如何求一次函数的解析式-课件

合集下载

第3课时用待定系数法求一次函数解析式课件+2023-2024学年人教版数学八年级下册

第3课时用待定系数法求一次函数解析式课件+2023-2024学年人教版数学八年级下册


即物体的质量为4kg时,弹簧长度为
16.5cm.
2024年9月25日星期三 20:31:30
确定正比例函数的表达式需要几
个条件?
一个
确定一次函数的表达式呢?
两个
2024年9月25日星期三 20:31:30
怎样求一次函数的表达式?
1. 设一次函数表达式为y=kx+b; 2. 根据已知条件列出有关方程; 3. 解方程;
2024年9月25日星期三 20:31:27
复习回顾
1. 什么是一次函数?

若两个变量x,y间的关系式可以表示成
习 y=kx+b(k,b为常数,k≠0)的形式,则称y是x的 一次函数. 特别的,当b=0,即y=kx(k为常数,
导 且k≠0)时,称y是x的正比例函数。
入 2. 一次函数的图象是什么?
∴b=2
∴原直线为y=-2x+2.
2024年9月25日星期三 20:31:31
当堂练习
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论
正确的是 ( D )
A.k=2
B.k=3
y
C.b=2 D.b=3
3
x O2
2024年9月25日星期三 20:31:32
2. 如图,直线l是一次函数y=kx+b的图象,填空:
2024年9月25日星期三 20:31:33
3. 已知直线l与直线y=-2x平行,且与y轴交于 点(0,2),求直线l的解析式.
解:设直线l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2.
又∵直线过点(0,2), ∴2=-2×0+b, ∴b=2, ∴直线l的解析式为y=-2x+2.

人教初中数学八下 利用待定系数法求一次函数的解析式课件 【经典初中数学课件汇编】

人教初中数学八下 利用待定系数法求一次函数的解析式课件 【经典初中数学课件汇编】

(1) 代数式 a 是二次根式吗?
(2) 2 2 是二次根式吗?
(3) 代数式 a2(a2), 1(x0)
根式吗?
x
是二次
(4) a 1 (a≥0)是二次根式吗?
知识运用:
下列代数式中哪些是二次根式?
⑴1
2

⑶ a2 2a 2 ⑷
⑸ m 32 ⑹
16
x (x 0)
a9
a1 (a3)
x
课外选作
已知直线y=kx+b,经过点A(0,6),B(1,4) (1)写出表示这条直线的函数解析式。 (2)如果这条直线经过点P(m,2), 求m的值。 (3)求这条直线与x 轴,y 轴所围成的图形的面积 。
y
2
-2 -2 0 2
x
拓展:
1、正比例函数y=k1x与一次函数y=k2x+b的 图象如图所示,它们的交点A的坐标为(
(1)这个一次函数的解析式; (2)直线与两坐标轴围成的面积;
(0,4)
解:(1)把点(1,2)和点(-1,6)代入 y=kx+b得:
2=k+ b 解得 k= -2
6= -k+b
b=4
∴一次函数的解析式:y= -2x+4
(2)如图,直线y=-2x+4与y轴的交点A(0,4),
与x轴的交点B(2,0)
巩固提高1:
1.分别求下列二次根式中的字母的取值范围
(1)( 3 2x )2 (2) (1 x ) 2 (3) x 3
x2
(1)3.2x0x3 (2).x为全体实数
2 ( 3 )x .3 0 且 x 2 x 3 且 x 2
2.当x_=_0___时, 3x 3x 有意义.

沪科版数学八年级上册12.2.3用待定系数法求函数解析式课件(共19张PPT)

沪科版数学八年级上册12.2.3用待定系数法求函数解析式课件(共19张PPT)
D
解析:把x=1代入y=2x,求得B点坐标为(1,2),再由A(0,3),B(1,2),求得一次函数解析式为y=-x+3.
仿例3
直线y=(m+1)x+m2 +1与y轴的交点坐标是(0,5),且直线经过第一、二、四象限,则直线的解析式为 .
第十二章 一次函数
12.2 一次函数12.2.3 用待定系数法求函数解析式
学习目标
学习重难点
重点
难点
1.理解待定系数法,并会用待定系数法求一次函数的解析式;2.结合一次函数的图象和性质,确定一次函数的表达式.
用待定系数法求一次函数的解析式.
结合一次函数的性质,用待定系数法确定一次函数的解析式.
∴2=-2×0+b,
∴b=2,
∴直线l的表达式为y=-2x+2.
∴k= -2.
练习4
归纳小结
用待定系数法求一次函数的解析式
2. 根据已知条件列出关于k、b的方程组;
1. 设所求的一次函数表达式为y=kx+b;
3. 解方程,求出k、b;
4. 把求出的k,b代回表达式即可.
同学们再见!
授课老师:
时间:2024年9月1日
知识点 用待定系数法求一次函数解析式
利用二元一次方程组求一次函数表达式的一般步骤:
1.用含字母的系数设出一次函数的表达式:y=kx+b.
2.将已知条件代入上述表达式中得k,b的二元一次方程组.
3.解这个二元一次方程组得k,b.
4.进而求出一次函数的表达式.
范例
已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值.
解析:由题意得m2+1=5,m=4,m=±2.∵直线过一、二、四象限,∴m+1<0,m<-1,故m=-2,直线解析式为y=-x+5.

用待定系数法求一次函数解析式--精品课件[1]

用待定系数法求一次函数解析式--精品课件[1]

∴OA=3,S=
1 2
OA×OB=
1×3×OB=6
2
∴OB=4, ∴B点的坐标为(0,4) (0,-4).
当B点的坐标为(0,4)时,则 y=kx+4
∴ 0=3k+4, ∴k= - 4∴ y= - x4+4
3
3
当B点的坐标为(0,-4)时,则 y=kx-4
∴ 0=3k+4, ∴k= 4 ∴ y= x4-4
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. 解:∵ y=kx+b 的图象与y=2x平行.
∴ k=2 ∴ y=2x-b ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 - b 解得 b=-5 ∴这个一次函数的解析式为y=2x-5
2
2
∴OB=4, B点的坐标为(0,4),
o
A
B'
x
则 y=kx+4
∴ 0=3k+4, ∴k= - 4
∴ y= - 34x+4
3
Page 12
变式6:已知一次函数y=kx+b 的图象
过点A(3,0).与y轴交于点B,若△AOB
的面积为6,求这个一次函数的解析
式.
y
B
o
x
A
B'
Page 13
∵y=kx+b的图象过点A(3,0).
例1:已知正比例函数 y= kx,(k≠0) 的图象经过点(-2,4). 求这个正比例函数的解析式.
解:
∵y=kx的图象过点 (-2,4), ∴ 4=-2k 解得 k=-2 ∴这个一次函数的解析式为y=-2x

《一次函数》PPT课件(第2课时)

《一次函数》PPT课件(第2课时)

k = -1,
{2k + b = 0,
由题意得
k = -1,
{b = 2.
解得
∴y=-x+2.
利用一次函数解决实际问题
例3“黄金1号”玉米种子的价格为5 元/kg,如果一次
购买2 kg 以上的种子,超过2 kg 部分的种子的价格打
8 折.
(1)填写下表:
购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …
子按 4元/kg计价. 因此,写函数解析式与画函数图象时,
应对0 ≤ ≤ 2和x>2分段讨论.
解: (2)设购买量为x千克,付款金额为y元.
当0 ≤ ≤ 2时,y=5x;
当x>2时,y=4(x-2)+10=4x+2.
5 x(0≤x≤2),
y
4 x 2( x 2).
分段函数
注意:1.它是一个函数;
y
注意:此题有两种情况.
2
解:设一次函数的解析式为y=kx+b(k≠0).
∵一次函数y=kx+b的图象过点(0,2),
O
∴b=2.

2
∵一次函数的图象与x轴的交点是( ,0),
k
1
2
2
2
k
2, 解得k=1或-1.
∴此一次函数的解析式为y=x+2或y=-x+2.
x
y=kx+b(k≠0).
把x=3,y=5;x=-4,y=9 分别代入上式,得
3k+b=5,
-4k+b=-9,
k=2,
解方程组得
b=-1.
这个一次函数的解析式为 y=2x-1.

八年级数学下册第19章一次函数第36课时求一次函数的解析式课件3

八年级数学下册第19章一次函数第36课时求一次函数的解析式课件3
在消费过程中你是如何维护自己权益的?
【提示】以下四点可供参考: 1)明白自己的权利; 2)不忘索要发票; 3)牢记维权时限; 4)运用维权渠道。
一、行使权利有界限
1.行使权利不能超越界限的原因是什么?
(1)任何权利都是有范围的。公民行使权利不能超越它本身的界限,不 能滥用权利。 (2)我国宪法规定,公民在行使自由和权利的时候,不得损害国家的、 社会的、集体的利益和其他公民的合法的自由和权利。
被弄污了,请求出该数值.
x
-1 0
y -6.5 -3 2
解:设 y=kx+b,- 2=3= b -k+b,kb= =52, y=5x+2,x=-1.7.
6.一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函数 关系如图所示.当 0≤x≤1 时,y 关于 x 的函数解析式为 y=60x,
若点 B 在直线 y=kx+3 上,则 k 的值为-2.
11.若 A(1,4),B(2,m),C(6,-1)三点在同一条直线上,则 m
的值为 3 .
12.依据给定的条件,求一次函数的解析式. (1)已知一次函数的图象如图所示,求此一次函数的解析式; (2)并判断点(6,5)是否在此函数图象上.
解:(1)设 y=kx+b, 0b= =- 4k8+b, kb==-2 8,y=2x-8; (2)y=12-8≠5,不在;
4.已知一次函数的图象过点(-1,0),(1,-3). (1)求这个函数的解析式; (2)求当 x=3 时的函数值.
解:(1)设 y=kx+b,0-=3= -kk+ +bb,kb= =- -11..55, y=-1.5x-1.5; (2)-6
5.根据某个一次函数的关系式填写出下表,但表中有一数值不小心
谁给你的权利!滥用远光:某足球比赛现场,上万人的体育馆座无虚席。比赛期间,甲队 球迷因对本队比分落后不满,对乙队球迷破口大骂,随后投掷杂物、挥 拳相向,现场一片混乱……

八年级数学一次函数课件-求一次函数的解析式

八年级数学一次函数课件-求一次函数的解析式

数学
(2)∵△ABC的面积为4,
∴4=12BC×OA,即4=12BC×2. ∴BC=4. ∴OC=BC-OB=4-3=1. ∴C(0,-1). 设直线l2的解析式为y=kx+b. ቊ2kb+ =b-=10. ,解得ቐbk==-121,.
∴直线l2的解析式为y=12x-1.
八年级 下册
人教版
第4课时求一次函数的解析式
知识点1 待定系数法求一次函数的解析式 类型一 已知直线的解析式和图象上一点的坐标 【例题1】若函数y=3x+b的图象经过点(2,-6),求函数的 解析式. y=3x-12.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
【变式1】若一次函数y=kx-3的图象经过点M(-2,1),求 这个一次函数的解析式. 解:∵一次函数y=kx-3的图象经过点 M(-2,1). ∴-2k-3=1.解得k=-2. ∴这个一次函数的解析式为y=-2x-3.
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第4课时求一次函数的解析式
第十九章 一次函数
19.2 一次函数 第4课时求一次函数的解析式
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
人教版
第4课时求一次函数的解析式
了解待定系数法的含义;能根据已知条件确定一次函数 的表达式;会用待定系数法确定一次函数的表达式.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
类型二 已知直线经过两个点的坐标 【例题2】一次函数y=kx+b的图象经过点(3,2)和点 (1,-2). (1)求这个函数的解析式; (2)判断(-5,3)是否在此函数的图象上.

人教版数学八年级下册19.2.2求一次函数的解析式课件

人教版数学八年级下册19.2.2求一次函数的解析式课件

∵图象过点_(2_,__5_), _(_1_,__3)
因为一次函数的一般形式

2 k +b = 5 1 k+b = 3
是y你=kx能+b归(k纳≠0)出,:要求
出一次函数的解析式,关
求一次函数解析式
键是要确定 k 和 b 的值.
解得 k=_2__ b=__1_
的基本步骤吗?
因为图象过(2,5)
把k=1,b=2 代入 y = kx+b 中,
k的值
一个条件
确定一次函数的解析式y=kx+b,需求哪个值?需 要几个条件?
K、b的值 两个条件
总结:在确定函数解析式时,要求几个系数 就需要知道几个条件。
整理归纳
No
从数到形
Imag
函数解 选取 析式: y=kx+b (k≠0) 求出
满足条件 画出
的两点: (x1,y1)与 (x2,y2) 选取
两点法——两点确定一条直线
解析式的方法,叫做待定系数法. 新人教版 • 八年 级 《 数 学 ( 下) 》
两点法——两点确定一条直线
例:已知一次函数的图象经过点(3,5) 与点(-4,-9).求这个一次函数的
解析式. 解:设这个一次函数的解析式为y=kx+b. 设
∵ 图象过点(3,5)与 点(-4,-9)
得一次函数解析式为__y__=__2_x_+_1_.
与(1,3)两点, 所以这两点的坐标必
适合解析式
解题的基本步骤: 1、已知一次函数y=kx+b,当x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.
函数解析式:y=kx+b(k≠0)

求一次函数的解析式课件 (1)

求一次函数的解析式课件 (1)








3. 已知直线 y=2x-4 (1)求直线关于x轴对称的函数关系式
y= - 2x+4
(2)求直线关于y轴对称的函数关系式
y= - 2x- 4
(3)求直线绕原点旋转1800时的函数关系式
y= 2x+4 (4). 设点P(3,m),Q(n,2)都在函数y=x+b的图象上, 求m+n的值
课堂练习: 1.已知y=kx-10的图象经过点(2,-6),则这个函数的 解析式为_____个单位长度,所得直线的解析式为 _______________. ⑵向右平移3个单位长度,所得直线的解析式为 _______________. ⑶先向右平移1个单位长度,再向下平移2个单位 长度,所得直线的解析式为__________. ⑷先将直线向左平移2个单位长度,再向上平移3 个单位长度,所得直线的解析式为 __________.
分析:平移的特点是:平移前后k不变,b变化,所以 可设所求方程为: y=2x+b.原来的(2,0)点向左 平移3个单位就得到(-1,0). 将点(-1,0)代入可得: b=2. 所以所求的函数解析式为:y=2x+2.
探究直线上下平移后的函数解析式
⑴如果直线y=kx+b向上平移n
(n> 0)个单位长度,那么所得直线的解 析式为y=kx+b+n; ⑵如果直线y=kx+b向下平移n(n>0) 个单位长度,那么所得直线的解析式 为y=kx+b-n.
1、选择题
(3)若点A(-4,0)、B(0,5)、C(m,-5)在同 一条直线上,则m的值是[ D ]
A.8 C.-6 B.4 D.-8
先求出直线方程,再代入求m得的值。

求函数f(x)的解析式ppt课件

求函数f(x)的解析式ppt课件

1 x
f( x ) x 2 (x 2 )
2
练习:
2 1 、已知 f ( x 1 ) x 4 x , 解方程 f ( x 1 ) 0 .
2 2 、已知 f ( x 1 ) x 1 , 求 f ( x ) 的解析式 2 3 、设 f ( x ) 2 x 3 x 1 , g ( x 1 ) f ( x ), 求 g ( x ) 及 f [ g ( 2 )]
k 则 f(3)= =-6,解得 k=-18. 3 18 ∴f(x)=- x .
18 答案:- x
练习:
求 f( x ) 的解析式
1 、已知函数 f( x ) 是一次函数,且满足关 系 3 f( x 1 ) 2 f( x 1 ) 2 x 17 ,
2 、求一个一次函数 f( x ), 使得 f { f [ f( x )]} 8 x 7 , 求 f( x ) 的解析式。
解:令 t x 1 ,则 t 1
x( t 1 )2
f( x 1 ) x 2x ,

f ( t ) ( t 1 ) 2 ( t 1 ) t 1 , 2 ) f( x ) x 1 (x 1
2
f ( x 1 ) ( x 1 ) 1 x 2 x (x 0 )
2 f( x ) x 2 x 3 2 2
2 2 2 1 、解: f ( x 1 ) ( x 1 ) 2 x 1 ( x 1 ) 2 ( x 1 ) 3 2 、解: f (x1 ) (x1 ) 2 x
( x 1 ) 2 ( x 1 ) 2 f( x 1 ) ( x 1 ) 2 ( x 1 ) 3 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)写出购买量关于付款金额的函数解析式,
解:设购买量为x千克,付款金额为y元.
当0≤x≤2时,
y
y=5x;
14
y=4x+2(x>2)
当x>2时,
10
y=4(x-2)+10=4x+2.
函数图象为:
5x(0≤x≤2)
y = 4x+2(x>2)
y=5x(0≤x≤2)
0 123
x
学习检测
1.已知一次函数y=kx+2,当x=5时y值为4,求k的值.
求一次函数关系式的常见题型
1、利用图象求函数解析式
2、利用点的坐标求函数解析式
3、利用表格信息确定函数解析式
4、根据实际情况收集信息求函数解析式
归纳:
求函数关系式的一般步骤是怎样的呢?
可归纳为“一设、二代、三列、四解、五写”
一设:设出函数关系式的一般形式y=kx+b 二代:将已知点的坐标代入函数解析式 三列:列出关于k、b的一次方程 四解:解这个方程,求出k,b的值 五写:把求得k、b的值代入y=kx+b,写出函数 关系式
3、已知一次函数y=2x+b的图象过点(2,-1),求这个 函数解析式
合作学习
例题:已知一次函数的图象经过点(3,5)与
(-4,-9).求这个一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b.

∵y=kx+b的图象过点(3,5)与(-4,-9代).
∴ 3k+b=5 列 解得 k=2

-4k+b=-9
2.若一次函数y=3x-b的图象经过点P(1,-1),
则该函数图象必经过点( B )
A(-1,1)B (2,2) C(-2,2) D (2,-2)
3、若直线y=kx+b平行直线y=-3x+2,且在y轴上的的 交点坐标为(0,-5),则k= -3 ,b= -5 。 4、已知一次函数y=kx+b的图象过(3,0)与y轴交于点 B,若⊿AOB的面积为6,求这个一次函数的解析式。
变式1
若不直接告诉两点的坐标,已知这条直 线的图象,能否求出它的解析式?
如:
变式2:小明根据某个一次函数关系式填写了下表:
x
-2 -1 0
1
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里原来 填的数是多少?解释你的理由。
变式3:已知弹簧的长度y(厘米)在一定的限度内
是所挂重物质量x(千克)的一次函数.现已测得不 挂重物时弹簧的长度是6厘米,挂4千克质量的重物时, 弹簧的长度是7.2厘米.求这个一次函数的关系式.
6、一个试验室在0:00—2:00保持20℃的恒温, 在2:00—4:00匀速升温,每小时升高5℃.写出 试验室温度T(单位:℃)关于时间 t(单 位:h)的函数解析式,并画出函数图象.
解:(1)由题意得
当0≤t≤2时, y=20; 当2<t≤4时,
y=20+5(t-2)=5t+10
函数解析式为:
y
=
20(0≤x≤2)
5t+10(2<t≤4)
T 40
30
y=5x+10(2<t≤4)
20 y=20(0≤x≤2)
10
(2)函数图像为:
0 1 2 34 t
7、圣诞老人买了很多鞋, y(码)
送给小明全家每人一双, 鞋长和鞋码如下表,你能
43 42 41
知道小明的鞋码吗?
40
39
38

37

36

质疑导学
例5 “黄金1号”玉米种子的价格为5元/kg. 如果一次购买2kg以上的种子,超过2kg部分 的种子价格打8折.
(1)填写下表.
购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …
付款金额/ 元
2.5
5
7.5
10 12
14
16 18 …
购例买量5 /kg“0黄.5 金11号1”.5玉米2 种2子.5的价3 格3为.55元4/kg.…如 果一次购买2kg以上的种子,超过2kg部分的种子价 格付打款元8金折额./ 2.5 5 7.5 10 12 14 16 18 …
b=-1
∴这个一次函数的解析式为y=2x-1

象这样先设出函数解析式,再根据条件
确定解析式中未知的系数,从而具体写出 这个式子的方法,叫做待定系数法.
整理归纳:
函数解析 式y=kx+b
从数到形
选取 解出
画出
满足条件的两定点
(x1, y1)与(x2, y2) 选取
从形到数
一次函数的
l 图象直线
数学的基本思想方法: 数形结合
4
y与x之间的函数关
3
系式;
O x1 2
x2 10
x
(2)如果每毫升血
液中含药量为4微克
或4微克以上时,治
疗疾病是有效的,那么有效时间有多长?
购例买量5 /kg“0黄.5 金11号1”.5玉米2 种2子.5的价3 格3为.55元4/kg.…如 果一次购买2kg以上的种子,超过2kg部分的种子价 格付打款元8金折额./ 2.5 5 7.5 10 12 14 16 18 … (2)写出购买量关于付款金额的函数解析式,并画出 函数图象. 分析:从题目可知,种子的价格与购买种子量 有关。
如何求一次函数的解析式
自学展示
1、画出函数 y=2x 与
y=2x
y=- 3 2
x +3 的图象
3
2
o 1
o
从数到形
2
3
y=- 2 x+3
函数解析 选取 满足条件的两定点 画出
式y=kx+b
(x1, y1)与(x2, y2 )
一次函数的 图象直线
2、已知正比例函数的图象经过点(-2,4)求这个正比例 函数的表达式

25.5k b 41 23k b 36ຫໍສະໝຸດ k 2 解得 b 10
∴ y=2x-10 当x=25时,y=2×25-10
=40
爷爷 奶奶 爸爸 妈妈 哥哥 姐姐 小明 鞋长 … 25.5 23 26.5 23.5 26 24 25 … 鞋码 … 41 36 43 37 42 38 ? …
2=k+ b
k= -2
6= -k+b 解得 b=4
∴一次函数的解析式:y= -2x+4
(2)如图,直线y=-2x+4与y轴的交点A(0,4), 与x轴的交点B(2,0)
(0,4) (2,0)
∴OA=4,OB=2
∴S △AOB =
OA × OB=4
y 2x 4
函数解析 式y=kx+b
从数到形
选取
画出
满足条件的两定点
(x1, y1)与(x2, y2 )
一次函数的
l 图象直线
数学的基本思想方法: 数形结合
归纳:
确定正比例函数的解析式y=kx,需要哪 个值?需要几个条件?
k,的值
一个条件
确定一次函数的解析式y=kx+b,需求
哪个值?需要几个条件?
k, b的值
两个条件
总结:在确定函数解析式时,要求几个系数 就需知道几个条件。
0
23 24
• • •
x (cm)
25 26 27
鞋长单位:cm
爷爷 奶奶 爸爸 妈妈 哥哥 姐姐 小明 鞋长 … 25.5 23 26.5 23.5 26 24 25 … 鞋码 … 41 36 43 37 42 38 ? …
解:设x表示鞋长,y表示鞋码, 由题意,得 y=kx+b
当x=25.5时,y=41;当x=23时,y=36
若购买种子量为0≤x≤2时,种子价格y为: y=5x
若购买种子量为x>2时,种子价格y为:
y=4(x-2)+10=4x+2.
一次函数y=kx+b经过点(1,2)、点(-1,6),求:
(1)这个一次函数的解析式;
(2)直线与两坐标轴围成的面积;
解:(1)把点(1,2)和点(-1,6)代入 y=kx+b得:
鞋长单位:cm
8、某医药研究所开发了一种新药。在检验药效时发
现,如果成人按规定剂量服用,那么服药2h后血
液中含药量较高,达每毫升6微克,接着逐步衰,
服药10h后血液中含药量达每毫升3微克,每毫升
血液中含药量y(微克)随着时间
x(h)的变化如图所示。 y (1)当成人按规定
剂量服用后,分别求 6
出当x< 2和x>2时,
相关文档
最新文档