高考理科数学数学导数专题复习

合集下载

高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件

高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件
--
题型二 讨论函数的单调性例2(2019湖北八校联考一,21)已知函数f(x)=x3+ x2-4ax+1(a∈R).(1)略;(2)若函数h(x)=a(a-1)ln x-x3+3x+f(x),讨论函数h(x)的单调性.
--
--
解题心得在判断函数f(x)的单调性时,若f'(x)中含有参数不容易判断其正负时,需要对参数进行分类讨论,分类的标准:(1)按导函数是否有零点分大类;(2)在大类中按导函数零点的大小分小类;(3)在小类中按零点是否在定义域中分类.
当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.
--
--
题型二 求函数的极值、最值例2(2019四川成都七中一模,21)已知函数f(x)=xsin x+2cos x+ax+2,其中a为常数.(1)略;(2)求函数f(x)在[0,π]上的最小值.
--
解: (2)对∀x∈[0,π],f'(x)=xcos x-sin x+a,令g(x)=xcos x-sin x+a,g'(x)=-xsin x≤0,所以f'(x)在区间[0,π]上单调递减.当a≤0时,f'(x)≤f'(0)=a≤0,∴f(x)在区间[0,π]上单调递减,故fmin(x)=f(π)=aπ.当a≥π时,f'(x)≥f'(π)=a-π≥0,∴f(x)在区间[0,π]上单调递增,故fmin(x)=f(0)=4.当0<a<π时,因为f'(0)=a>0,f'(π)=a-π<0,且f'(x)在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x0∈(0,π),使得f'(x0)=0,且f(x)在[0,x0]上单调递增,在[x0,π]上单调递减.故f(x)的最小值等于f(0)=4和f(π)=aπ中较小的一个值.

高考数学真题分项汇编专题05 导数选择、填空(理科)(解析版)

高考数学真题分项汇编专题05 导数选择、填空(理科)(解析版)

十年(2014-2023)年高考真题分项汇编导数选择、填空目录题型一:导数的概念及其几何意义 ..................................... 1 题型二:导数与函数的单调性 ......................................... 8 题型三:导数与函数的极值、最值 ..................................... 9 题型四:导数与函数的零点 .......................................... 14 题型五:导数的综合应用 ............................................ 16 题型六:定积分 (20)题型一:导数的概念及其几何意义一、选择题1.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e a b <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y ′=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t −=−,即()1t ty e x t e +−, 由题意可知,点(),a b 在直线()1t t y e x t e +−上,可得()()11t tt b ae t e a t e =+−=+−,令()()1t f t a t e =+−,则()()t f t a t e ′=−.当t a <时,()0f t ′>,此时函数()f t 单调递增, 当t a >时,()0f t ′<,此时函数()f t 单调递减,所以,()()max a f t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max a b f t e <=, 当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .2.(2020年高考课标Ⅰ卷理科·第0题)函数43()2f xx x =−的图像在点(1(1))f ,处的切线方程为( )A .21y x =−− B .21y x =−+ C .23y x =− D .21y x =+ 【答案】B【解析】()432f x x x =− ,()3246f x x x ′∴=−,()11f ∴=−,()12f ′=−, 因此,所求切线的方程为()121y x +=−−,即21y x =−+. 故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 3.(2020年高考课标Ⅲ卷理科·第0题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +12【答案】D解析:设直线l在曲线y =(0x ,则00x >,函数y =的导数为y ′=,则直线l的斜率k =,设直线l的方程为)0y x x −−,即00x x −+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x −−=,解得01x =,015x =−(舍), 则直线l 的方程为210x y −+=,即1122y x =+. 故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019·全国Ⅲ·理·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e −=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =−,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。

高考数学(理科)二轮复习【专题2】导数及其应用(含答案)

高考数学(理科)二轮复习【专题2】导数及其应用(含答案)

第3讲导数及其应用考情解读(1)导数的意义和运算是导数应用的基础,是高考的一个热点.(2)利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.热点一导数的运算和几何意义例1(1)(2014·广东)曲线y=e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy中,设A是曲线C1:y=ax3+1(a>0)与曲线C2:x2+y2=52的一个公共点,若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是________.思维启迪(1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A点坐标是解题的关键点,列方程求出.答案(1)5x+y-3=0(2)4解析(1)因为y′=e-5x(-5x)′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0,又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3ax 20=-1,即y 0=3ax 30,又ax 30=y 0-1,所以y 0=32,代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π. (2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为 f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1) =-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4) =(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域;(2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤g (x )min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴g (x )min =g (2)=1.∴a ≤1,即实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以f (x )min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以f (x )min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以f (x )min =f (e)=1+2ae=3,得a =e ,适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +ax (x >0),F ′(x )=1x -a x 2=x -ax2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数.由F ′(x )<0⇒x ∈(0,a ),∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根,亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时,G ′(x )和G (x )的变化情况如下表:由表知G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a , 则f ′(x )>0,故f (x )在(0, -12a]上是增函数; 若x >-12a,则f ′(x )<0, 故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3],恒有ma-f(x)>a2成立,等价于ma-a2>f(x)max.因为a∈(-4,-2),所以24< -12a<12<1.由(1),知当a∈(-4,-2)时,f(x)在[1,3]上是减函数,所以f(x)max=f(1)=2a,所以ma-a2>2a,即m<a+2.因为a∈(-4,-2),所以-2<a+2<0.所以实数m的取值范围为m≤-2.1.函数单调性的应用(1)若可导函数f(x)在(a,b)上单调递增,则f′(x)≥0在区间(a,b)上恒成立;(2)若可导函数f(x)在(a,b)上单调递减,则f′(x)≤0在区间(a,b)上恒成立;(3)可导函数f(x)在区间(a,b)上为增函数是f′(x)>0的必要不充分条件.2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f(x),“f(x)在x=x0处的导数f′(x)=0”是“f(x)在x=x0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论.真题感悟1.(2014·江西)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是________.答案(-ln 2,2)解析设P(x0,y0),∵y=e-x=1e x,∴y′=-e-x,∴点P处的切线斜率为k=-e-x0=-2,∴-x0=ln 2,∴x0=-ln 2,∴y0=e ln 2=2,∴点P的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4. 若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3, h ′(x )=3x 2-3,所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞ 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x ,令f ′(x )=0得x =±2,∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0; ∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数, ∴f (x )在x =2处取得极小值f (2)=12-ln 2;又f (1)=18,f (3)=98-ln 3,∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0,∴f (1)>f (3),∴x =1时函数f (x )取得最大值为18,x =2时函数f (x )取得最小值为12-ln 2.(2)由(1)知当x ∈[1,3]时,12-ln 2≤f (x )≤18,故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2].∴⎩⎨⎧g (0)<318g (2)<318,解得a <3116,∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、填空题1.曲线y =x 3-2x 在(1,-1)处的切线方程为________. 答案 x -y -2=0解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0.2.(2014·课标全国Ⅱ改编)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________. 答案 3解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,所以a =3.3.(2014·陕西改编)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为________.答案 y =1125x 3-35x解析 设所求解析式为y =ax 3+bx 2+cx +d , ∵函数图象过(0,0)点,∴d =0.又图象过(-5,2),(5,-2),∴函数为奇函数 ∴b =0,代入可得-125a -5c =2①又y ′=3ax 2+c ,当x =-5时y ′=75a +c =0②由①②得a =1125,c =35∴函数解析式为y =1125x 3-35x . 4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________________________________________________________________________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是________. 答案 [34,1) 解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, 所以x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,所以34≤a <1. 6.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,下列结论正确的是________. ①f (x )>g (x );②f (x )<g (x );③f (x )+g (a )>g (x )+f (a );④f (x )+g (b )>g (x )+f (b ).答案 ③解析 ∵f ′(x )-g ′(x )>0,∴(f (x )-g (x ))′>0,∴f (x )-g (x )在[a ,b ]上是增函数,∴当a <x <b 时f (x )-g (x )>f (a )-g (a ),∴f (x )+g (a )>g (x )+f (a ).7.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 (-∞,12) 解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 8.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].9.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.10.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 (0,12) 解析 f ′(x )=(ln x -ax )+x (1x-a ) =ln x +1-2ax (x >0),令f ′(x )=0得2a =ln x +1x,设φ(x )=ln x +1x, 则φ′(x )=-ln x x 2. 易知φ(x )在(0,1)上递增,在(1,+∞)上递减,大致图象如图.若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点,∴0<2a <1,∴0<a <12. 二、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知,f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28…),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]上单调递减,在[-2,t +1]上单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]上单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2),2e t (t +1)(t ≥-2). (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )内单调递减,在[ln 1k,+∞)内单调递增. ①当ln 1k<-2,即k >e 2时,F (x )在[-2,+∞)单调递增, F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )内单调递减,在[ln 1k,+∞)内单调递增.F(x)min=F(ln 1k)=ln k(2-ln k)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].。

高考数学导数讲解:函数单调性

高考数学导数讲解:函数单调性

模块一:切线方程知识点一:导数的几何意义。

导数的几何意义:导数值等于原函数在该点处的切线斜率。

知识点二:直线的点斜式方程。

直线的点斜式方程:直线过点),(00y x ,直线的斜率为k ⇒直线的点斜式方程:)(00x x k y y -=-。

题型一:已知切点的横坐标,求解切线方程。

模型:已知:函数)(x f 的解析式。

求解:函数)(x f 在0x x =处的切线方程。

解法设计:第一步:求切点的纵坐标。

把0x x =代入函数)(x f 得到切点的纵坐标⇒)(0x f 切点))(,(00x f x 。

第二步:求导函数。

根据函数)(x f 的解析式计算导函数)('x f 。

第三步:求切线斜率。

根据导数的几何意义得到:把0x x =代入导函数)('x f 得到切线斜率)('0x f 。

第四步:求切线方程。

根据直线的点斜式方程得到:切点))(,(00x f x ,切线斜率为)('0x f ⇒切线方程:))((')(000x x x f x f y -=-。

例题:2020年高考理科数学新课标Ⅰ卷第6题:函数342)(x x x f -=的图像在点))1(,1(f 处的切线方程为()A、12--=x y B、12+-=x y C、32-=x y D、12+=x y 本题解析:第一步:求切点的纵坐标。

把1=x 代入函数342)(x x x f -=得到1121)1(34-=⨯-=f ⇒切点)1,1(-。

第二步:求导函数。

342)(x x x f -=2364)('x x x f -=⇒。

第三步:求切线斜率。

根据导数的几何意义得到切线斜率:21614)1('23-=⨯-⨯=f 。

第四步:求切线方程。

根据直线的点斜式方程得到:切点)1,1(-,切线斜率为2-⇒切线方程:12221)1(2)1(+-=⇒+-=+⇒--=--x y x y x y 。

跟踪训练一:2019年高考数学新课标Ⅰ卷理科第19题文科第19题:曲线xe x x y )(32+=在)0,0(处的切线方程为。

高考理科数学知识点整理

高考理科数学知识点整理

高考理科数学知识点整理高考理科数学知识点整理在学习中,说起知识点,应该没有人不熟悉吧?知识点就是一些常考的内容,或者考试经常出题的地方。

哪些才是我们真正需要的知识点呢?下面是店铺整理的高考理科数学知识点整理,仅供参考,大家一起来看看吧。

高考理科数学知识点整理 1一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1.x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根立体图形及平面图形的公式圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=pi.r2h图形周长、面积、体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长高考理科数学知识点整理 2高考理科数学知识点之导数公式1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2高考理科数学知识点整理 3定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

(名师导学)高考数学总复习 同步测试卷(五)导数及其应用 理(含解析)新人教A版-新人教A版高三全册

(名师导学)高考数学总复习 同步测试卷(五)导数及其应用 理(含解析)新人教A版-新人教A版高三全册

同步测试卷理科数学(五) 【p 293】(导数及其应用) 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.函数y =x sin x +x 的导数是( )A .y′=sin x +x cos x +12xB .y′=sin x -x cos x +12xC .y′=sin x +x cos x -12xD .y′=sin x -x cos x -12x【解析】f′(x)=(x)′sin x +x(sin x)′+⎝ ⎛⎭⎪⎫x 12′ =sin x +x cos x +12x -12=sin x +x cos x +12x .【答案】A2.已知a 为函数f(x)=x 3-12x 的极小值点,则a =( )A .-4B .-2C .4D .2【解析】f′()x =3x 2-12=3()x +2()x -2,令f′()x =0得x =-2或x =2,易得f ()x 在()-2,2上单调递减,在()2,+∞上单调递增,故f ()x 的极小值点为2,即a =2.【答案】D 3.定积分⎠⎛-aaa 2-x 2d x 等于( )A .14πa 2B .12πa 2 C .πa 2D .2πa 2【解析】由题意可知定积分表示半径为a 的半个圆的面积,所以S =12(πa 2)=12πa 2.【答案】B4.直线y =kx +1与曲线f(x)=a ln x +b 相切于点P(1,2),则a +b =( )A .1B .4C .3D .2【解析】由f(x)=a ln x +b ,得f′(x)=ax,∴f′(1)=a.再由直线y =kx +1与曲线f(x)=a ln x +b 相切于点P(1,2),得 ⎩⎪⎨⎪⎧k =a ,k +1=b ,b =2,∴⎩⎪⎨⎪⎧k =1,a =1,b =2, ∴a+b =3. 【答案】C5.已知函数y =f(x)是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x>0,则函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3【解析】由已知得f ′(x )·x +f (x )x >0,得(xf (x ))′x>0,得(xf (x ))′与x 同号,令g (x )=xf (x ).则可知g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 且g (0)=0,又由xf (x )+1x =0,即g (x )=-1x ,显然y =g (x )的图象与y =-1x的图象只有一个交点,选B.【答案】B6.定义在R 上的偶函数f (x )的导函数为f ′(x ),若对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值X 围是( )A .{x |x ≠±1}B .(-∞,-1)∪(1,+∞)C .(-1,1)D .(-1,0)∪(0,1)【解析】f (x )是R 上的偶函数,则函数g (x )=x 2f (x )-x 2也是R 上的偶函数, 对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立, 则g ′(x )=x [2f (x )+xf ′(x )-2].当x ≥0时,g ′(x )<0,当x <0时,g ′(x )>0,即偶函数g (x )在区间(-∞,0)上单调递增,在区间(0,+∞)上单调递减, 不等式x 2f (x )-f (1)<x 2-1即x 2f (x )-x 2<12f (1)-12, 据此可知g (x )<g (1),则x <-1或x >1.即实数x 的取值X 围是(-∞,-1)∪(1,+∞). 【答案】B二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.某产品的销售收入y 1(万元)是产量x(千台)的函数y 1=17x 2,生产成本y 2(万元)是产量x(千台)的函数y 2=2x 3-x 2,已知x>0,为使利润最大,应生产________(千台).【解析】由题意,利润y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3(x >0). y′=36x -6x 2,由y′=36x -6x 2=6x(6-x)=0,得x =6(x >0), 当x∈(0,6)时,y′>0,当x∈(6,+∞)时,y′<0. ∴函数在(0,6)上为增函数,在(6,+∞)上为减函数. 则当x =6(千台)时,y 有最大值为216(万元). 【答案】68.曲线y =2x 与直线y =-x +3及x 轴围成的图形的面积为________.【解析】由曲线y =2x 与直线y =-x +3及x 轴围成的图形的面积为⎠⎛012x d x +⎠⎛13(-x+3)d x =43x 32|10+⎝ ⎛⎭⎪⎫-12x 2+3x |31=43+2=103.【答案】1039.若函数f(x)=x 3-ax 2+3x -4a 3在(-∞,-1),(2,+∞)上都是单调增函数,则实数a 的取值集合是________.【解析】由f′(x)=3x 2-2ax +3,(1)当Δ=4a 2-36≤0⇒-3≤a≤3时,f(x)在R 上为增函数,满足条件; (2)当Δ=4a 2-36>0⇒a <-3或a >3时,由⎩⎪⎨⎪⎧-1<a3<2⇒-3<a <6,f ′(-1)≥0⇒a ≥-3,f ′(2)≥0⇒a ≤154,∴3<a ≤154,∴综合得a 的取值集合是⎣⎢⎡⎦⎥⎤-3,154. 【答案】⎣⎢⎡⎦⎥⎤-3,15410.若不等式|mx 3-ln x |≥1(m >0),对∀x ∈(0,1]恒成立,则实数m 的取值X 围是__________________.【解析】不等式|mx 3-ln x |≥1(m >0),对∀x ∈(0,1]恒成立, 等价为mx 3-ln x ≥1或mx 3-ln x ≤-1, 即m ≥1+ln x x 3或m ≤ln x -1x3, 记f (x )=1+ln x x 3,g (x )=ln x -1x3, 则f ′(x )=1x ·x 3-3x 2(1+ln x )x 6=-2-3ln xx4,由f ′(x )=-2-3ln xx4=0, 解得ln x =-23,即x =e -23,由f (x )>0,解得0<x <e -23,此时函数单调递增,由f (x )<0,解得x >e -23,此时函数单调递减,即当x =e -23时,函数f (x )取得极大值,同时也是最大值f (e -23)=1+ln e -23(e -23)3=1-23e-2=13e 2, 此时m ≥13e 2;由g (x )=ln x -1x3, ∵当x =1时,ln x -1x3=0, ∴当m >0时,不等式m ≤ln x -1x3不恒成立, 综上,m ≥13e 2.【答案】⎣⎢⎡⎭⎪⎫e 23,+∞ 三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知函数f(x)=e x-2x.(1)求曲线y =f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=f(x)-a ,x∈[-1,1]恰有2个零点,某某数a 的取值X 围. 【解析】(1)∵f(x)=e x-2x ,∴f′(x)=e x-2. ∴f′(0)=-1, 又f(0)=1,∴曲线y =f(x)在点(0,f(0))处的切线方程为y -1=-x , 即x +y -1=0.(2)由题意得g(x)=e x-2x -a , ∴g′(x)=e x-2,由g′(x)=e x -2=0解得x =ln 2,故当-1≤x<ln 2时,g′(x)<0,g(x)在[-1,ln 2)上单调递减; 当ln 2<x≤1时,g′(x)>0,g(x)在(ln 2,1]上单调递增. ∴g(x)min =g(ln 2)=2-2ln 2-a , 又g(-1)=e -1+2-a ,g(1)=e -2-a , 结合函数的图象可得,若函数恰有两个零点,则⎩⎪⎨⎪⎧g (-1)=e -1+2-a≥0,g (1)=e -2-a≥0,g (ln 2)=2-2ln 2-a<0,解得2-2ln 2<a≤e -2. ∴实数a 的取值X 围是(2-2ln 2,e -2].12.(16分)已知定义在正实数集上的函数f(x)=ax 2-(a +2)x +ln x.(1)若函数g(x)=f(x)-ax 2+1,在其定义域上g(x)≤0恒成立,某某数a 的最小值; (2)若a>0时,f(x)在区间[1,e ]上的最小值为-2,某某数a 的取值X 围.【解析】(1)由g(x)=ln x -(a +2)x +1≤0在其定义域上恒成立,因为x>0,∴a+2≥ln x +1x,设h(x)=ln x +1x(x>0),h′(x)=1-ln x -1x 2=-ln xx2, 所以0<x<1时,h′(x)>0,h(x)递增,x>1时,h′(x)<0,h(x)递减, 因此h(x)max =h(1)=1,∴a+2≥1可得a≥-1, 综上实数a 的最小值是-1.(2)f′(x)=2ax -(a +2)+1x =(ax -1)(2x -1)x (x>0,a>0),f′(x)=0,x 1=12,x 2=1a,当a≥1,1a ≤1,x∈(1,e ),f′(x)≥0,f(x)单调递增,f(x)min =f(1)=-2符合题意,当1e <a<1,x∈[1,e ],x∈⎝ ⎛⎭⎪⎫1,1a ,f(x)单调递减,x∈⎝ ⎛⎭⎪⎫1a ,e ,f(x)单调递增; f(x)min =f ⎝ ⎛⎭⎪⎫1a <f(1)=-2舍去,当0<a≤1e,x∈(1,e ),f(x)单调递减,f(x)min =f(e )<f(1)=-2舍去,综上实数a 的取值X 围是[1,+∞).13.(18分)已知函数f(x)=-x -mx +2ln x ,m∈R .(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2,且x 1<x 2,证明:f (x 2)>1-x 2.【解析】(1)由f (x )=-x -m x+2ln x ,得f ′(x )=-1+m x 2+2x =-x 2+2x +m x 2=-x 2-2x -mx 2,x ∈(0,+∞).设g(x)=x2-2x-m,x∈(0,+∞).当m≤-1时,即Δ=4+4m≤0时,g(x)≥0,f′(x)≤0.∴f(x)在(0,+∞)上单调递减.当m>-1时,即Δ=4+4m>0时,令g(x)=0,得x1=1-1+m,x2=1+1+m,x1<x2.当-1<m<0时,0<x1<x2,在(0,x1)∪(x2,+∞)上,f′(x)<0,在(x1,x2)上,f′(x)>0,∴f(x)在(0,x1)上单调递减,在(x1,x2)上单调递增,在(x2,+∞)上单调递减.当m≥0时,x1≤0<x2,在(0,x2)上,f′(x)>0,在(x2,+∞)上,f′(x)<0,∴f(x)在(0,x2)上单调递增,在(x2,+∞)上单调递减.综上,当m≤-1时,f(x)在(0,+∞)上单调递减;当-1<m<0时,f(x)在(0,1-1+m),(1+1+m,+∞)上单调递减,在(1-1+m,1+1+m)上单调递增;当m≥0时,f(x)在(0,1+1+m)上单调递增,在(1+1+m,+∞)上单调递减.(2)∵f(x)有两个极值点x1,x2,且x1<x2,∴由(1)知g(x)=x2-2x-m有两个不同的零点x1,x2,x1=1-1+m,x2=1+1+m,且-1<m<0,此时,x22-2x2-m=0,要证明f(x2)=-x2-mx2+2ln x2>1-x2,只要证明2ln x2-mx2>1.∵m =x 22-2x 2,∴只要证明2ln x 2-x 2>-1成立. ∵m ∈(-1,0),∴x 2=1+1+m ∈(1,2). 设h (x )=2ln x -x ,x ∈(1,2), 则h ′(x )=2x-1,当x ∈(1,2)时,h ′(x )>0, ∴h (x )在x ∈(1,2)上单调递增, ∴h (x )>h (1)=-1,即2ln x 2-x 2>-1,∴f (x )有两个极值点x 1,x 2,且x 1>x 2时,f (x 2)>1-x 2.word 11 / 11。

高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析

高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析

知识点 7.微积分基本定理
一般地,如果 f(x)是在区间[a,b]上的连续函数,且 F′(x)=f(x),那么 错误!f(x)dx=F(b)-F(a).
b
| 这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x) ,即 错误!f(x)dx a b
| =F(x) )=F(b)-F(a). a 【特别提醒】
于形如 y=f(ax+b)的复合函数)的导数;
5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;
6.了解微积分基本定理的含义。
【重点知识梳理】
知识点 1.导数的概念
(1)函数 y=f(x)在 x=x0 处的导数:函数 y=f(x)在 x=x0 处的瞬时变化率 liΔxm→0 Δy=liΔxm→0 Δx
x 【答案】e
【方法技巧】
1.求函数导数的总原则:先化简解析式,再求导.
2.常见形式及具体求导 6 种方法
连乘形式
先展开化为多项式形式,再求导
三角形式 先利用三角函数公式转化为和或差的形式,再求导
分式形式
先化为整式函数或较为简单的分式函数,再求导
根式形式
先化为分数指数幂的形式,再求导
对数形式
先化为和、差形式,再求导
n
n b-a
点ξi(i=1,2,…,n),作和式 ∑ f(ξi)Δx= ∑
f(ξi),当 n→∞时,上述和式无限接近于某个
i=1
i=1 n
常数,这个常数叫做函数 f(x)在区间[a,b]上的定积分,记作 错误!f(x误!f(x)dx 中,a,b 分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被
函数 f(x)在闭区间[-a,a]上连续,则有

专题13 导数的概念及其意义、导数的运算(解析版)

专题13 导数的概念及其意义、导数的运算(解析版)
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
6.(2020年高考数学课标Ⅲ卷理科)若直线l与曲线y= 和x2+y2= 都相切,则l的方程为( )
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【答案】D
解析:设直线 在曲线 上的切点为 ,则 ,函数 的导数为 ,则直线 的斜率 ,设直线 的方程为 ,即 ,
【小问2详解】 ,则 在点 处的切线方程为 ,整理得 ,设该切线与 切于点 , ,则 ,则切线方程为 ,整理得 ,则 ,整理得 ,令 ,则 ,令 ,解得 或 ,
令 ,解得 或 ,则 变化时, 的变化情况如下表:
0
1
0
0
0
则 的值域为 ,故 的取值范围为 .
4.(2022·新高考Ⅰ卷T22)已知函数 和 有相同 最小值.
2.函数f(x)的导函数:函数f′(x)= 为f(x)的导函数.
基本题型:
1.设 为可导函数,且满足 ,则 为()
A.1B.
C.2D.
【答案】B
【分析】利用导数的定义进行求解.
【详解】因为 ,所以 ,即
所以 .
2.已知函数 ,且 ,则 的值为()
A. B.2C. D.
【答案】D
【分析】利用导数定义,可求得 ,代入 ,即得解
②当P点不是切点时,设切点为A(x0,y0),由定义可求得切线的斜率为k=3x .
∵点A在曲线上,∴y0=x ,∴ =3x ,∴x -3x +4=0,∴(x0+1)(x0-2)2=0,
解得x0=-1或x0=2(舍去),∴y0=-1,k=3,此时切线方程为y+1=3(x+1),即3x-y+2=0.
故经过点P的曲线的切线有两条,方程为12x-y-16=0或3x-y+2=0.

高考理科数学《导数的综合应用》题型归纳与训练

高考理科数学《导数的综合应用》题型归纳与训练

理科数学《导数的综合应用》题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数3()12f x ax x =-,导函数为()f x ', (1)求函数()f x 的单调区间;(2)若(1)6,()f f x '=-求函数在[—1,3]上的最大值和最小值。

【答案】略【解析】(I )22()3123(4)f x ax ax '=-=-,(下面要解不等式23(4)0ax ->,到了分类讨论的时机,分类标准是零)当0,()0,()(,)a f x f x '≤<-∞+∞时在单调递减; 当0,,(),()a x f x f x '>时当变化时的变化如下表:此时,()(,)f x -∞+∞在单调递增, 在(单调递减; (II )由(1)3126, 2.f a a '=-=-=得由(I )知,()(f x -在单调递减,在单调递增。

【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不重复一遗漏。

还要注意一点的是,最后注意将结果进行合理的整合。

题型二 已知单调性求参数取值范围问题 例1 已知函数321()53f x x x ax =++-, 若函数在),1[+∞上是单调增函数,求a 的取值范围【答案】【解析】2'()2f x x x a =++,依题意在),1[+∞上恒有0y '≥成立, 方法1:函数2'()2f x x x a =++,对称轴为1x =-,故在),1[+∞上'()f x 单调递增,故只需0)1('≥f 即可,得3-≥a ,所以a 的取值范围是[3,)+∞;方法2: 由022≥++='a x x y ,得x x a 2--2≥,只需2max --2a x x ≥(),易得2max --23x x =-(),因此3-≥a ,,所以a 的取值范围是[3,)+∞; 【易错点】本题容易忽视0)1('≥f 中的等号 【思维点拨】已知函数()f x 在区间(,)a b 可导:1. ()f x 在区间(,)a b 内单调递增的充要条件是如果在区间(,)a b 内,导函数()0f x '≥,并且()f x '在(,)a b 的任何子区间内都不恒等于零;2. ()f x 在区间(,)a b 内单调递减的充要条件是如果在区间(,)a b 内,导函数()0f x '≤,并且()f x '在(,)a b 的任何子区间内都不恒等于零;说明:1.已知函数()f x 在区间(,)a b 可导,则()0f x '≥在区间内(,)a b 成立是()f x 在(,)a b 内单调递增的必要不充分条件2.若()f x 为增函数,则一定可以推出()0f x '≥;更加具体的说,若()f x 为增函数,则或者()0f x '>,或者除了x 在一些离散的值处导数为零外,其余的值处都()0f x '>;3. ()0f x '≥时,不能简单的认为()f x 为增函数,因为()0f x '≥的含义是()0f x '>或()0f x '=,当函数在某个区间恒有()0f x '=时,也满足()0f x '≥,但()f x 在这个区间为常函数. 题型三 方程与零点1.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A. (),2-∞-B. ()2,2-C. ()2,+∞D. ()()2,00,2-⋃ 【答案】D【解析】很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==,由题意得不等式: ()()122281210f x f x a a =-+< ,即: 2241,4,22a a a><-<< , 综上可得a 的取值范围是 ()()2,00,2-⋃.本题选择D 选项.【易错点】找不到切入点,“有三个零点”与函数的单调性、极值有什么关系?挖掘不出这个关系就无从下手。

人教A版高考总复习一轮理科数学精品课件 第3章 导数及其应用 指点迷津三 在导数应用中如何构造函数

人教A版高考总复习一轮理科数学精品课件 第3章 导数及其应用 指点迷津三 在导数应用中如何构造函数

.
答案:(-∞,-1)∪(1,+∞)
解析:构造
()
F(x)= ,则
'()·-()
F'(x)= 2 ,当
x<0 时,xf'(x)-f(x)>0,
可以推出当 x<0 时,F'(x)>0,F(x)在(-∞,0)上单调递增.
()
∵F(x)= 为奇函数,

∴F(x)在(0,+∞)上也单调递增.根据f(1)=0可得F(1)=0,F(-1)=0,
起看看常考的几种形式.
F(x)=f(x)sin x,F'(x)=f'(x)sin x+f(x)cos x;
()
'()sin -()cos
F(x)= ,F'(x)=
;
2
sin
si n
F(x)=f(x)cos x,F'(x)=f'(x)cos x-f(x)sin x;
()
'()cos +()sin
F(x)=xnf(x),F'(x)=nxn-1f(x)+xnf'(x)=xn-1[nf(x)+xf'(x)];
()
'()· - -1 ()
F(x)= ,F'(x)=

2
=
'()- ()
.

+1

结论:(1)如果题目中出现nf(x)+xf'(x)形式,构造函数F(x)=xnf(x);
(0,+∞)上也单调递减.根据f(-4)=0可得F(-4)=0,F(4)=0,根据函数的单调性、

最后一练:查漏补缺热点梳理理科数学经典题训练:专题02 导数及其应用

最后一练:查漏补缺热点梳理理科数学经典题训练:专题02 导数及其应用

考点一 导数的几何意义 [1]导数的概念与计算1.设函数在1x =处存在导数,则()()11lim 3x f x f x ∆→+∆-=∆( )A .()'1fB ()3'1fC .()1'13fD .()'3f[2]切线问题(已知切点) 3.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A . 12-B .12C .2-D .2[3]切线问题(切点未知)5.曲线3ln 2y x x =++在点0P 处的切线方程为410x y --=,则点0P 的坐标是( ) A .(0,1) B .(1,1)- C .(1,3) D .(1,0)6.过点A (0,16)作曲线()33f x x x =-的切线,则此切线的方程为_______.考点二 利用导数研究单调性 [4]求单调区间(不含参数)7.设()()256f x a x lnx -=+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6. (1)确定a 的值; (2)求函数f (x )的单调区间.[5]求单调区间(含参数) [8]求极值或者最值(含参数) 8.已知函数()3113f x x ax =-+ (1)当1x =时,()f x 取得极值,求a 的值. (2)求()f x 在[]0,1上的最小值.[6]已知单调区间求参数范围 9.已知函数()322131,3f x x mx m x m R =+-+∈ (1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若f (x )在区间(-2,3)上是减函数,求m 的取值范围.【答案】(1)153250x y --= (2) (,2][3,)-∞-+∞[7]求极值或者最值(不含参数) [9]已知极值或者最值求参数范围 10.已知函数()23ln f x ax x x=--,其中a 为常数. (1)当函数()f x 的图像在点22,33f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1时,求()f x 在3,32⎡⎤⎢⎥⎣⎦上的最小值; (2)若函数()f x 在区间()0,+∞上既有极大值又有极小值,求a 的取值范围.11.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是( )[9]已知极值或者最值求参数 [10]恒成立问题(分离参数)12.设函数()322338f x x ax bx c =+++在1x =及2x =处取得极值,(1)求,a b 的值; (2)若对于任意的[]0,3x ∈都有()2f x c <成立,求c 的取值范围.[10]恒成立问题(分离参数) [11]恒成立问题(数形结合) 13.已知函数()()ln 10f x a x a =+> (1)当0x >时,求证()111f x a x ⎛⎫-≥-⎪⎝⎭; (2)在区间()1,e 上()f x x >恒成立,求实数a 的取值范围. 【答案】(1)详见解析 (2) [)1,e -+∞[13]零点问题 14.已知函数a ax x a x x f ---+=232131)((),0x R a ∈> . (1)求函数)(x f 的单调区间;(2)若函数)(x f 在区间()2,0-内恰有两个零点,求a 的取值范围;[14]存在性问题16.已知函数()()324f x x ax x R =-+-∈,()'f x 是()f x 的导函数.(1)当2a =时,对任意的[][]1,1,1,1m n ∈-∈-,求()()'f m f n +的最小值; (2)若存在()00,x ∈+∞,使()00f x >,求a 的取值范围.1.已知函数()4ln f x x x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为___________.2.若函数()()bf x x b R x=+∈的导函数在区间(1,2)上有零点,则()f x 在下列区间单调递增的是( ) A .(2,0)- B .(0,1) C .(1,)+∞ D .(,2)-∞-3.已知21()ln(1),()(,)2f x xg x ax bx a b R =+=+∈. (Ⅰ)若2()(1)()b h x f x g x ==--且存在单调递减区间,求实数a 的取值范围; (Ⅱ)若0,1a b ==,求证:当(1,)x ∈-+∞时,()()0f x g x -≤恒成立; (Ⅲ)设0,0x y >>,证明:ln ln ()ln2x yx x y y x y ++>+. 【答案】(Ⅰ)()1,-+∞;(Ⅱ)证明过程详见试题解析;(Ⅲ)证明过程详见试题解析.(Ⅲ)证明:∵0,0x y >>,4.已知函数2901xf x a ax =>+()() . (1)求f x ()在122[,]上的最大值;(2)若直线2y x a =-+为曲线y f x =()的切线,求实数a 的值;(3)当2a =时,设1214122x x x ,⎡⎤∈⎢⎥⎣⎦…,,, ,且121414x x x =…+++ ,若不等式1214f x f x +f x λ≤…()+()+()恒成立,求实数λ的最小值.∴当1[,2]2x∈时,()(4)0f x x--≤,即()4f x x≤-.5.已知函数()f x 3233(0)ax x x a =-+> (1)当1a ≥时,求()f x 的单调区间; (2)若()f x 在[1,3]的最大值为8,求a 的值.6.已知函数f (x )=ax 2+ln (x +1). (1)当a =14-时,求函数f (x )的单调区间;(2)当[0,)x ∈+∞时,函数y =f (x )图像上的点都在0,x y x ≥⎧⎨-≤⎩所表示的平面区域内,求实数a 的取值范围;(3)求证:12482(1)(1)(1)(1)233558(21)(21)nn ne -++++<⨯⨯⨯++(其中n N *∈,e 是自然数对数的底数)7.已知函数2()(0)f x x ax a =-≠,()ln g x x =,()f x 图象与x 轴异于原点的交点M 处的切线为1l ,(1)g x -与x 轴的交点N 处的切线为2l , 并且1l 与2l 平行.(1)求(2)f 的值;(2)已知实数t ∈R ,求[]ln ,1,u x x x e =∈的取值范围及函数[][()+],1,y f xg x t x e =∈的最小值; (3)令()()'()F x g x g x =+,给定1212,(1,),x x x x ∈+∞<,对于两个大于1的正数βα,,存在实数m 满足:21)1(x m mx -+=α,21)1(mx x m +-=β,并且使得不等式12|()()||()()|F F F x F x αβ-<-恒成立,求实数m 的取值范围.从而有12|()()||()()|F F F x F x αβ-<-,符合题设.8.已知函数()()221xf x x x e =-+(其中e 为自然对数的底数).(1)求函数()f x 的单调区间;(2)定义:若函数()h x 在区间[](),s t s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.因此函数()h x 在区间()1,+∞上单调递增,()110h =-<,()22310h e =->,。

高考总复习二轮理科数学精品课件 专题6 函数与导数 培优拓展15 函数的隐零点问题与极值点偏移问题

高考总复习二轮理科数学精品课件 专题6 函数与导数 培优拓展15 函数的隐零点问题与极值点偏移问题

(1)若 f(x)是 R 上的减函数,求实数 a 的取值范围;
(2)若 f(x)有两个极值点 x1,x2,其中
2
x1<x2,求证:x2-x1> +2.
e
(1)解 由题意
+2
f'(x)=a+ e ≤0
在 R 上恒成立,
+2
∴-a≥ e 恒成立,

+2
g(x)= ,x∈R,则-a≥g(x)max,
个交点.
(方法二)由(1)知,f(x)=x3-3x2+x+2,设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,由题
设知1-k>0.
当x≤0时,g'(x)=3x2-6x+1-k>0,g(x)单调递增,
g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
0
1
x0= +x0≥2,由 x0∈(0,1),所以等号不成立,
0
所以 ex-ln x>2 恒成立.
规律方法已知不含参函数f(x),导函数方程f'(x)=0的根存在,却无法求出,设
方程f'(x)=0的根为x0,要注意确定x0的合适范围,以及f'(x0)=0成立得出一关
系式,利用该关系式进行等价转化.
0
由 g'(x0)=0 得e =x0+3,所以
0 (0 +3)+2
g(x0)=
=x0+1,由于

高考数学难点突破_难点34__导数的运算法则及基本公式应用

高考数学难点突破_难点34__导数的运算法则及基本公式应用

120难点34 导数的运算法则及基本公式应用导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导.●难点磁场(★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标.●案例探究[例1]求函数的导数:)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目.知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数.错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错.技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.xx x x x x x x x x x x x x x x x xx x x x x x x x xx x x x x x x y 222222222222222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(]))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+'+--+'-='解(2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -byv =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法一:设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x =f ′(12+x )·21112+x ·2x =),1(122+'+x f x x解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′121=f ′(12+x )·21(x 2+1)21-·(x 2+1)′ =f ′(12+x )·21(x 2+1) 21-·2x=12+x xf ′(12+x )[例2]利用导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C n n ,(n ∈N *)命题意图:培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力.属 ★★★★级题目.知识依托:通过对数列的通项进行联想,合理运用逆向思维.由求导公式(x n )′=nx n -1,可联想到它们是另外一个和式的导数.关键要抓住数列通项的形式结构.错解分析:本题难点是考生易犯思维定势的错误,受此影响而不善于联想.技巧与方法:第(1)题要分x =1和x ≠1讨论,等式两边都求导.解:(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时, ∵x +x 2+x 3+…+x n =xx x n --+11, 两边都是关于x 的函数,求导得 (x +x 2+x 3+…+x n )′=(x x x n --+11)′ 即S n =1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n ,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1, 令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n , 即S n =C 1n +2C 2n +…+n C n n =n ·2n -1●锦囊妙计1.深刻理解导数的概念,了解用定义求简单的导数.xy ∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′122 (x )=x y x ∆∆→∆lim 0,知道导数的等价形式:)()()(lim )()(lim 0000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆. 2.求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键.3.对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.4.复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.●歼灭难点训练一、选择题1.(★★★★)y =e sin x cos(sin x ),则y ′(0)等于( )A.0B.1C.-1D.22.(★★★★)经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0 B.x -y =0或25x +y =0 C.x +y =0或25x -y =0 D.x -y =0或25x -y =0 二、填空题 3.(★★★★)若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________.4.(★★★★)设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________.三、解答题5.(★★★★)已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程.6.(★★★★)求函数的导数(1)y =(x 2-2x +3)e 2x ;(2)y =31xx -. 7.(★★★★)有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚1.4 m 时,梯子上端下滑的速度.8.(★★★★)求和S n =12+22x +32x 2+…+n 2x n -1,(x ≠0,n ∈N *).参考答案难点磁场解:由l 过原点,知k =00x y (x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0, ∴00x y =x 02-3x 0+2123y ′=3x 2-6x +2,k =3x 02-6x 0+2又k =00x y ,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23 由x ≠0,知x 0=23 ∴y 0=(23)3-3(23)2+2·23=-83 ∴k =00x y =-41 ∴l 方程y =-41x 切点(23,-83) 歼灭难点训练一、1.解析:y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1答案:B 2.解析:设切点为(x 0,y 0),则切线的斜率为k =00x y ,另一方面,y ′=(59++x x )′=2)5(4+-x ,故 y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0得x 0(1)=-3,y 0(2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53),从而得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- ,由于切线过原点,故得切线:l A :y =-x 或l B :y =-25x . 答案:A二、3.解析:根据导数的定义:f ′(x 0)=kx f k x f k ---+→)()]([(lim000(这时k x -=∆)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---⋅-=--∴→→→x f k x f k x f k x f k x f k x f k x f k k k 答案:-14.解析:设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n !答案:n !三、5.解:设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2)对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①124对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0∴直线l 方程为y =0或y =4x -46.解:(1)注意到y >0,两端取对数,得ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2xxx e x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1⋅+-=⋅+-⋅+-+-=⋅+-+-='∴+-+-=++--=++-'+-='⋅∴(2)两端取对数,得 ln|y |=31(ln|x |-ln|1-x |), 两边解x 求导,得 31)1(31)1(131)1(131)111(311x x x x y x x y x x x x y y --=⋅-⋅='∴-=---='⋅7.解:设经时间t 秒梯子上端下滑s 米,则s =5-2925t -,当下端移开1.4 m 时,t 0=157341=⋅,又s ′=-21 (25-9t 2)21-·(-9·2t )=9t 29251t -,所以s ′(t 0)=9×2)157(9251157⨯-⋅=0.875(m/s)8.解:(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1),当x ≠1时,1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+,两边同乘以x ,得 x +2x 2+3x 2+…+nx n =221)1()1(x nx x n x n n -++-++两边对x 求导,得 S n =12+22x 2+32x 2+…+n 2x n -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。

高考总复习二轮理科数学精品课件 专题6 函数与导数 增分2 利用导数证明不等式

高考总复习二轮理科数学精品课件 专题6 函数与导数 增分2 利用导数证明不等式
x+ e - 2 e + e .


由题意可得 f(1)=2,f'(1)=e.故 a=1,b=2.
x
(2)证明 (方法一)要证明 e ln
只需证明 ln
2
x+e
设函数 g(x)=ln
只需证明
>
2e-1
x+ >1(x>0),
1
(x>0),即证明
e
ln
2
1
x+e − e >0,
2
1
x+ − (x>0),
2
1
0<a≤ 时,f(x)≥ ax+
e
2
+ 1.
1e0 -0
1 x
1 0
(1)解 由题意 f'(x)= e .设切点为 A(x0,y0),切线的斜率 k= e =
,

解得

e
e
x0=1,∴A(1,),k=,
∴切线的方程为
e
y-
=
e
(x-1),即

e
y=x.
(2)证明 (方法一)①当 a=1 时,要证
x
x
x-1
1
e-1
1
(x>0),∴只需证明

则下面证明
eln
2
x+

>
ห้องสมุดไป่ตู้
1
(x>0),设

e-1
g(x)min>0,g'(x)= 2 .
g(x)=eln
2
1
x+ − =eln

高三理科数学复习题《函数与导数》

高三理科数学复习题《函数与导数》

高三理科数学复习题 函数与导数1.已知函数()axexx x f --11+=.()1设0>a ,讨论()x f y =的单调性;()2若对任意()1,0∈x 恒有()1>x f ,求a 的取值范围.2.已知函数()x a x x f ln +=,其中a 为常数,且1-≤a .()1当1-=a 时,求()x f 在[]2,e e ()71828.2≈e 上的值域;()2若()1-e x f ≤对任意[]2,e e x ∈恒成立,求实数a 的取值范围.3.已知函数()xe x a xf ⎪⎭⎫ ⎝⎛+=1,其中0>a . ()1求函数()x f 的零点;()2讨论()x f y =在区间()0,-∞上的单调性; ()3在区间⎥⎦⎤⎝⎛∞2,--a 上,()x f 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.4.已知函数()R a xx a x f ∈=,1-ln .()1若曲线()x f y =在点()()1,1f 处的切线与直线02=+y x 垂直,求a 的值; ()2求函数()x f 的单调区间;()3当1=a,且2≥x 时,证明:()5-21-x x f ≤.5.已知函数()xa x x f +=ln .()1当0<a 时,求函数()x f 的单调区间;()2若函数()x f 在[]e ,1上的最小值是23,求a 的值.6.已知函数()x xp px x f ln 2--=.()1若2=p ,求曲线()x f 在点()()1,1f 处的切线方程;()2若函数()x f 在其定义域内为增函数,求正实数p 的取值范围; ()3设函数()xe x g 2=,若在[]e ,1上至少存在一点0x ,使得()()00x g x f >成立,求实数p的取值范围.7.已知函数()x x x f -3=.()1求函数()x f y =的单调区间;()2设0>a ,如果过点()b a ,可作曲线()x f y =的三条切线,证明:()a f b a <<-.8.已知函数()x ax x f -2= ()0,≠∈a R a ,()x x g ln =.()1当1=a 时,判断函数()()x g x f -在定义域上的单调性;()2若函数()x f y =与()x g y =的图像有两个不同的交点N M 、,求a 的取值范围; ()3设点()11,y x A 和()22,y x B ()21x x <是函数()x g y =图像上的两点,平行于AB 的切线以()00,y x P 为切点,求证:201x x x <<.9.已知函数()()0ln -->=a x a x x f .()1若1=a ,求()x f 的单调区间及()x f 的最小值;()2若0>a ,求()x f 的单调区间;()3试比较222222ln 33ln 22ln nn +++与()()()12121-++n n n 的大小()2*≥∈n N n 且,并证明你的结论.10.已知函数()()xx x f 1ln 1++=和()()1ln -1-+=x x x g .()1函数()x f y =在区间()+∞,0上是增函数还是减函数?说明理由; ()2求证:函数()x g y =在区间()3,2上有唯一零点;()3当0>a 时,不等式()()x g k x xf '>恒成立(其中()x g '是()x g 的导函数,*N k ∈),求k 的最大值.11.设函数()x axx x f ln -1+=在[)+∞,1上是增函数.()1求正实数a 的取值范围;()2设1,0>>a b ,求证:bb a bb a ba +<+<+ln1.12.已知函数()()02-21-ln 2<=a x ax x x f .()1若函数()x f 在定义域内单调递增,求a 的取值范围;()2若21-=a 且关于x 的方程()b x x f +=21-在[]4,1上恰有两个不相等的实数根,求实数b 的取值范围;()3设各项为正的数列{}n a 满足*112ln ,1N n a a a a n n n ∈++==+,.求证:1-2nn a ≤.13.已知函数()xxx x f 1ln +=.()1若函数在区间⎪⎭⎫⎝⎛+31,m m (其中0>m )上存在极值,求实数m 的取值范围; ()2如果当1≥x 时,不等式()1+≥x k x f 恒成立,求实数k 的取值范围;()3求证:()[]()2-21! 1n en n ∙+>+ ()*N n ∈.14.设函数()ax x x f -ln =()R a ∈.()1判断函数()x f 的单调性;()2当ax x <ln 在()+∞,0上恒成立时,求a 的取值范围;()3证明:e n n<⎪⎭⎫ ⎝⎛+11()*N n ∈.15.已知函数()ax x x x f -ln 2+=.()1若函数()x f 在其定义域上为增函数,求a 的取值范围; ()2设()*11N n na n∈+=,求证:()()n n a a a a a an n 21ln ----32222121++<+++ .。

高考二轮复习理科数学课件高考小题突破11导数的简单应用

高考二轮复习理科数学课件高考小题突破11导数的简单应用
坐标原点的切线,
∴02 +ax0-a=0 有 2 个不同实数解,∴Δ=a2+4a>0,解得 a>0 或 a<-4.故 a 的取
值范围是(-∞,-4)∪(0,+∞).
考点二
导数与函数的单调性
考向1比较大小或解不等式
例 2(1)(2022 全国甲,理 12)已知
A.c>b>a
B.b>a>c
31
1
1
a= ,b=cos ,c=4sin ,则(
A.a<b<c
B.b<c<a
C.b<a<c
D.c<a<b
解析 ∵a=ln 1.012=ln 1.020 1>ln 1.02=b,∴排除 A,D.令 f(x)=ln(1+x)( 1 + 2-1),x≥0,则 f(0.02)=ln 1.02-(
1+2-(1+)
,当
(1+) 1+2
1
2
1.04-1)=b-c.∵f'(x)=
(x2,ln(-x2))(x2<0)上的切线为
1
x1= (x-x1).若该切线
1

y=e.当
x<0 时,y=ln(-x),点
1
y-ln(-x2)= (x-x2).
2
若该切线经过原点,则 ln(-x2)-1=0,解得 x2=-e,此时切线方程为

y=- .
e
(3)(2022新高考Ⅰ,15)若曲线y=(x+a)ex有两条过坐标原点的切线,则a的取
1
1
y'= ,则
=1,则
+

高三数学导数复习精选题(含答案)

高三数学导数复习精选题(含答案)

导数单元检测题一、选择题:(每小题5分,共50分)1. 在曲线y=x 2上切线的倾斜角为4π的点为 ( ) A .(0,0) B .(2,4) C .(161,41) D .(41,21)2.函数f (x)=(x+2a )(x-a)2的导数为 ( )A .2(x 2-a 2)B .3(x 2+a 2)C .3(x 2-a 2)D .2(x 2+a 2)3.(理)函数y=222)1(2+x x 的导数是 ( ) A .y /=3232)1(8)1(4+-+x x x x B .y /=3222)1(4)1(4+-+x x x xC .y /=3232)1(8)1(2+-+x x x xD .y /=322)1(4)1(4+-+x x x x (文)方程x 3-6x 2+9x-10=0的实根的个数是 ( )A .1B .2C .3D .04.点P 在曲线y=x 3-x+2上移动,设点P 处切线的倾斜角为α则α的取值范围是 ( )A .[0,2π] B .[0,2π]∪[43π,π) C .[43π,π) D .(2π,43π]5.正方体的棱长l 从4cm 增加到4.01cm 时,它的体积增加了(精确到0.01cm 3) ( )A . 0.5 0cm 3B .0.49cm 3C . 0.48 cm 3D .0.51 cm 36.函数f (x)=ax 3+x+1有极值的充要条件是 ( ) A .a >0 B .a <0 C .a ≥0 D .a ≤07.(理)函数y=x+24x x -最大值为 ( ) A .2+22 B .2 C .2+2 D .4(文)函数y=x 3-12x+16,x ∈[-2,3]的最大值是 ( ) A .32 B .35 C .40 D .60 8.(理)若曲线y=x1有一切线与直线2x-y+1=0垂直,则切点是 ( ) A .(2,22) B .(-22,-22) C .(2,-22) D .(-2,22) (文)曲线y=271032+x 过点P (5,11)的切线方程为 ( ) A .3x-y-4=0 B .3x+y-4=0 C .3x+y+4=0 D .3x-y+4=09.(理)已知f (3)=2,f /(3)= -2,则3)(32lim3--→x x f x x 的值是 ( )A .-4B .0C .8D .10(文)由线y=x 2在P 处的切线的斜率为3,则P 点的坐标为 ( ) A .(-23,49) B .(23,-49) C .(23,49) D .(-23,-49) 10.设函数f (x)=ax 3+bx 2+cx+d 在x=0处有极大值1,在x=2处有极小值0,则常数a ,b ,c ,d 分别为 ( ) A .-41,-43,0,1 B .-41,-43,0,-1 C .41,-43,0,-1 D .41,-43,0,1 二、填空题:(每小题5分,共25分)11.若直线y=kx 与直线y=x 3-3x 2+2x 相切,则k= . 12.设f (x)=x 2(2-x),则f (x)的单调递增区间是 .13.如果函数f (x)=ax 3-x 2+x-5在(-∞,+∞)上递增,则a 的取值范围是 . 14.水以20m 3/分的速度流入一圆锥形容器,设容器深30m ,上底直径12,当水深10m 时,水面上升的速度为 . 15.已知f (x)=x 3-21x 2-2x+5,求函数f (x)的递增区间 .三、 解答题: 16.(12分)已知f (x)的导数f /(x )=3x 2-2(a+1)x+a-2,且f (0)=2a ,当a >2时,求不等式f (x)<0的解集.17.(12分)(理)当x >0时,证明不等式:xx1<ln(1+x)<x . (文)函数f (x)= x 3-ax 2+1,是否存在实数a,使f (x)在区间[0,33]上为减函数,且在区间 (33,1]上是增函数?并说明理由. 18.(12分)已知a 为实数,f (x)=(x 2-4)(x -a). ⑴求导数f /(x );⑵若f /(-1)=0,求f (x)在[-2,2]上的最值;⑶若f (x)在(-∞,-2]和[2,+∞)上都是递增的,求a 的取值范围. 19.(12分)用总长14.8m 的一钢条做成一个长方体容器的框架。

2022年高考总复习数学(理科)课时作业:第2章 专题一 函数与导数 第1课时 Word版含解析

2022年高考总复习数学(理科)课时作业:第2章 专题一 函数与导数 第1课时 Word版含解析

专题一 函数与导数 第1课时1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1 D .e2.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(0,+∞)3.某厂生产某种产品x 件的总成本C (x )=1200+275x 3(单位:万元),已知产品单价的平方与产品件数x成反比,生产100件这样的产品单价为50万元,则产量定为______件时总利润最大.( )A .10B .25C .30D .404.已知函数f (x )=13x 3+ax 2-bx +1(a ,b ∈R )在区间[-1,3]上是减函数,则a +b 的最小值是( )A.23B.32 C .2 D .3 5.(2022年新课标Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )(导学号 58940254)A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)6.(2022年新课标Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1).(导学号 58940255) (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围.7.(2021年广东肇庆一模)已知函数f (x )=x 3-3x .(导学号 58940256) (1)争辩f (x )的单调区间;(2)若函数g (x )=f (x )-m 在⎣⎡⎦⎤-32,3上有三个零点,求实数m 的取值范围; (3)设函数h (x )=e x -e x +4n 2-2n (e 为自然对数的底数),假如对任意的x 1,x 2∈⎣⎡⎦⎤12,2,都有f (x 1)≤h (x 2)恒成立,求实数n 的取值范围.8.(2022年北京)已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)专题一 函数与导数第1课时1.B 解析:由于f (x )=2xf ′(1)+ln x ,所以f ′(x )=2f ′(1)+1x .令x =1,得f ′(1)=2f ′(1)+1.解得f ′(1)=-1.故选B.2.C 解析:由题意知x >0,f ′(x )=1+a x ,要使函数f (x )=x +a ln x 不是单调函数,则需方程1+ax =0在x >0上有解,即x =-a ,所以a <0.故选C.3.B 解析:设单价为q >0,由题意q 2=kx,当x =100时,q =50,∴k =q 2x =502×100=250 000.∴q 2x=250 000,q =500x .∴总利润y =xq -C (x )=x ·500x -⎝⎛⎭⎫1200+275x 3.令y ′=500·12 x -275·3x 2=0,解得x =25.当0<x <25时,y ′>0,当x >25时,y ′<0,∴当x =25时,总利润最大.4.C解析:f ′(x )=x 2+2ax -b在[-1,3]上有f ′(x )≤0,∴⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(3)≤0,∴⎩⎪⎨⎪⎧2a +b ≥1,6a -b ≤-9.设⎩⎪⎨⎪⎧u =2a +b ≥1,v =b -6a ≥9.设a +b =mu +n v =m (2a +b )+n (-6a +b )=(2m -6n )a +(m +n )b ,对比参数:2m -6n =1,m +n =1,解得m =78,n =18,∴a +b =78u +18v ≥2.则a +b 的最小值为2.5.C 解析:a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a .若a >0,则由图象知f (x )有负数零点,不符合题意.则a <0,由图象结合f (0)=1>0知,此时必有f ⎝⎛⎭⎫2a >0,即a ×8a 3-3×4a 2+1>0, 化简,得a 2>4.又a <0,所以a <-2.故选C.6.解:(1)f (x )的定义域为(0,+∞).当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x -3,f ′(1)=-2,f (1)=0.曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.令g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0,(ⅰ)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在x ∈(1,+∞)上单调递增,因此g (x )>0;(ⅱ)当a >2时,令g ′(x )=0,得 x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.由x 2>1和x 1x 2=1,得x 1<1.故当x ∈(1,x 2)时,g ′(x )<0,g (x )在x ∈(1,x 2)单调递减,因此g (x )<0. 综上,a 的取值范围是(-∞,2].7.解:(1)f (x )的定义域为R ,f ′(x )=3x 2-3=3(x +1)(x -1). 由于当x <-1或x >1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以f (x )的单调递增区间为(-∞,-1)和(1,+∞),单调递减区间为(-1,1). (2)方法一,由(1)知,g (x )在(-∞,-1)和(1,+∞)上单调递增, 在(-1,1)上单调递减,所以g (x )在x =-1处取得极大值g (-1)=2-m ,在x =1处取得微小值g (1)=-2-m .由于g (x )在⎣⎡⎦⎤-32,3上有三个零点, 所以有⎩⎪⎨⎪⎧ g ⎝⎛⎭⎫-32≤0,g (-1)>0,g (1)<0,g (3)≥0,即⎩⎪⎨⎪⎧98-m ≤0,2-m >0,-2-m <0,18-m ≥0.解得98≤m <2.故实数m 的取值范围为⎣⎡⎭⎫98,2.方法二,要函数g (x )=f (x )-m 在⎣⎡⎦⎤-32,3上有三个零点,就是要方程g (x )=f (x )-m =0在⎣⎡⎦⎤-32,3上有三个实根,也就是只要函数y =f (x )和函数y =m 的图象在⎣⎡⎦⎤-32,3上有三个不同的交点. 由(1)知,f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减; 所以f (x )在x =-1处取得极大值f (-1)=2,在x =1处取得微小值f (1)=-2.又f ⎝⎛⎭⎫-32=98,f (3)=18. 故实数m 的取值范围为⎣⎡⎭⎫98,2.(3)对任意的x 1,x 2∈⎣⎡⎦⎤12,2,都有f (x 1)≤h (x 2)恒成立,等价于当x ∈⎣⎡⎦⎤12,2时,f (x )max ≤h (x )min 成立.由(1)知,f (x )在⎣⎡⎦⎤12,1上单调递减,在[1,2]上单调递增,且f ⎝⎛⎭⎫12=-118,f (2)=2,所以f (x )在⎣⎡⎦⎤12,2上的最大值f (x )max =2.h ′(x )=e x -e ,令h ′(x )=0,得x =1. 由于当x <1时,h ′(x )<0;当x >1时,h ′(x )>0;所以h (x )在⎣⎡⎦⎤12,1上单调递减,在[1,2]上单调递增. 故h (x )在⎣⎡⎦⎤12,2上的最小值h (x )min =h (1)=4n 2-2n . 所以4n 2-2n ≥2.解得n ≤-12,或n ≥1.故实数n 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞). 8.解:(1)由f (x )=2x 3-3x ,得f ′(x )=6x 2-3. 令f ′(x )=0,得x =-22,或x =22. 由于f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1,所以f (x )在区间[-2,1]上的最大值为 f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0). 因此t -y 0=(6x 20-3)(1-x 0).整理,得4x 30-6x 20+t +3=0. 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1), g (x )与g ′(x )的状况如下:x (-∞,0)0 (0,1) 1 (1,+∞)g ′(x ) +-+ g (x )t +3 t +1所以g (0)当g (0)=t +3≤0,即t ≤-3时,此时g (x )在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (1)=t +1≥0,即t ≥-1时,此时g (x )在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (0)>0,且g (1)<0,即-3<t <-1时,由于g (-1)=t -7<0,g (2)=t +11>0,所以g (x )分别在区间(-1,0),(0,1)和(1,2)上恰有1个零点.由于g (x )在区间(-∞,0)和(1,+∞)和(0,1)上单调,所以g (x )分别在区间(-∞,0)和[1,+∞)和(0,1)上恰有1个零点.综上可知,当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t的取值范围是(-3,-1).(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.。

专题二 函数与导数 理科数学

专题二 函数与导数 理科数学

理科数学专题二 函数与导数1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.2.(北京理6)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品时用时15分钟,那么c 和A 的值分别是A. 75,25B. 75,16C. 60,25D. 60,16【答案】D3.(福建理5)1(2)0x e x dx+⎰等于A .1B .1e -C .eD .1e +【答案】C4.(福建理9)对于函数()sin f x a x bx c =++ (其中,,,a b R c Z ∈∈),选取,,a b c 的一组值计算(1)f 和(1)f -,所得出的正确结果一定不可能是 A .4和6B .3和1C .2和4D .1和2【答案】D5.(福建理10)已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C .②③D .②④ 【答案】B6.(广东理4)设函数()f x 和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .()f x +|g(x)|是偶函数B .()f x -|g(x)|是奇函数C .|()f x | +g(x)是偶函数D .|()f x |- g(x)是奇函数 【答案】A7.(湖北理6)已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-x x a a x g x f()1,0≠>a a 且,若()a g =2,则()=2fA. 2B. 415C. 417D. 2a8.(湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002tM t M -=,其中0M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60MA. 5太贝克B. 2ln 75太贝克C. 2ln 150太贝克D. 150太贝克9.(湖南理6)由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A .12B .1 C. D【答案】D10.(湖南理8)设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 C. D.【答案】D12.(江西理3)若)12(log 1)(21+=x x f ,则)(x f 定义域为A. )0,21(-B.]0,21(-C. ),21(+∞-D.),0(+∞【答案】A13.(江西理4)设x x x x f ln 42)(2--=,则0)('>x f 的解集为A. ),0(+∞B. ),2()0,1(+∞-C. ),2(+∞D.)0,1(- 【答案】C14.(江西理7)观察下列各式:312555=,1562556=,7812557=,…,则20115的末四位数字为A. 3125B. 5625C. 0625D.8125 【答案】D15.(辽宁理9)设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]【答案】D16.(辽宁理11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞) 【答案】B17.(全国Ⅰ理2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=【答案】B18.(全国Ⅰ理9)由曲线y 2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163 (D )6【答案】C19. (全国Ⅰ理12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8 【答案】D20.(全国Ⅱ理2)函数y=x ≥0)的反函数为(A)y =24x (x ∈R ) (B)y =24x(x ≥0) (C)y =24x (x ∈R ) (D)y =24x (x ≥0)【答案】B 【命题意图】:本小题主要考查函数与反函数概念及求法特别要注意反函数的定义域即原函数的值域。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学数学导数专题复习Last revision date: 13 December 2020.高考数学导数专题复习考试内容导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求:(1)了解导数概念的某些实际背景. (2)理解导数的几何意义.(3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点在0x 处有增称为函数,即f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x . 于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义:(1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-(2)物理意义:位移的导数是速度,速度的导数是加速度。

4. 求导数的四则运算法则:''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数)注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点. 8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '= e xx a a log 1)(log '= 11)(arctan 2'+=x xIII. 求导的常见方法:①常用结论:xx 1|)|(ln '=.②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''. 经典例题剖析考点一:求导公式。

例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。

解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3考点二:导数的几何意义。

例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析: 直线过原点,则()000≠=x x y k 。

由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。

又263'2+-=x x y ,∴ 在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴ 26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。

所以,直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23。

答案:直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫⎝⎛-83,23点评:本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。

函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2-+=x ax x f 。

对于R x ∈都有()0'<x f 时,()x f 为减函数。

由()R x x ax ∈<-+01632可得⎩⎨⎧<+=∆<012360a a ,解得3-<a 。

所以,当3-<a 时,函数()x f 对R x ∈为减函数。

9. 当3-=a 时,()98313133323+⎪⎭⎫ ⎝⎛--=+-+-=x x x x x f 。

由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

10. 当3->a 时,函数()x f 在R 上存在增区间。

所以,当3->a 时,函数()x f 在R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a点评:本题考查导数在函数单调性中的应用。

对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

相关文档
最新文档