实验二抽样定理与信号的恢复

合集下载

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告中抽样定理(Nyquist Sampling Theorem)是由半对数希尔伯特(Harry Nyquist)在1928年发布的一条定理,它提供了一种确定信号在采样范围和采样间隔的方法,可根据相关采样规则保证信号的完整性和准确性。

中抽样定理是用来描述信号抽样的必要性,即使在采样之前,某种未知事物也是有限和可采样的,否则无法恢复其原始信息。

该定理法则约定如下:1、信号必须以完整的范式采样。

信号若在采样前具有有限波道宽度,则信号必须被完整地采样,若不这样做将会丢失信号的一部分,影响整体信号的清晰度。

2、采样间隔为信号范式宽度的2倍。

中抽样定理要求,要恢复的信号必须以2倍的采样间隔范式宽度采样,这意味着要在每个信号周期内采样至少2次以上,以保证信号范型被完全恢复。

若以更短的采样间隔采样,那么信号将会出现调制失真,意味着信号会发生阵列干扰等异常信号,影响恢复准确性。

3、采样频率不能低于信号本身的频率。

在信号采样的时候,采样频率不能低于信号本身的频率,若这样则会导致在采样时信号产生抖动,因而影响信号的恢复。

中抽样定理的信号恢复实验是为了研究采样数据在恢复到信号之后,信号的完整性和可用性,也就是采样后信号是否可以被准确恢复。

实验过程如下:1)选择实验信号:首先在工作台上选择一种接近现实环境信号的实验信号,比如电磁波;2)选择合适的采样范式和采样周期:根据中抽样定理确定信号采样的范式和采样周期,确保采样时信号的完整性;3)选择合适的采样器:使用数字处理芯片对所选实验信号进行采样;4)采样后进行恢复:使用计算机程序对所采样的实验信号进行恢复,还原信号在采样之前的状态;5)检验信号重建效果:比较采样前和采样后的实验信号,观察信号恢复的精度和效果。

中抽样定理及实验报告的结果表明,采用中抽样定理的方法有效的提高了信号的清晰度和真实感,可以进行准确的信号恢复和参数测定分析。

它可以应用于传输系统和数字信号处理,在传输、抑制、延迟等方面具有重要的意义。

实验2 抽样定理及其应用实验

实验2  抽样定理及其应用实验

实验2 抽样定理及其应用实验一、实验目的1.通过对模拟信号抽样的实验,加深对抽样定理的理解;2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点;3.学习PAM 调制硬件实现电路,掌握调整测试方法。

二、实验仪器1.PAM 脉冲调幅模块,位号:H (实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M 双踪示波器1台4.频率计1台5.小平口螺丝刀1只6.信号连接线3根三、实验原理抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM )、脉宽调制(PDM )和脉位调制(PPM )。

虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。

抽样定理实验电路框图,如图1-1所示。

图1-1 抽样的实验过程结构示意图本实验中需要用到以下5个功能模块。

1.DDS 信号源:它提供正弦波等信号,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的调制信号。

2.抽样脉冲形成电路模块:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM 脉冲调幅模块”, 作为脉冲幅度调制器的抽样脉冲。

3.PAM 脉冲调幅模块:它采用模拟开关CD4066实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输DDS信号源抽样脉冲形成电路 信道模拟 信号恢复 滤波器开关抽样器 32P01 32TP01 32P02 32P03 P154SW02控制 P09P14 P03 32W01出。

因此,本模块实现的是自然抽样。

4.接收滤波器与功放模块:接收滤波器低通带宽有2.6KHZ和5KHZ两种,分别由开关K601上位和中位控制,接收滤波器的作用是恢复原调制信号。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。

在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。

通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。

因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。

实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。

实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。

我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。

在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。

当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。

这是因为重构滤波器的阶数没有达到最优值。

当采样频率降低到8Hz时,出现了更明显的振荡。

这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。

进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。

结论:本实验证明了抽样定理在数字信号处理中的重要性。

对于任何采样频率低于极限的情况,都可能导致信号发生失真。

因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。

抽样定理_实验报告

抽样定理_实验报告

1. 了解电信号的采样方法与过程。

2. 理解信号恢复的方法。

3. 验证抽样定理的正确性。

二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。

三、实验设备与器材1. 信号与系统实验箱TKSS-C型。

2. 双踪示波器。

四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。

2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。

3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。

4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。

5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。

五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。

2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。

1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。

2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。

3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。

七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。

2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。

3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。

《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。

s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。

图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。

平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。

当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s 2,其中f s为抽样频率,为原信号占有的频带宽度。

而f min=2 为最低抽样频率又称“柰奎斯特抽样率”。

当f s<2 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2 ,恢复后的信号失真还是难免的。

图5-2画出了当抽样频率f s>2 (不混叠时)f s<2 (混叠时)两种情况下冲激抽样信号的频谱。

t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2 、f s =2 、f s <2 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。

它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。

抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。

一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。

抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。

抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。

具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。

这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。

抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。

它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。

这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。

如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。

抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。

当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。

三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。

采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。

例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。

在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。

因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。

本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。

实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。

具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。

实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。

通过函数生成器产生该信号,并连接到示波器上。

2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。

通过示波器的采样功能,将信号进行采样,并记录采样数据。

3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。

在本实验中,我们选择了最常用的插值法进行信号恢复。

通过对采样数据进行插值处理,可以得到连续时间的信号。

4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。

通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。

实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。

通过示波器进行采样,并得到了采样数据。

接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。

通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。

这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。

结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。

信号的采样与恢复

信号的采样与恢复
grid
当输入n=10时,所得结果如下:
图3 当n=10时采样后的信号和频谱
当输入n=50时,所得结果如下:
图4 当n=50时采样后的信号和频谱
由抽样定理可知,抽样后的信号频谱是原信号频谱以抽样频率为周期进行周期延拓形成的,周期性在上面两个图中都有很好的体现。但是从10点和50点采样后的结果以及与员连续信号频谱对比可以看出,10点对应的频谱出现了频谱混叠而并非原信号频谱的周期延拓。这是因为N取值过小导致采样角频率 ,因此经周期延拓出现了频谱混叠。而N取50时,其采样角频率 ,从而可以实现原信号频谱以抽样频率为周期进行周期延拓,并不产生混叠,从而为下一步通过低通滤波器滤出其中的一个周期(即不失真的原连续信号)打下了基础。
若设 是带限信号,带宽为 , 经过采样后的频谱 就是将 在频率轴上搬移至 处(幅度为原频谱的 倍)。因此,当 时,频谱不发生混叠;而当 时,频谱发生混叠。
一个理想采样器可以看成是一个载波为理想单位脉冲序列 的幅值调制器,即理想采样器的输出信号 ,是连续输入信号 调制在载波 上的结果,如图2所示。
图2 信号的采样
对连续信号y=sin(t)进行抽样并产生其频谱,采样后的信号和频谱如图3、图4所示
MATLAB部分程序为:
n1=input('请输入采样点数n:');
n=0:n1;
zb=size(n);
figure
sinf=sin(8*pi*n/zb(2));
subplot(211);
stem(n,sinf,'.');
[5]方建邦锁相环原理及应用1988
[6]刘彩霞、刘波粒 高频电子线路 科学出版社 2008.7
[7]罗兰锁相环的设计,模拟与应用2003

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告一、实验目的1、掌握抽样定理的基本原理和抽样过程。

2、理解抽样频率对信号恢复的影响。

3、学会使用实验设备进行抽样和信号恢复的操作。

4、通过实验观察和数据分析,验证抽样定理的正确性。

二、实验原理1、抽样定理抽样定理指出,对于一个带宽有限的连续信号,如果抽样频率大于或等于信号最高频率的两倍,那么可以通过抽样值无失真地恢复出原始信号。

设连续信号为$f(t)$,其频谱为$F(ω)$,最高频率为$ω_m$。

以抽样间隔$T_s = 1/f_s$ 对$f(t)$进行抽样,得到抽样信号$f_s(t)$。

抽样信号的频谱$F_s(ω)$是原信号频谱$F(ω)$以抽样频率$ω_s =2πf_s$ 为周期进行周期延拓。

2、信号恢复从抽样信号恢复原始信号通常使用低通滤波器。

理想低通滤波器的频率响应为:\H(ω) =\begin{cases}1, &|ω| <ω_c \\0, &|ω| >ω_c\end{cases}\其中,$ω_c$ 为低通滤波器的截止频率,通常取$ω_c =ω_m$。

通过低通滤波器对抽样信号进行滤波,即可得到恢复后的信号。

三、实验设备1、信号发生器:用于产生连续信号。

2、抽样脉冲发生器:产生抽样脉冲。

3、示波器:用于观察信号的波形。

4、低通滤波器:实现信号的恢复。

四、实验内容及步骤1、产生连续信号使用信号发生器产生一个频率为$f_1$ 的正弦信号,调节信号的幅度和频率,使其在示波器上显示清晰稳定。

2、选择抽样频率设置不同的抽样频率$f_s$,分别为$2f_1$、$3f_1$ 和$5f_1$。

3、抽样过程将抽样脉冲与连续信号同时输入到示波器的两个通道,观察抽样信号的波形。

4、信号恢复将抽样信号通过低通滤波器,在示波器上观察恢复后的信号,并与原始信号进行比较。

5、记录数据记录不同抽样频率下抽样信号和恢复信号的波形、幅度和频率等数据。

五、实验数据及分析1、当抽样频率为$2f_1$ 时抽样信号的频谱发生了混叠,通过低通滤波器恢复的信号出现了明显的失真,幅度减小,频率也发生了变化。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。

二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。

由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。

ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。

由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。

如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。

(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。

因此又称为信号恢复。

ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。

选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。

将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。

因此,经过理想滤波器还原得到得信号即为原信号本身。

信号重构得原理图见下图。

通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。

通信原理实验报告2抽样定理实验(PAM)第6组

通信原理实验报告2抽样定理实验(PAM)第6组

通信原理实验报告班级:组号:06 时间:2015/11/12成员:学号:实验二:抽样定理实验(PAM)一、实验目的1、掌握抽样定理的概念。

2、掌握模拟信号抽样与还原的原理及实现方法。

3、了解模拟信号抽样过程的频谱。

二、实验内容1、采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。

2、采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。

三、实验仪器1、信号源模块一块2、模拟信号数字化模块一块3、20M双踪示波器一台4、带话筒立体声耳机一副5、频谱分析仪五、实验步骤(要求图片中有测得波形频率、峰峰值、占空比的数据)1、插上电源线,打开主机箱右侧的交流开关,再分别按下所用到的两个模块的电源开关,对应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)2、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V。

3、实验连线如下:信号源模块模拟信号数字化模块2K正弦基波——————抽样信号DDS-OUT——————抽样脉冲模拟信号数字化模块内连线PAM输出———————解调输入4、不同频率方波抽样(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V。

(2)依次设置方波A的频率为2KHz、4KHz、8KHz、16KHz,示波器双踪观测“抽样信号”与“PAM输出”测试点波形,并记录图片为图1~4。

图1图2图3图4(3)再依次设置方波A的频率为2KHz、4KHz、8KHz、16KHz,示波器双踪观测“抽样信号”和“解调输出”测试点波形,并记录图片为图5~8。

图5图6图7图85、同频率但不同占空比方波抽样(1)信号源模块“DDS-OUT”测试点输出选择“方波B”,使其峰峰值为3V,频率为4KHz。

信号实验报告抽样定理

信号实验报告抽样定理

一、实验目的1. 理解并掌握抽样定理的基本原理。

2. 通过实验验证抽样定理的正确性。

3. 学习如何通过抽样恢复原始信号。

4. 掌握信号频谱的观察与分析方法。

二、实验原理抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。

该定理指出,如果一个带限信号的最高频率分量为f_max,那么只要抽样频率f_s 满足f_s > 2f_max,那么通过这些抽样值就可以无失真地恢复出原始信号。

三、实验设备与工具1. 信号发生器2. 示波器3. 函数信号发生器4. 采样器5. 计算机及信号处理软件(如MATLAB)四、实验步骤1. 信号生成:使用信号发生器生成一个带限信号,确保其最高频率分量f_max小于1MHz。

2. 抽样:使用采样器对生成的信号进行抽样,设置不同的抽样频率f_s,分别为fs=1MHz、fs=2MHz和fs=4MHz。

3. 信号分析:使用示波器和函数信号发生器观察原始信号和抽样信号的波形,分析抽样频率对信号波形的影响。

4. 频谱分析:使用信号处理软件对原始信号和抽样信号进行频谱分析,观察其频谱特性。

5. 信号恢复:使用信号处理软件对抽样信号进行恢复,观察恢复信号与原始信号是否一致。

五、实验结果与分析1. 波形观察:当抽样频率fs=1MHz时,抽样信号与原始信号存在较大差异,信号波形发生明显畸变;当抽样频率fs=2MHz时,抽样信号与原始信号波形相似,但存在一定程度的失真;当抽样频率fs=4MHz时,抽样信号与原始信号基本一致,信号波形失真很小。

2. 频谱分析:当抽样频率fs=1MHz时,抽样信号的频谱存在混叠现象,无法恢复原始信号的频谱;当抽样频率fs=2MHz时,抽样信号的频谱与原始信号的频谱基本一致;当抽样频率fs=4MHz时,抽样信号的频谱与原始信号的频谱完全一致。

3. 信号恢复:当抽样频率fs=4MHz时,恢复信号与原始信号基本一致,证明了抽样定理的正确性。

六、实验结论1. 抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

matlab信号抽样与恢复

matlab信号抽样与恢复

matlab信号抽样与恢复信号抽样与恢复是数字信号处理中的基本概念,也是数字信号处理应用中常常涉及到的一个环节。

本文将介绍抽样定理、抽样的操作方法以及抽样信号的信号恢复。

一、抽样定理抽样定理是数字信号处理中一个基本且重要的定理,又称为奈奎斯特抽样定理。

它给出了信号在模拟域和数字域之间的对应关系。

其表述为:在对模拟信号f(t)进行采样时,采样频率F_s必须大于等于信号带宽2B,即F_s≥2B,采样出的数字信号才不会产生混叠现象,即在恢复信号时不会产生失真。

其中,Fs为采样频率,B为信号带宽。

对于一个连续的信号f(t),在进行采样时,需要首先将其通过一个称为采样保持电路的设备进行采样。

该设备会按照一定的时间间隔Ts (也称采样周期)对信号f(t)进行采样,并将采样结果以数字信号的形式输出。

输出的数字信号可以看作是在时间上离散化、幅度上量化了的原信号f(t)。

二、抽样的操作方法抽样的操作方法是指在进行抽样时需要满足的一些条件。

在实际的数字信号处理中,通常采用交织抽样方式对信号进行抽样。

交织抽样即将原信号采样的时间间隔与采样保持电路采样的时间间隔错开一定的时间(通常为半个采样周期),使得采样时的信号可以有效地避免失真。

具体而言,交织抽样的操作方法如下:首先确定采样频率Fs,以及采样点数n。

采样频率Fs应该满足抽样定理的要求,即Fs≥2B。

采样点数n由采样的时间长度T和采样频率Fs决定,即n=T*Fs。

计算采样周期Ts,即Ts=1/Fs。

在采样时,一般采用一个称为采样保持电路的设备对信号进行采样。

采样保持电路包含一个开关和一个电容,当开关处于闭合状态时,电容开始充电,并将信号的幅度存储在电容中;当开关处于断开状态时,电容被断开,信号的幅度得到保持并输出。

根据交织抽样的操作方法进行采样,并将采样结果存储在计算机中。

三、信号恢复在进行数字信号处理时,需要对数字信号进行重构和恢复。

重构指的是将数字信号重新合成为与原信号类似的模拟信号的过程,而恢复则是在数字信号的基础之上还原原信号的过程。

2抽样定理

2抽样定理

实验二 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。

程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; fm=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:-0.500.5原连续信号和抽样信号图5-1(2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。

因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。

例5-2 编程求解例5-1中连续信号及其三种抽样频率(F s >2f m 、F s =2f m 、F s <2f m )下的抽样信号的幅度谱。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

实验一 信号的抽样与恢复(抽样定理)一、实验目的1.了解信号的抽样方法与过程以及信号恢复的方法。

2.验证抽样定理。

二、实验设备1.Dais -XTB 信号与系统实验箱 一台 2.双踪示波器 一台 3.任意函数发生器 一台三、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号()s x t 可以看成连续信号()x t 和一组开关函数()s t 的乘积。

()s t 是一组周期性窄脉冲,如图1-1,s T 称为抽样周期,其倒数1/s s f T =称抽样频率。

图1-1 矩形抽样信号对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按sin x /x 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2.在一定条件下,从抽样信号可以恢复原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3.原信号得以恢复的条件是f s ≥2f max ,f s 为抽样频率,f max 为原信号的最高频率。

当f s <2 f max 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此恢复后的信号失真还是难免的。

实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种抽样频率对连续信号进行抽样,以验证抽样定理。

4.连续信号的抽样和抽样信号的复原原理框图如图1-2所示。

除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭,但这也会造成失真。

实验信号的抽样与恢复

实验信号的抽样与恢复

实验一信号的抽样与恢复(PAM)一、实验目的1、验证抽样定理2、观察了解PAM信号形成的过程;二、实验原理由于模拟通信的有效性和可靠性很低,不能满足实际通信的需要,现在普遍采用数字通信,可大大提高可靠性和有效性。

但是实际的信号一般都是模拟信号,所以模拟信号数字化是实现数字通信的基础,而模数转化的第一步就是信号的抽样。

我们的目的就是用离散值来代替模拟信号,以便于在新道中传输,而且由这些离散值能准确无误地恢复原来的模拟信号。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息,并且从抽样信号中可以无失真地恢复出原始信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础。

抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。

抽样信号的时域与频域变化过程与原理框图如下。

抽样定理实验原理框图抽样:一个频带限制在(0—Fm)范围内的信号f(t),如果用频率为fs>=2fm 的脉冲序列对其进行等间隔抽样,则抽样信号能完全确定原信号f(t),这也就是奈奎斯特定理。

此外实际中还有一类带通信号,频带限制在(f1—f2)范围内,此时抽样频率最小为fs=2B+2(f2-nB)/n,其中n为小于f2/B的最大整数。

上面的定理也可以从频谱的角度来说明。

抽样信号为s(t)=f(t) (t)f(t) 相乘s(t)冲激序列2 恢复由频谱图标显示的频谱图可知通过适当的滤波器既可恢复原信号。

三、实验步骤1 根据信号的抽样与恢复定理,用Systemview软件建立仿真电路如下:2 元件参数的配置Token 4,5,6,7 观察点—分析窗Token 1 乘法器Token 0 正弦信号(1,频率100Hz)Token 3低通滤波器(极点数=3,截止频率=100Hz)Token 2信号源(脉冲信号,1,频率?Hz,脉冲宽度?)500 10-63 运行时间设置运行时间= 2.047s 采样频率=1000Hz 102.3e-34 运行系统在Systemview系统窗内运行该系统后,转到分析窗观察Token 4,5,6,7三个点的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 xa (t ) e1000|t|,求出并绘制其傅里叶变换 Xa ( j。) 用三个不同的抽样频率对其进行采样,分别求出并绘 制离散时间傅里叶变换 X (e j ) 。三个频率分别为:
plot(w,h1);
grid;
xlabel('角频率'); ylabel('幅度');
title('H(jw)的幅频特性');
subplot(2,1,2)
plot(w,h2*180/pi);
grid;
xlabel('角频率');
ylabel('相位');
title('H(jw)的相频特性');
连续时间信号幅度调制的matlab实现
%产生‘pm’调制信号 y=modulate(x,fc,fs,'pm'); subplot(4,1,2) plot(t(1:200),y(1:200)) xlabel('times(s)'); axis([0,0.2,-1,1]); title('Modulated signal (pm)');
axis([-2 2 -0.2 1.2])
通过该例子,可以比较直观地了解 Fourier 级数的物理意义,并观察到当对谐波次数进行 修改其对波形的影响。
非周期信号的傅立叶变换
非周期信号不能直接用傅立叶级数表示,但可以
利用傅立叶分析方法导出非周期信号的傅立叶变
换。
正变换
F ( j)
f
(t)e jt dt
f
(t)
a0 2
n1
(an
cos nt
bn
sin
nt)
a0 2
n1
cn
cos n t
n )
1
j (nt n )
2 n Ane
傅立叶分析
频域分析主要采用傅立叶分析方法。
周期信号的傅立叶级数
三角傅立叶级数
f
(t)
a0 2
n1
(an
cos nt
bn
sin
nt )
指数傅立叶级数
f
t=-2:0.001:2; %信号的抽样点
N=input('N=');
c0=0.5;
fN=c0*ones(1,length(t));%计算抽样上的直流分量
for n=1:2:N
%偶次谐波为零
fN=fN+cos(pi*n*t)*sinc(n/2);
end
Figure %绘图
plot(t,fN)
title(['N=' num2str(N)])
线性时不变系统的频域分析法是一种变换域分 析法,它把时域中求解响应的问题通过傅立叶 变换转换成频域中的问题。主要研究信号频谱 通过系统后产生的变化。利用频域分析法可分 析系统的频率响应、波形失真、物理可实现等 实际问题。
已知一RLC二阶低通滤波器,其电路图如图所示,
该电路的频率响应为
H(jω)
=
y=modulate(x,fc,fs,'am'); subplot(4,1,4) plot(t(1:200),y(1:200)) xlabel('times(s)'); axis([0,0.2,-1,1]); title('Modulated signal (am)');
抽样与抽样定理
抽样 称为取样或采样,它利用抽样脉冲序列从连续信号中
已知信号 f (t) sin(20 t) ,载波信号为频率
100HZ的正弦信号,试绘制其在不同调制方式下的 波形。
%绘制原始信号 fm=10;fc=100;fs=1000; N=1000;k=0:N-1; t=k/fs; x=sin(2.0*pi*fm*t); subplot(4,1,1) plot(t(1:200),x(1:200))
%产生'fm'调制信号
y=modulate(x,fc,fs,'fm'); subplot(4,1,3) plot(t(1:200),y(1:200)) xlabel('times(s)'); axis([0,0.2,-1,1]); title('Modulated signal (fm)');
%产生'am'调制信号
MATLAB提供专门的函数modulate()用于实现信 号的调制。 调用格式: y=modulate(x,fc,fs,’method’) [y,t]=modulate(x,fc,fs) 其中,x为被调信号,fc为载波频率,fs为信号 x的抽样频率,method为所采用的调制方式, ‘method’常用方式‘am’、’pm’、’fm’。
1-
1 ω2LC +
jω设L
R
R = L ,L = 0.8H,c = 0.1F,R = 2Ω ,试用matlab的
2C
freqs()函数绘出该频率响应。
b=[0 0 1];
a=[0.08,0.4,1];
[h,w]=freqs(b,a,100);
h1=abs(h);
h2=angle(h);
subplot(2,1,1)
实验二 抽样定理与信号的恢复
一、实验目的:
加强 Matlab 编程能力。 掌握周期信号的频谱—— Fourier 级数的分析方法
及其物理意义。 深入理解信号频谱的概念,掌握典型信号的频谱以及
Fourier 变换的主要性质。 验证抽样与抽样定理
二、实验原理
Fourier 级数的理论告诉我们:任何周期信号只要满 足狄里赫利条件就可以分解成许多指数分量之和(指 数 Fourier 级数)或直流分量与正弦、余弦分量之和 (三角 Fourier 级数)如式所示:
“抽取”一系列离散样值,其获得的信号为抽样信号。 抽样定理
对一个有限频宽(最高频率为fm或wm)信号进行理想抽 样,当抽样频率s 2m ( fs 2 fm ) 时,抽样值唯一确
定,当此抽样信号通过截止频率 wc (m c s m ) 的
理想低通滤波器后,原信号能完全重建。
抽样与抽样定理的MATLAB实现
反变换
f(t)= 1
2

(
j
)e
jt
d
试求f(t)=e-2|t|的傅立叶变换,并画出f(t)及 其幅度频谱图
syms t函数符 x=exp(-2*abs(t)); F=fourier(x); subplot(2,1,1) ezplot(x) subplot(2,1,2) ezplot(F)
连续时间系统的频域分析
(t )
1 2
n
j (nt n )
Ane
• 周期信号的频谱
利用傅立叶级数展开式求取各分量的振幅、相位,
并将这些关系绘成图形即为周期信号的频谱
三、实验内容
周期信号的傅立叶级数
例:宽度为1,高度为1,周期为2的正方波, 傅立叶级数(前N项)逼近。 对一定的周期 T,取不同项数(即谐波次数) 时有限项级数逼近函数的情况。
相关文档
最新文档