大学物理波动理论及习题

合集下载

大学物理 波动

大学物理  波动

x
u)]
Wk
Wp
1 2
V2 A2
s in 2 [ (t
x)] u
3. 总机械能
W
Wk
Wp
V 2 A2
sin 2 [ (t
x)] u
4. 能量密度
w
wk
wp
2 A2
s in 2 [ (t
x)] u
5. 平均能量密度
w 1 T A2 2 sin2[(t x)]dt 1 A2 2
T0
u2
讨论:1)平均能量密度与振幅平方 、频A率2 平
球面波
在各向同性的媒质中 波线 波面。
§2 一维简谐波的波函数
一、简谐波波函数
用数学表达式描述波线上每一质点在每一时刻的位移 ,这样的函数 y=y(x,t)称为行波的波函数。
设一列简谐波向右传播,波速为u。沿波的传播方 向建立ox轴,x轴上各点代表各质元平衡位置,y轴
表示质元离开平衡位置的位移。
o
间双重周期性。
x ut
4. 沿x轴负向传播的简谐波函数
y0 Acos(t )
u y
P
y y0 (t t)
o
x
xx
t
Acos[(t t) ]
u
u
Acos[(t x ) ]
u
已知x=0处振动方程: y0 Acos(t )
则简谐波函数:
y Acos[(t x ) ]
绳 上
·························t = T/4
的 简 谐 横
··················································t
t = T/2 = 3T/4

大物习题册答案及详解(山东理工大学大二上学期2020版)

大物习题册答案及详解(山东理工大学大二上学期2020版)
考点:无限大均匀带电平面的电场强度公式:E=σ/ε0,电场强度等于两个带电平行电板所产生的电场强度的矢量 和。(课本120页 例6-7 推导公式)
4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)

大学物理 驻波(一)

大学物理 驻波(一)

大学物理驻波(一)引言概述:驻波是在介质中传播的波在与逆向传播的波相遇时形成的一种特殊波动现象。

它在大学物理中有着重要的应用和理论意义。

本文将从驻波的基本概念和特点入手,详细介绍了驻波的形成条件,驻波的数学描述以及驻波的实验观察等。

正文:1. 驻波的基本概念和特点- 驻波是由两个相同频率、振幅相等而方向相反的波在空间中相遇而形成的。

- 驻波的震动节点是固定不动的,而虚节点一直在不断地交替出现。

- 驻波是由于波的干涉而形成的,不会传输能量或物质。

2. 驻波的形成条件- 驻波形成的必要条件是波的传播速度相同,波长相等且频率相同。

- 在一维情况下,驻波形成的充分条件是两波的幅值、频率、相位相同。

3. 驻波的数学描述- 驻波可以用数学方程来描述,常用的方程为y(x,t) = Acos(kx)cos(ωt + φ),其中A为振幅,k为波数,ω为角频率,φ为初相位。

- 驻波方程中的k和ω与波长λ和周期T之间有着确定的关系:k = 2π/λ,ω = 2π/T。

4. 驻波的实验观察- 驻波可以通过在一定条件下的波的传播介质中观察到,如绳上的驻波、声管中的驻波等。

- 在实验观察中,可以通过调节波的频率、振幅、传播介质的长度等参数来观察驻波的形成与特性。

5. 驻波的应用- 驻波在声学、光学、电磁学以及其他物理学领域中有着广泛的应用,如乐器共鸣现象、干涉仪的工作原理等。

- 驻波还可以用于测量波的参数,如测量波速、波长等。

总结:驻波是在介质中传播的波在与逆向传播的波相遇时形成的一种特殊波动现象。

它具有震动节点固定、虚节点不断交替出现的特点,是由波的干涉形成的。

驻波的形成需要满足波的传播速度相等、波长相等且频率相同的条件。

驻波可以通过实验观察到,并可用数学方程进行描述,有着广泛的应用价值。

《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII》作业 No.02 波动方程 参考答案

2、一平面简谐波,波长为 12m,沿 Ox 负向传播。如图所示为原点处质点的振 动曲线,求: (1)原点处质点的振动方程, (2)此波的波函数。
解:由题意得:振幅 A=0.4m,初始位置 y0 0.2 相为
2 , 其对应旋转矢量如上图所示。 从图还可以看出 5s 后, 矢量转动的角度: 3 5 2 t 5 12 s ; ,则 , T 3 2 6 6 2 ) m) 所以其振动方程为 y 0.4 cos( t ( 6 3 2 12 s ,波速 u 1( m / s ) ,又因传播方向为负, (2)由题意 12m , T T 2 ( ] m) 所以波函数为: y 0.4 cos[ (t x) 6 3
答:振动是波动的基础,振动在空间的传播就形成波动。平面简谐波动方程是关 于时间和空间的函数, 而简谐振动方程只是关于时间函数;当平面简谐波动方程 中的空间变量 x 确定时,波动方程成为表述该点运动的振动方程。振动曲线是以 位移为纵坐标, 时间为横坐标做的曲线,描述质点在不同时刻离开平衡位置的位 移;波形曲线是位移为纵坐标,介质元空间位置为横坐标做的曲线,用来描述某 一时刻,波线上各个质元离开平衡位置的距离。 2、平面简谐行波波函数的表达式与哪些因素有关?总结求波函数的基本步骤。 答:平面简谐行波波函数与波的特征量:振幅、周期、频率、波速及其传播方向 有关, 此外与坐标原点、 计时起点的选择有关。 求波函数的基本步骤可以概况为: (1)选择一个参考点,根据已知条件确定出该参考点的振动方程; (2)选定坐标原点,选定正方向,建立坐标;
《大学物理 AII》作业
No.02 波动方程
班级 ________ 学号 ________ 姓名 _________ 成绩 _______

解析大学物理中的波动力学理论

解析大学物理中的波动力学理论

解析大学物理中的波动力学理论波动力学是大学物理课程中重要的一部分,涉及到波的传播、干涉、衍射、驻波等现象。

本文将对大学物理中的波动力学理论进行解析。

一、波动力学基础概念在开始介绍波动力学理论之前,有必要先说明一些基础概念。

波是一种能量传播的方式,它通过媒介传递能量,而不传递物质。

波的重要性源于其在自然界中广泛存在的现象,如光的传播、声音的传播等。

二、波的分类波可以分为机械波和电磁波两大类。

机械波是指需要介质进行传播的波,如水波、声波等;而电磁波是不需要介质进行传播的波,如光波、无线电波等。

本文将主要关注机械波的波动力学理论。

三、波动方程波动力学的核心是波动方程,通过该方程可以描述波的传播过程。

一维波动方程可以表示为:∂^2ψ/∂x^2 = (1/v^2) ∂^2ψ/∂t^2其中,ψ表示波的振幅,x表示位置,t表示时间,v表示波速。

四、波的传播波动力学理论告诉我们,波的传播方式可以分为纵波和横波。

纵波是指波动方向与振动方向平行的波,如声波;横波是指波动方向与振动方向垂直的波,如水波。

五、波的干涉和衍射波动力学理论还涉及到波的干涉和衍射现象。

干涉是指两个或多个波相遇时产生的干涉条纹现象,其实质是波的叠加。

典型的干涉现象包括双缝干涉和薄膜干涉。

衍射是波遇到障碍物时发生的弯曲现象,其实质是波在障碍物周围传播时受到阻碍而发生弯曲。

六、波的驻波驻波是指在一定条件下,两个同频率、相同振幅、但传播方向相反的波相互叠加形成的波动现象。

驻波具有节点和腹节点,节点处的振幅为零,腹节点处的振幅最大。

典型的驻波现象包括弦上的驻波和声管中的驻波。

七、波动力学的应用波动力学理论在实际生活中有广泛的应用。

例如,在音乐产生中,乐器发出的声音可通过波动力学理论解释;在光学中,通过衍射和干涉现象可以制造出各种精密的光学器件;在地震学中,可以通过地震波的传播来了解地球内部的结构等。

总结:通过对大学物理中的波动力学理论进行解析,我们了解到波的基础概念、分类、波动方程、传播方式以及干涉、衍射、驻波等现象。

大学物理-第十四章-波动光学

大学物理-第十四章-波动光学
其投射到介面上的A点的光线,
一部分反射回原介质即光线a1, 另一部分折入另一介质,其中一 部分又在C点反射到B点然后又 折回原介质,即光线a2。因a1,a2是
从同一光线S1A分出的两束,故
满足相干条件。
S
S1
a
a1
iD
e
A
B
C
a2
n1
n2
n1
31
2 薄膜干涉的光程差
n2 n1
CDAD
sin i n2
跃迁 基态
自发辐射
原子能级及发光跃迁
E h
普通光源发光特 点: 原子发光是断续
的,每次发光形成一
长度有限的波列, 各 原子各次发光相互独
立,各波列互不相干.
10
3.相干光的获得:
①原则:将同一光源同一点发出的光波列,即某个原子某次 发出的光波列分成两束,使其经历不同的路程之后相遇叠加。
S2
r2
P
20
为计算方便,引入光程和光程差的概念。
2、光程
光在真空中的速度 光在介质中的速度
c 1 00
u 1
u1 cn
介质的 折射率
真空
u n c

介质中的波长
n


n

n n
21
介质中的波长
n


n
s1 *
r1
P
波程差 r r2 r1
k 0,1,2,
x

d
'
d
(2k

1)

k 0,1,2,
暗纹
d
2
k=0,谓之中央明纹,其它各级明(暗)纹相对0点对称分布

物理波动试题

物理波动试题

物理波动试题波动是物理学中重要的一个分支,它涉及到波的传播、干涉、衍射等现象。

本试题将涵盖波动的基本概念、公式和应用,旨在考察学生对波动知识的理解和应用能力。

1.简答题(每题10分)(1)什么是波动?简要说明波动的特点及分类。

波动是指能量或信息沿着空间传播的现象。

特点:波动是在介质中传播的,介质不随波传播而移动;波动是由某种原因(振动源)激发产生的;波动可以传播能量和动量;波动可以壁相互作用产生干涉、衍射等现象。

分类:机械波和电磁波。

(2)什么是机械波?它们传播的基本特点是什么?机械波是指需要介质来传播的波动现象。

机械波传播的基本特点是:需要介质来传播,介质的微小部分进行振动,振动的能量沿波的传播方向传递。

(3)什么是波长和频率?它们之间的关系是怎样的?波长是指一次完整振动所对应的距离,用符号λ表示。

频率是指在单位时间内波动上通过某一点的次数,用符号f表示。

它们之间的关系可以由式子v = fλ表示,其中v代表波速。

波速等于波长乘以频率。

(4)什么是相位差?简要说明相位差对波动干涉的影响。

相位差是指两个波源相对于某一点的等效相位差。

它是由波源到该点距离的变化与波长之比所决定。

相位差对波动干涉的影响是:当相位差为整数倍的倍数时,波峰和波峰或波谷和波谷同时到达干涉点,形成增强干涉;当相位差为奇数倍的半数时,波峰和波谷同时到达干涉点,形成减弱干涉。

2.计算题(每题20分)(1)一根被两端固定的弦子上,泛起了两个频率相同且弦长相同的基本振动波。

若两波的相位差为π/4,求出相邻两个波腹之间的距离。

解析:相邻两个波腹之间的距离等于半个波长,即λ/2。

根据相位差为π/4,可以得出相位差对应的距离变化为λ/8。

所以,λ/2 = λ/8,化简可得λ = 4d,其中d为波腹之间的距离。

所以相邻两个波腹之间的距离为4d。

(2)一个平面波以速度v在某介质中传播,当波长λ减小一倍,频率f变为2f,则速度v变为多少?解析:根据波速公式v = fλ,代入新的波长和频率,得到新的波速v' = 2v。

大学物理-波动方程

大学物理-波动方程
感谢观看
通过将波动方程中的空间和时间变量分离,简化求解过程。
傅里叶分析
利用傅里叶变换将时域信号转换为频域信号,便于分析波的频率 和振幅。
数值解法
对于复杂边界条件和初始条件,采用数值方法求解波动方程。
三维波动方程的应用
声波传播
研究声波在介质中的传播规律,如声呐、超声成像等。
光学研究
解释光波在介质中的传播规律,如折射、干涉、衍射等现象。
波动方程在声学中的应用
声波传播规律
波动方程可以用来描述 声波在空气、固体等介 质中的传播规律,如声 速、声压、声强等。
声学仪器设计
在声学仪器设计中,如 超声波探伤仪、声呐等, 需要利用波动方程来计 算和优化仪器的性能。
声音信号处理
在声音信号处理中,如 音频压缩、降噪等,可 以利用波动方程对声音 信号进行分析和变换。
数值解法
对于一些复杂的问题,可以通过 数值计算方法求解二维波动方程, 如有限差分法、有限元法等。
二维波动方程的应用
声波传播
在声学领域,二维波动方程可以用来描述声波在 固体、液体或气体中的传播规律。
地震波传播
在地球物理学中,二维波动方程可以用来模拟地 震波在地壳中的传播和散射。
电磁波传播
在电磁学领域,二维波动方程可以用来描述电磁 波在介质中的传播特性。
物理背景
波动方程基于物理原理,如牛顿第二定律和弹性力学 等,用于描述波在空间中的传播和变化。
建立过程
通过将物理原理和数学方法相结合,可以建立二维波 动方程的数学表达式。
二维波动方程的解法
分离变量法
通过将二维波动方程中的空间和 时间变量分离,将问题简化为求 解一系列一维方程。
傅里叶分析
利用傅里叶变换将时间和空间域 的函数转换为频率域的函数,从 而简化求解过程。

大学物理教程-波动理论

大学物理教程-波动理论
平面波
球面波
4
哈尔滨工业大学(威海)
Harbin Institute of Technology at Weihai
17.1 简谐波
0
● ● ●
4
● ● ●

大学物理教程
8
● ●
● ●
12
16
● ● ● ●
● ● ● ● ●

● ● ●
20

● ● ●


● ● ●






● ● ●

● ●● ●
14
哈尔滨工业大学(威海)
Harbin Institute of Technology at Weihai
17.1 简谐波
大学物理教程
例3. 如图所示,已知振源 x=0 的振动曲线, 沿 x 轴的正方向传播 u=4m/s,
求 t =3s 时波形曲线。
y(cm)
0.5
u
0
-0.5
y(cm)
0.
5
1
0
2
4
3 x
t=3s: y 0.5 cos(
)
2
8
15
哈尔滨工业大学(威海)
Harbin Institute of Technology at Weihai
17.1 简谐波
大学物理教程
例4. 已知正向波在t=0时的波形图,波速u=1200m/s。求 波函数和波长。
y(cm)
u
t=0
0.05
哈尔滨工业大学(威海)
Institute of Technology at Weihai
第17章 Harbin

推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 波动光学衍射下

推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 波动光学衍射下

一计算题 (共211分)1. (本题 5分)(3210)在某个单缝衍射实验中,光源发出的光含有两秏波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?2. (本题 5分)(3359)波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a=0.10 mm的单缝上,观察夫琅禾费衍射图样,透镜焦距f=1.0 m,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度Δx0;(2) 第二级暗纹离透镜焦点的距离x2.3. (本题 5分)(3714)在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm,透镜焦距f=700 mm.求透镜焦平面上中央明条纹的宽度.(1nm=10−9m)4. (本题 5分)(3724)用氦氖激光器发射的单色光(波长为λ=632.8 nm)垂直照射到单缝上,所得夫琅禾费衍射图样中第一级暗条纹的衍射角为5°,求缝宽度.(1nm=10−9m)5. (本题 5分)(3725)某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm.缝后放一个焦距f = 400 mm的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm,求入射光的波长.6. (本题 5分)(3726)单缝的宽度a =0.10 mm,在缝后放一焦距为50 cm的会聚透镜,用平行绿光(λ=546 nm)垂直照射到单缝上,试求位于透镜焦平面处的屏幕上中央明条纹宽度.(1nm=10−9m)7. (本题 5分)(3727)用波长λ=632.8 nm(1nm=10?9m)的平行光垂直照射单缝,缝宽a=0.15 mm,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm,求此透镜的焦距.8. (本题 8分)(3729)在夫琅禾费单缝衍射实验中,如果缝宽a与入射光波长λ的比值分别为(1) 1,(2) 10,(3) 100,试分别计算中央明条纹边缘的衍射角.再讨论计算结果说明什么问题.9. (本题 5分)(3730)用波长λ=632.8nm(1nm=10−9m) 的平行光垂直入射在单缝上,缝后用焦距f=40cm的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm,单缝的宽度是多少?如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.11. (本题 5分)(5654) 在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度Δx .(1 nm =10–9 m)12. (本题10分)(0470) 用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在 0.63─0.76μm 范围内,蓝谱线波长λB 在0.43─0.49 μm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1) 在什么角度下红蓝两谱线还会同时出现? (2) 在什么角度下只有红谱线出现?13. (本题10分)(3211) (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm (1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.14. (本题10分)(3220) 波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21 范围内可能观察到的全部主极大的级次.15. (本题10分)(3221) 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm (1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d .一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1nm= 10-9 m),试求:(1) 光栅常数a+b(2) 波长λ217. (本题 8分)(3223)用一束具有两种波长的平行光垂直入射在光栅上,λ1=600 nm,λ2=400 nm(1nm=10﹣9m),发现距中央明纹5 cm处λ1光的第k级主极大和λ2光的第(k+1)级主极大相重合,放置在光栅与屏之间的透镜的焦距f=50 cm,试问:(1) 上述k=?(2) 光栅常数d=?18. (本题 5分)(3365)用含有两种波长λ=600 nm和=′λ500 nm (1 nm=10-9 m)的复色光垂直入射到每毫米有200 条刻痕的光栅上,光栅后面置一焦距为f=50 cm的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距Δx.19. (本题 5分)(3529)以波长400 nm─760 nm (1 nm=10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.20. (本题 8分)(3530)一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm,在光栅后放一焦距f=1 m的凸透镜,现以λ=600 nm (1 nm=10-9 m)的单色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内,有几个光栅衍射主极大?21. (本题 8分)(3736)氦放电管发出的光垂直照射到某光栅上,测得波长λ1=0.668 μm的谱线的衍射角为ϕ=20°.如果在同样ϕ角处出现波长λ2=0.447 μm的更高级次的谱线,那么光栅常数最小是多少?22. (本题 8分)(3737)氢放电管发出的光垂直照射在某光栅上,在衍射角ϕ=41°的方向上看到λ1=656.2 nm和λ2=410.1 nm(1nm=10−9μ)的谱线相重合,求光栅常数最小是多少?23. (本题10分)(3738)用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm-760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9 m)一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10-9m)25. (本题 5分)(3757) 某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线?26. (本题 5分)(5216) 用波长为589.3 nm (1 nm = 10-9m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角.27. (本题 5分)(5217) 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱.钠黄光包含两条谱线,其波长分别为589.6 nm 和589.0 nm .(1nm=10-9m)求在第二级光谱中这两条谱线互相分离的角度.28. (本题 8分)(5535) 波长范围在450~650 nm 之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm .求透镜的焦距f . (1 nm=10-9 m)29. (本题10分)(5536) 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光(λ=589 nm )的光谱线.(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次k m 是多少?(2)当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次mk ′ 是多少? (1nm=10−9m)30. (本题 5分)(5662) 钠黄光中包含两个相近的波长λ1=589.0 nm 和λ2=589.6 nm .用平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距f =1.00 m .求在屏幕上形成的第2级光谱中上述两波长λ1和λ2的光谱之间的间隔Δl .(1 nm =10−9 m)31. (本题10分)(5226) 一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.080 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜求:(1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N 和相应的级数.二 理论推导与证明题 (共 5分)32. (本题 5分)(5329) 两光谱线波长分别为λ和λ+Δλ,其中Δλ<<λ.试证明:它们在同一级光栅光谱中的角距离 ()22//λλθ−Δ≈Δk d 其中d 是光栅常数,k 是光谱级次.三回答问题 (共45分)33. (本题 5分)(3745)图为单缝衍射装置示意图,对于的波阵面恰好可以分成三个半波带,图中光线1和2,光线3和4在P点引起的光振动都是反相的,一对光线的作用恰好抵消.为什么在P点光强是极大而不是零呢?34. (本题 5分)(3746)为什么在日常生活中容易察觉声波的衍射现象而不大容易观察到光波的衍射现象?35. (本题 5分)(3747)用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅禾费衍射图样?为什么?36. (本题 5分)(3749)在单缝衍射实验中,当缝的宽度a远大于单色光的波长时,通常观察不到衍射条纹.试由单缝衍射暗条纹条件的公式说明这是为什么.37. (本题 5分)(3750)在单缝衍射图样中,离中心明条纹越远的明条纹亮度越小,试用半波带法说明.38. (本题 5分)(3758)某种单色光垂直入射到一个光栅上,由单色光波长和已知的光栅常数,按光栅公式算得k=4的主极大对应的衍射方向为90°,并且知道无缺级现象.实际上可观察到的主极大明条纹共有几条?39. (本题 5分)(3759)波长为500 nm(1nm=10-9m)的单色光垂直入射到每厘米5000条刻线的光栅上,实际上可能观察到的最高级次的主极大是第几级?40. (本题 5分)(3762)光栅的衍射光谱和棱镜的色散光谱主要有什么不同?41. (本题 5分)(3763)试说明衍射光栅是怎样起分光作用的.。

大学物理(波动光学)练习(含答案)

大学物理(波动光学)练习(含答案)

大学物理(波动光学)试卷班级:_____________ 姓名:_____________ 学号:_____________日期:__________年_______月_______日成绩:_____________一、选择题(共27分)1.(本题3分)在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D (D>>d).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d.(B) λd / D.23456(B) 2 ,5 ,8 ,11......(C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12......[]7.(本题3分)一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.[]8.(本题3分)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]9.(本题3分)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.101112131415f16如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2的一侧分别加一同质同厚的偏振片P1、P2,则当P1与P2的偏振化方向相互______________时,在屏幕上仍能看到很清晰的干涉条纹.17.(本题3分)光的干涉和衍射现象反映了光的________性质.光的偏振现象说明光波是_________波.P2P1S1S2S三、计算题(共38分) 18.(本题8分)在牛顿环装置的平凸透镜和平玻璃板之间充以折射率n =1.33的液体(透镜和平玻璃板的折射率都大于1.33 ). 凸透镜曲率半径为300 cm ,用波长λ=650 nm (1 nm=10-9 m)的光垂直照射,求第10个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数). 19.(本题5分)用波长λ=632.8nm(1nm=10-9m)的平行光垂直入射在单缝上,缝后用焦距f=40cm 的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm ,单缝的宽度是多少? 20.(本题10分)一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm(1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d . 21.(本题10分)一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置? (2) 这种情况下最后出射光强与入射光强的比值是多少? 22.(本题5分)在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i '. 四、理论推导与证明题(共5分)23.(本题5分)如图所示的双缝干涉装置中,假定两列光波在屏上P 点处的光场随时间t 而变化的表示式各为E 1 = E 0 sin ω t E 2=E 0 sin (ωt+φ) φ表示这两列光波之间的相位差.试证P 点处的合振幅为 ⎪⎭⎫⎝⎛=θλsin πcos d E E m p 式中λ是光波波长,E m 是E p 的最大值.五、回答问题(共5分) 24.(本题5分)在单缝衍射图样中,离中心明条纹越远的明条纹亮度越小,试用半波带法说明.DOPr 1 r 2 θ S S 1 S 2d (D>>d )大学物理(波动光学)试卷解答一、选择题(共27分) D B B D A D B C D二、填空题(共25分) 10.(本题4分)上 2分 (n -1)e 2分 11.(本题3分) 225 3分 12.(本题3分)λ/(2n ) 3分 13.(本题3分)干涉(或答“相干叠加”) 3分 14.(本题3分)30° 3分 15.(本题3分)632.6 或 633 3分 参考解:d sin ϕ =λ --------① l =f ·tg ϕ --------②由②式得 tg ϕ =l / f = 0.1667 / 0.5 = 0.3334sin ϕ = 0.3163λ = d sin ϕ =2.00×0.3163×103 nm = 632.6 nm 16.(本题3分)平行或接近平行 3分 17.(本题3分)波动 1分 横 2分 三、计算题(共38分) 18.(本题8分)解: R 2=r 2+(R - r )2 r 2 = 2Re – e 2略去e 2,则 Rre 22= 2分 暗环: 2ne +21λ=( 2k +1)21λ 2e =λn k(k =0,1,2,…) 3分nRk r λ= k =10 2分r =0.38 cm 1分 19.(本题5分)解:中央明纹宽度 ∆x = 2 x 1 ≈2 f λ/ a 2分 单缝的宽度 a = 2 f λ/∆x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分Re r20.(本题10分)解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分当两谱线重合时有 ϕ1= ϕ2 1分 即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ1 ο60sin 61λ=d =3.05×10-3mm 2分 21.(本题10分)解:设入射光中两种成分的强度都是I 0,总强度为2 I 0.(1) 通过第一个偏振片后,原自然光变为线偏振光,强度为I 0 / 2, 原线偏振光部分强度变为I 0 cos 2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向P 1的夹角.以上两部分透射光的振动方向都与P 1一致.如果二者相等,则以后不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强度也不相等).因此,必须有 I 0 / 2=I 0 cos 2 θ,得θ=45︒. 2分为了满足线偏振部分振动方向在出射后“转过”90︒,只要最后一个偏振片偏振化方向与入射线偏振方向夹角为90︒就行了. 2分综上所述,只要两个偏振片就行了(只有一个偏振片不可能将振动方向“转过”90︒). 2分配置如图,E ϖ表示入射光中线偏振部分的振动方向,P 1、P 2分别是第一、第二偏振片的偏振化方向 2分 (2) 出射强度I 2=(1/2)I 0 cos 2 45︒+I 0 cos 4 45︒ =I 0 [(1 / 4)+(1 / 4)]=I 0/2比值 I 2/(2I 0)=1 / 4 2分22.(本题5分)解:光自水中入射到玻璃表面上时,tg i 0=1.56 / 1.33 2分 i 0=49.6° 1分 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i =40.4°) 2四、推导与证明题(共5分)23.(本题5分)证:由于 相位差=波长光程差π2 1分所以 ()θλφsin π2d =1分P 点处合成的波振动 E = E 1 +E 2P 1P 245°45°Eϖ⎪⎭⎫ ⎝⎛+=2sin 2cos20φωφt E ⎪⎭⎫ ⎝⎛+=2sin φωt E p 所以合成振幅 2cos20φE E p =3分式中E m = 2E 0是E p 的最大值.五、回答问题(共5分) 24.(本题5分)答:除中央明纹(零级)外,其他明纹的衍射方向对应着奇数个半波带(一级对应三个,二级对应五个…),级数越大,则单缝处的波阵面可以分成的半波带数目越多.其中偶数个半波带的作用两两相消之后,剩下的光振动未相消的一个半波带的面积就越小,由它决定的该明条纹的亮度也就越小. 5分。

大学物理(波动光学)辅导讲义与经典例题解析汇编

大学物理(波动光学)辅导讲义与经典例题解析汇编

大学物理(波动光学)辅导讲义与经典例题解析汇编一.光的干涉1.光波光波是某一波段的电磁波,是电磁量E和H的空间的传播.理解与拓展:⑴在电磁波中能为人眼所感受的电磁波称为可见光,其波长范围是400760nm,在可见光的范围内,不同波长的光波引起不同的颜色感觉,波长单一的光波称为单色光.⑵由于对人眼和光学仪器感光起主要作用的是E矢量,故称E为光矢量,习惯上,我们一般用E矢量表示光波的振动.⑶光波的传播总是伴随着能量的传播,这个过程可以用平均能流密度(在一个周期内的平均值)来描述,称为光波的强度,根据电磁波理论,光波的强度可以表示为I??2E ?1?2E0 2?式中?、?为光波传播空间介质的介电常数和磁导率,对于平面光波,其强度表示式是I?通常我们关心的是光波强度的相对分布,这时上述关系式中的比例系数可以取为1。

2.光的干涉满足一定条件的两束(或多束)光波相遇时,在光波重叠区域内,某些点合光强大于分光强之和,在另一些点合光强小于分光强之和,因而合成光波的光强在空间形成强弱相间的稳定分布,称为光的干涉现象,光波的这种叠加称为相干叠加,合成光波的光强在空间形成强弱相间的稳定分布称为干涉条纹,其中强度极大值的分布称为明条纹,强度极小值的分布称为暗条纹.理解与拓展:⑴干涉现象的出现,无可辩驳的表明光具有波动性,这个结论可以推广到其他现象:凡有强弱按一定分布的干涉花样出现的现象,都可作为该现象具有波动本性的实验证据.⑵普通光源发光的特点决定了在现实生活中无法观察到两个普通光源发出的光相遇而产生干涉的现象,必须采用特殊的方法来实现光的干涉,实现相干光的基本思想是将光源发出的各个光波列分别分解成两个子光波列,然后让两个子光波列在同一区域相遇而发生干涉,由于在相遇区域内的两个子光波列是从同一光波列分解出来的,他们的频率和偏振方向完全相同.而在相遇地点的相位差取决于两个子光波列在分开后路程和介质环境,在保证路程和介质环境不变的前提下,在光波相遇处形成稳定的干涉图样,可概括为:同出一点,一分为二,各行其路,合二为一.⑶获得相干光的一种基本方法称作分阵面法,如图16-1所示的杨氏双缝干涉,双缝S1和S2取自同一个波阵面上的两点,这样入射波的中的任何相位变化都同时传给S1和S2,S1和S2在相遇点的相位要变一起变,于是可以保证相位差恒定,因而能产生干涉.⑷获得相干光的另一种基本方法称分振幅法,如图16-2所示的薄膜干涉,是把同一光1感谢您的阅读,祝您生活愉快。

大学物理-波动方程的定解问题

大学物理-波动方程的定解问题
律,解出某个物理量 u 在给定的区域里随着地点 (x, y, z) 和时刻 t 怎样变化,即求 u (x, y, z, t)。
另外,数理方程理论还有三个主要问题:
(1) 解的存在性问题 (2) 解的唯一性问题
唯一性问题:讨论在什么定解条件下,对于哪一函数类, 方程的解是唯一的。通过唯一性问题的研究,可以明确: 对于一定的方程,需要多少个以及哪些定解条件才能唯 一确定一个解。
y
vx = 0 x=0
vy = v0−gt y = v0t −gt2/2
o
x
(抛出点为 坐标原点)
(2) 对斜向上抛,有
结论:不同的初始条件 (个性) 不同的运动状态,但 都服从牛顿第二定律 (共性)。
注:以上例子是大家熟悉的常微分方程的求解,实际上后 面要求解的是偏微分方程。
定解问题的完整提法: 在给定的边界条件和初始条件下,根据已知的物理规
F(x,t)
简化假设: (1) 弦是柔软的,即不抵抗弯曲,弦上的任意一点的张力
沿弦的切线方向;
(2) 振幅极小,则张力与水平方向的夹角 1 和 2 很小, 仅考虑 1 和 2 的一阶小量,略去二阶小量,有
(线性化)
并且由此导出弦的长度近似不变: (3) 弦的重量与张力相比很小,可以忽略。
由牛顿第二定律,得到
三、自由空间中电磁场的波动方程 自由空间:无电荷与电流分布的空间 自由空间中麦克斯韦方程组的微分形式为
将以上方程组中的第三式两边取旋度,并利用第四式,有
再利用矢量分析公式,得到 因此,可得到自由空间中电场的波动方程 同理,可得到自由空间中磁场的波动方程
四、波动方程的定解条件
1. 初始条件——描述系统的初始状态 振动方程含有对时间的二阶偏导数

大学物理波动理论及习题

大学物理波动理论及习题

波速: 波速
大学物理学 振动和波动
例题2: 一平面简谐波在介质中以速度u=20m/s,沿Ox轴的 例题 一平面简谐波在介质中以速度 沿 轴的 负向传播. 已知A点的振动方程为 点的振动方程为y=3cos4πt, 则(1)A点为坐 负向传播 已知 点的振动方程为 π 点为坐 标原点求波动方程; 以距A点 处的 处的B为坐标原点求波 标原点求波动方程 (2)以距 点5m处的 为坐标原点求波 以距 动表达式. 动表达式 y’ y 解: u x
x y(x) = Acosωt0 + u
大学物理学 振动和波动
3. 波形图分析 波形图分析: 图中x 两质点的相位差: ① 图中 1和x2两质点的相位差
y
A O x1
u λ
x2
x1 y1 = Acosωt + ( ω ) u x2 y2 = Acosωt + ( ω ) u x1 x2 2 = ω 1 = ω u u x 2π = 2 1 = ω = x u λ
大学物理学 振动和波动
1 dEk = dm v2 2
y x Q v = = Aωsin ω (t ) t u
1 x 2 2 2 质元的振动动能: 质元的振动动能 dEk = (ρ dV ) A ω sin ω (t ) 2 u
质元的弹性势能: 质元的弹性势能
1 x 2 2 2 dEp = (ρ dV ) A ω sin ω (t ) 2 u
大学物理学 振动和波动
§4-5 机械波的产生和传播
振动和波动 振动: 于平衡位置, 无随波逐流. 振动: 于平衡位置 无随波逐流 波动: 振动的传播过程. 波动: 振动的传播过程
波动的种类 电磁波: 电磁波 交变电磁场在空间的传播过程

《大学物理》波动光学基础解析

《大学物理》波动光学基础解析

E
S
H
S EH
根据平均值的定义,在一个周期T内平均能留密度的大 小用I表示
I S 1 tT EHdt Tt
光学中通常把平均能流密度I称为光强
➢ 平面简谐电磁波的平均能流密度为
I 1
T
t T t
E0 H 0
cos2 (t
r )dt u
1 2
E0 H 0
1 2
E02
三、光是一种电磁波 平面电磁波方程
第四篇 波动光学
波动光学基础
上海同步辐射装置全景
研究内容 :
1 光是电磁波 2 光源 光的干涉 3 获得相干光的方法
杨氏双缝实验 4 光程与光程差 5 薄膜干涉 6 迈克耳孙干涉仪 7 惠更斯—菲涅耳原理 8 单缝的夫琅禾费衍射 9 衍射光栅及光栅光谱 10 线偏振光 自然光
11 偏振片的起偏和检偏 马吕斯定律
12 反射和折射产生的偏 振 布儒斯特定律
13 双折射现象 14 椭圆偏振光
偏振光的干涉 15 旋光效应简介
§1 光是电磁波
一、光的本质
17—18世纪是光学发展史上的一个重要时期。伽利略 、开普勒发明了天文望远镜,斯涅尔、笛卡儿导出了光 的折射定律和反射定律。历史上对于光的本质存在争论 。1.光的两种学说
度传播就形成电磁波。
+ Q0
+
+
L
C
Q0
-
-
振荡电偶极子
2. 真空中的平面简谐电磁波及其特性
任何形式电磁波 分解 平面简谐电磁波
叠加
沿x轴传播的平面简谐电磁波电场强度 E和磁场强
度 H可分别表示为:
EuΒιβλιοθήκη E(x,t)
E0

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

大学物理上第12章-波动光学-1

大学物理上第12章-波动光学-1


x1

D d
k4

k1
d x1,4 0.2103 7.5103 5107 m 500nm
D k4 k1
1
4 1
x

D d


1 6107 0.2 103
3103 m 3mm
例2. 无线电发射台的工作频率为1500kHz,两根相 同的垂直偶极天线相距400m,并以相同的相位作电 振动。试问:在距离远大于400m的地方,什么方向 可以接受到比较强的无线电信号?
5 4
d
3
暗纹: x 2k 1 D (k 1,2,)
2d
2 1
其中 k 称为条纹的级数
0 -1
屏幕中央(k = 0)为中央明纹
-2
-3
相邻两明纹或暗纹的间距:
-4
-5
x

xk 1
xk

D
d
说明:
条纹位置和波长有关,不同波长的同一级亮条 纹位置不同。因此,如果用白光照射,则屏上 中央出现白色条纹,而两侧则出现彩色条纹。
n2r2 n1r1 k
k 0,1,2, 明纹


n2 r2

n1r1

2k
1
2
k 1,2,3, 暗纹
注意:
薄透镜不引起附加的光
F
程差。
例3. 用薄云母片(n = 1.58)覆盖在杨氏双缝的其 中一条缝上,这时屏上的零级明纹移到原来的第七 级明纹处。如果入射光波长为550 nm,问云母片 的厚度为多少?
点光源 s* 镜子

M1
s1*
1 A
Ca

第六版大学物理学习题答案

第六版大学物理学习题答案

第六版大学物理学习题答案第六版大学物理学习题答案大学物理作为一门重要的基础学科,对于理工科学生来说至关重要。

而在学习过程中,练习题是巩固知识、提高理解和应用能力的重要途径。

然而,由于各版本教材的不同,很多学生在解答练习题时会遇到困难。

为了帮助大家更好地学习物理,本文将分享第六版大学物理学习题的一些答案和解析,希望能对大家有所帮助。

1. 第一章:运动的描写题目:一个物体做匀速直线运动,已知它在t=2s时的位移为10m,在t=5s时的位移为30m,求它的速度。

答案:根据匀速直线运动的定义,速度等于位移与时间的比值。

所以,速度v= (30m - 10m) / (5s - 2s) = 20m/s。

2. 第二章:力的概念题目:一个质量为2kg的物体,受到一个恒力F=10N的作用,求它在5s内的加速度。

答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 10N / 2kg = 5m/s²。

3. 第三章:牛顿定律和动量题目:一个质量为0.1kg的物体,受到一个恒力F=5N的作用,求它在10s内的速度变化。

答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 5N / 0.1kg = 50m/s²。

速度的变化Δv = at = 50m/s² * 10s = 500m/s。

4. 第四章:功和能量题目:一个质量为0.5kg的物体从高度为10m的位置自由下落,求它落地时的动能。

答案:根据势能转化为动能的公式E = mgh,其中m为物体质量,g为重力加速度,h为高度。

所以,动能E = 0.5kg * 9.8m/s² * 10m = 49J。

5. 第五章:振动和波动题目:一个质量为0.2kg的弹簧振子,振动周期为2s,求它的弹性势能。

答案:根据弹簧振子的势能公式E = (1/2)kx²,其中k为弹簧劲度系数,x为振子的位移。

振动周期T与弹簧劲度系数k的关系为T = 2π√(m/k),其中m为振子的质量。

大学物理实验波动理论的验证与波速测量

大学物理实验波动理论的验证与波速测量

大学物理实验波动理论的验证与波速测量引言:波动理论是大学物理中重要的理论之一,它解释了光、声等各种波动现象的性质和规律。

为了验证波动理论并测量波速,我们进行了一系列的实验。

本文将详细介绍我们的实验设计、结果和分析。

实验一:波动理论验证在本实验中,我们使用了水波箱和波动装置。

首先,我们在水波箱中制造了一个平静的水面。

然后,通过波动装置在水面上产生了波浪。

我们观察到波浪的传播与波动理论的预期一致,波峰和波谷以相同的速度朝着边缘传播,并且在遇到边缘时发生折射和反射。

这一实验结果验证了波动理论在水波中的适用性。

实验二:光的波动性验证为了验证光的波动性,我们使用了干涉仪。

首先,我们调整了干涉仪的各个部分,确保光路的稳定性。

然后我们使用单色光源照射干涉仪,在投影屏上观察到了干涉条纹。

这些干涉条纹的出现是由于光的波动性导致的光程差效应。

实验结果再次验证了波动理论在光学中的适用性。

实验三:波速测量为了测量波速,我们选择了声波。

首先,我们使用了一个频率可调的声源,并将其放置在一端。

然后,我们在另一端放置了一根长直的管道作为传播介质。

通过改变频率并测量声波在管道中传播的时间,我们可以计算出声波的波长。

通过将波长与频率相乘,我们得到了声波的波速。

实验结果及讨论:通过对上述实验的观察和测量,我们得到了以下结果:水波、光波和声波都符合波动理论的预期,并且其传播速度与理论值相符。

这进一步验证了波动理论的可靠性和适用性。

结论:大学物理实验中的波动理论验证和波速测量实验为我们提供了直接观察和测量波动性质的机会。

通过这些实验,我们确认了波动理论在水波、光波和声波中的适用性,并且成功地测量了声波的波速。

这些实验结果对我们深入理解波动理论的基本概念和性质具有重要意义。

参考文献:[1] Smith, J. D., & Johnson, A. B. (2017). Introduction to Wave Phenomena. Journal of Physics Education, 45(2), 123-135.[2] Brown, L., & Adams, G. (2019). Experimental Validation of Wave Theory. Physical Review Letters, 120(5), 268-274.附录:实验装置与测量数据实验一:波动理论验证装置:水波箱、波动装置结果:观察到波峰和波谷在水面上的传播,以及边缘的折射和反射现象实验二:光的波动性验证装置:干涉仪、单色光源、投影屏结果:观察到干涉条纹在投影屏上的出现实验三:波速测量装置:声源、管道测量数据:频率调整范围 100 Hz - 2000 Hz;声波传播时间在不同频率下的记录请注意,这只是一个示例,你可以根据具体的实验设计和结果进行调整和修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波前 子波
子波波源
波 的 折 射
波 的 反 射
大学物理学 振动和波动
波的叠加原理 波的干涉 1. 波传播的独立性原理: 若干列波在传播过程中相遇 , 每列波仍将保持其原有的振动 特性(频率,波长,振幅,振动方向), 不受其它波的影响. 2. 波的叠加原理: 在相遇区域内,任 一质元振动的位移 是各列波单独存在 时在该点引起的位 移的矢量和.
大学物理学 振动和波动
波的能量 波动的过程是能量 传播的过程. 波动表达式:
x y A cos (t ) u
dm Sdx
1. 介质元的能量
dV Sdx
质元的振动动能:
1 dEk dm v 2 2 y x v A sin (t ) t u
u
l
T
nT
or l uT
大学物理学 振动和波动
关于波速
1. 波速是振动能量或振动形式的传播, 非质点的振动速度. 2. 影响波速的因素: 介质的特性(弹性模量,介质的密度等). 拉紧的绳或弦中,横波的速度: u 固体中,横波的速度: u
G
FT
l
纵波的Βιβλιοθήκη 度: u BY
液体和气体内部只能传播纵波, 其速度: u 3. 波速与频率无关.
1. 当 x = x0(常数)时, 表示x0处质元的振动方程,
x0 y (t ) A cos t u
2. 当 t = t0(常数)时, 表示各质元的位移分布函数,
x y ( x) A cos t0 u
2π y A cos t ( x x0 ) l
说明: 1. “” 反映波的传播方向. 相位和波程关系: 2. x0 是波源坐标. 3. 是波源的振动初相位.

u

l

大学物理学 振动和波动
波函数的物理意义
x y ( x, t ) A cos t u
x y A cos t u
若波沿x轴的负向传播, 则P点相位比O点相位超前t=x/u, 则
x y A cos t u
大学物理学 振动和波动
波动表达式的一般形式
x x0 y A cos t u
振幅: A
l
A12

2 A2
2 A1 A2 cos[1 2
2 r1

l
(r1 r2 )]
)
初相: tan
大学物理学 振动和波动
波的能量密度和能流密度
能量密度: 单位体积中波的能量 dE x 2 2 2 w A sin (t ) dV u
1 平均能量密度: w T
0
T
1 2 2 wdt A 2
平均能流 : 单位时间内垂直通过某一面积 的平均能量 .
u
ut
S
P w uS
) ( m)
B
A
x
B点为原点的波动表达式: 波源坐标为:
x0 5m
x 5 y ' 3 cos 4π (t ) (m) 20
大学物理学 振动和波动
例题3: 有一平面简谐波沿Ox轴方向传播,在距反射面B为L 处的振动规律为 y =Acost, 设波速为u, 反射时无半波损失, 求入射波和反射波的波动表达式. 解: 入射波表达式:
波速:
大学物理学 振动和波动
例题2: 一平面简谐波在介质中以速度 u=20m/s,沿Ox轴的 负向传播. 已知A点的振动方程为y=3cos4t, 则(1)A点为坐 标原点求波动方程; (2)以距A点5m处的B为坐标原点求波 动表达式. y y’ 解: u x
y 3 cos 4π ( t
20
大学物理学 振动和波动
相干波的干涉加强和减弱条件
y1S A10 cos( t 1 )
y2S A20 cos( t 2 )
y1P A1 cos( t 1
y2 P A2 cos( t 2
S1
r1 r2
P
2π r1
2π r2
l
)
)
S2
yP y1P y2P A cos( t )
大学物理学 振动和波动
波的干涉 满足一定条件的两列 (或多列 )波在空间相遇(叠加),在空 间的某些地方振动始终加强 , 而在空间的另一些地方振动 始终减弱或完全消失的现象, 称为波的干涉. 相干条件:
(1) 频率相同; (2) 振动方向相同; (3) 有恒定的相位差. 相干波: 能产生干涉现象的波.
xL L 反射波表达式: y A cos ( t ) u u x 2L A cos ( t ) u u
x y A cos ( t ) u L y B A cos ( t ) u
u
u
B x
O
x
L
波动方程 x 波动表达式: y A cos[ (t ) ] u y x 质点的振动速度: v A sin[ (t ) ] t u x v 2 y 2 质点的振动加速度 : a 2 A cos[ (t ) ] t t u 2 x 2 y A 2 cos[ (t ) ] 2 u 2 2 u x
x
A:振幅; :波长
y
A O x1
u λ
x2
x
u△t
②经一段时间后, 波形图沿波速方向平移. ③各质点的振动速度的方向如图.
例题1: 已知t=0时的波形曲线为I, 波沿x方向传播, 经 t=0.5s 后波形变为曲线II. 已知波的周期 T > 1s, 试根据图中绘出 的 条 件 求 出 波 的 表 达 式 , 并 求 A 点 的 振 动 表 达 式 .( 已 知 y(cm) A=0.01m) II I A 解: A 0.01m 5 6 l 0.04m 1 2 3 4 x(cm)
大学物理学 振动和波动
y 1 y 2 2 2 x u t
—— 平面波的波动方程
可以证明对于无吸收的各向同性的均匀介质, 在三维空 间传播的一切波动过程都满足下列方程: 2 2 2 1 2 2 (ξ: 质点的位移) 2 2 2 x y z u t 2
波线、波面和波阵面
大学物理学 振动和波动
从波源沿各传播方向所画的带箭头的线 , 称为波线, 用 以表示波的传播路径和传播方向. 波在传播过程中, 所有振动相位相同的点连成的面, 称 为波面. 最前面的那个波面称为波阵面(波前). 平面波 波阵面 波线 波面 波阵面 球面波
波线
波面
• 波在传播过程中波面有无穷多个. • 在各向同性介质中波线和波面垂直.
dEk dEp
体元的总能量:
x dE dEk dEp dVA sin (t ) u
2 2 2
大学物理学 振动和波动
说明: 1. 介质元的动能、势能变化是同周期的, 而且相等. 2. 峰值处: Ek=Ep=0 ; 平衡位置处 y=0, Ek=Ep max
3. 介质元的机械能不守恒 , 因为它属于开放系统, 与相邻 介质元有能量交换.
解:
P w uS
u
l
T
T
P


2π wS
u
l

l
大学物理学 振动和波动
§4-8 波的干涉和波的衍射
衍射 : 波在传播的过程中遇到障碍 物或小孔后, 能够绕过障碍物的边缘 继续传播的现象.
隔 墙 有 耳
大学物理学 振动和波动
惠更斯原理 介质中波传播到各点,可看作是发射子波的 波源 , 在其后的任一时刻 , 这些子波波面的 包迹决定了原波动的新波前.
横波和纵波 横波: 质点的振动方向和波动的传播方向垂直.
大学物理学 振动和波动
特征: 波峰和波谷 纵波: 质点的振动方向和波动的传播方向相平行. 特征: 稀疏和稠密 • 在机械波中,横波只能在固体中出现. • 纵波可在气体、液体和固体中出现. • 空气中的声波是纵波. • 液体表面的波动情况较复杂,不是单纯的纵波或横波.。

波速由弹性介质性质决定 , 频率(或周期)则由波源的振 动特性决定.
大学物理学 振动和波动
§4-6 平面简谐波
在平面波传播的过程中 ,若介质中各质元均作同频率同 振幅的简谐运动, 称平面简谐波. 波函数的建立 波函数(或称波动表达式): 描述波传播到的各点的质点 的振动状态. 设 y 方向振动的平面简谐 波沿x方向传播, 传播速度为 u, 有
大学物理学 振动和波动
§4-5 机械波的产生和传播
振动和波动
振动: 于平衡位置, 无随波逐流. 波动: 振动的传播过程.
波动的种类 电磁波: 交变电磁场在空间的传播过程
大学物理学 振动和波动
机械波: 机械振动在弹性介质中的传播过程
物质波: 微观粒子的运动,其本身具有的波粒二象性 波动的共同特征 具有一定的传播速度, 且都伴有能量的传播. 能产生反 射、折射、干涉和衍射等现象. 机械波产生的条件 1. 波源 —— 被传播的机械振动 . 2. 弹性介质 —— 任意质点离开平衡位置会受到弹性力作 用. 在波源发生振动后, 因弹性力作用,带动邻近的质点 也以同样的频率振动. 如此将振动传播出去. 故机械振动 只能在弹性介质中传播.
大学物理学 振动和波动
1 dEk dm v 2 2
y x v A sin (t ) t u
1 x 2 2 2 质元的振动动能: dEk ( dV ) A sin (t ) 2 u
相关文档
最新文档