为SST ,回归平⽅和记为SSR ,残差平⽅和为SSE 。

由公式可见,SSR 是由回归⽅程确定的,即是可以⽤⾃变量x 进⾏解释的波动,⽽SSE 为x 之外的未加控制的因素引起的波动。

这样,总离差平⽅和SST 中能够由⽅程解释的部分为SSR ,不能解释的部分为SSE 。

1. 意义意味着回归⽅程中能被解释的误差占总误差的⽐例。

⼀般来说越⼤,拟合效果越好,⼀般认为超过0.8的模型拟合优度⽐较⾼。

需要注意的是当样本量⼩时,很⼤(例如0.9)也不能肯定⾃变量与因变量之间关系就是线性的。

随着⾃变量的增多,必定会越来越接近于1,但这会导致模型的稳定性变差,即模型⽤来预测训练集之外的数据时,预测波动将会⾮常⼤,这个时候就会对作调整,调整R ⽅可以消除⾃变量增加造成的假象。

F 检验0、预备知识(1)假设检验为了判断与检测X 是否具备对Y 的预测能⼒,⼀般可以通过相关系数、图形等⽅法进⾏衡量,但这只是直观的判断⽅法。

通过对回归参数做假设检验可以为我们提供更严格的数量化分析⽅法。

(2)全模型与简化模型我们称之为全模型(full Model,FM )通过对某些回归系数进⾏假设,使其取指定的值,把这些指定的值带⼊全模型中,得到的模型称为简化模型(reduced model,RM )。

常⽤的简化⽅法将在之后介绍。

1、F 检验检验是线性模型的假设检验中最常⽤的⼀种检验,通过值的⼤⼩可以判断提出的假设是否合理,即是否接受简化模型。

1. 为检验我们的假设是否合理,即评估简化模型相对全模型拟合效果是否⼀样好,需要先建⽴对两个模型拟合效果的评价⽅法。

这⾥我们通过计算模型的残差平⽅和()来衡量模型拟合数据时损失的信息量,也表⽰模型的拟合效果。

第三节 利用一元线性回归方程进行预测和控制

第三节 利用一元线性回归方程进行预测和控制

若记 ( x )
1 (x x) t ( n 2) S 1 n Lxx 2
2
ˆ ( x ) , y2 ( x ) y ˆ (x) y1 ( x ) y
y
ˆ (x) y1 ( x ) y
ˆx ˆa ˆb y
ˆ0 y
y
ˆ (x) y2 ( x ) y
取随机变量
T
ˆ0 y0 y 1 ( x0 x ) 2 S 1 n Lxx
S剩 ˆx ˆ0 a ˆb 其中,S , y 0 n 2 可以证明:当i ~ N(0 , 2) (i=1,2 , … ,n ) 且相互独立时,随机变量T服从自由度为n-2的 t分布 对给定的置信度1-,作概率等式 P{| t | t ( n 1)} 1 ,
y
y2
y 2 ( x) y ( x) ( x)
M


y a b x y1 ( x) y( x) ( x)



y1
0
N
x1
x2
x
(b 0 )

, y2 处分别画两条水平线, 它们分别交曲线 从 y1
y1 ( x)、 y2 ( x) 于N、M ,再过这两点分别画垂线交x 轴
第九章
§9.3
一元线性回归
利用一元线性回归方程进行 预测和控制
一、预测 1、点预测 就是对x=x0时y的精确值y0=a+bx0+0作出点估 ˆx 计,即将x=x0代入回归方程,求得 y ˆ0 a ˆb 0 ˆ 0 作为y0的估计值,这就是点预 将y 测。 2、区间预测 就是区间估计,即在给定的置信度下求出精 确值y0的置信区间,称为y0的区间预测。

一元线性回归模型的置信区间与预测10页

一元线性回归模型的置信区间与预测10页

§2.5 一元线性回归模型的置信区间与预测多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。

所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。

一、参数估计量的置信区间在前面的课程中,我们已经知道,线性回归模型的参数估计量^β是随机变量i y 的函数,即:i i y k ∑=1ˆβ,所以它也是随机变量。

在多次重复抽样中,每次的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。

现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。

即回答1β以何种置信水平位于()a a +-11ˆ,ˆββ之中,以及如何求得a 。

在变量的显著性检验中已经知道)1(~^^---=k n t s t iii βββ (2.5.1)这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值2αt ,那么t 值处在()22,ααt t -的概率是α-1。

表示为即于是得到:在(α-1)的置信水平下i β的置信区间是)(^^2^2^iis t s t i i βαβαββ⨯+⨯-,i=0,1 (2.5.3)在某例子中,如果给定01.0=α,查表得从回归计算中得到01.0,15,21.0ˆ,3.102ˆ1ˆˆ10====ββββS S 根据(2.5.2)计算得到10,ββ的置信区间分别为()48.147,12.57和(0.1799,0.2401)显然,参数1β的置信区间要小。

在实际应用中,我们当然希望置信水平越高越好,置信区间越小越好。

如何才能缩小置信区间?从(2.5.3)式中不难看出:(1)增大样本容量n 。

§2.4 一元线性回归分析的应用:预测问题

§2.4 一元线性回归分析的应用:预测问题


1 (1000 2150) 2 Var (Y0 ) = 13402 + = 3727.29 7425000 10
S (Y0 ) = 61.05
因此,总体均值 的置信区间为: 因此,总体均值E(Y|X=1000)的95%的置信区间为: 的 的置信区间为
673.84-2.306×61.05< E(Y|X=1000) <673.84+2.306×61.05 × × 或 (533.05, 814.62) )
一元线性回归分析的应用: §2.4 一元线性回归分析的应用:预 测问题
是条件均值E(Y|X=X0)或个值 0的一 或个值Y 一、0是条件均值 或个值 个无偏估计
二、预测值的置信区间 1、总体均值E(Y|X0) 、
的置信区间为 在1-α的置信度下, E(Y|X0)的置信区间为 α的置信度下, 的置信区间
同样地,对于 在 的置信区间为: 同样地,对于Y在X=1000的个体值,其95%的置信区间为: 的个体值, 的置信区间为 673.84 - 2.306×61.05<Yx=1000 <673.84 + 2.306×61.05 × × 或 (372.03, 975.65)
总体回归函数的置信带(域) 总体回归函数的置信带( 置信带 个体的置信带(域) 个体的置信带( 置信带
对于Y的总体均值 对于 的总体均值E(Y|X)与个体值的预测区 的总体均值 与个体值的预测区 置信区间) 间(置信区间): 越大, ( 1)样本容量 越大 , 预测精度越高 , 反之 ) 样本容量n越大 预测精度越高, 预测精度越低; 预测精度越低; (2)样本容量一定时,置信带的宽度当在 )样本容量一定时,置信带的宽度当在X 均值处最小,其附近进行预测(插值预测) 均值处最小 , 其附近进行预测 ( 插值预测 ) 精度越大。 精度越大。 (3)误差项的方差 误差项的方差

回归预测的知识与常用方法

回归预测的知识与常用方法

n2
n (x x)2
x0为给定值。
9.2.4 一元线性回归预测案例研究(1)
例:x、y两变量的观察数据如下表所示,根据数据进行回归预测。
数据序号
x
1
1.5
2
1.8
3
2.4
4
3.0
5
3.5
6
3.9
7
4.4
8
4.8
9
5.0
合计
30.3
y
x2
y2
xy
4.8
2.25
23.04
7.20
5.7
3.24
32.49 10.26
9.2.4 一元线性回归预测案例研究(5)
根据上表数据以及t统计量的计算公式有:
S b
( y y ) 2
(n 2) (x x)2
2.03 0.1488 (9 2) 13 .1
t b 2.9303 19 .692 S b 0.1488
取 α 0.05
t (n 2) t 0.025 (7 ) 2.365
由于预测值与实际值之间存在有不确定的偏差,因而需 要确定预测值的有效区间,即置信区间。
一元线性回归预测的置信区间有下述表达式确定:
置信区 间:
[ y t (n 2) • S ( y) ,y t (n 2) • S ( y)]
2
2
其中
S ( y)
( y y ) 2 •
1 1
(x0 x)2
t检验
t检验是利用t统计量来检验回归参数a和b是否具有统计意义。
9.2.2 预测模型检验(相关系数检验)
相关系数的计算公式是:
r
( x x )( y y )

2.1 线性回归模型概述

2.1 线性回归模型概述

△几点注意
– 不线性相关并不意味着不相关; 不线性相关并不意味着不相关; – 有相关关系并不意味着一定有因果关系; 有相关关系并不意味着一定有因果关系; – 相关分析对称地对待任何( 两个 )变量,两 变量, 相关分析对称地对待任何 对称地对待任何 个变量都被看作是随机的;回归分析对变量的 个变量都被看作是随机的;回归分析对变量的 处理方法存在不对称性,即区分因变量( 处理方法存在不对称性,即区分因变量(被解 不对称性 释变量)和自变量(解释变量):前者是随机 释变量)和自变量(解释变量):前者是随机 ): 变量,后者不是。 变量,后者不是。
• 回归与因果关系
– 回归分析研究的一个变量对另一个变量的依 赖关系可以是一种因果关系,但也可能不是 因果关系。 – 统计关系本身不可能意味着任何因果关系
• 回归与相关
– 回归分析和相关分析都是研究变量间关系的统计学 课题 – 两者的主要差别: 两者的主要差别: – ◇回归分析中需要区别自变量和因变量;相关分析 回归分析中需要区别自变量和因变量; 中则不需要区分 – ◇相关分析中所涉及的变量y与x全是随机变量。而 相关分析中所涉及的变量y 全是随机变量。 回归分析中,因变量y是随机变量,自变量x 回归分析中,因变量y是随机变量,自变量x 可以 是随机变量, 是随机变量,也可以是非随机的确定变量 –◇相关分析的研究主要是为刻画两类变量间线性相 ◇ 关的密切程度。而回归分析不仅可以揭示变量X 关的密切程度。而回归分析不仅可以揭示变量X对 变量y的影响大小, 变量y的影响大小,还可以由回归方程进行预测和 控制
描出散点图发现:随着收入的增加,消费 “平均地说”也在增加,且Y的条件均值均落在 平均地说” 平均地说 总体回归线。 一根正斜率的直线上。这条直线称为总体回归线 总体回归线

一元线性回归:假设检验和置信区间

一元线性回归:假设检验和置信区间

一般步骤
1. 提出原假设和备择假设
原假设和双边备择假设: H0: 1 = 1,0 对 H1: 1 ≠ 1,0 其中 1,0 为原假设下的假设值. 原假设和单边备择假设: H0: 1 = 1,0 对 H1: 1 < 1,0 或 H0: 1 = 1,0 对 H1: 1 >1,0
检验 Y 的均值: 检验 1,
t = Y Y ,0
sY / n
ˆ t = 1 1,0 , ˆ) SE ( 1
ˆ)= ˆ 抽样分布的方差的估计的平方根 ,公式? 其中 SE( 1 1
5
ˆ ) 的公式 SE( 1
ˆ 方差的表达式(大 n): 回顾 1
2 var[( X ) u ] i x i v ˆ)= var( = , 其中 vi = (Xi – X)ui. 1 2 2 4 n( X ) n X ˆ 方差的估计量:利用数据构造估计量取替未知总体值 2
ˆ 的抽样分布: 1 ˆ 近似服从, 在 LSA 下, 对大 n , 1
2 ˆ ~N , v 1 1 n 4 X
, 其中 vi = (Xi – X)ui
3
5.1 关于某个回归系数的假设检验
• 1的假设检验
目的是利用数据检验诸如 1 = 0 的假设,得到(原)假设正 确与否的暂时性结论.
2 ˆ
1 n 2 ˆi v n 2 i 1
1
1
1
这个公式看着令人有些讨厌,但: 事实上并没有看上去的那样复杂,其中分子估计的是 var(v), 分母估计的是 var(X). 为什么自由度调整为 n – 2? 因为有两个系数 (0 和 1)是 估计的. ˆ )是由回归软件计算的 SE(

第二章经典单方程计量经济模型:一元线性回归模型

第二章经典单方程计量经济模型:一元线性回归模型

二、总体回归函数
例2.1:一个假想的社区由100户家庭组成,要研 究该社区每月家庭消费支出Y与每月家庭可支配收 入X的关系。
即如果知道了家庭的月收入,能否预测社区该类 家庭的平均月消费支出水平?
为达此目的,将该100户家庭依据每月可支配收入 划分为10组,以分析每一收入组的家庭消费支出。
每 月 家 庭 消 费 支 出 Y (元)
单方程计量经济学模型 理论与方法
Theory and Methodology of SingleEquation Econometric Model
第二章 经典单方程计量经济学模型: 一元线性回归模型
• 回归分析概述 • 一元线性回归模型的参数估计 • 一元线性回归模型检验 • 一元线性回归模型预测 • 实例
为了得到良好的估计量需要哪些条件?
2、无偏性,即估计量ˆ0 、 ˆ1 的均值(期望)等于总体回归
参数真值0 与1
证: ˆ1 kiYi ki (0 1 X i i ) 0 ki 1 ki X i ki i
易知 故
ki
xi 0 xi2
ki Xi 1
ˆ1 1 ki i
2、回归分析的基本概念
回归分析是研究一个变量关于另一个(些) 变量的统计依赖关系(因果关系X)的计算方法和 理论。
其用意:在于通过后者的已知或设定值,去 估计前者的总体均值。
回归分析主要内容包括: (1)根据样本观察值对 经济计量模型参数进行估计,求得回归方程;
(2)对回归方程、参数估计值进行显著性检验; (3)利用回归方程进行分析、评价及预测。
一、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值.

计量经济学 第二章 一元线性回归模型

计量经济学 第二章 一元线性回归模型

计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。

其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。

其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。

一般说来,随机项来自以下几个方面:1、变量的省略。

由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。

2、统计误差。

数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。

3、模型的设定误差。

如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。

4、随机误差。

被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。

若相互依赖的变量间没有因果关系,则称其有相关关系。

对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。

他们各有特点、职责和分析范围。

相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。

回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

一元线性回归模型置信区间和预测

一元线性回归模型置信区间和预测

⼀元线性回归模型置信区间和预测§2.5 ⼀元线性回归模型的置信区间与预测多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个⽅⾯,在数理统计学中属于区间估计问题。

所谓区间估计是研究⽤未知参数的点估计值(从⼀组样本观测值算得的)作为近似值的精确程度和误差范围,是⼀个必须回答的重要问题。

⼀、参数估计量的置信区间在前⾯的课程中,我们已经知道,线性回归模型的参数估计量^β是随机变量i y 的函数,即:i i y k ∑=1?β,所以它也是随机变量。

在多次重复抽样中,每次的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。

现在我们⽤参数估计量的⼀个点估计值近似代表参数值,那么,⼆者的接近程度如何?以多⼤的概率达到该接近程度?这就要构造参数的⼀个区间,以点估计值为中⼼的⼀个区间(称为置信区间),该区间以⼀定的概率(称为置信⽔平)包含该参数。

即回答1β以何种置信⽔平位于()a a +-11?,?ββ之中,以及如何求得a 。

在变量的显著性检验中已经知道)1(~^^---=k n t s t iii βββ (2.5.1)这就是说,如果给定置信⽔平α-1,从t 分布表中查得⾃由度为(n-k-1)的临界值2αt ,那么t 值处在()22,ααt t -的概率是α-1。

表⽰为ααα-=<<-1)(22t t t P即αββαβα-=<-<-1)(2^2^t s t P iiiαββββαβα-=?+<^2^iis t s t P i i i于是得到:在(α-1)的置信⽔平下i β的置信区间是)(^^2^2^iis t s t i i βαβαββ?+?-,i=0,1 (2.5.3)在某例⼦中,如果给定01.0=α,查表得012.3)13()1(005.02==--t k n t α从回归计算中得到01.0,15,21.0?,3.102?110====ββββS S 根据(2.5.2)计算得到10,ββ的置信区间分别为()48.147,12.57和(0.1799,0.2401)显然,参数1β的置信区间要⼩。

一元线性回归预测法

一元线性回归预测法
随机扰动项 u i 的逐次值互不相关
C o v ( u i , u j ) E [ u i E ( u i ) ] [ u j E ( u j ) ] E ( u iu j) 0 ( i j)
假定4:随机扰动 u i 与解释变量 X 不相关
C o v ( u i , X i ) E [ u i E ( u i ) ] [ X i E ( X i ) ] 0
32
(2)对随机扰动项 u 的假定
又称高斯假定、古典假定 假定1:零均值假定
在给定 X 的条件下 , u i 的条件期望为零
E(ui ) 0
假定2:同方差假定
在给定 X 的条件下,u i 的条件方差为某个常数 2
V a r ( u i) E [ u i E ( u i) ] 2 2
33
假定3:无自相关假定
● 从变量相关关系的表现形式看
线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
正相关——变量同方向变化,同增同减 负相关——变量反方向变化,一增一减 不相关
10
800 Y
600
400
Y 2
200
1
0 0
3.0
10
20
30
完全相关
2.5
2.0
1.5
1.0
寻求一种规则和方法,使得到的SRF的参数 ˆ 1 和 ˆ 2 尽可能“接近”总体回归函数中的参数 1 和 2 。
这样的“规则和方法”有多种,最常用的是最小二 乘法
30
简单线性回归的基本假定
1. 为什么要作基本假定?
●模型中有随机扰动,估计的参数是随机变量, 只有对随机扰动的分布作出假定,才能确定 所估计参数的分布性质,也才可能进行假设 检验和区间估计

一元线性回归模型的参数估计实验报告

一元线性回归模型的参数估计实验报告

山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。

二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。

三、实验步骤:(一)建立模型1、新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存。

2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。

点击name键进行命名,选择默认名称Group01,保存文件。

得到中国居民总量消费支出与收入资料:年份X Y19786678.83806.719797551.64273.219807944.24605.5198184385063.919829235.25482.4198310074.65983.21984115656745.7198511601.77729.2198613036.58210.9198714627.788401988157949560.5198915035.59085.5199016525.99450.9199118939.610375.8199222056.511815.3199325897.313004.7199428783.413944.2199531175.415467.9199633853.717092.5199735956.218080.6199838140.919364.119994027720989.3200042964.622863.92001 46385.4 24370.1 2002 51274 26243.2 2003 57408.1 28035 2004 64623.1 30306.2 2005 74580.4 33214.4 2006 85623.1 36811.2注:y 表示中国居民总量消费 x 表示可支配收入3、 画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph 出现对话框,输入 “x y ”,点击确定。

一元线性回归模型

一元线性回归模型
(检验的步骤)
1. 提出假设 H0:r=0 2.
线性关系不显著
计算检验统计量F
3. 确定显著性水平,并根据分子自由度1和分母自由度n2找出临界值F 4. 作出决策:若F>F ,拒绝H0;若F<F ,不拒绝H0
课堂作业
1、若X表示在一家分店工作的售货人数,Y表示这家分店的年销售额 (千元),已经求出Y对X的回归方程的估计结果如下表
最小二乘法的思路
纵向距离是Y的实际值与拟合值之差,差异大拟
合不好,差异小拟合好,所以称为残差、拟合
误差或剩余。
将所有纵向距离平方后相加,即得误差平方和,
“最好”直线就是使误差平方和最小的直线。 拟合直线在总体上最接近实际观测点。 于是可以运用求极值的原理,将求最好拟合直 线问题转换为求误差平方和最小的问题。
显著性检验
1、经济意义检验 2、统计意义检验
经济意义检验
1、检验参数估计量的符号 2、检验参数估计量的大小 3、参数之间的关系
显著性检验
1、相关系数检验 2、回归系数检验 3、线性关系检验
回归系数的检验
1. 检验 x 与 y 之间是否具有线性关系, 或者说,检验自变量 x 对因变量 y 的 影响是否显著
x
最小二乘法
(
ˆ 0

ˆ 1
的计算公式)
ˆ ˆ 根据最小二乘法的要求,可得求解 0 和 1 的 公式如下 n Q ˆ ˆ 2(1) yi 0 1 xi 0 ˆ 0 i 1
n Q ˆ ˆ 2 yi 0 1 xi ( xi ) 0 ˆ 1 i 1
Байду номын сангаасyf


一元线性回归模型及其假设条件

一元线性回归模型及其假设条件

§4.2 一元线性回归模型及其假设条件1.理论模型y=a+bx+εX 是解释变量,又称为自变量,它是确定性变量,是可以控制的。

是已知的。

Y 是被解释变量,又称因变量,它是一个随机性变量。

是已知的。

A,b 是待定的参数。

是未知的。

2.实际中应用的模型x b a yˆˆˆ+= ,bˆ,x 是已知的,y ˆ是未知的。

回归预测方程:x b a y += a ,b 称为回归系数。

若已知自变量x 的值,则通过预测方程可以预测出因变量y 的值,并给出预测值的置信区间。

3.假设条件满足条件:(1)E (ε)=0;(2)D (εi )=σ2;(3)Cov (εi ,εj )=0,i ≠j ; (4) Cov (εi ,εj )=0 。

条件(1)表示平均干扰为0;条件(2)表示随机干扰项等方差;条件(3)表示随机干扰项不存在序列相关;条件(4)表示干扰项与解释变量无关。

在假定条件(4)成立的情况下,随机变量y ~N (a+bx ,σ2)。

一般情况下,ε~N (0,σ2)。

4.需要得到的结果a ˆ,b ˆ,σ2§4.3 模型参数的估计1.估计原理回归系数的精确求估方法有最小二乘法、最大似然法等多种,我们这里介绍最小二乘法。

估计误差或残差:y y e i i i -=,x b a y i +=,e e y y ii i i x b a ++=+= (5.3—1)误差e i 的大小,是衡量a 、b 好坏的重要标志,换句话讲,模型拟合是否成功,就看残差是否达到要求。

可以看出,同一组数据,对于不同的a 、b 有不同的e i ,所以,我们的问题是如何选取a 、b 使所有的e i 都尽可能地小,通常用总误差来衡量。

衡量总误差的准则有:最大绝对误差最小、绝对误差的总和最小、误差的平方和最小等。

我们的准则取:误差的平方和最小。

最小二乘法:令 ()()∑∑---∑======n i ni n i i x b a y y y e i i i i Q 112212 (5.3—2)使Q 达到最小以估计出a 、b的方法称为最小二乘法。

第02章-一元线性回归模型

第02章-一元线性回归模型

四、拟合优度的度量
• 基本概念:
拟合优度衡量的是样本回归线对样本观测值的拟合程度。 样本观测值距回归线越近,拟合优度越高,x对y的解释程 度越强。
• 样本观测值、拟合值、样本均值之间的关系
ˆ ˆ ( yt − y ) = ( yt − yt ) + ( yt − y )
?相关分析适用于无明确因果关系的变量之间的关系判断常使用的工具是相关系数相关系数对称的看待两个变量相关系数仅判断变量间是否存在线性相关相关系数判断的是统计依赖关系?如果两个变量之间存在因果关系则需要建立回归模型采用回归分析的方法判断变量之间的因果性效应一元线性回归模型的建立?在回归模型中往往假定解释变量是因被解释变量是果而分析的目标则是确定解释变量对被解释变量的因果性效应的具体数值
5. 一元线性回归模型的假定条件 • 用样本估计总体回归函数,总会存在偏差 (样本不是总体,而且模型存在随机干扰 项),为了保证估计结果具有良好的性质, 通常要对模型中的变量、模型形式以及随 机误差项提出一些假定条件 • 对模型形式和变量的假定
–假定解释变量x是非随机的,或者虽然是随机 的,但与随机误差项u不相关 –假定变量和模型无设定误差
第2章 一元线性回归模型
一、模型的建立及其假定条件 二、普通最小二乘估计(OLS) 三、OLS估计量的统计性质 四、拟合优度的度量 五、回归参数的显著性检验与置信区间 六、一元线性回归模型的预测
一、模型的建立及其假定条件
1. 经济变量之间的关系 • 计量经济分析研究经济变量之间的关系及 其变化规律。 • 两变量之间可能存在的关系:
ˆ ˆ ˆ yt = β 0 + β1 xt
• 样本回归函数(SRF)表示在图形中即为样本回归线 • 需要注意:

一元线性回归模型及参数估计

一元线性回归模型及参数估计

步骤:收集数据、建立模型、 计算参数、评估模型
优点:简单易行,适用于线 性回归模型
最大似然估计法
定义:最大似然 估计法是一种基 于概率的参数估 计方法,通过最 大化样本数据的 似然函数来估计
参数。
原理:利用已知 样本数据和概率 分布函数,计算 出样本数据出现 的概率,然后选 择使得概率最大 的参数值作为估
参数估计的性质
无偏性
定义:参数估计量是 无偏估计时,其期望 值等于参数的真实值。
性质:无偏性是线性 回归模型参数估计的 最基本性质之一,是 评价估计量优劣的重 要标准。
证明:可以通过数学 推导证明无偏性,具 体过程可以参考相关 教材或论文。
应用:在回归分析中, 无偏性可以保证估计 的参数具有最小误差, 从而提高预测的准确 性和可靠性。
计值。
优点:简单易行, 适用于多种分布 类型的数据,具
有一致性。
局限:对样本数 据的要求较高, 当样本数据量较 小或分布不均时, 估计结果可能不
准确。
最小绝对误差准则
定义:最小化预测值与实际值之间的绝对误差
优点:对异常值不敏感,能够更好地处理数据中的噪声和异常值
缺点:可能导致模型过于复杂,过拟合数据 应用场景:适用于预测连续变量,尤其是当因变量和自变量之间的关系是 非线性的情况
行处理。
处理方法:包括 删除不必要的自 变量、合并相关 性较高的自变量、 使用其他模型等
方法。
模型预测与决策应用
预测未来趋势
利用一元线性回 归模型预测未来 趋势
模型参数估计的 方法和步骤
预测结果的解读 与决策应用
模型预测的局限 性及改进方法
制定决策依据
利用回归方程进行 预测
ห้องสมุดไป่ตู้
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.5 一元线性回归模型的置信区间与预测多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。

所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。

一、参数估计量的置信区间在前面的课程中,我们已经知道,线性回归模型的参数估计量^β是随机变量i y 的函数,即:i i y k ∑=1ˆβ,所以它也是随机变量。

在多次重复抽样中,每次的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。

现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。

即回答1β以何种置信水平位于()a a +-11ˆ,ˆββ之中,以及如何求得a 。

在变量的显著性检验中已经知道)1(~^^---=k n t s t iii βββ (2.5.1)这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值2αt ,那么t 值处在()2,ααt t -的概率是α-1。

表示为ααα-=<<-1)(22t t t P即αββαβα-=<-<-1)(2^2^t s t P iiiαββββαβα-=⨯+<<⨯-1)(^^2^2^iis t s t P i i i于是得到:在(α-1)的置信水平下i β的置信区间是)(^^2^2^iis t s t i i βαβαββ⨯+⨯-,i=0,1 (2.5.3)在某例子中,如果给定01.0=α,查表得012.3)13()1(005.02==--t k n t α从回归计算中得到01.0,15,21.0ˆ,3.102ˆ1ˆˆ10====ββββS S 根据(2.5.2)计算得到10,ββ的置信区间分别为()48.147,12.57和(0.1799,0.2401)显然,参数1β的置信区间要小。

在实际应用中,我们当然希望置信水平越高越好,置信区间越小越好。

如何才能缩小置信区间?从(2.5.3)式中不难看出:(1)增大样本容量n 。

在同样的置信水平下,n 越大,从t 分布表中查得自由度为(n-k-1)的临界值2αt 越小;同时,增大样本容量,在一般情况下可使估计值的标准差βˆS 减小,因为式中分母的增大是肯定的,分子并不一定增大。

(2)更主要的是提高模型的拟合度,以减小残差平方和∑2i e 。

设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间也为0。

(3)提高样本观测值的分散度。

在一般情况下,样本观测值越分散,标准差越小。

置信水平与置信区间是矛盾的。

置信水平越高,在其他情况不变时,临界值2αt 越大,置信区间越大。

如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。

二、预测值的置信区间1、点预测计量经济学模型的一个重要应用是经济预测。

对于模型i i i u x y ++=10ββ,n i ,,2,1Λ=如果给定样本以外的解释变量的观测值f x ,有f f f u x y ++=10ββ因f x 是前述样本点以外的解释变量值,所以f u 和()n i u i ,,2,1Λ=是不相关的。

引用已有的OLS 的估计值,可以得到被解释变量f y 的点预测值:ff x y 10ˆˆˆββ+= (2.5.4)但是,严格地说,这只是被解释变量的预测值的估计值,而不是预测值。

原因在于两方面:一是模型中的参数估计量是不确定的,正如上面所说的;二是随机项的影响。

所以,我们得到的仅是预测值的一个估计值,预测值仅以某一个置信水平处于以该估计值为中心的一个区间中。

于是,又是一个区间估计问题。

2、区间预测如果已经知道实际的预测值f y ,那么预测误差为f f f yy e ˆ-= 显然,f e 是一随机变量,可以证明()()()()()0ˆˆˆ10101010=+-+=+-++=-=f f f f f f f f x x x E u x E y y E e E ββββββββ 而()()()()()()()()f f f u f f f f f f f f f f f f f y y Cov yD y y Cov yy Cov y y Cov y y yy Cov e e Cov e D ˆ,2ˆˆ,ˆˆ,2,ˆ,ˆ,2-+=+-=--==σ因为f yˆ由原样本的OLS 估计值求得,而f y 与原样本不相关,故有: ()0ˆ,=f f y y Cov ,()()f u f yD e D ˆ2+=σ 可以计算出来:()()2121ˆu ni if f x xxx n yD σ⎪⎪⎪⎪⎭⎫ ⎝⎛--+=∑= (2.5.5) ()()21211u ni i f f x x xx n e D σ⎪⎪⎪⎪⎭⎫⎝⎛--++=∑= (2.5.6) 因f yˆ和f e 均服从正态分布,可利用它们的性质构造统计量,求区间预测值。

利用f yˆ构造统计量为: ()()()1,0~1ˆ212ˆN x x x x n y E y N uni i f f f y f σ⎪⎪⎪⎪⎭⎫ ⎝⎛--+-=∑=将2u σ用估计值2ˆu σ代入上式,有()()()2~ˆ1ˆ212ˆ-⎪⎪⎪⎪⎭⎫ ⎝⎛--+-=∑=n t x x x x n y E y t u ni i f f f y f σ这样,可得显著性水平α下()fy E的置信区间为()()⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛--+*+⎪⎪⎪⎪⎭⎫ ⎝⎛--+*-∑∑==21222122ˆ1ˆ ,ˆ1ˆu n i i f f un i i f f x x x x n t y x x x x n t y σσαα (2.5.7) (2.5.7)式称为f y 的均值区间预测。

同理,利用f e 构造统计量,有()()()1,0~11ˆ11212212N x x x x n yy x x x x n e N un i i f f f un i i f fe f σσ⎪⎪⎪⎪⎭⎫⎝⎛--++-=⎪⎪⎪⎪⎭⎫ ⎝⎛--++=∑∑==将2u σ用估计值2ˆu σ代入上式,有:()()()2~ˆ11ˆˆ11212212-⎪⎪⎪⎪⎭⎫⎝⎛--++-=⎪⎪⎪⎪⎭⎫⎝⎛--++=∑∑==n t x x xx n yy x x xx n e t u ni i f f f u ni i f fe f σσ根据置信区间的原理,得显著性水平α下fy 的置信区间:()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛--++*+⎪⎪⎪⎪⎭⎫ ⎝⎛--++*-∑∑==21222122ˆ11ˆ ,ˆ11ˆu n i i f f u n i i f f x x x x n t yx x x x n t y σσαα(2.5.8)上式称为f y 的个值区间预测,显然,在同样的α下,个值区间要大于均值区间。

(2.5.7)和(2.5.8)也可表述为:f y 的均值或个值落在置信区间内的概率为α-1,α-1即为预测区间的置信度。

或者说,当给定解释变量值f x 后,只能得到被解释变量f y 或其均值()f y E 以)1(α-的置信水平处于某区间的结论。

经常听到这样的说法,“如果给定解释变量值,根据模型就可以得到被解释变量的预测值为……值”。

这种说法是不科学的,也是计量经济学模型无法达到的。

如果一定要给出一个具体的预测值,那么它的置信水平则为0;如果一定要回答解释变量以100%的置信水平处在什么区间中,那么这个区间是∞。

在实际应用中,我们当然也希望置信水平越高越好,置信区间越小越好,以增加预测的实用意义。

如何才能缩小置信区间?从(2.5.5)和(2.5.6)式中不难看出:(1)增大样本容量n 。

在同样的置信水平下,n 越大,从t 分布表中查得自由度为(n-k-1)的临界值2αt 越小;同时,增大样本容量,在一般情况下可使2ˆ22-=∑n e iu σ减小,因为式中分母的增大是肯定的,分子并不一定增大。

(2)更主要的是提高模型的拟合优度,以减小残差平方和∑2i e 。

设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间长度也为0,预测区间就是一点。

(3)提高样本观测值的分散度。

在一般情况下,样本观测值越分散,作为分母的()2∑-x x i 的值越大,致使区间缩小。

置信水平与置信区间是矛盾的。

置信水平越高,在其他情况不变时,临界值2αt 越大,置信区间越大。

如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。

四、一元线性回归模型参数估计实例为了帮助读者理解一元线性回归模型参数估计的原理,下面以我国国家财政文教科学卫生事业费支出模型为例,不采用计量经济学应用软件,用手工计算,进行模型的参数估计。

经分析得到,我国国家财政中用于文教科学卫生事业费的支出,主要由国家财政收入决定,二者之间具有线性关系。

于是可以建立如下的模型:t t t FI ED μβα++=其中,t ED 为第t 年国家文教科学卫生事业费支出额(亿元),t FI 为第t 年国家财政收入额(亿元),t μ,为随机误差项,βα和为待估计的参数。

选取1991—1997年的数据为样本,利用(2.2.6)和(2.2.7)的计算公式,分别计算参数估计值。

8812=∑ttED38500=∑ttFI1259=ED 5500=FI2368696442=∑ttFI54078207·=∑ttEDFI 5612207.=∑ttFI251196442.=∑tFI由电脑计算的参数估计值为24.0ˆ,65.39ˆ=-=βα全部统计结果如下表。

从表中可看出,判定系数=2R 0.99,表示以国家财政收入额来解释国家文教科学卫生事业费支出额,在1991至1997年间,拟合度相当理想。

截距项α的估计值对应的t-统计量为0.47,不能通过显著性检验,即不能推翻α为0的假设;而一次系数β的估计值对应的t-统计量为20.34,不用查表即可知通过显著性检验,即β显著不为0,因果关系成立。

F-统计量的值为413.58,也表示方程系数显著不为0。

表一:Eviews计算结果Dependent Variable: EDMethod: Least SquaresDate: 09/21/02 Time: 16:22Sample: 1991 1997Included observations: 7Variable Coefficient Std. Error t-Statistic Prob.C 30.05237 63.90691 0.470252 0.6580FI 0.223419 0.010986 20.33659 0.0000 R-squared 0.988055 Mean dependent var 1258.857 Adjusted R-squared 0.985666 S.D. dependent var 459.8972 S.E. of regression 55.06160 Akaike info criterion 11.08974 Sum squared resid 15158.90 Schwarz criterion 11.07428 Log likelihood -36.81408 F-statistic 413.5768 Durbin-Watson stat 1.644626 Prob(F-statistic) 0.000005表二:不含截距项的Eviews计算结果:Dependent Variable: EDMethod: Least SquaresDate: 09/21/02 Time: 16:19Sample: 1991 1997Included observations: 7Variable Coefficient Std. Error t-Statistic Prob.FI 0.228304 0.003337 68.40877 0.0000 R-squared 0.987526 Mean dependent var 1258.857 Adjusted R-squared 0.987526 S.D. dependent var 459.8972 S.E. of regression 51.36364 Akaike info criterion 10.84730 Sum squared resid 15829.34 Schwarz criterion 10.83957 Log likelihood -36.96556 Durbin-Watson stat 1.630622Dependent Variable: LEDMethod: Least SquaresDate: 09/21/02 Time: 16:21Sample: 1991 1997Included observations: 7Variable Coefficient Std. Error t-Statistic Prob.C -1.522329 0.383141 -3.973290 0.0106LFI 1.005563 0.044764 22.46341 0.0000 R-squared 0.990188 Mean dependent var 7.077084 Adjusted R-squared 0.988226 S.D. dependent var 0.382958 S.E. of regression 0.041554 Akaike info criterion -3.288701 Sum squared resid 0.008634 Schwarz criterion -3.304156 Log likelihood 13.51045 F-statistic 504.6048 Durbin-Watson stat 1.930000 Prob(F-statistic) 0.000003多元线性回归模型的参数估计实例例2.3.1 建立中国消费模型。

相关文档
最新文档