13年最新计量经济学论文Eviews
计量经济学多重共线性eviews处理
第一部分 多重共线性检验 内容:多重共线与异方差、及检验与修正 一、 多重共线性检验与逐步回归建立模型
1.数据 P193,8.7 例(习题 7-17 表 7-8) 2.对原模型回归 LS LOG(Y) C 3.多重共线性检验 Klein 法则、观察法等 4.如果存在多重共线,估计辅助回归模型,确定哪些变量存在共线? 5.逐步回归方法,剔除存在共线的变量,确定最终模型。 LOG(X2)LOG(X3) LOG(X4) LOG(X5)
2
二、多重共线性检验与参数约束法估计模型
1.数据
obs 1 2 3 4 5 6 7 8 9 10 X1 80 100 120 140 160 180 200 220 240 260 X2 810 1009 1273 1425 1693 1876 2052 2201 2435 2686 Y 70 65 90 95 110 115 120 140 155 150
1)消费支出(Y),个人财富(x2)和历史可支配收入水平(x1)有一定共线关系 2)可考虑使用参数约束法估计模型 2.原模型回归:ls y c x1 x2 (1)观察法:系数不显著,但 F 显著,判决系数大。 (2)辅助回归分析:Ls x1 型结论不可靠。 3.实际解决问题方法 1)可通过增加样本容量,看能否克服多重共线问题 obs 11 12 第五次上机 1 X1 X2 280 2898 300 3032 Y 170 185 x2 X2,x3 高度相关,个人财富和历史可支配收入水平有一定共线关系。原模
13 14
320 340
3208 3425
190 200
2)利用先验信息,参数约束(如可支配收入中,增加个人财富的比例为 X3=10.1*X2),重新估计模型.
计量经济学论文(eviews分析)
计量经济学论文(eviews分析)我国限额以上餐饮企业营业额的影响因素分析摘要:本文收集了1999年至2009年共11年的相关数据,选取餐饮企业数量、城镇居民人均年消费性支出、全国城镇人口数以及公路里程数作为解释变量构建模型,对我国限额以上餐饮企业营业额的影响因素进行分析。
利用Eviews软件对模型进行参数估计和检验,并加以修正,最后根据模型的最终结果进行经济意义分析,提出自己的看法。
关键词:餐饮企业营业额、影响因素、计量分析一、研究背景近十年来,投资者进入餐饮企业的数量不断增加。
在他们进入一个行业之前,势必要对该行业的营业额、营业利润等进行估计,当这些因素的估计值能够达到他们的预期时,他们才会对其进行投资。
由于餐饮企业的营业额是影响投资者是否进入餐饮业的一个重要因素,对于我国餐饮企业的营业额问题的深入研究就显得尤为必要,这有助于投资者作出合理的决策。
因此,本文进行了对我国限额以上餐饮企业营业额的计量模型研究。
二、变量的选取影响餐饮企业营业额的因素有很多,包括餐饮企业的数量、营业面积、从业人员、城镇居民人均年消费性支出、全国城镇人口数、餐饮企业的平均价格水平及公路里程数(表示交通状况)。
但综合考虑后,本文选取了其中的一部分变量(企业数、城镇居民人均年消费性支出、全国城镇人口数、公路里程数)进行研究,并对各个变量对餐饮企业营业额的影响进行预测。
1.企业数本文认为餐饮企业营业额与餐饮企业的数量有关,并预测两者之间呈正相关。
2.城镇居民人均年消费性支出本文认为餐饮企业营业额与城镇居民人均年消费性支出有关,并预测两者之间呈正相关。
3.全国城镇人口数本文认为餐饮企业营业额与全国城镇人口数有关,并预测两者之间呈正相关。
4.公路里程数本文认为餐饮企业营业额与公路里程数有关,并预测两者之间呈正相关。
三、相关数据本文收集了1999年至2009年共11年的相关数据,包括营业额(单位:亿元)、企业数(单位:个)、人均年消费性支出(单位:元)、全国城镇人口数(单位:万人)以及公路里程数(单位:万公里)。
计量经济学用eviews分析数据
中国储蓄存款总额(Y,亿元)与GDP (元)数据如下表。
表1-1数据来源:《中国统计年鉴》年图1-1解:、估计一元线性回归模型由经济理论知,储蓄存款总额受GDP影响,当GDFP增加时,储蓄存款总额也随着增加,他们之间具有正向的同步变动趋势。
储蓄存款总额除受GDP影响之外, 还受到其他一些变量的影响及随机因素的影响,将其他变量及随机因素的影响均并到随机变量U中,根据X与丫的样本数据,作X与丫之间的散点图可以看出,他们的变化趋势是线性的,由此建立中国储蓄存款总额丫与GDF之间的一员线性回归模型。
由表1-1中样本观测数据,样本回归模型为用Eviews软件估计结果:Dependent Variable: 丫Method: Least SquaresDate: 12/14/14 Time: 10:41Sample: 1978 2012Included observations: 35R-squared 0.995724 Mean dependent var 78882.56Adjusted R-squared 0.995595 S.D. dependent var 108096.8S.E. of regression 7174.769 Akaike info criterion 20.64997Sum squared resid 1.70E+09 Schwarz criterion 20.73885Log likelihood -359.3745 Hannan-Quinn criter. 20.68065F-statistic 7684.717 Durbin-Watson stat 1.224720Prob(F-statistic) 0.000000即样本回归方程为:-4.678592 87.66252二、对估计结果做结构分析(1)对回归方程的结构分析0.762529是样本回归方程的斜率,他表示GDP勺边际增长率,说明GDP每增加1元,将有0.762529用于储蓄;-7304.294是样本回归方程的截距,他表示不受GDP影响的自发性储蓄增长。
计量软件 eviews 期末论文
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载计量软件 eviews 期末论文地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容计量软件Eviews & Stata 基础应用课程论文学生姓名:学号:任课教师:评语:目录TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc489057585" A1.中国税收收入多元回归模型 PAGEREF _Toc489057585 \h 2 HYPERLINK \l "_Toc489057586" A2.中国经济增长影响因素实证分析 PAGEREF _Toc489057586 \h 5HYPERLINK \l "_Toc489057587" B.中国城镇居民消费结构面板数据模型实证分析 PAGEREF _Toc489057587 \h 9HYPERLINK \l "_Toc489057588" C.社会保障与经济增长关系的实证研究 PAGEREF _Toc489057588 \h 16A1.中国税收收入多元回归模型研究目的:本文在参考了多个关于影响我国税收收入的主要观点的基础上,对影响我国1978年至2007年的税收收入的主要因素进行实证分析。
选取的自变量有税收收入、GDP、财政支出和零售商品价格指数,利用EVIEWS软件对设定的计量模型进行了参数估计,并对可能出现的问题进行了假设检验,使这个模型尽量完美研究内容:(一)模型形式设定(二)Y,X2 , X3 , X4的趋势图从以上的图可以看出Y与X2和X3均呈线性关系,但Y与X4 不存在线性关系(三)AIC和SC准则在 eviews 中输入LS Y C X2 X3 和 LS Y C X2 X3 X4 ,得到分析结果如下:在以上模拟中: AIC = -0.707778 SC = -0.520952加入X4之后的模型AIC和SC的值均有所减小,由赤池信息准则和施瓦茨准则可知X4应该包含在模型中。
计量经济学实验 Eviews的基本操作
实验一 EViews软件的基本操作【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。
【实验内容】一、EViews软件的安装;二、数据的输入、编辑与序列生成;三、图形分析与描述统计分析;四、数据文件的存贮、调用与转换。
实验内容中后三步以表1-1所列出的税收收入和国内生产总值的统计资料为例进行操作。
表1-1 我国税收与GDP统计资料单位:亿元资料来源:《中国统计年鉴1999》【实验步骤】一、安装EViews软件㈠EViews对系统环境的要求⒈一台386、486奔腾或其他芯片的计算机,运行Windows3.1、Windows9X、Windows2000、WindowsNT或WindowsXP操作系统;⒉至少4MB内存;⒊VGA、Super VGA显示器;⒋鼠标、轨迹球或写字板;⒌至少10MB以上的硬盘空间。
㈡安装步骤⒈点击“网上邻居”,进入服务器;⒉在服务器上查找“计量经济软件”文件夹,双击其中的setup.exe,会出现如图1-1所示的安装界面,直接点击next按钮即可继续安装;⒊指定安装EViews软件的目录(默认为C:\EViews3,如图1-2所示),点击OK按钮后,一直点击next按钮即可;⒋安装完毕之后,将EViews的启动设置成桌面快捷方式。
图1-1 安装界面1图1-2 安装界面2二、数据的输入、编辑与序列生成 ㈠创建工作文件⒈菜单方式启动EViews 软件之后,进入EViews 主窗口(如图1-3所示)。
图1-3 EViews 主窗口在主菜单上依次点击File/New/Workfile ,即选择新建对象的类型为工作文件,将弹出一个对话框(如图1-4所示),由用户选择数据的时间频率(frequency )、起始期和终止期。
图1-4 工作文件对话框工作区域状态栏其中, Annual——年度 Monthly——月度Semi-annual——半年 Weekly——周Quarterly——季度 Daily——日Undated or irregular——非时序数据选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日前1985和1998。
计量经济学eviews实验报告
计量经济学e v i e w s实验报告标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]大连海事大学实验报告实验名称:计量经济学软件应用专业班级:财务管理2013-1姓名:安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。
具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。
二、实验环境WINDOWSXP或2000操作系统下,基于平台。
三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。
表1我国1995-2014年人均国民生产总值与居民消费水平情况(1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Errort-Statistic Prob.CAVGDPR-squared Mean dependent var Adjusted R-squared. dependent var. of regression Akaike info criterionSum squared resid1538032.Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上表可知财政收入随国内生产总值变化的一元线性回归方程为: (令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = +* X其中斜率表示国内生产总值每增加一元,人均消费水平增长元。
计量经济学论文(eviews分析)计量经济作业
计量经济学论文(eviews分析)计量经济作业计量经济学论文(EViews分析)导言计量经济学是一门研究经济现象及其相互关系的学科,通过运用统计学方法和经济学理论,对经济数据进行分析和解释。
在本篇论文中,我们将运用EViews软件进行计量经济分析,以探讨某一经济问题的核心要素和关系。
第一部分:数据收集与描述性统计在这一部分中,我们将介绍数据的来源和收集方法,并进行描述性统计分析,以便了解数据的基本特征。
数据来源和收集方法我们收集了关于某国家的宏观经济数据,包括国内生产总值(GDP)、物价指数、失业率、人口数量等。
这些数据可以通过政府统计局、国际组织或经济学研究机构的报告来获取。
描述性统计分析在这一部分,我们将计算各个变量的平均值、标准差、最小值、最大值和偏度等统计指标,并绘制相应的直方图和散点图,以便对数据的分布和相关关系有更直观的了解。
第二部分:计量经济模型的建立与估计在这一部分中,我们将构建计量经济模型,并通过使用EViews软件进行参数估计,以分析各个变量之间的关系。
模型的建立根据我们对经济问题的研究目标和数据的特点,我们选择了某一计量经济模型,以解释变量Y与自变量X1、X2之间的关系。
在模型中,我们还考虑了可能的误差项。
参数估计使用EViews软件,我们可以通过最小二乘法对模型进行参数估计。
这将帮助我们确定各个变量的系数估计值,并评估其统计显著性。
模型诊断在参数估计后,我们将进行模型的诊断检验,以评估模型的拟合优度和误差项的符合性。
通过观察残差图和假设检验等方法,我们可以确定模型是否符合计量经济学的基本假设。
第三部分:计量经济模型的解释与预测在这一部分中,我们将解释计量经济模型的估计结果,并利用该模型进行未来情景的预测。
模型解释通过对模型中各个变量的系数估计进行解释,我们可以理解自变量与因变量之间的经济关系,并得出相应的经济学解释。
模型预测利用模型的参数估计结果和最新的经济数据,我们可以进行未来情景的预测。
计量经济学论文(eviews分析)计量经济作业
计量经济学论文(eviews分析)计量经济作业计量经济学论文分析的重要性不言而喁。
在经济学领域中,计量经济学是一门研究经济现象的学科,通过数学模型和统计分析对经济数据进行量化分析,以揭示经济规律和探寻经济发展规律。
eviews是一个专门用于时间序列分析和计量经济学建模的软件工具,广泛应用于经济学研究和金融领域。
在进行计量经济学论文分析时,首先需要明确研究问题和假设,然后收集相关数据。
随后,利用eviews软件对数据进行清洗和整理,进行描述性统计分析,绘制图表,进行回归分析等。
通过计量经济学方法,可以验证假设、识别变量之间的关系、预测未来趋势等。
举例来说,假设我们要研究某国家的经济增长与通货膨胀之间的关系。
首先,我们收集相关数据,包括国内生产总值(GDP)、通货膨胀率等。
然后,利用eviews软件导入数据,进行描述性统计分析,观察数据的分布特征。
接下来,可以进行回归分析,建立经济增长与通货膨胀之间的模型,分析它们之间的关系及影响因素。
在计量经济学论文中,需要注重数据的准确性和分析的科学性。
同时,也需要注意论文的结构和组织,合理安排内容,确保表达清晰,逻辑严谨。
最后,对研究结果进行讨论和总结,提出建议和展望,为相关研究和政策制定提供参考。
综上所述,计量经济学论文分析是一项复杂而重要的研究工作,需要研究者具备扎实的理论基础和专业的技能。
利用eviews软件进行数据分析和建模,可以帮助研究者更好地理解经济现象、揭示规律、做出预测,为经济学研究和实践提供理论支持和决策依据。
愿更多的学者和研究人员投身于计量经济学领域,不断推动学科进步和实践应用,为经济发展和社会进步做出贡献。
计量经济学课程论文(Eviews)碳排放量研究
我国碳排放量影响因素分析摘要:采用计量经济模型,分析研究能源消耗总量、第一产业总值、出口贸易总额、人均GDP、外商直接投资(FDI)与碳排放量的相关性,得出了源消耗总量、出口贸易总额、第一产业总值与碳排放量有显著相关性,而人均GDP与外商直接投资(FDI)对碳排放量的影响则不显著。
关键词:碳排放量;能源消耗总量;出口贸易总额;第一产业增值;人均GDP一、引言随着气候变暖这一全球问题的逐渐严重化,人类的生存环境和人类社会的生存与发展受到了严重影响。
气候变暖除了自然因素外,更大程度是人类活动造成的,特别是源于化石燃料产生的二氧化碳导致的人为温室气体。
我国作为联合国常任理事国和最大的发展中国家,是能源生产和消费的大国也是碳排放的大国,有责任和义务进行减排。
而要想有效控制碳排放量,了解影响碳排放的因素就显得尤为重要。
二、文献综述随着气候变化的影响,国内外学者对碳排放的影响因素研究也逐渐增多。
Shafik和Bandy0padhyay(1992)对149个国家1960—1990年数据研究发现:碳排放量与人均收入呈现正向相关关系。
Birdsall(1992)认为人口增长对温室气体排放产生的影响存在两种方式:一是较多的人口对能源需求会越来越多,因此能源消费产生的温室气体排放越来越多;二是快速的人口增长导致森林破坏,改变土地利用方式,这些都导致了温室气体排放量的增加。
Wu等(2005)[5]利用LMDI方法从供给和需求的角度,研究了1980-2002年碳排放的变化,他们认为1996年以前主要是能源需求方的经济发展规模、能源结构及能源强度推动了中国碳排放的变化,而1996-2000年能源终端利用和转化部门能源效率的提高是中国碳排放量下降的主要原因。
由Taylor和Copeland(1994)提出的“污染避难所假说”,认为国家的环境管制降低了国内污染企业的竞争力,导致产业的转移,污染密集型企业会从环境成本内部化程度高的国家向低的国家迁移,从而使实施较低环境标准的国家成为污染密集型产业的避难所。
计量经济学经典eviews 对数极大似然估计
计量经济学经典eviews 对数极大似然估计 为了能解决一些特殊的问题,EViews 提供了对数极大似然估计这一工具来估计各种不同类型的模型。
对数极大似然估计提供了一个一般的,开放的工具,可以通过这个工具极大化相关参数的似然函数对一大类模型进行估计。
使用对数极大似然估计时,我们用EViews 的序列生成器,将样本中各个观测值的对数似然贡献描述为一个未知参数的函数。
可以给出似然函数中一个或多个参数的解析微分,也可以让EViews 自动计算数值微分。
EViews 将寻找使得指定的似然函数最大化的参数值,并给出这些参数估计的估计标准差。
在本章,我们将详细论述对数极大似然估计,并说明其一般特征。
§18.1 概 论用对数极大似然估计来估计一个模型,主要的工作是建立一个用来求解似然函数的说明文本。
似然函数的说明只是一系列对序列的赋值语句,这些赋值语句在极大化的过程中被反复的计算。
我们所要做的是写下一组语句,在计算时,这些语句将描述一个包含每个观测值对似然函数贡献的序列。
首先,我们简单地回顾一下线性回归模型的对数极大似然估计方法。
考虑多元线性回归模型的一般形式t kt k t t t x x x y εββββ++++++= 22110 t =1, 2 , ……, T (1) 其中k 是解释变量个数,T 是观测值个数,随机扰动项t ε~),0(2σN ,设模型的参数估计量已经求得为kβββˆ,,ˆ,ˆ10 ,那么t y 服从如下的正态分布: t y ~),(2σμN (2) 其中 ktk t t t x x x ββββμˆˆˆˆ22110++++= Y 的随机抽取的T 个样本观测值的联合概率为∑=--==T t t t y T T T e y y y P L 122)(212212)2(1),,,(),(μσσπσβ (3)这就是变量Y 的似然函数。
对似然函数求极大值和对对数似然函数求极大值是等价的,对数似然函数为∑=---=T t t t y T L 1222)(21)2log(2log μσπσ (4)注意到,我们能将对数似然函数写成所有观测值t 的对数似然贡献的和的形式,),(),(log 1σβσβ∑==Tt tl L (5) 这里每个观测值的贡献由下面的式子给出:222)(21)2log(21),(t t t y l μσπσσβ---= (6) 以只含一个解释变量的方程为例。
计量经济学论文eviews分析计量经济作业
计量经济学论文e v i e w s 分析计量经济作业The document was prepared on January 2, 2021我国旅游收入的计量分析一、经济理论陈述在研读了大量统计和计量资料的基础上,选择了三个大方面进行研究,既包括旅游人数,人均旅游花费和基本交通建设.其中,在旅游人数这个解释变量的划分上,我们考虑到随着全球经济一体化的发展,越来越多的外国游客来中国旅游消费.中国旅游的国际市场是个有发展潜力的新兴市场,尽管外国游客前来旅游的方式包罗万象而且消费能力也不尽相同,但从国际服务贸易的角度出发,我们在做变量选择时,运用国际营销的知识进行市场细分,划分了国际和国内两个市场.这样,在旅游人数这个解释变量的最终确定上,我们选择了2X国内旅游人数,3X入境旅游人数.这点选择除了理论支持外,在现实旅游业发展中我们也看到很多景区包括成都的近郊也有不少外国游客的身影.所以,我们选取这两个解释变量等待下一步进行模型设计和检验.另外,对于人均旅游花费,我们在进行市场细分时,没有延续前两个变量的选择模式,有几个原因.首先,外国游客前来旅游的形式和消费方式各异且很难统计.我们在花大力气收集数据后,仍然没有比较权威的统计数据资料.其次,随着国家对农业的不断重视和扶持,我国农业有了长足发展.农村居民纯收入增加,用于旅游的花费也有所上升.而且鉴于农村人口较多,前面的市场细分也不够细化,在这个解释变量的确定上,我们选择农村人均旅游花费,既是从我国基本国情出发,也是对第一步研究分析的补充.所以我们确定了4X城镇居民人均旅游花费和5X农村居民人均旅游花费.旅游发展除了对消费者市场的划分研究,还应考虑到该产业的基础硬件设施.在众多可选择对象中我们经分析研究结合大量文献资料决定从交通建设着手.在我国,交通一般分布为公路,铁路,航班,航船等.由于考虑到我国一般大众的旅游交通方式集中在公路和铁路上,为了避免解释变量的过多过繁以及可能带来的多重共线形等问题,我们只选取了前二者.即确定了6X公路长度和7X铁路长度这两个解释变量.其中,考虑到我国旅游业不断发展过程中,高速公路的修建也不断增多,在6X的确定过程中,我们已经将其拟合,尽量保证解释变量的完整和真实.二、相关数据三、计量经济模型的建立Y=c1+c2X2+c3X3+c4X4+c5X5+c6X6+U我们建立了下述的一般模型:其中Y——1994-2003年各年全国旅游收入C1——待定参数X——国内旅游人数万人2X——入境旅游人数万人3X——城镇居民人均旅游花费元4X——农村居民人均旅游花费元5X——公路长度含高速万公里6X——铁路长度万公里7U——随即扰动项四、模型的求解和检验利用Eviews软件,采用以上数据对该模型进行OLS回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 01:56Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4X5X6X7R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic由此可见,该模型可决系数很高,F检验显着,但是2X、6X、7X的系数t检验不显着,且7X的系数符号不符合经济意义,说明存在严重的多重共线性.所以进行以下修正:〈一〉.计量方法检验及修正多重共线性的检验:首先对Y进行各个解释变量的逐步回归, 由最小二乘法,结合经济意义和统计检验得出拟合效果最好的两个解释变量如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:00Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CX4X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic继续采用逐步回归法将其余解释变量代入,得出拟合效果最好的三个解释变量,结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:01Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CX2X4X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic以上模型估计效果最好,继续逐步回归得到以下结果:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:40Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic各项拟合效果都较好.虽然2X的t检验不是很显着,但考虑到其经济意义在模型中的重要地位,暂时保留.继续引入6X.Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:41Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4X5X6R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic根据以上回归结果可得,6X的引入使得模型中2X、6X的t检验均不显着,再考察二者的相关系数为,说明2X、6X高度相关,模型产生了多重共线性,因此将6X去掉.再将7X代入检验.Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:42Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4X5X7R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statisticX的系数为负,与经济意义相悖,因此也去掉.由此确定带入模型的解7释变量为2X、3X、4X、5X.异方差性的检验:再对模型的异方差性进行检验:鉴于我们的样本资料是时间序列数据,选用ARCH检验.ARCH Test:F-statistic ProbabilityObsR-squared ProbabilityTest Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/23/10 Time: 02:43Sample adjusted: 1995 2003Included observations: 9 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CRESID^2-1R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid +08 Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic这里ObsR-squared为,P=>所以接受0H,表明模型中随机误差项不存在异方差.再考虑P=3的情况:ARCH Test:F-statistic ProbabilityObsR-squared ProbabilityTest Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/23/10 Time: 02:46Sample adjusted: 1997 2003Included observations: 7 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CRESID^2-1RESID^2-2RESID^2-3R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid +08 Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic这里ObsR-squared为,P=>.所以仍然接受0H,表明模型中随机误差项不存在异方差.自相关性的检验:随机扰动项可能存在一阶负自相关.借助残差项和其一阶滞后项的二维坐标图进一步分析:由图示可看出,残差项和其一阶滞后项显然存在负自相关,然后利用对数线形回归修正自相关性,得到相应结果如下:Dependent Variable: LOGYMethod: Least SquaresDate: 12/23/10 Time: 02:52Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.CLOGX2LOGX3LOGX4LOGX5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat ProbF-statistic从估计的结果看,DW=,说明修正后有了明显好转,随机扰动项几乎不存在一阶自相关.我们进行了一系列检验和修正后的最终结果如下:2R= 2R= F=五、经济意义解释C3和C3分别衡量我国旅游收入国内和入境旅游人数的弹性,也就是表示当旅游人数每变动百分之一时,平均来说,旅游收入变动的百分比.这里要特别注意,例如1998年国内旅游人数为69450万人,入境旅游人数为万人,则国内旅游人数每增加1%,即增加万人,国内旅游收入增加%,而入境旅游人数每增加1%,即增加万人,国内旅游收入增加%.C4和C5分别衡量我国旅游收入我国城镇居民和农村居民人均旅游花费的弹性,也就表示当人均花费每变动百分之一时,平均来说,旅游收入变动的百分比.城镇居民人均旅游花费每增加1%,国内旅游收入增加%;农村居民人均旅游花费每增加1%,国内旅游收入增加 %.六、政策建议为了促进我国旅游事业的快速发展,我们提出了以下几点建议:1、实施政府主导型旅游发展战略政府主导型旅游发展战略是按照旅游业自身的特点,在以市场为主,合理配置资源的基础上,充分发挥政府的主导作用,促进旅游业更快发展.1建设和完善旅游法制体系,力争旅游法的尽早出台.2提高旅游管理部门的地位,或组织高层次的协调机制,以适应旅游产业大规模和大发展的前景.3中央政府的主导需要相应的资金基础.从1992年起,财政部建立了旅游发展基金,其来源是在出境机场费中加收20元人民币,对旅游业的发展起到了积极的作用.考虑到旅游大发展的需要,多渠道,多形式开辟政府基金来源是必要的.4加大促销投入.长期以来我国促销经费严重缺乏.中央一年所能提供的促销经费不足500万美元,这大大限制了我国对国际旅游市场大面积,深层次的开发,难以产生影响客源流向的招徕效果.从国际上看,为了使自己处在有利的市场竞争地位,每个国家每年都投入相当数量的旅游经费,用于开展旅游对外促销活动.按照世界一般规律,吸引一个国际旅游者平均需要3—5美元的促销经费,而我国尚不足美元,这种状态,显然无法适应国际旅游市场竞争的需要. 因此,在政府主导型战略的实施中加大促销投入是一项重要的工作.2、旅游市场创新旅游经济是特色经济,而特色就需要充分地发扬创新意识,做到人无我有,人有我精,人精我专. 对于旅游市场的开拓,各地旅游开发和建设模式大同小异,无论是山水风景区,历史文化名城,滨海沙滩度假地,还是温泉休养区,大都只是大众旅游市场的共同特征,因此,重复建设的模式正成为旅游开拓市场的通病.随着现代旅游者需求日益成熟,伴随着主题公园等人造景区大规模发展之势,生态旅游由于世界各国重视人和自然共生共存共荣环保概念的强化,以可持续发展为方向的生态旅游正在世界各地呈方兴未艾之势.区域旅游的发展开始以若干不同旅游项目满足相应不同分众市场的开发模式以获得综合整体效益,形成规模经济的发展趋势.3、不同产业匹配发展产业之间相互联系,旅游业的存在不是独立的,在促进旅游业的同时也要加大工业和农业的发展.如我国农业人口占据很大比例,而国内旅游收入的主要来源集中在为数不多的城镇居民上,农村市场还存在很大的空白.可以说,我国的国内旅游市场还没有开发完全,农村市场非常广阔,具有很大潜力,所以发展农业,必然会极大促进我国的旅游事业.。
计量经济学期末论文-中国股市有效性分析eviews
中国股市有效性分析摘要:传统的有效市场理论(Efficient Market Hypothesis,EMH)认为证券价格完全反映了证券的内在价值,证券价格的变动仅受未来的信息影响,信息的变动能够在证券的价格上得到充分及时且准确的反映。
同时,有效市场理论认为,风险中性投资者所组成的一个竞争市场中,证券的内在价值与价格都是服从随机游走规则的,因而未来的证券价格具有不可预测性,但近年来出现了很多理论挑战有效市场假说,均值回归理论就是其中之一,均值回归理论认为,从长期的角度来看,证券价格服从均值回归,也就是长期收益率服从负的相关性。
本文采用时间序列回归方法,对上证指数过去十年的周收益率进行实证验证,证明上证指数具有显著的均值回归特性,为统计套利方法提供了理论依据。
关键词:时间序列;自回归;均值回归;序列相关-稳健推断一、均值回归的由来与发展传统的有效市场理论(Efficient Market Hypothesis,EMH)认为证券价格完全反映了证券的内在价值,证券价格的变动仅受未来的信息影响,信息的变动能够在证券的价格上得到充分及时且准确的反映。
同时,有效市场理论认为,风险中性投资者所组成的一个竞争市场中,证券的内在价值与价格都是服从随机游走规则的,因而未来的证券价格具有不可预测性,投资者只能获得市场平均收益。
萨缪尔森(Samuelson,1957)认为,信息是决定股票价格波动的主要因素,但由于信息是不可预测的,所以股票的未来价格也是不可测的。
法玛(Fama,1965)用间隔天数不同的价格变化来求它们之间的自相关性,得出了1958至1962年期间道·琼斯工业股票的股价变动的自相关系数近似于零,论证了股价是随机游走的,。
自有效市场理论提出以来,该理论一直处于现代金融的主流地位。
但近些年来,尤其是21世纪以来,该理论在理论和实证方面遭遇了前所未有的挑战。
De Bondt和Thaler(1985)[1]第一个对有效市场理论发起了质疑,他们认为股票市场存在着和心理学上类似的过度反应现象,过度反应一般来说是指市场上过分悲观或乐观的心理,过去表现的更好的股票(赢家)被投资者追捧,而过去表现不好的股票(输家)无人理睬。
计量经济学经典eviews 数据操作
计量经济学经典eviews数据操作§5.1使用表达式一、表达式的使用Eviews提供了广泛的运算符集和庞大的内建函数库.Eviews不仅提供了标准的数学运算和统计运算,她也提供了很多能够自动处理时间序列中的先行、滞后、差分等操作的特殊函数。
二、运算符Eviews中包含的基本算术运算符分别是 +、-、*、/、^(幂),运算的数可以写为整数形式、十进制形式和科学计数法的形式。
另外 +、-还可以作为符号运算符来使用。
三、序列表达式Eviews的表达式还可以对样本序列的观测值进行操作。
四、序列函数Eviews提供的函数能够对当前样本的序列元素进行运算,Eviews中大多数函数前都有一个 @符号。
五、序列元素使用序列中的一个实际观测值。
Eviews提供的@elem函数可实现次操作,@elem有两个参数,第一个参数是序列名,第二个参数是数据或观测值的标识符。
六、逻辑表达式逻辑表达式使用来计算真假值的.逻辑表达式能作为数学表达式的一部分、样本描述的一部分或在程序中作为if判断的一部分。
注意:Eviews用1表示真,用0表示假。
七、先行指标、滞后指标和差分处理序列中的先行、滞后指标只要在序列名后加一对小括号,括号中写上先行滞后的数字即可。
滞后的数字用负号表示,先行的用正数表示。
括号中的数也可以不是整数,这时系统会自动把它转换成整数。
如果转换不了系统会警告你。
Eviews也有几个函数可以处理差分或先取对数后作差分。
D函数和DLOG 函数就可以实现此功能。
八、缺失数据在处理数据时可能会遇到一些没有值或某一时段观测值没有用,或者进行了一些非法计算,Eviews使用空值NA表示这些情况。
在=或<>的逻辑运算中使用NA值,则NA值就象其他类型的值一样使用,如果在>、>=、<、<=、<>运算中使用NA值,则会返回NA值,而与序列的观测值无关。
如果逻辑表达式得出的空值使用在数学运算中,这时NA值当作缺失值来考虑,也会得到空值。
用Eviews分析计量经济学问题
一、问题背景高新区自开始设立至今短短十多年的时间,以其惊人的经济发展速度为世人所关注。
随着我国经济发展模式的逐步转变,高新区已经成为我国依靠科技进步和技术创新推动经济社会发展、走中国特色自主创新道路的一面旗帜。
“十二五”时期,面对新的机遇和挑战,国家高新区应注重提升五种能力,努力成为加快转变经济发展方式的排头兵。
为了探索高新经济发展的内在规律性,本文采用截面数据对高新区的投入产出进行分析,力求能够增进对高新区经济发展的了解,对高新区的进一步发展有所帮助。
二、模型设定本文研究的是高新区投入对产出的影响,所以本模型的被解释变量Y 即为高新区的产出。
就目前对高新区数据的统计来看,反映高新区产出的主要有“工业总产值”、“工业增加值”、“技工贸总收入”、“利润”和“上缴税额”几个总量指标。
按照生产函数理论,产出利用增加值,所以模型中我们将使用“工业增加值”指标数据来估计各高新区的总产出。
从高新区的投入来看,对产出有重要影响的因素主要包括以下几个方面:资本K ,劳动力L ,技术投入T ,此外,体制改革,管理模式创新也可以看作是投入的要素,但因其不可量化,因此归入模型的扰动项中。
这样,按照科布道格拉斯形式的生产函数,我们设定函数形式为:u T L AK Y γβα= 两边取自然对数得:u T L K A Y ln ln ln ln ln ln ++++=γβα其中,资本数据K 我们利用的是当年的年末净资产来进行估计,即当年年末资产减去当年年末负债后得到的数据;用当年年末从业人员来估计劳动力L ;用当年技术研发投入来估计技术投入T 。
数据选用的是截面数据。
从《国家高新技术产业开发区十年发展报告(1991-2000年)》得到1999年全国53个高新区各项指标统计数据:三、模型估计用Eviews 软件进行回归分析,得到如下结果:Dependent Variable: Y Method: Least SquaresDate: 13/12/11 Time: 19:31 Sample: 1 53C 0.664556 0.644854 1.030553 0.3078 LNK 0.478131 0.171585 2.786560 0.0076 LNL 0.367855 0.174496 2.108104 0.0402 R-squared0.740558 Mean dependent var6.280427Adjusted R-squared 0.724674 S.D. dependent var 0.440805 S.E. of regression 0.231297 Akaike info criterion -0.017755Sum squared resid 2.621421 Schwarz criterion 0.130946 Log likelihood4.470508 F-statistic 46.62236从表可以看出,回归方程为:TL K Y ln 140542.0ln 367855.0ln 478131.0664556.0ln +++=T= (1.030553) (2.786560) (2.109104) (1.520604)740558.02=R 724674.02=R(1) 经济意义检验从回归结果可以看出,模型估计的γβα,,的参数值都为正、且小于1,与生产函数理论中γβα,,各数值的意义相符。
eviews 计量经济学论文——通货膨胀率
通货膨胀率影响因素计量分析一.经济理论概述在研读了大量统计和计量资料的基础上,选取了国民生产总值,职工平均工资,全社会固定资产投资总额,失业率解释变量来探究对通货膨胀率的影响,建立通货膨胀率影响因素的计量模型。
这里用居民消费价格指数作为反应通货膨胀率的指标。
(1)一般来说国民生产总值增加会导致通货膨胀率的上升;(2)职工平均工资增加,将导致职工消费的增加,又会导致国民生产总值的增加,两者之前可能会出现较高的相关性,要进行多重共线性检验。
(3)全社会固定资产投资总额对通货膨胀率的影响,可以从两个角度来分析。
第一种是通过分析投资的实质来分析。
投资能形成现实的货币流通量,又增加商品和劳务的产出,促进经济增长增加商品和劳务的供给。
第二种是投资过程会在商品和货币两个市场产生对通货膨胀率的影响。
固定资产投资膨胀会拉动对能源、原料等生产资料的大量需求,引发基础产品价格上涨,进而造成下游产品全面上涨。
固定资产投资会形成大量资金需求,并在国内银行信贷放松的情况下称为可能,引起货币供应量、信贷的超常规增长,造成物价增长。
(4)失业率与通货膨胀率的关系:根据短期菲利普斯曲线,两者是负相关关系,可以用总需求供给解释,在短期中物品与劳务的总需求增加引起物价上涨,产量增加。
产量越多,意味着就业越多,失业率下降,物价上涨引起通货膨胀,因此,总需求变动在短期中使通货膨胀和失业反方向变动。
而在长期菲利普斯曲线中,失业率与通货膨胀无关,失业率为自然失业率。
在长期中,总供给量只取决于它的劳动、资本和自然资源的供给,以及生产技术,因此总供给量不变,就业量不变,失业率不变,为经济摩擦下的自然失业率。
二.相关数据列1列2列3列4列5列6指标名称中国中国中国中国中国就业基本情况(年) CPI(年)城镇非私营单位就业人国内生产总值(年)全社会固定资产投资完成城镇登记失业率CPI平均工资:合计GDP全社会固定资产投资完成单位上年=100元亿元亿元%来源国家统计局国家统计局国家统计局国家统计局国家统计局1981102.50772.004,891.60961.00 3.80 1982102.00798.005,323.401,200.40 3.20 1983102.00826.005,962.701,369.06 2.30 1984102.70974.007,208.101,832.87 1.90 1985109.301,148.009,016.002,543.19 1.80 1986106.501,329.0010,275.203,120.60 2.00 1987107.301,459.0012,058.603,791.69 2.00 1988118.801,747.0015,042.804,753.80 2.00 1989118.001,935.0016,992.304,410.40 2.60 1990103.102,140.0018,667.804,517.00 2.50 1991103.402,340.0021,781.505,594.50 2.30 1992106.402,711.0026,923.488,080.10 2.30 1993114.703,371.0035,333.9213,072.30 2.60 1994124.104,538.0048,197.8617,042.10 2.80 1995117.105,348.0060,793.7320,019.30 2.90 1996108.305,980.0071,176.5922,913.50 3.00 1997102.806,444.0078,973.0324,941.10 3.10 199899.207,446.0084,402.2828,406.20 3.10 199998.608,319.0089,677.0529,854.70 3.10 2000100.409,333.0099,214.5532,917.70 3.10 2001100.7010,834.00109,655.1737,213.50 3.60 200299.2012,373.00120,332.6943,499.90 4.00 2003101.2013,969.00135,822.7655,566.60 4.30 2004103.9015,920.00159,878.3470,477.40 4.20 2005101.8018,200.00184,937.4088,773.60 4.20 2006101.5020,856.00216,314.40109,998.20 4.10 2007104.8024,721.00265,810.30137,323.90 4.00 2008105.9028,898.00314,045.40172,828.40 4.20 200999.3032,244.00340,902.81224,598.80 4.30 2010103.3036,539.00401,512.80278,121.90 4.10 2011105.4041,799.00473,104.00311,485.13 4.10 2012102.6046,769.00519,470.10374,694.74 4.10 2013102.6051,483.00568,845.20446,294.09 4.05三.计量经济模型的建立其中P——CPIY——国民生产总值W——职工平均工资I ——全社会固定资产投资总额U——失业率四、模型的求解和检验利用eviews软件进行计量回归,模型的F值为0.02,在5%的显著性水平下显著,但是发现I和U的t值较小,没有通过在5%的显著性水平下变量的显著性检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学期末课程设计辽宁科技大学工商管理学院财务2010.1 级题目:恩格尔系数理论的实证分析恩格尔系数理论的实证分析摘要:建议全面建设小康社会的指标体系包括经济方面4项指标、社会方面7项指标、环境方面3项指标、制度方面2项指标。
恩格尔系数是其中一个重要指标。
一般来说,居民收入水平越高,其恩格尔系数越小。
本文选用逐步回归方法定量分析影响城镇居民家庭恩格尔系数的因素,同时进一步研究现在消费中存在的问题。
影响恩格尔系数因素有很多,本文针对我国的城镇民的食物支出总额占消费支出总额的比例即恩格尔系数进行相关因素的分析,并建立计量经济模型,运用Eviews软件对所给数据分别进行了简单多元回归分析、多重共线性分析、异方差分析和自相关分析,最后得出众多因素对我国城镇居民家庭恩格尔系数的影响,从而得出相关的结论。
关键字:恩格尔系数逐步回归方法计量经济学消费支出总额一文献综述20世纪初期,我国民众消费重点是以吃穿等基本生存需求为主;90年代,食品、衣着消费支出比重下降,家用设备支出比重也已大大下降。
改革开发以来,随着中国经济的高速增长,人民是生活也逐渐得到改善,一方面,城镇和农村居民家庭人均可支配收入从1978年的343.4元和133.6元上升到2009年的17174.7元和5153.2元。
另一方面,城镇和农村居民家庭的恩格尔系数也从1978年的57.5%和67.7%下降到了36.5%和41.0%。
可见,人民生活水平总体上体现了由温饱到小康的历史性跨越。
根据联合国粮农组织的标准划分:恩格尔系数在60%以上为贫困,在50%~59%为温饱,在40%~49%为小康,在30%~39%为富裕,30%以下为最富裕。
对于我国目前的恩格尔系数来看,城镇居民基本上实现富裕,而农村居民只能达到小康,而从收入水平上来看,我国仍属于中低收入的国家,和恩格尔系数的分析结果有些出入。
对人民的消费与收入的构分析,恩格尔定律是否能得到实际经济发展的证实?中国人民生活水平的发展水平是否符合恩格尔定律呢?恩格尔系数与国民总收入(亿元)、全国城镇居民的卫生总费用(元)、全国城镇居民的教育经费情况费用(元)、城镇居民的居民消费价格指数(%)、城镇平均每户就业面(%)、城镇人均储蓄(元)存在着什么样的关系呢?这是本项目研究的主要目的。
恩格尔系数是食品支出总额占个人消费支出总额的比重。
19世纪德国统计学家恩格尔根据统计资料对消费结构的变化得出一个规律,即恩格尔定律:一个家庭收入越少,家庭收入中(或总支出中)用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中(或总支出中)用来购买食物的支出的比例就会下降,推而广之,一个国家越穷,每个国民的平均收入中(或平均支出中)用于购买食物的支出所占比例就越大,随着国家的富裕,这个比例呈下降趋势。
恩格尔系数=食物支出总额/消费支出总额二模型设定研究影响恩格尔系数的因素,主要考虑一下几点:(1)对数据的选择为了研究随着时间各种因素对恩格尔系数的影响,我们就采用各个经济发展阶段的时间序列数据,采用的是从1993年到2009年的年度数据。
(2)影响因素的分析1.国民总收入:即国民生产总值,指一个国家(或地区)所有常住单位在一定时期内收入初次分配的最终结果。
一国常住单位从事生产活动所创造的增加值在初次分配中主要分配给该国的唱作单位,但也有一部分以生产税及进口税、劳动者报酬和财产收入等形式分配给常住单位;同时,国外生产所创造的增加值也有一部分以生产税及进口税(扣除生产和进口补贴)、劳动者报酬和财产收入等形式分配给该国的常住单位,从而产生了国民总收入的概念。
它等于国内生产总值加上来自国外的净要素的收入。
与国内生产总值不同,国民总收入是个收入概念,而国内生产总值是个生产概念。
2.医疗卫生费用的支出:卫生总费用是指一个国家或地区在一定时期内(通常是一年)全社会用于医疗卫生服务所消耗的资金总额。
是以货币座位综合计量手段,从全社会角度反映卫生资金的全部运动过程,分析与评价卫生资金的筹集、分配和使用效果。
3. 教育经费的总支出:教育经费,是指中央和地方财政部门的财政预算中实际用于教育的费用。
教育经费包括教育事业费(即各级各类的学校的人员经费和共用经费)和教育基本建投资(建筑校舍和购置大型教学设备的费用)等。
教育经费是以货币的形式支付的教育费用,是办学必不可少的财力条件。
在中国,教育经费主要是指国家用于发展各级教育事业的费用。
4. 居民消费价格指数:居民消费价格指数和消费物价指数是同义词,已合并消费物价指数应为缩写为CPI ,是根据与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。
5. 城镇平均每户就业面:指城镇平均每户居民家庭中就业者与家庭成员人数的比例。
由于一个家庭中的绝大多数人口都有职业,使得平均家庭收入不断增加,从而使恩格尔系数不断下降。
就业人口的增加,除了与人口的自然增长率有关外,同时与政府大力扶持再就业工程有着密切关系。
6. 城镇人均储蓄额:居民个人收入不可能全部都用完,总有一部分以各种形式储蓄起来,这是一种推迟了的、潜在的购买力,这主要是准备用来购买耐用品的。
个人储蓄的形式包括银行存款、国债、股票和不动产等,这些都是随时可转化为现实购买力的。
城乡居民储蓄存款不断增加。
除了以上分析的几个因素外,影响恩格尔系数的因素还应该有人们对于消费偏好、市场预期、从业情况、生活状态的因素,但是由于缺少相应的统计数据,没有衡量的标准,因此本文中暂时对这些因素忽略。
(3)模型形式的设计由于本文是研究这些因素对恩格尔系数的影响及影响程度,所以要对被解释变量和解释变量进行回归分析,并将方程形式设定为:t t t t t t t X X X X X X Y 7766554433221βββββββ++++++=其中,t Y 为第t 年全国城镇居民的恩格尔系数(%),2X 为国民总收入(亿元)、3X 为全国城镇居民的卫生总费用(元)、4X 为全国城镇居民的教育经费情况费用(元)、5X 为城镇居民的居民消费价格指数(%)、6X 为城镇平均每户就业面(%)、7X 为城镇人均储蓄(元)。
三 数据的收集本文的数据全部从中国统计年鉴.中国统计出版社上获得,如表1.1所示:四 参数估计与检验1. 恩格尔系数对各个因素的总体回归分析由以上回归结果可知,该模型的2R =0.973966,2R =0.958346可决系数很高,F 检验值为62.35285,明显显著。
但是当α=0.05时,)(2/k n t -α=)717(2/-αt =2.228,不仅2X 与7X 的系数t 检验不显著,而且2X 、3X 和6X 系数的符号与预期相反,这表明很可能存在严重的多重共线性。
2. 计算各解释变量的相关系数选择2X 、3X 、4X 、5X 、6X 、7X 数据,得到如下相关系数矩阵:表1.3由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。
3. 异方差性检验绘制2e 对t X 的散点图选择变量t X 于2e ,进入数据列表,可得3X 对2e 、5X 对2e 的残差图如图1.1所示:图1.1图1.2分析可知,残差平方和2e 对解释变量t X 的散点图主要分布在图形的下三角区域,模型可能存在异方差,故对是否存在异方差性进行G-Q 检验。
建立回归模型,取其中的Y 、X3、X5进行分析。
由于样本容量为n=17,删除其中的1/4个样本,即为3个样本,余下的均分为两个样本区间,即1993-1999和2003-2009,运用OLS 法求的以下结果:1993-1999:(表1.7)2003-2009:(表1.8)基于两表中的残差平方和的数据,即为setsquare resid 的数值,得表1的2e =0.775205,表二1e =2.459059,根据Goldfeld-Quanadt 检验,得到F 统计量为:F=2.459059/0.775205=3.17214.在α=0.01下,由于分子分母的自由度为5,查F 分布表得到的临界值为 )5,5(01.0F 11.0,所以接受原假设,表明该模型不存在异方差。
4.自相关检验由以上表1.2、表1.5.3和式1.1可知:t Y ^=16.16217-0.000825tX3+0.288113t X 5 式1.2Se=(8.882848)(0.00180)(0.078437) t=(1.819481) (-4.586531) (3.673162)2R =0.818409 2_R =0.792467 F=31.54815 DW=0.461729该回归方程可决系数较高。
对样本量为17、两个解释变量的模型、 为0.01的显著水平,查DW 统计表可知,L d =0.772,U d =1.255,模型中DW<L d ,显然这个模型中存在这自相关。
对回归结果做残差图。
结果如图1.3所示:图1.3从上图中可知:残差的变动有系统模型,连续为正和连续为负,表明残差项存在一阶正相关。
五 本文的结论根据以上的分析可知,恩格尔系数的不断降低,不仅说明人民生活质量的提高,而且从侧面说明经济的增长。
但是,经济增长并非是提高生活质量的充分条件,高速的经济增长并不必然带来生活质量的普遍提高。
由于体制上的原因,经济增长的结果可能是长期两极分化;有时为了片面追求经济的快速增长,不顾及广大人民的福利和环境代价,会带来严重的负作用。
目前我国居民正从生存型消费逐步向享受型和发展型消费转变,生活质量型消费模式取代温饱型消费模式已成为居民消费的主题。
这对于我国全面建设小康也有着重要意义。
但与此同时,发达国家的那种奢侈型消费模式已在我国有所表现。
参考文献1 唐国兴,计量经济学——理论、方法和模型,复旦大学出版社,1988。
2 张寿、于清文,计量经济学,上海交通大学出版社,1984。
3 邹至庄,经济计量学,中国友谊出版公司,1988。
4 古扎拉蒂计量经济学(上,下),中国人民大学出版社2000年中译本。
5 高鸿业.西方经济学.北京:中国人民大学出版社,2004。
6 张润清.计量经济学.北京:中国农业出版社,2007。
7 刘伟,李绍荣.产业结构与经济增长[J].中国工业经济2005.5。
百度文库- 让每个人平等地提升自我11 班级财务2006 姓名徐辉学号120063902029。