2021考研数学大纲变动一览表

合集下载

2021考研数学二考试大纲原文解析及变化解读

2021考研数学二考试大纲原文解析及变化解读

2021考研数学二考试大纲原文解析及变化解读高等数学大纲原文解析一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.线性代数大纲原文解析一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形等概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.线性代数分值比例下降到约20%,但知识点整体没有变化,但在相似与实对称矩阵中由“2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.”改为“2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.”看见对知识点的要求发生了细微变化,因为整体知识点没有变化,所以考生不需要恐慌,按部就班复习即可。

考研数学二2021大纲

考研数学二2021大纲

考研数学二2021大纲以下的复习大纲是2020届的,大纲每年变化不大,有变化也是个别知识点,到时候着重看一下就可以。

复习可以跟着大纲进行~高等数学一、函数、极限、连续考试内容函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系2.了解函数的有界性、单调性、周期性和奇偶性3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念4.掌握基本初等函数的性质及其图形,了解初等函数的概念5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达(L'Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3.了解高阶导数的概念,会求简单函数的高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理6.掌握用洛必达法则求未定式极限的方法7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用8.会用导数判断函数图形的凹凸性。

考研数学二2021大纲

考研数学二2021大纲

考研数学二大纲考试科目高等数学、线性代数。

考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。

2、答题方式答题方式为闭卷、笔试。

3、试卷内容结构高等数学 78%线性代数 22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(ab)内,设函数f(x)具有二阶导数。

2021考研数学大纲变动一览表

2021考研数学大纲变动一览表

2021考研数学大纲变动一览表
第一部分考试形式和试卷结构
1.试卷内容结构调整
2.试卷题型结构调整
第二部分
考试内容和考试要求
1.数学(一)考试要求变动情况(1)高等数学
(2)线性代数
(3)概率论与数理统计
2.数学(二)考试要求变动情况(1)高等数学
常微分方程5.理解二阶线性微分
方程解的性质及解的
结构定理
5.理解线性微分方程解的
性质及解的结构
微分方程理解的性质及解的结
构不再局限于“二阶线性微分方
程”而是扩展到“线性微分方程”
(2)线性代数
3.数学(三)考试要求变动情况(1)高等数学
(2)线性代数
(3)概率论与数理统计。

2021考研数学一考试大纲原文解析及变化解读

2021考研数学一考试大纲原文解析及变化解读
考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特 征的基本性质,并掌握常用分布的数字特征. 2.会求随机变量函娄的数数学期望.
五、大数定律和中心极限定理考试内容
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoui)大数定律 辛钦(Khinchin)大数 定律 棣莫弗-拉普拉斯(DeMoivte-Laplace)定理 列维-林德伯格(LevyLindberg)定理 考试要求 1.了解切比雪夫不等式. 2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律). 3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机 变量序列的中心极限定理).
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们 的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴 随矩阵求逆矩阵.
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布连续型随机变量的概率密 度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数F(x)=P(X≤x(-x<x<+xz)的概念及性质,会计算与随 机变量相联系的事件的概率.
2理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布B(0p))、几何分布、超 几何分布、泊松(Poisson)分布P(2)及其应用.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率 的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.

考研数学二2021大纲

考研数学二2021大纲
考研数学二2021年大纲涵盖了函数、元函数微积分学和常微分方程等多个部分。在函数、极限、连续部分,要求考生理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系,理解极限的概念,掌握极限的性质及四则运算法则,会利用两个重要极限求极限,理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限,理解函数连续性的概念,会判别函数间断点的类型等。一元函数微分学部分要求考生理解导数和微分的概念,掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数等。一元函数积分学部分要求考生理解原函数的概念,掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法等。多元函数微积分学部分要求考生了解多元函数的概念,了解二元函数的几何意义,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数等。常微分方程部分要求考生了解微分方程及其阶、解、通解、初始条件和特解等概念,掌握变量可分离的微分方程及一阶线性微分方程的解法等。

2021考研大纲最新变动汇总

2021考研大纲最新变动汇总

2021考研大纲最新变动汇总考研数学:十二年来,考研数学大纲迎来重大修订:选择题5*10=50分选择题从8个变10个,分值从4分变5分,总分值从32分变50分填空题5*6=30分题量没有变化,分值从4分变5分,总分值从24分变30分解答题6*?=70分题量从9题变成6题,线代和概率论均变成了一道综合大题,高数题前面的两道简单题基本删除。

提高了反常积分、泰勒公式、相似对角化、二次型的正交变换等考点。

最新2021考研数学大纲中,数学题型仍然是选择题、填空题、解答题三个题型,最要变化在题型的数量上及分值上:主要注意的点!选择题和填空题的分值提高会导致难度稍高,以匹配5分的分值。

客观题分值大幅提高,主观题分值降低,会导致解答题过程分减少。

大题变少,会导致题目更具有综合性,大题第一问的小提示可能取缔。

新增的知识点不用担心,第一年不会出的很难,但是修订的知识点需要格外注意,比如把了解改成理解,掌握等。

历年真题的分值分配和题目综合不再具有时效性,测试结果可能不再具有科学性,重点是掌握知识点,做好知识点的全面复习和知识框架的无死角搭建,避免一处掉链子后面题都无法解答。

---------------------------------------------------------------------- 肖秀荣教授对政治大纲的解读~考点移动(例如今年马原把“人与自然的关系”这个知识点从第二章挪到了第四章)、标题修改(例如把“群众观点和群众路线”改为“无产阶级政党的群众路线”)今年大纲修订中应该重点关注的知识点有:史纲第四章第一节增加“五四运动的意义”,这是去年纪念五四运动大会上重要讲话的内容,见《精讲精练》第261页。

第四章第三节增加“大革命中的中国共产党”,这是本科教材中的一个重要知识点,今年添加到了新大纲中,《精讲精练》第266页已添加,而且我以前的模拟题中也已多次出了这个考点。

思修法基第三章第二节“爱国主义及其时代要求”添加了部分重要提法,其中最重要的是将过去的“坚持爱国主义和社会主义相统一”改为“坚持爱国爱党爱社会主义相统一”这一最新提法(《精讲精练》第348页已提前修订),在这一知识点下的“当代中国,爱国主义的本质就是坚持爱国和爱党、爱社会主义高度统一”等新提法《精讲精练》中也提前做了相应修订。

2021考研数学三大纲解析:数三内容的考与不考

2021考研数学三大纲解析:数三内容的考与不考

2021考研数学三大纲解析:数三内容的考与不考
首先明确数学三不考的内容。

高等数学包括空间解析几何与向量代数、三重积分、曲线积分与曲面积分、重积分,曲线积分与曲面积分的应用,这几大块都不考,小伙伴们,你们是不是很开心呀!
还有"局部地区"也有不考的内容哟,例如:导数应用中的曲率和曲率圆,导数的物理应用,不定积分中有理函数的积分,三角函数的有理式积分,简单无理函数的积分(对于三角函数的有理式积分和简单无理函数的积分,这几年的考题中数一数二数三的要求没有明确的界限,还请各位同学能够完全掌握),定积分应用中旋转的侧面积与曲线弧长,平行截面积为已知的立体体积,物理应用(功,引力,压力,质心,形心等),多元函数微分学中的方向导数和梯度,空间曲线的切线和法平面及曲面的切平面和法线,傅里叶级数,常微分方程中可用简单的变量代换求解的某些微分方程,可降阶的微分方程,高于二阶的某些常系数齐次线性微分方程,欧拉方程,微分方程应用中物理应用。

数学三独家特有的考试内容,
这也充分的体现了数学三的魅力所在,数学三独考的内容有导数应用中的经济应用(边际与弹性等),定积分应用中的经济应用,二重积分中无界区间上的简单的反常二重积分,无穷级数,微分方程应用
中的经济应用,差分方程,这些都是数学三独考的,这里没有提到的都是数学一二三共同考的,就不在赘述了,希望可以帮助到你,祝考研成功!。

2021年数学三考研大纲

2021年数学三考研大纲

2021 考研数学三大纲Ⅰ考试性质数学考试是为高等院校和科研院所招收工学、经济学、管理学硕士研究生而设置的具有选拔性质的全国招生考试科目,其目的是科学公平、有效地测试考生是否具备继续攻读硕士学位所需要的数学知识和能力,评价的标准是高等学校优秀本科毕业生能达到的及格或及格以上水平,以利于各高等院校和科研院所择优选拔,确保硕士研究生的招生质量.Ⅱ考查目标要求考生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法,具备抽象思维能力、逻辑推理能力空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.Ⅲ试卷分类及使用专业须使用数学(三)的招生专业1.经济学门类的各一级学科.2.管理学门类中的工商管理、农林经济管理一级学科.3.授管理学学位的管理科学与工程一级学科. Ⅳ考试形式和试卷结构一、试卷满分及考试时间各卷种试卷满分均为150 分,考试时间为180 分钟. 二、答题方式答题方式为闭卷、笔试. 三、试卷内容结构四、试卷题型结构各卷种试卷题型结构均为:选择题10 小题,每小题5 分,共50 分填空题 6 小题,每小题5 分,共30 分解答题(包括证明题) 6 小题,共70 分一、函数、极限、连续考试内容数学(三)微积分函数的概念及表法法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:⎛ ⎫ x lim sin x = 1, lim 1 + 1 ⎪ = e x →0 x x →∞ ⎝ x ⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续 函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左 极限、右极限之间的关系.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握 利用两个重要极限求极限的方法.7.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无 穷小量求极限.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续丽数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理介值定理) .并会应用这些性质.二、一元函数微分学 考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性 之间的关系平面曲线的切线与法线 导数和微分的四明运算 基本初等函数的 导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函 数图形的凹凸性、拐点及南近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经 济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐丽数的导数. 3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b )内,设函数f (x) 具有二阶导数. f '(x) >0 时,f (x) 的图形是凹的;当f '(x) <0 时,f (x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区城上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区城上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛城的求法.7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.8.掌握e x , s in x, cos x, ln(1 + x)及(1 + x)α 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.理解线性微分方程解的性质及解的结构.4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.了解差分与差分方程及其通解与特解等概念.7.了解一阶常系数线性差分方程的求解方法.8.会用微分方程求解简单的经济应用问题.【线性代数】一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试更求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分分必要条件及相似对角矩阵实对称矩的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.【概率论与数理统计】一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念微本的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分考试要求1.理解随机变量的概念,理解分布函数F (x) = P | X ≤ x | (-∞ < x < +∞)的概念及性质,会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1 分布、二项分布B(n, p) 、几何分布、超几何分布、泊松(Poisson)分布P(λ) 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a,b) 、正态分布N (μ,σ2 ) 、指数分布及其应用,其中参数为λ(λ> 0) 的指数分布E(λ) 的概率密度为⎧λe-λx ,f (x) = ⎨x > 0,5.会求随机变量函数的分布.三、多维随机变量的分布考试内容⎩0,x ≤ .多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布N (μ,μ ;σ2 ,σ2 ; ρ) ,理解其中参数的概12125.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式. 五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchin)大数定律棣莫弗- 拉普拉斯(De Moivre-Laplace )定理列维- 林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩 2分布t 分布 F 分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量样本均值、样本方差及样本矩的概念,16 / 17其中样本方差定义为n 2S 2 = 1 ∑(X n -1 i =1- X ) . 2.了解产生 χ2 变量、t 变量和 F 变量的典型模式;了解标准正态分布、χ2 分 布、 t 分布和 F 分布的上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念 估计量和估计值 矩估计法 最大似然估计法 考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!i。

2021考研数学大纲解析及备考4大注意事项

2021考研数学大纲解析及备考4大注意事项

2021考研数学大纲解析及备考4大注意事项2021考研大纲今天公布,本店铺第一时间收录并整理了最新的考研大纲,为考生全方位解读2021考研大纲的最新变动并指导后续备考。

今年考研数学大纲并变化,对考试并无影响。

下面朱杰老师将带领大家对大纲进行解读,并提出一些复习上的建议。

一、考研数学大纲无变化2021新大纲与旧大纲我们仔细的对照了一下,新旧大纲之间没有变化。

考研数学大纲近几年是趋于稳定的,因为数学内容是比较稳定,所以大纲也没有什么太大变化。

大家完全可以按照原来的复习方法进行复习。

二、2021考研数学成绩不理想2021年考研抽样平均分数学一60.65分、数学二60.56分、数学三62.49分,与2021年的数学一77.8分、数学二77.4分、数学三77分相比,差了很多。

主要由以下几个原因:1、命题组专家新老更迭2、不按常规题型出牌,试题比较新颖3、计算量大、计算结果非常复杂4、低频考点大爆发究其主因,我们还是认为同学们复习不够扎实,训练量不够充分,对数学的理解不够深入,计算上不够仔细。

三、近几年命题专家如是说每年考完,命题专家在《数学考试分析》上会对上一年试题做总结和分析,我们认为命题专家的意见与建议对2021考生很有借鉴意义。

1、要重视计算我们要大声高呼计算能力可以说是现在考研数学的第一能力。

2021-2021年考题的计算量都比较大,计算结果也越来越复杂。

命题专家在《数学考试分析中》指出:“考生在复习的过程中要克服满足于知晓运算过程眼高手低的毛病,要真正动手计算,在实践中提高计算能力。

关于考研数学考试的计算,不是简单的数字计算,是对概念和算理的一个考察。

”同学们计算上的共性,一个是计算能力弱,第二个是我们觉得计算没有找到好方法,以致于算得慢,做得烦,所以选择计算量小的解题思路很重要。

2、要重视三基2021试题虽难,但我们负责任地说70%的题还是考察“三基本”,但综合性更加强,都以新的方式呈现在考生面前。

2021考研396数学大纲

2021考研396数学大纲

2021考研396数学大纲
根据2021年考研数学大纲,总共有396个知识点。

以下是这些知识点的大致分类:
1. 高等数学部分(126个知识点):
- 级数与数项
- 函数与极限
- 极值与最值
- 一元函数积分学
- 一元函数微分学
- 二重积分与曲线积分
2. 线性代数部分(93个知识点):
- 行列式
- 矩阵与向量
- 线性方程组
- 线性空间与子空间
- 线性变换与矩阵的相似性
3. 概率论与数理统计部分(93个知识点):
- 事件与概率
- 随机变量与概率分布
- 数理统计基本概念
- 参数估计
- 假设检验
4. 离散数学部分(22个知识点):
- 集合与运算
- 图论基础
- 代数系统
- 树与有限自动机
5. 计算机基础部分(62个知识点):
- 数据结构
- 算法设计与分析
- 计算机原理与体系结构
- 操作系统
需要注意的是,以上分类只是对这些知识点的大致概括,并不包括每个具体的知识点。

此外,在2021年的考研数学大纲中,可能会有微小的变动,因此具体详细的知识点还需以最新的官方发布为准。

2021年数学三考研大纲

2021年数学三考研大纲

2021 考研数学三大纲Ⅰ考试性质数学考试是为高等院校和科研院所招收工学、经济学、管理学硕士研究生而设置的具有选拔性质的全国招生考试科目,其目的是科学公平、有效地测试考生是否具备继续攻读硕士学位所需要的数学知识和能力,评价的标准是高等学校优秀本科毕业生能达到的及格或及格以上水平,以利于各高等院校和科研院所择优选拔,确保硕士研究生的招生质量.Ⅱ考查目标要求考生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法,具备抽象思维能力、逻辑推理能力空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.Ⅲ试卷分类及使用专业须使用数学(三)的招生专业1.经济学门类的各一级学科.2.管理学门类中的工商管理、农林经济管理一级学科.3.授管理学学位的管理科学与工程一级学科.Ⅳ考试形式和试卷结构一、试卷满分及考试时间各卷种试卷满分均为150 分,考试时间为180 分钟. 二、答题方式答题方式为闭卷、笔试. 三、试卷内容结构四、试卷题型结构各卷种试卷题型结构均为:选择题10 小题,每小题5 分,共50 分填空题 6 小题,每小题5 分,共30 分解答题(包括证明题) 6 小题,共70分传播优秀Word版文档,希望对您有帮助,可双击去除!一、函数、极限、连续考试内容数学(三)微积分函数的概念及表法法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:⎛ ⎫ x lim sin x 1, lim 1 1 e x 0 x xx 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左 极限、右极限之间的关系.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握 利用两个重要极限求极限的方法.7.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无 穷小量求极限.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续丽数的性质和初等函数的连续性,理解闭区间上连续函数的性质 (有界性、最大值和最小值定理介值定理) .并会应用这些性质.二、一元函数微分学 考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系平面曲线的切线与法线 导数和微分的四明运算 基本初等函数的 导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函 数图形的凹凸性、拐点及南近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经 济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐丽数的导数. 3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b )内,设函数f (x) 具有二阶导数. f (x) >0 时,f (x) 的图形是凹的;当f (x) <0 时,f (x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区城上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区城上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.传播优秀Word版文档,希望对您有帮助,可双击去除!判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛城的求法.7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.8.掌握e x , sin x, cos x, ln(1 x)及(1 x)的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.理解线性微分方程解的性质及解的结构.4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.了解差分与差分方程及其通解与特解等概念.7.了解一阶常系数线性差分方程的求解方法.8.会用微分方程求解简单的经济应用问题.【线性代数】一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试更求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分分必要条件及相似对角矩阵实对称矩的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,传播优秀Word版文档,希望对您有帮助,可双击去除!3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.【概率论与数理统计】一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念微本的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分1 2 1 2考试要求1.理解随机变量的概念,理解分布函数F (x )P | X x | (x )的概念及性质,会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布 B (n , p ) 、几何分布、超几何分布、泊松(Poisson )分布 P () 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a ,b ) 、正态分 布 N (, 2 ) 、指数分布及其应用,其中参数为 (0) 的指数分布E () 的概率密度为 e x , f (x )x 0,5.会求随机变量函数的分布.三、多维随机变量的分布考试内容 0, x.多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 N (,; 2 , 2 ; ) ,理解其中参数的概5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式. 五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchin)大数定律棣莫弗- 拉普拉斯(De Moivre-Laplace )定理列维- 林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2分布t 分布 F 分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量样本均值、样本方差及样本矩的概念,传播优秀Word版文档,希望对您有帮助,可双击去除!其中样本方差定义为n 2S 2X ) .i1(Xn 1i12.了解产生2变量、t 变量和F 变量的典型模式;了解标准正态分布、 2 分布、t 分布和F 分布的上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.温馨提示:最好仔细阅读后才下载使用,万分感谢!。

2021年数学三考研大纲

2021年数学三考研大纲

2021考研数学三大纲I考试性质数学考试就是为高等院校与科研院所招收工学、经济学、管理学硕士研究生而设置得具有选拔性质得全国招生考试科U,其口得就是科学公平、有效地测试考生就是否具备继续攻读硕士学位所需要得数学知识与能力,评价得标准就是高等学校优秀本科毕业生能达到得及格或及格以上水平,以利于各高等院校与科硏院所择优选拔,确保硕士研究生得招生质量、II考査目标要求考生比较系统地理解数学得基本概念与基本理论,掌握数学得基本方法, 具备抽象思维能力、逻辑推理能力空间想象能力、运算能力与综合运用所学得知识分析问题与解决问题得能力、ID试卷分类及使用专业须使用数学(三)得招生专业1、经济学门类得各一级学科、2、管理学门类中得工商管理、农林经济管理一级学科、3、授管理学学位得管理科学与工程一级学科、IV考试形式与试卷结构一、试卷满分及考试时间各卷种试卷满分均为150分,考试时间为180分钟、二、答题方式答题方式为闭卷、笔试、三、试卷内容结构四、试卷题型结构各卷种试卷题型结构均为:选择题10小题,每小题5分,共50分填空题6小题,每小题5分,共30分解答题(包括证明题)6小题,共70分一、函数、极限、连续数学(三)考试内容微积分函数得概念及表法法函数得有界性、单调性、周期性与奇偶性复合函数、反函数、分段函数与隐函数基本初等函数得性质及其图形初等函数函数关系得建立数列极限与函数极限得定义及其性质函数得左极限与右极限无穷小量与无穷大量得概念及其关系无穷小量得性质及无穷小量得比较极限得四则运算极限存在得两个准则:单调有界准则与夹逼准则两个重要极限:XfO X I X)函数连续得概念函数间断点得类型初等函数得连续性闭区间上连续函数得性质考试要求1、理解函数得概念,掌握函数得表示法,会建立应用问题得函数关系、2、了解函数得有界性、单调性、周期性与奇偶性、3、理解复合函数及分段函数得概念,了解反函数及隐函数得概念、4、掌握基本初等函数得性质及其图形,了解初等函数得概念、5、理解极限得概念,理解函数左极限与右极限得概念以及函数极限存在与左极限、右极限之间得关系、6、了解极限得性质与极限存在得两个准则,掌握极限得四则运算法则,掌握利用两个重要极限求极限得方法、7、理解无穷小量、无穷大量得概念,掌握无穷小量得比较方法,会用等价无穷小量求极限、8、理解函数连续性得概念(含左连续与右连续),会判别函数间断点得类型、9、了解连续丽数得性质与初等函数得连续性,理解闭区间上连续函数得性质(有界性、最大值与最小值定理介值定理)、并会应用这些性质、二、一元函数微分学考试内容导数与微分得概念导数得儿何意义与经济意义函数得可导性与连续性之间得关系平面曲线得切线与法线导数与微分得四明运算基本初等函数得导数复合函数、反函数与隐函数得微分法高阶导数一阶微分形式得不变性微分中值定理洛必达(L' Hospital)法则函数单调性得判别函数得极值函数图形得凹凸性、拐点及南近线函数图形得描绘函数得最大值与最小值考试要求1、理解导数得概念及可导性与连续性之间得关系,了解导数得儿何意义与经济意义(含边际与弹性得概念),会求平面曲线得切线方程与法线方程、2、掌握基本初等函数得导数公式、导数得四则运算法则及复合函数得求导法则,会求分段函数得导数,会求反函数与隐丽数得导数、3、了解高阶导数得概念, 会求简单函数得高阶导数、4、了解微分得概念、导数与微分之间得关系以及一阶微分形式得不变性,会求函数得微分、5、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理与泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理、6、掌握用洛必达法则求未定式极限得方法、7、掌握函数单调性得判别方法,了解函数极值得概念,掌握函数极值、最大值与最小值得求法及其应用、8、会用导数判断函数图形得凹凸性(注:在区间(“,b)内,设函数/(X)具有二阶导数、f f(x) >0时,/(x)得图形就是凹得;当厂⑴<0时,f (Q得图形就是凸得),会求函数图形得拐点以及水平、铅直与斜渐近线,会描绘函数得图形、三、一元函数积分学考试内容原函数与不定积分得概念不定积分得基本性质基本积分公式定积分得概念与基本性质定积分中值定理积分上限得函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分与定积分得换元积分法与分部积分法反常(广义)积分定积分得应用考试要求1、理解原函数与不定积分得概念,掌握不定积分得基本性质与基本积分公式, 掌握不定积分得换元积分法与分部积分法、2、了解定积分得概念与基本性质,了解定积分中值定理,理解积分上限得函数并会求它得导数,掌握牛顿-莱布尼茨公式以及定积分得换元积分法与分部积分法、3、会利用定积分计算平面图形得面积、旋转体得体积与函数得平均值,会利用定积分求解简单得经济应用问题、4、理解反常积分得概念,了解反常积分收敛得比较判别法,会讣算反常积分、四、多元函数微积分学考试内容多元函数得概念二元函数得儿何意义二元函数得极限与连续得概念有界闭区城上二元连续函数得性质多元函数偏导数得概念与计算多元复合函数得求导法与隐函数求导法二阶偏导数全微分多元函数得极值与条件极值、最大值与最小值二重积分得概念、基本性质与计算无界区域上简单得反常二重积分考试要求1、了解多元函数得概念,了解二元函数得儿何意义、2、了解二元函数得极限与连续得概念,了解有界闭区城上二元连续函数得性质、3、了解多元函数偏导数与全微分得概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数得偏导数、4、了解多元函数极值与条件极值得概念,掌握多元函数极值存在得必要条件,了解二元函数极值存在得充分条件,会求二元函数得极值,会用拉格朗日乘数法求条件极值,会求简单多元函数得最大值与最小值,并会解决一些简单得应用问题、5、理解二重积分得概念,了解二重积分得基本性质,了解二重积分得中值定理,掌握二重积分得计算方法(直角坐标、极坐标),了解无界区域上较简单得反常二重积分并会计算、五、无穷级数考试内容常数项级数得收敛与发散得概念收敛级数得与得概念级数得基本性质与收敛得必要条件儿何级数与"级数及其收敛性正项级数收敛性得判别法任意项级数得绝对收敛与条件收敛交错级数与莱布尼茨定理幕级数及其收敛半径、收敛区间(指开区间)与收敛域幕级数得与函数幕级数在其收敛区间内得基本性质简单幕级数得与函数得求法初等函数得幕级数展开式考试要求1、理解常数项级数收敛、发散以及收敛级数得与得概念,掌握级数得基本性质及收敛得必要条件、2、掌握儿何级数与"级数得收敛与发散得条件、判别法、4、掌握交错级数得莱布尼茨判别法、5、了解任意项级数绝对收敛与条件收敛得概念以及绝对收敛与收敛得关系、6、理解幕级数收敛半径得概念,并掌握幕级数得收敛半径、收敛区间及收敛城得求法、7、了解幕级数在其收敛区间内得基本性质(与函数得连续性、逐项求导与逐项积分),会求一些幕级数在收敛区间内得与函数,并会山此求出某些数项级数得与、8、掌握/,sinx,cosx,ln(l+x)及(l+x)“得麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幕级数、六、常微分方程与差分方程考试内容常微分方程得基本概念变量可分离得微分方程齐次微分方程一阶线性微分方程线性微分方程解得性质及解得结构定理二阶常系数齐次线性微分方程及简单得非齐次线性微分方程差分与差分方程得概念差分方程得通解与特解一阶常系数线性差分方程微分方程得简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件与特解等概念、2、掌握变量可分离得微分方程、齐次微分方程与一阶线性微分方程得求解方法、3、理解线性微分方程解得性质及解得结构、4、掌握二阶常系数齐次线性微分方程得解法,并会解某些高于二阶得常系数齐次线性微分方程、5、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们得与与积得二阶常系数非齐次线性微分方程、6、了解差分与差分方程及其通解与特解等概念、7、了解一阶常系数线性差分方程得求解方法、8、会用微分方程求解简单得经济应用问题、一、行列式【线性代数】考试内容行列式得概念与基本性质行列式按行(列)展开定理考试更求1、了解行列式得概念,掌握行列式得性质、2、会应用行列式得性质与行列式按行(列)展开定理计算行列式、二、矩阵考试内容矩阵得概念矩阵得线性运算矩阵得乘法方阵得幕方阵乘积得行列式矩阵得转置逆矩阵得概念与性质矩阵可逆得充分必要条件伴随矩阵矩阵得初等变换初等矩阵矩阵得秩矩阵得等价分块矩阵及其运算考试要求1、理解矩阵得概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵得定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等得定义与性质、2、掌握矩阵得线性运算、乘法、转置以及它们得运算规律,了解方阵得幕与方阵乘积得行列式得性质、3、理解逆矩阵得概念,掌握逆矩阵得性质以及矩阵可逆得充分必要条件,理解伴随矩阵得概念,会用伴随矩阵求逆矩阵、4、了解矩阵得初等变换与初等矩阵及矩阵等价得概念,理解矩阵得秩得概念, 掌握用初等变换求矩阵得逆矩阵与秩得方法、5、了解分块矩阵得概念,掌握分块矩阵得运算法则、三、向量考试内容向量得概念向量得线性组合与线性表示向量组得线性相关与线性无关向量组得极大线性无关组等价向量组向量组得秩向量组得秩与矩阵得秩之间得关系向量得内积线性无关向量组得正交规范化方法考试要求1、了解向量得概念,掌握向量得加法与数乘运算法则、2、理解向量得线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关得有关性质及判别法、3、理解向量组得极大线性无关组得概念,会求向量组得极大线性无关组及秩、4、理解向量组等价得概念,理解矩阵得秩与其行(列)向量组得秩之间得关系、5、了解内积得概念,掌握线性无关向量组正交规范化得施密特(Schmidt)方法、四、线性方程组考试内容线性方程组得克拉默(Cramer)法则齐次线性方程组有非零解得充分必要条件非齐次线性方程组有解得充分必要条件线性方程组解得性质与解得结构齐次线性方程组得基础解系与通解非齐次线性方程组得通解考试要求1、会用克拉默法则解线性方程组、2、掌握非齐次线性方程组有解与无解得判定方法、3、理解齐次线性方程组得基础解系得概念,掌握齐次线性方程组得基础解系与通解得求法、4、理解非齐次线性方程组解得结构及通解得概念、5、掌握用初等行变换求解线性方程组得方法、五、矩阵得特征值与特征向量考试内容矩阵得特征值与特征向量得概念、性质相似矩阵得概念及性质矩阵可相似对角化得充分分必要条件及相似对角矩阵实对称矩得特征值与特征向量及相似对角矩阵考试要求1、理解矩阵得特征值、特征向量得概念,掌握矩阵特征值得性质,掌握求矩阵特征值与特征向量得方法、2、理解矩阵相似得概念,掌握相似矩阵得性质,了解矩阵可相似对角化得充分必要条件,3、掌握实对称矩阵得特征值与特征向量得性质、六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵次型得秩惯性定理二次型得标准形与规范形用正交变换与配方法化二次型为标准形二次型及其矩阵得正定性考试要求1、掌握二次型及其矩阵表示,了解二次型秩得概念,了解合同变换与合同矩阵得概念,了解二次型得标准形、规范形得概念以及惯性定理、2、掌握用正交变换化二次型为标准形得方法,会用配方法化.二次型为标准形、3、理解正定二次型、正定矩阵得概念,并掌握其判别法、【概率论与数理统计】一、随机事件与概率考试内容随机事件与样本空间事件得关系与运算完备事件组概率得概念微本得基本性质古典型概率儿何型概率条件概率概率得基本公式事件得独立性独立重复试验考试要求1、了解样本空间(基本事件空间)得概念,理解随机事件得概念,掌握事件得关系及运算、2、理解概率、条件概率得概念,掌握概率得基本性质,会讣算古典型概率与儿何型概率,掌握概率得加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等、3、理解事件得独立性得概念,掌握用事件独立性进行概率计算;理解独立重复试验得概念,掌握计算有关事件概率得方法、二、随机变量及其分布考试内容随机变量随机变量分布函数得概念及其性质离散型随机变量得概率分考试要求1、理解随机变量得概念,理解分布函数F(x) = P\X < x I <x< +s)得概念及性质,会讣算与随机变量相联系得事件得概率、2、理解离散型随机变量及其概率分布得概念,掌握0-1分布、二项分布B(儿p)、儿何分布、超儿何分布、泊松(Poisson)分布PU)及其应用、3、掌握泊松定理得结论与应用条件,会用泊松分布近似表示二项分布、4、理解连续型随机变量及其概率密度得概念,掌握均匀分布U(gb)、正态分布NQ心、指数分布及其应用,其中参数为/k^O)得指数分布E(力得概率密度为r -x>0,/(A) HI o x<>5、会求随机变量函数得分I '布、三、多维随机变量得分布考试内容多维随机变量及其分布函数二维离散型随机变量得概率分布、边缘分布与条件分布二维连续型随机变量得概率密度、边缘概率密度与条件密度随机变量得独立性与不相关性常见二维随机变量得分布两个及两个以上随机变量简单函数得分布考试要求1、理解多维随机变量得分布函数得概念与基本性质、2、理解二维离散型随机变量得概率分布与二维连续型随机变量得概率密度,掌握二维随机变量得边缘分布与条件分布、3、理解随机变量得独立性与不相关性得概念,掌握随机变量相互独立得条件, 理解随机变量得不相关性与独立性得关系、4、掌握二维均匀分布与二维正态分布N屮赵©6®,理解其中参数得概5、会根据两个随机变量得联合分布求其函数得分布,会根据多个相互独立随机变量得联合分布求其简单函数得分布、四、随机变量得数字特征考试内容随机变量得数学期望(均值)、方差、标准差及其性质随机变量函数得数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)得概念,会运用数字特征得基本性质,并掌握常用分布得数字特征、2、会求随机变量函数得数学期望、3、了解切比雪夫不等式、五、大数定律与中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchin)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace )定理列维-林德伯格(Levy-Lindberg)定理考试要求1、了解切比雪夫大数定律、伯努利大数定律与辛钦大数定律(独立同分布随机变量序列得大数定律)、2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列得中心极限定理),并会用相关定理近似计算有关随机事件得概率、六、数理统计得基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差与样本矩於分布 /分布F分布分位数正态总体得常用抽样分布考试要求1、了解总体、简单随机样本、统计量样本均值、样本方差及样本矩得概念,其中样本方差定义为「2厂=—工(X厂X)、H r-12、了解产生/变量、/变量与F变量得典型模式;了解标准正态分布、/分布、/分布与F分布得上侧a分位数,会查相应得数值表、3、掌握正态总体得样本均值、样本方差、样本矩得抽样分布、4、了解经验分布函数得概念与性质、七、参数估计考试内容点估计得概念估计量与估计值矩估计法最大似然估计法考试要求1、了解参数得点估计、估计量与估计值得概念、2、掌握矩估计法(一阶矩、二阶矩)与最大似然估计法、。

2021年数学三考研大纲

2021年数学三考研大纲

2021年数学三考研大纲2021考研数学三大纲Ⅰ考试性质数学考试是全国招生考试科目之一,为高等院校和科研院所招收工学、经济学、管理学硕士研究生而设置的具有选拔性质的考试科目。

其目的是科学公平、有效地测试考生是否具备继续攻读硕士学位所需要的数学知识和能力,评价标准为高等学校优秀本科毕业生能达到的及格或及格以上水平。

此考试旨在帮助各高等院校和科研院所择优选拔,确保硕士研究生的招生质量。

Ⅱ考查目标本考试要求考生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法,具备抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

Ⅲ试卷分类及使用专业本考试须使用数学(三)的招生专业,包括经济学门类的各一级学科、管理学门类中的工商管理、农林经济管理一级学科以及授管理学学位的管理科学与工程一级学科。

Ⅳ考试形式和试卷结构本考试试卷共分为三种,每种试卷满分均为150分,考试时间为180分钟。

考试方式为闭卷、笔试。

试卷内容结构分值比为:数学(一)约60%、数学(二)约20%、数学(三)约80%、高等数学(或微积分)约20%、线性代数约60%、概率论与数理统计约20%。

试卷题型结构均为选择题、填空题、解答题(包括证明题),数学(三)试卷共有10小题,每小题5分,共50分;6小题,每小题5分,共30分;6小题,共70分。

数学(三)微积分本考试内容包括函数、极限、连续等方面的知识。

考生需要理解函数的概念,掌握函数的表示法,并能够建立应用问题的函数关系。

同时,考生还需要了解函数的有界性、单调性、周期性和奇偶性等基本性质。

此外,考生还需要掌握复合函数及分段函数的概念,了解反函数及隐函数的概念,并能够掌握基本初等函数的性质及其图形,了解初等函数的概念。

在本考试中,考生还需要理解数列极限与函数极限的定义及其性质,掌握函数的左极限和右极限等概念,了解无穷小量和无穷大量的概念及其关系,掌握无穷小量的性质及无穷小量的比较,掌握极限的四则运算和极限存在的两个准则:单调有界准则和夹逼准则,掌握两个重要极限:sinx/x和(1+x)^(1/x)的极限值。

2021年数学三考研大纲

2021年数学三考研大纲

2021年数学三考研大纲(总13页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2021考研数学三大纲Ⅰ考试性质数学考试是为高等院校和科研院所招收工学、经济学、管理学硕士研究生而设置的具有选拔性质的全国招生考试科目,其目的是科学公平、有效地测试考生是否具备继续攻读硕士学位所需要的数学知识和能力,评价的标准是高等学校优秀本科毕业生能达到的及格或及格以上水平,以利于各高等院校和科研院所择优选拔,确保硕士研究生的招生质量.Ⅱ考查目标要求考生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法,具备抽象思维能力、逻辑推理能力空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.Ⅲ试卷分类及使用专业须使用数学(三)的招生专业1.经济学门类的各一级学科.2.管理学门类中的工商管理、农林经济管理一级学科.3.授管理学学位的管理科学与工程一级学科.Ⅳ考试形式和试卷结构一、试卷满分及考试时间各卷种试卷满分均为150 分,考试时间为180 分钟. 二、答题方式答题方式为闭卷、笔试. 三、试卷内容结构四、试卷题型结构各卷种试卷题型结构均为:选择题10 小题,每小题5 分,共50 分填空题 6 小题,每小题5 分,共30 分解答题(包括证明题) 6 小题,共70分一、函数、极限、连续考试内容数学(三)微积分函数的概念及表法法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:⎛ ⎫ lim sin x = 1,lim 1+ 1⎪ = e x ⎝x ⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续丽数的性质和初等函数的连续性,理解闭区间上连续函数的性质 (有界性、最大值和最小值定理介值定理).并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四明运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L ’Hospital )法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及南近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐丽数的导数. 3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数.f'(x)>0时,f(x)的图形是凹的;当f'(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区城上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区城上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛城的求法.7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.8.掌握e,sin x,cos x,ln(1+ x)及(1+ x)的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.理解线性微分方程解的性质及解的结构.4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.了解差分与差分方程及其通解与特解等概念.7.了解一阶常系数线性差分方程的求解方法.8.会用微分方程求解简单的经济应用问题.【线性代数】一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试更求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分分必要条件及相似对角矩阵实对称矩的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.【概率论与数理统计】一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念微本的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分考试要求1.理解随机变量的概念,理解分布函数F(x)= P| X≤ x|(-∞ < x< +∞)的概念及性质,会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布B(n, p)、几何分布、超几何分布、泊松(Poisson)分布P(λ)及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a,b)、正态分布N(μ,σ)、指数分布及其应用,其中参数为λ(λ> 0)的指数分布E(λ)的概率密度为⎧λe,f (x) = ⎨x > 0,5.会求随机变量函数的分布.三、多维随机变量的分布考试内容⎩0,x ≤ .多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布N(μ,μ ;σ,σ;ρ),理解其中参数的概5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式. 五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchin)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩 分布t分布F分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量样本均值、样本方差及样本矩的概念,其中样本方差定义为S = 1 ∑(Xn -1- X ).2.了解产生χ变量、t变量和F变量的典型模式;了解标准正态分布、χ分布、t分布和F分布的上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021考研数学大纲变动一览表
第一部分考试形式和试卷结构
1.试卷内容结构调整
2.试卷题型结构调整
试卷题型结构
题型2020大纲2021大纲单项选择题8小题,每小题4分,共32分10小题,每小题5分,共50分填空题6小题,每小题4分,共24分6小题,每小题5分,共30分解答题9小题,共94分6小题,共70分
第二部分考试内容和考试要求
1.数学(一)考试要求变动情况
(1)高等数学
高等数学
节标题2020大纲2021大纲变动情况
一、函数、极限、连续
无变化
二、一元函数微分学
无变化
三、一元函数积分学
一元函数积分学5.了解反常积分的
概念,会计算反常
积分
5.理解反常积分的概念,了
解反常积分收敛的比较判
别法,会计算反常积分
1.“了解反常积分的概念”改为“理
解反常积分的概念”,加强对概念
的要求
2.增加“了解反常积分收敛的比较
判别法”
四、向量代数和空间解析几何
无变化
五、多元函数微分学
无变化
六、多元函数积分学
无变化
七、无穷级数
无穷级数3.掌握正项级数收
敛性的比较判别法
和比值判别法,会
用根值判别法
3.掌握正项级数收敛性的
比较判别法、比值判别法、
根值判别法,会用积分判
别法
1.“会用根值判别法”变为“掌握
根值判别法”,加强对根值判别法
的要求
2.增加“会用积分判别法”
八、常微分方程
无变化
(2)线性代数
线性代数
节标题2020大纲2021大纲变动情况
无变化
(3)概率论与数理统计
概率论与数理统计
节标题2020大纲2021大纲变动情况
无变化
2.数学(二)考试要求变动情况
(1)高等数学
高等数学
节标题2020大纲2021大纲变动情况
一、函数、极限、连续
无变化
二、一元函数微分学
无变化
三、一元函数积分学
无变化
四、多元函数微积分学
多元函数微积分学5.了解二重积分的概
念与基本性质,掌握
二重积分的计算方法
(直角坐标、极坐标)
5.理解二重积分的概念,了
解二重积分的基本性质,
了解二重积分的中值定
理,掌握二重积分的计算
方法(直角坐标、极坐标)
1.“了解二重积分的概念”变为
“理解二重积分的概念”,加强
了对概念的要求
2.增加“了解二重积分的中值定
理”
五、常微分方程。

相关文档
最新文档