第2章线性规划的对偶问题
《运筹学》胡运权 第4版 第二章 线性规划的对偶理论及灵敏度分析
b2 bm
x1, x2 , , xn 0
对 称 形 式 的
的 定 义
m W ib 1 n y 1 b 2 y 2 b m y m 对
s.t.
a11 a12 a1n
a21 a22 a2n
am1 y1 c1
am2 y2 amn ym
c2 cn
偶 问 题
y1, y2 , , ym 0
a23 x3 a33 x3
b2 b3
x1 0, x2 0, x3无 约 束
(2.4a) (2.4b) (2.4c) (2.4d)
先转换成对称形式,如下:
的 的一个变量,其每个变量对应于对偶问题 的一个约束。
定
义
m Z a c 1 x 1 x c 2 x 2 c n x n 一
对 偶
a11x1 a12x2 a1n xn (,)b1
a2
1x1
a22x2
a2n xn
(, )b2
般 线 性
问 题 的 定 义
am1x1 am2 x2 amnxn (,)bm xj 0( 0,或符号不限) j 1 ~ n
问题。
对
对偶问题是对原问题从另一角度进
偶
行的描述,其最优解与原问题的最 优解有着密切的联系,在求得一个
原
线性规划最优解的同时也就得到对 偶线性规划的最优解,反之亦然。
理
对偶理论就是研究线性规划及其对 偶问题的理论,是线性规划理论的
重要内容之一。
问 题 的 导 出
例2-1
我们引用第一章中美佳公司的例子,如表1
的
x1, x2, , xn 0
对
m W ib 1 n y 1 b 2 y 2 b m y m
第二章 线性规划的对偶理论
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。
线性规划的对偶问题
(二)非对称型对偶问题
max z c1x1 c2x2 c3x3 c3x3 s.t. a11x1 a12 x2 a13x3 a13x3 b1
a21x1 a22 x2 a23x3 a23x3 b2 a2a1x21x1 a2a2 x222x2 a2a3x233x3 a2a3x233x3 b2b2 a31x1 a32x2 a33x3 a33x3 b3
min w b1y1 b2 y2 b3 y3 s.t. a11 y1 a21 y2 a31 y3 c1
a12 y1 a22 y2 a32 y3 c2
a13 y1 a23 y2 a33 y3 c3 y1 0,y2无约束,y3 0
第11页
(二)非对称型对偶问题
对偶问题(原问题)
目标函数 min
约束条件右端常数
目标函数的系数
3个
≥0
变
≤0
量
无符号限制
23个
约
≥
束
≤
条 件
=
第13页
二、原问题与对偶问题的对应关系
原问题(对偶问题)
目标函数 max
目标函数的系数
约束条件右端常数
约 m个
束≤
条 件
≥
=
n个
变
≥0
量
≤0
无符号限制
对偶问题(原问题)
目标函数 min
约束条件右端常数
第8页
(二)非对称型对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1
a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3无约束 分析:化为对称形式。令 x2 x2,x3 x3 x3 (x3 0, x3 0)
线性规划的对偶问题,DOC
第二章线性规划的对偶问题习题2.1写出下列线性规划问题的对偶问题(1)maxz=10x1+x2+2x3(2)maxz=2x1+x2+3x3+x4st.x1+x2+2x3≤10st.x1+x2+x3+x4≤54x1+x2+x3≤202x1-x2+3x3=-4x j ≥0(j=1,2,3)x1-x3+x4≥1xj≥0(j=1,2,3,4)其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。
2.5考虑线性规划问题maxz=2x1+4x2+3x3st.3x1+4x2+2x3≤602x1+x2+2x3≤40x 1+3x2+2x3≤80xj≥0(j=1,2,3)(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;仅供个人学习参考(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。
2.6已知线性规划问题maxz=10x1+5x2st.3x1+4x2≤95x1+2x2≤8xj≥0(j=1,2)(1)给出a,b,c,d,e,f,g的值或表达式;(2)指出原问题是求目标函数的最大值还是最小值;(3)用a+?a,b+?b分别代替a和b,仍然保持上表是最优单纯形表,求?a,?b满足的范围。
仅供个人学习参考仅供个人学习参考2.9某文教用品厂用原材料白坯纸生产原稿纸、日记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为30000千克。
已知工人的劳动生产率为:每人每月可生产原稿纸30捆,或日记本30打,或练习本30箱。
已知原材料消耗为:每捆原稿纸用白坯纸310千克,每打日记本用白坯纸340千克,每箱练习本用白坯纸380千克。
又知每生产一捆原稿纸可获利2元,生产一打日记本获利3元,生产一箱练习本获利1元。
试确定:(1)现有生产条件下获利最大的方案;(2)如白坯纸的供应数量不变,当工人数不足时可招收临时工,临时工工资支出为每人每月40元,则该厂要不要招收临时工?如要的话,招多少临时工最合适?2.10某厂生产甲、乙两种产品,需要A 、B 两种原料,生产消耗等参数如下表(表中2.12试从经济上解释对偶问题及对偶变量的含义。
运筹学第2章:线性规划的对偶理论
目
标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1
运筹学第二章线性规划的对偶理论
(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3
与
y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条
运筹学第2章-线性规划的对偶理论
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
第2章 线性规划(对偶问题)
对偶问题(或原问题)
目标函数为 Min W
n个
约束条件
=
m个
变量
0 0 无约束
约束条件右端项cj 价值系数bi 约束条件的系数矩阵AT
例:
• 写出下面线性规划问 题的对偶问题:
• 1.
max Z 2x1 x2 3x3 x4
x1 x2 x3 x4 5
s.t.
2x1 x2 3x3
原问题(对偶问题)
目标函数 限定向量 价值向量 技术系数 约束条件 变量数目 约束条件个数 变量正负
对偶问题(原问题)
目标函数 价值向量 限定向量 技术系数 对偶变量 约束条件个数 对偶变量数目 约束条件
非对称形式的对偶问题
• 在原线性规划问题为Max型,且变量非负 的前提下:
1. 原问题约束条件是“”型
x1
x3
x4
1
4
x1, x3 0, x2 , x4无约束
• 解:根据上述对偶关 系,可以写出原问题 的对偶问题:
min W 5 y1 4 y2 y3
y1 2 y2 y3 2
s.t.
y1 y1
y2 1 3y2 y3
3
y1
y3
1
y1 0, yLeabharlann 0, y2无约束例:y1
0,
y3
0,
y2无约束
对偶的基本性质
• 原问题: Max Z=CTX
• 对偶问题: Min W=bTY
s.t. AXb X0
s.t. ATY C Y0
• ①对称性:对偶问题的对偶是原问题; • ②弱对偶性:若X是原问题的可行解,Y是
对偶问题的可行解,则CTX bTY
• 弱对偶性的证明: AX’ b X’TAT bT X’TATY’ bTY’
第2章 线性规划的对偶理论
≤9
y1≤0, y2≥0, y3无约束
2.1 线性规划的对偶模型 Dual model of LP
1.本节以实例引出对偶问题; 2.介绍了如何写规范与非规范问题的对偶问题;
作业:教材P61 T 1、2 下一节:对偶性质
2.2 对偶性质
Dual property
2.2 对偶性质 Dual property
时得到最优解,C CB B 1 A 是 X=(X B,X N)的检验数 CB CB B 1B 和
CN CB B1N 的合并。
令 Y CB B1 ,由 C CB B 1 A 0与 CB B 1 0 得
YA C Y 0
可见,这是Y是对偶问题的一个可行解。 思考:Y右边的部分是什么?
C X°≤Y°AX≤Y°b
这一性质说明了两个线性规划互为对偶时,求最大值的 线性规划的任意目标值都不会大于求最小值的线性规划 的任一目标值,不能理解为原问题的目标值不超过对偶 问题的目标值。
2.2 对偶性质 Dual property
由这个性质可得到下面几个结论:
(1)(LP)的任一可行解的目标值是(DP)的最优值下界; (DP)的任一可行解的 目标是(LP)的最优值的上界;
【例2.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x135x2x2108 x1 0, x2 0
【解】这是一个规范形式的线性规划,它的对偶问题求 最小值,有三个变量且非负,有两个“ ≥”约束,即
min w 6 y1 8 y2 10 y3
5yy1172yy22
y3 3y3
4
3
yi 0,i 1,2,3
2.1 线性规划的对偶模型 Dual model of LP
线性规划的对偶理论(第2部分)
灵敏度分析(Sensitivity Analysis)
对偶问题的解可以用于分析原问题参数变化对最优解的影响。通过对偶问题的灵敏度分析,可以 了解原问题解的稳定性以及参数调整对最优解的影响程度。
Part
05
目标规划与多目标决策
目标规划基本概念
目标函数
在目标规划中,目标函数表示决策者希望优化的目标,可以是最 大化或最小化某个或多个变量的函数。
约束条件
约束条件限制了决策变量的取值范围,确保解在实际可行域内。
优先级与权重
不同目标之间可能存在冲突,通过设定优先级和权重可以权衡各 个目标的重要性。
分支定界法的步骤
分支定界法主要包括分支、定界和剪枝三个步骤。首先,将原问题分解为若干个子问题;其次,对每个子问题分别求 解,并更新上下界;最后,通过剪枝策略删除不可能得到最优解的子问题,以减少计算量。
分支定界法的优缺点
分支定界法具有适用范围广、可求得全局最优解等优点;但同时也存在计算量大、求解效率不高等缺点。 因此,在实际应用中需要根据问题的特点和要求选择合适的算法。
多目标决策方法
线性加权法
将多个目标函数线性加权为一个综合目标函数,通过求解该综合目 标函数的最优解来实现多目标决策。
理想点法
先确定每个目标的理想值,然后构造一个评价函数来衡量实际解与 理想解之间的差距,通过最小化该评价函数来求解多目标决策问题。
分层序列法
将多个目标按照重要程度排序,依次求解各层目标的最优解,最终得 到综合考虑所有目标的满意解。
要点三
混合整数规划的应用 案例
混合整数规划在实际应用中有着广泛 的应用,如生产调度中的任务分配问 题、物流运输中的路径优化问题等。 通过运用混合整数规划方法,可以有 效地解决这些问题,提高生产效率和 运输效率。
第2章线性规划讲义的对偶问题
称CBB-1为单纯形乘子
19
二、对偶问题的基本性质
1. 对称性
2. 弱对偶性
推论:
(1)原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。
(2)如原问题有可行解且目标函数值无界,则其对偶问题无 可行解;反之对偶问题有可行解且目标函数值无界,则 其原问题无可行解。
35
三、分析cj的变化 线性规划目标函数中变量系数cj的变化仅仅影响到检验 数,所以将cj的变化直接反映到最终单纯形表中,只可 能出现表2-9中的第一、二两种情况。
例5:在美佳公司例子中, (1) 若家电Ⅰ的利润降至1.5元/件, 而家电Ⅱ的利润增 至2元/件, 美佳公司最优生产计划有何变化? (2) 若家电Ⅰ的利润不变, 而家电Ⅱ的利润在什么范围 内变化时, 该公司的最优生产计划不发生变化。
28
练习: 用对偶单纯形法求解下述LP问题:
min w x1 4x2 3x4 x1 2x2 x3 x4 3
st. 2x1 x2 4x3 x4 2 xi 0(i 1,2,3,4)
29
min z cx
注: 若LP问题的标准形式为:
Ax b
st
.
x
0
其对偶单纯形法的求解步骤确定换入基变量的原则如下:
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
M Z c 1 x a 1 c 2 x x 2 c n x n
a 1 x 1 1 a 1 x 2 2 a 1 n x n b 1 a 2 x 1 1 a 2 x 2 2 a 2 n x n b 2
《运筹学》第二章 对偶问题
3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y
无
3
约
束
对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1
运筹学概论 第2章 线性规划的对偶理论
xi (i 1,, n)
x
j
0
变量
x
j
0
x
j
无约束
约束条件的右端项向量
m
min w bi yi i 1
有n个( j 1,, n)
m
aij y j c j
i 1
m
aij y j c j
约束条件
i 1
m
aij y j c j
i 1
2020/12/13
有m个(i 1,, m)
例2 假设某个公司想把美佳公司的资源购买过来,他至少应付多大的代 价,才能使美佳公司愿意放弃生产活动,出让自己的资源。
( LP 1) max z 2 x1 x 2
5 x 2 15
6 x
x
1
1
x
2
2
x2
5
24
x1 , x 2 0
(LP2) min f 15y1 24y2 5y3
6y2 y3 2 5y1 2y2 y3 1 y1, y2, y3 0
线性规划的对偶问题 对偶问题的基本性质 影子价格
2020/12/13
第二节 对偶问题的基本性质
为了便于讨论,下面不妨总是假设:
原问题:
maxZ CX
s.t.
AX b
X
0
对偶问:题minW Y'b
2020/12/13
A'Y C' s.t.
Y 0
一、单纯形法的矩阵描述
原线性规划问题的矩阵表达式加上松弛变量后为:
2020/12/13
原问题
对偶问题
二、对称形式下对偶问题的一般形式
Max z c1 x1 c 2 x 2 c n x n
运筹学--第二章 线性规划的对偶问题
习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。
分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。
(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。
2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。
2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。
运筹学第2章线性规划的对偶问题
§2.1 线性规划的对偶问题
随着线性规划应用的逐步加深,人们发现每一个线性规 划问题都存在一个与之对应的、具有密切关联的线性规 划问题,其中一个称为原问题,另一个称为对偶问题 (Dual linear programming,DLP)。对偶问题不仅具有 优良的数理性质,而且还有着重要的实际意义,尤其在 生产运营管理中有明显的经济含义。对偶理论充分显示 出线性规划理论逻辑上的严谨性和结构上的对称性,使 线性规划理论更加丰富,应用领域更为广泛。
yi 0 (i 1,2,3)
则得如下的线性规划模型:
min w 48 y1 20 y2 8 y3 8 y1 4 y2 2 y3 600 6 y 2 y2 1.5 y3 300 s.t. 1 y1 1.5 y2 0.5 y3 200 y , y , y 0 1 2 3
max z 2 y1 5 y2 9 y3 y1 3 y2 2 y3 3 2 y y 2 y 1 1 2 3 5 y1 y2 3 y3 1 y1无约束,y2 0, y3 0,
max z 600 x1 300 x2 200 x3 8 x1 6 x2 x3 48 4 x1 2 x2 1.5 x3 20 s.t 2 x1 1.5 x2 0.5 x3 8 x , x , x 0 1 2 3
x1 2, x2 0, x3 8
(2.1.6)
设 yi (i 1,2,, m) 表示第i种资源的定价,则其对偶问 题的形式为:
min w b1 y1 b2 y2 ... bm ym a11 y1 a21 y2 ... am1 ym c1 a y a y ... a y c 12 1 22 2 m2 m 2 s.t. a y a y ... a y c mn m n 1n 1 2 n 2 y1 , y2 , , ym 0
第二章线性规划的对偶理论
2.1 写出线性规划问题的对偶问题,并进一步写出其对偶问题的对偶问题(a) min z=2x1+2x2+4x3(b) max z=5x1+6x2+3x3s.t. x1+3x2+4x3≥2 s.t. x1+2x2+2x3=52x1+x2+3x3≤3 -x1+5x2-3x3≥3x1+4x2+3x3=5 4x1+7x2+3x3≤8x1, x2≥0, x3无约束x1无约束,x2≥0, x3≤0解:(a)对偶问题的原问题为max w=2y1+3y2+5y3s.t. y1+2y2+y3≤23y1+y2+4y3≤24y1+3y2+3y3=4y1≥0, y2≤0, y3无约束(b)原问题的对偶问题为min w=5y1+3y2+8y3s.t. y1-y2+4y3=52y1+5y2+7y3≥62y1-3y2+3y3≤3y1无约束, y2≤0, y3≥02.3 已知线性规划问题:max z=x1+x2s.t. -x1+ x2+ x3 ≤2-2x1+x2- x3 ≤1x1, x2, x3≥0试应用对偶理论证明上述线性规划问题最优解为无界。
解:原问题的对偶问题为min w=2y1+ y2s.t. -y1- 2y2 ≥12y1+ 5y2 ≥1y1- y2 ≥0y1, y2≥0由于约束条件3可得y1-y2 ≥0 →y1≥y2 →-y1≤-y2 且y2≥0所以-y1-2y2 ≤-3y2≤0 (1)由于约束条件1可得-y1- 2y2 ≥1 (2)(1)(2)不等式组无解所以其对偶问题无可行解,又知点X=(1,1,1)为原问题一个可行解,即原问题有可行解, 现在其对偶问题无可行解。
根据对偶理论性质3原问题无界.2.4 已知线性规划问题:max z=2x 1+4x 2+ x 3+x 4 s.t. x 1+ 3x 2 +x 4 ≤8 2x 1+ x 2 ≤6 x 2+ x 3 +x 4 ≤6 x 1+ x 2+ x 3 ≤9 x j ≥0 (j=1,…4)要求(a)写出其对偶问题;(b)已知原问题最优解X=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解. 解:对偶问题: min w=8y 1+ 6y 2+6y 3+9 y 4 s.t. y 1+ 2y 2 +y 4 ≥2 3y 1+ y 2 + y 3 +y 4 ≥4 y 3+ y 4 ≥1 y 1 +y 3 ≥1 y 1, y 2,y 3, y 4≥0将最优解X=(2,2,4,0)代入原问题的约束条件得: x 1+ 3x 2 +x 4 =8 2x 1+ x 2 =6 x 2+ x 3 +x 4 =6 x 1+ x 2+ x 3 =8<9根据对偶理论性质5, 如果∑=<ni i j ij b xa 1ˆ,则0ˆ=i y 。
《运筹学》第二章 对偶问题和灵敏度分析jssk1
2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 x6 1 -2 1 -1 -1 0 1 0
0 x7 9 0 3 1 0 0 0 1
j
-3 0 1 0 0 0 0
……
0 x5 0 0 0 0 -1/2 1 1/2 -1/2
0 x2 3 0 1 1/3 0 0 0 1/3
-3 x1 1 1 0 2/3 1/2 0 -1/2 1/6
j
0 0 3 0 0 -3/2 1/2
…………………………
a1n y1 a2n y2 amn ym cn
y1, y2 , , ym 0
3
二、对称形式下对偶问题的一般形式
LP1:s.t.
n
Max Z c j x j
j 1 n
aij x j bi
i 1,2, , m
j 1
xj 0
j 1,2, , n
m
Min W bi yi i 1
j 1,2, , n
yi 0
i 1,2, , m
12
对称形式的线性规划问题:
max z 3x1 x3
x1 x2 x3 4
st.3x22x1
x2 x3
9
x3
x4
1
x1~3 0
13
-3 0 1 0 0 0 0
CB 基 b x1 x2 x3 x4 x5 x6 x7
0 x5 4 1 1 1 0 1 0 0
例:
二、对称形式下对偶问题的一般形式
线性规划问题具有对称形式,若:
➢ 变量非负
➢ 目标函数求极大值时,约束方程均为≤
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
Max Z c1x1 c2 x2 cn xn a11x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2
X 0 Xs 0
16
一、单纯形算法的矩阵描述
LP2的初始单纯形表及经过若干步迭代后某一步的
单纯形表如下:
表1
B为某步单 纯形表中基 变量在初始 单纯形中对 应的矩阵
N由A中去 掉B后剩下 的列向量 组成
项目
非基变量
XB
XN
基变量
XS
0 XS b B
N
I
cj-zj
CB
CN
0
表2
项目
基变量
XB
CB XB B-1b
10
2.2 对偶问题的基本性质
本节讨论的问题假定原问题及对偶问题为对称形式
LP1:s.t.
n
Max Z c j x j
j 1 n
aij x j bi
i 1,2, , m
j 1
xj 0
j 1,2, , n
m
Min W bi yi i 1
m
LP2:s.t.
aij yi c j
i 1
n
则两侧同乘以“-1”, aij x j bi j 1
8
三、非对称形式的原--对偶问题的关系
P50 例题 2. 线性规划原问题同对偶问题的对应关系如下:
原问题
对偶问题
目标函数 Max
目标函数 Min
约
m个
m个
决
束
0
策
条
0
变
件
=
无约束
量
决
n个
n个
约
策
0
束
变
0
条
量
无约束
=
件
资源向量 b
价值系数 b‘
14
0 -3 0 1 0 0 0 0
CB 基 b x5 x2 x1 x3 x4 x5 x6 x7
0 x5 4 1 1 1 1 0 1 0 0
B 0 x6 1 0 1 -2 -1 -1 0 1 0
0 x7 9 0 3 0 1 0 0 0 1
j
0 0 -3 1 0 0 0 0
……
0 x5 0 1 0 0 0 -1/2 1 1/2 -1/2
价值系数 C
资源向量 C’
约束条件系数矩阵 A 约束条件系数矩阵 A ‘
9
三、非对称形式的原--对偶问题的关系 练习: 给出下述LP问题的对偶问题:
max z x1 2x2 3x3
x1 x2 x3 4
st.
x1 x1
2x2 2x2
3x3 3x3
5 6
x1 0, x2无约束, x3 0
0 x2 3 0 1 0 1/3 0 0 B0-1 1/3
-3 x1 1 0 0 1 2/3 1/2 0 -1/2 1/6
j
0 0 0 3 0 0 -3/2 1/2
15
一、单纯形算法的矩阵描述
Max Z CX
对称形式的LP: AX b
s.t.
X 0
加上松驰变量Xs后为(LP2):
Max Z CX 0X s s.t. AX IX s b
s.t. ………………………… am1 x1 am2 x2 amn xn bm x1, x2 , , xn 0
注:对称形式的LP问 题,对b没有非负要求。
其对偶问题为(LP2) :
s.t.
Min W b1 y1 b2 y2 bm y m a11 y1 a21 y2 am1 ym c1 a12 y1 a22 y2 am2 ym c2
I
cj-zj
0
非基变量
XN
XS
B-1N
B-1
CN-CB B-1N -CB B-1 17
一、单纯形算法的矩阵描述
x1~3 0
6
三、非对称形式的原--对偶问题的关系
1. 非对称转化为对称LP问题的步骤
➢ 目标函数及变量约束的转化同标准形:
n
aij x j bi
j 1
n
aij x j bi
j 1
n
aij x j bi j 1
n
➢ 约束方程若为” ≥”, aij x j bi j 1
资源向量
价格系数
价格系数
资源向量
max z=CX
min w=Y’b
AX≤b
A’Y ≥C’
X≥0
Y≥0
5
二、对称形式下对偶问题的一般形式
练习: 给出下述LP问题的对偶问题:
max z 2x1 4x2 3x3
3x1 4x2 2x3 60
st.2x1x1 3xx22
2 x3 2 x3
40 80
第二章 线性规划的对偶理论 与灵敏度分析
➢ 线性规划的对偶问题 ➢ 对偶问题的基本性质 ➢ 影子价格 ➢ 对偶单纯形法 ➢ 灵敏度分析 ➢ 参数线性规划
1
2.1 线性规划的对偶问题
一、对偶问题的提出
支持对偶理论的基本思想是:每一个线性规划问题都存 在一个与其对偶的问题。在求一个问题的解的同时,也 给出了另一个问题的解。
m
LP2:s.t.
aij yi c j
i 1
j 1,2, , n
yi 0
i 1,2, , m
Max Z CX AX b
s.t.
X 0
Min Y 'b A'Y C'
s.t.
Y 0
4
二、对称形式下对偶问题的一般形式
项目
A b C 目标函数 约束条件 决策变量
原问题
对偶问题
约束系数矩阵 约束系数矩阵的转置