浙江省普通高考考试说明理科数学(2009年与2010年对照版)

合集下载

浙江省普通高考考试说明数学(理)

浙江省普通高考考试说明数学(理)

2010年浙江省普通高考考试说明数学(必修+选修Ⅱ)Ⅰ. 考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ. 考试要求根据普通高等学校对新生文化素质的要求,依据《普通高等学校招生全国统一考试大纲》和《浙江省普通高考考生说明》公布的内容范围命题,不超出《浙江省普通高中新课程实验数学学科指导意见》中规定的必修模块和指定选修模块(ⅠA)的范围。

数学学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

数学学科的考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求依次是了解、理解、掌握三个层次。

(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

(二)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

(三)掌握:要求对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决。

二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据图表处理能力以及应用意识和创新意识。

2009年高考浙江数学(理科)试题和参考答案

2009年高考浙江数学(理科)试题和参考答案

初中数学知识点归纳总结一、基本运算方法1、配方法所谓配方,就是把一个分析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的使用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和分析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且使用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法和韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的使用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和和积,求这两个数等简单使用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

2010年浙江省一般高考数学考试说明(理)

2010年浙江省一般高考数学考试说明(理)

数学(必修+选修Ⅱ)Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学历的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考数学试题应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试要求根据普通高等学校对新生文化素质的要求,依据《普通高等学校招生全国统一考试大纲》和《浙江普通高考考试说明》公布的内容范围命题,不超出《浙江省普通高中新课程实验数学学科教学指导意见》中规定的必修模块和指定选修(ⅠA)的范围.数学学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

数学学科的考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识,基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求依次是了解、理解、掌握三个层次。

(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

(二)理解:要求对所列知识内容有较为深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关的问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

(三)掌握:要求对所列知识内容能够推到证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决。

二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据图表处理能力以及应用意识和创新意识。

(一)空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够正确地分析出图形中的基本元素及其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质。

2009年高考浙江数学(理科)试题及参考答案

2009年高考浙江数学(理科)试题及参考答案

第四章 概率4.1 游戏公平吗1.1或100% , 0;2.61;3.相同 ;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A; 11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1; (4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D; 10. C; 11.B ;12.B; 13.C; 14.C; 15.D ;16.D ;17.(1)P=13;(2)P=13 ;(3)P=23;(4)P=23. 18.∵P(甲获胜)=310,P(乙获胜)=25. ∴这项游戏对甲、乙二人不公平,若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等.19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个21.P 1P 2;四.(1) 321; (2) 161 ; (3)摊主至少赚187.5元; 4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110; 四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有:(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5), ……(5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种,其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种,故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试 1.不确定, 0,1;2. 41 , 131 , 133;3. 53;4. 红, 白;5. 2 ① ③1 ;6.= ; 7; 32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C; 17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21. 两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨. 明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨.19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101×451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91. 22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 . 23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE ,△ABE ,△ADC ,•△ABC;10.3 , △AEC ,△AEB ,△AED;11.0<BC<10 12.2 , 5cm ,6cm ,8cm ;6cm ,8cm ,13cm ;13.2;14.•15cm 或18cm ;15. 7cm<a<12cm;16.学校建在AB ,CD 的交点处.理由:任取一点H ,利用三角形三边关系.四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°;9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°.16.45°,70°,115°;17.解:因为AB ∥CD ,AD ∥BC ,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC 中,∠1+∠2+∠C=180°,而∠1=∠A+∠D ,∠2=∠B+∠E ,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM 中,∠C+∠1+∠2=180°,而∠1=∠A+∠D ,∠2=∠DBE+∠E ,故结论成立.如图(3)所示,在△MNE 中,∠1+∠2+∠E=180°,∠1=∠B+∠D ,∠2=∠A+∠C ,•故结论仍成立.5.1 认识三角形(3)1.(1)AD;AD,BD ;(2)BF ,AC ,ACE ,AE ,ADC ,AD ,DEC ,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略; 四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE ,△EOD ,△AOD ,△ABD ,△ACD ,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ; 12.略5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG 再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF≌△DEC,△ABC≌△DEF,△BCF•≌△EFC.证明:∵AB∥DE,∴∠A=∠D.在△ABF和△DEC中,,,, AB DEA D AF DC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△DEC(SAS).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE,(2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE,又∵AC=BC ,∴△ACD≌△CBE ,∴CE=AD,CD=BE .∴DE=CE-CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD(或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE ,∴DE=CD-CE=BE -AD .5.5 ~5.6 作三角形~~利用三角形全等测距离1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求;5.共6个,如图所示: ....3.55A 2B 22C 1B 1A 136︒53.536.C ;7.略;8.在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长.9.(1)由△APB ≌△DPC ,所以CD=AB .(2)由△ACB ≌△ECD 得DE=AB .目的是使DE ∥AB ,可行.10.因为△A ′OB ′≌△AOB ,所以AB=A ′B ′.11.解:(1)AE=CF (OE=OF ;DE ∥BF 等等)(2)因为四边形ABCD 是长方形,所以AB=CD ,•AB ∥CD ,∠DCF=∠BAF ,又因为AE=CF ,所以AC-AE=AC-CF ,所以AF=CE ,所以△DEC ≌△BFA .12.提示:连接EM ,FM ,需说明∠EMF=∠BMC=180°即可四.(1)FE=FD;(2)(1)中的结论FE=FD 仍然成立.在AC 上截取AG=AE ,连结FG .证△AEF ≌△AGF 得∠AFE=∠AFG ,FE=FG .由∠B=60°,AD 、CE 分别是∠BAC ,∠BCA 的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE及FC为公共边.可证△CFG≌△CFD,所以FG=FD,所以FE=FD.5.7 探索直角三角形全等的条件(HL)1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS或ASA ; (2)AAS ; (3)SAS或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE.理由是∠ACD=∠AED=90°,∠CAD=•∠EAD,所以∠ADC=∠ADE(直角三角形两锐角互余).8.C 9.△ADE≌△CBF,△DEG≌△BFG,△ADG≌△CBG10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE≌△ACD,△ADF≌△AEF,•△BDF≌△CEF,根据的方法分别为AAS,HL,HL或SAS或AAS或ASA或SSS.13.解:因为△ABD≌△CBD,所以∠ADB=∠CDB.又因为PM⊥AD,PN⊥CD,所以PM=•PN.14.提示:先说明△ADC≌△BDF,所以∠DBE=∠DAC,所以∠ADB=∠AEF=90°,•所以BE⊥AC.15.△ABF≌△DEA,理由略.16.先证Rt△ACE≌Rt△BDF,再证△ACF≌△BDE;17. 需证Rt△ADC≌Rt△AEC四.(1)由于△ABC与△DEF是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC≌△DEF,所以∠A=∠D,在△ANP和△DNC中,因为∠ANP=∠DNC,所以∠APN=∠DCN,又∠DCN=90°,所以∠APN=90°,故AB⊥ED.(2)答案不唯一,如△ABC≌△DBP;△PEM≌△FBM;△ANP≌△DNC等等.以△ABC≌△DBP为例证明如下:在△ABC与△DBP中,因为∠A=∠D,∠B=∠B,PB=BC,所以△ABC≌△DBP.单元综合测试1.一定,一定不;2.50°;3.40°;4.HL;5.略(答案不惟一);6.略(答案不惟一);7.5;8.正确;9.8;10.D;11.C;12.D;13.C;14.D;15.A;16.C;17.C;.18.略;19.略; 20.合理.因为他这样做相当于是利用“SSS”证明了△BED≌△CGF,所以可得∠B=∠C.21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE,事实上,因为△ABC与△DEF都是等边三角形,所以∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD,又因为∠CED+∠AEF=120°,∠CDE+∠CED=120°,所以∠AEF=∠CDE,同理,得∠CDE=∠BFD,所以△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE ,(2)线段AE,BF,CD它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF,BD,CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠;(2)118022180-2x y ∠=︒-=︒,∠;(3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm;12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量;(2)(3)略14.(1)(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数.6.2 变化中的三角形1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36;(2(313.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个;14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D;9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19;10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5×2=7元; 55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。

名校必备2009年浙江省普通高考考试说明

名校必备2009年浙江省普通高考考试说明

天兵下北荒,胡马欲南饮。

横戈从百战,直为衔恩甚。

握雪海上餐,拂沙陇头寝。

何当破月氏,然后方高枕2009年浙江省普通高考考试说明数学(文科)(征求意见稿)Ⅰ.考试性质普通高等学校招生全国统一考试是考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ.考试要求根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程及选修课程的内容,确定理工类高考数学科考试内容。

数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

数学科考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。

对知识的要求依次是了解、理解、掌握三个层次。

(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

(二)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

(三)掌握:要求对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决。

二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

2009年高考浙江数学(理科)试题及参考答案

2009年高考浙江数学(理科)试题及参考答案

中国广告业是一个朝阳产业,未来的发展空间十分巨大。

1991年至2000年十年间,中国广告经营收入以平均每年增长百分之三十九点七三的速度发展,保持了持续快速增长势头。

至去年底,中国共有广告经营单位七万户,从业人员六十四万人,营业收入七百一十二亿元,分别比前年增长百分之九、百分之九点一三和百分之十四点五七,高于国民经济增长水平。

随着中国经济的快速发展和市场化程序的提高,中国广告产业必将以更快的速度发展。

而广告产业的迅猛发展,对中国国民经济的发展将起到催化作用。

2000年中国广告经营收入仅占国内生产总值百分之零点八,而美国1998年的广告经营收入已占其国内生产总值的百分之二点二,可以预见,未来中国广告产业仍大有可为,存在巨大的发展空间。

广告公司各部门职责概述客户执行总监(AD)◆直接上级:客户总监(副总经理兼)◆直接下级:AM、AE◆主要职责:配合副总经理进行业务执行的管理组织及新业务开发◆直接责任:对业务执行的流程、质量与结果负责◆直接权力:1. 对AM、AE工作的分派、调整权2. 对AM、AE加班及补休的决定权(4小时以内的加班与2小时以内的补休)注:超过以上时间需以文字方式提前申报由副总经理批准。

3. 对AM、AE工作质量的考评与奖惩的动议权4. 对业务执行、策划与创意、设计制作管理的建议与协调权5. 对公司管理问题的监督(批评)与建议权。

注:以上3.4.5.条均以文字方式交到行政部由总经理处理◆直接工作:1. 负责审核每项业务的执行计划,包括:(1)负责AM、AE的工作分派(2)负责审核业务执行的[时间推进计划](3)负责业务执行重点的提示与要求及跟踪督导2. 负责业务的报价与合同3. 负责签发业务执行的策划、创意设计[工作传单]并协调具体执行工作4. 负责业务执行中的收付款审核与督导5. 负责督导、收缴业务流程文件及小组[工作周志]与[月工作报告]6. 负责在每月2日前完成上月业务[月工作报告]上交副总经理7. 参与内部各项业务重要的策划、创意会8. 协助副总经理对AM 、AE及相关策划与创作人员进行业务知识培训9. 协助副总经理组织在每一季度初5日前评选出上季度的“dc之星”交到行政部由总经理审批。

2009年高考试题——数学理(浙江卷)Word版

2009年高考试题——数学理(浙江卷)Word版

2009年普通高等学校招生全国统一考试数 学(理科)本试卷分为选择题和非选择题两部分。

全卷共五页,选择题部分1至2页。

非选择题部分3至5页。

满分150分,考试时间120分种。

请考生按规定用笔将所有试题的答案标号涂、写在答题纸上。

选择题部分(共50分)注意事项: 1、 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2、 每小题选出答案后,用2B 铅笔把答题纸上对应试题的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在答题纸上。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A ,B 互相独立,那么P (A .B )=P (A ).P (B ) 如果事件A在一次试验中发生地概率是p,那么n次独立重复试验中事件A恰好发生K次的概率:k k n k m n k P P-(K )=C (1-P )(=0,1,2,...n ) 球的表面积公式:24S R π= 球的体积公式:343V R π=其中R表示球的半径 棱柱的体积公式V=Sh其中S表示棱柱的底面积,h表示棱柱的高,棱锥的体积公式:1h 3V S =其中S表示棱锥的底面积,h表示棱锥的高,棱台的体积公式:1h 3V =12(S )其中分别表示棱台的上、下底面积、h 表示棱台的高一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设U=R ,{|0}{|1}u A x x B x x B =>=>⋂=,,则A ð(A ){|01}x x ≤<k k n km n k P P-(K )=C (1-P )(=0,1,2,...n ) (B ){|01}x x <≤ (C ){|0}x x < (D ){|1}x x > (2)已知a 、b 是实数,则“a>0,b>0”是a+b>0且ab>0的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件24S R π= (3)设z=1+i (i 是虚数单位),则22z z+= (A )-1-i (B )-1+ i (C )1- i (D )1+i(4)在二项式5)1(xx -的展开式中,含x 4的项的系数是(A )-10 (B )10 (C )-5 (D )5(5)在三棱柱ABC-A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 式侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是(A )300 (B )450 (C )600 (D )900(6)某程序框图如图所示,该程序运行后输出的k 的值是(A )4 (B )5 (C )6 (D )7(7)设向量a,b 满足︱a ︱=3,︱b ︱=4,b a ⋅=0.以a,b,a-b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为(A )3 (B )4 (C )5 (D )6(8)已知a 是实数,则函数f (x )=1+asinax 的图像不可能是(9)过双曲线12222=-by a x (a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若AB ,则双曲线的离心率是 (A )2 (B )3 (C )5 (D )10(10)对于正实数α,记M α为满足下述条件的函数f (x )构成的集合:R x x ∈∀21,且2x >1x ,有-α(2x -1x )<f (2x )-f (1x )<α(2x -1x ).下列结论正确的是(A )若2121)()(,)(,)(αααα⋅∈⋅∈∈M x g x f M x g M x f 则(B )2121)()(,0)()(,(ααααM x g x f x g M x g M x f ∈≠∈∈则且)若 (C )2121)()(,)(,)(αααα+∈+∈∈M x g x f M x g M x f 则若(D )121,)(,)(ααα且若M x g M x f ∈∈>212)()(ααα-∈-M x g x f ,则2009年普通高等学校招生全国统一考试数学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2010年高考考试说明与2009年高考考试说明的区别

2010年高考考试说明与2009年高考考试说明的区别

2010年高考考试说明与2009年高考考试说明的区别Ⅱ 考 试 要 求一.知识要求方面删除了“还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能”。

Ⅲ 考 试 内 容二.函数概念与基本运算Ⅰ(指数函数、对数函数、幂函数)(一)函 数1.(原说明):了解构成函数的要素,了解映射的概念,会求一些简单的函数定义域和值域。

(新说明):了解函数、映射的概念,会求一些简单的函数的定义域和值域。

2.删除了第2点中:能根据不同的要求选择恰当的方法表示简单的函数。

3.在第4和5点说明中删除了“一些简单的”的字样。

4.在第6点说明中把“研究’改为“讨论”。

(二)指 数 函 数1.删除了第4点:“知道指数函数是一类重要的函数模型”。

(三)对 数 函 数1.删除了第3点:“知道对数函数是一类重要的函数模型”。

2.删除了第4点:“了解指数函数xa y =与对数函数x y a log =互为反函数(1,0≠>a a )。

(五)函 数 与 方 程(原说明)1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

2.理解并掌握函数在某个区间存在零点的判定方法。

能利用函数的图像和性质判断函数零点的个数。

(新说明)3.了解函数零点的概念,能判断函数在某个区间上是否存在零点。

(六)函数模型及其应用(原说明)1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升,指数增长,对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.能利用给定的函数模型解决简单的实际问题。

(新说明)1.了解指数函数、对数函数以及幂函数的变化特征。

2.能利用给定的函数模型解决简单的实际问题。

三.立体几何初步(二)点、直线、平面之间的位置关系(原说明3)了解两条异面直线所成角及二面角的概念,理解并会求直线与平面所成角。

(新说明3)理解两条异面直线所成角,直线与平面所成角,二面角的概念。

2009年高考浙江数学(理科)试题及参考答案

2009年高考浙江数学(理科)试题及参考答案

2009年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件互斥,那么棱柱的体积公式如果事件相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式其中S1、S2分别表示棱台的上、下底面积,球的体积公式h表示棱台的高其中表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,,,则( )A.B.C.D.答案:B【解析】对于,因此.2.已知是实数,则“ 且”是“ 且”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:C【解析】对于“ 且”可以推出“ 且”,反之也是成立的3.设(是虚数单位),则( )A.B.C.D.答案:D【解析】对于4.在二项式的展开式中,含的项的系数是( )A.B.C.D.答案:B【解析】对于,对于,则的项的系数是5.在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是( )A.B.C.D.答案:C【解析】取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有.6.某程序框图如图所示,该程序运行后输出的的值是( )A.B.C.D.答案:A【解析】对于,而对于,则,后面是,不符合条件时输出的.7.设向量,满足:,,.以,,的模为边长构成三角形,则它的边与半径为的圆的公共点个数最多为( )A.B.C.D.答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.8.已知是实数,则函数的图象不可能是( )答案:D【解析】对于振幅大于1时,三角函数的周期为,而D不符合要求,它的振幅大于1,但周期反而大于了.9.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是( )A.B.C.D.答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,则有,因.10.对于正实数,记为满足下述条件的函数构成的集合:且,有.下列结论中正确的是( )A.若,,则B.若,,且,则C.若,,则D.若,,且,则答案:C【解析】对于,即有,令,有,不妨设,,即有,因此有,因此有.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2009年高考浙江数学(理科)试题及参考答案

2009年高考浙江数学(理科)试题及参考答案

医院财务管理制度第一章总则第一条为适应社会主义市场经济的需要,规范医院财务行为,加强医院财务管理,提高资金使用效益,促进事业发展,根据《事业单位财务规则》和国家有关法规,结合医院特点制定本制度。

第二条本制度适用于中华人民共和国境内各级各类独立核算的公立医疗机构(以下简称医院)。

包括综合医院、专科医院、门诊部(所)、疗养院、卫生院等。

第三条医院是承担一定福利职能的社会公益事业单位,不以营利为目的。

第四条医院财务管理的基本原则是:执行国家有关法律、法规和财务规章制度;坚持厉行节约、勤俭办事业、制止奢侈浪费的方针,在以社会效益为主的原则下讲求经济效益。

第五条医院财务管理的主要任务是:合理编制医院预算,如实反映财务状况;依法组织收入,努力节约支出;建立健全内部财务管理制度,加强经济核算,提高资金使用效益;加强国有资产管理,防止国有资产流失;对医院经济活动进行财务控制和监督。

第六条医院实行“统一领导、集中管理”的财务管理体制。

符合条件的医院应建立总会计师制度。

医院的财务活动在主管院长或总会计师领导下,由医院财务部门统一管理。

第七条医院医疗收支和药品收支分开管理,分别核算。

第二章单位预算管理第八条医院预算是指医院根据事业发展计划和任务编制的年度财务收支计划。

医院预算由收入预算和支出预算组成。

第九条国家对医院实行“核定收支、定额或定项补助、超支不补、结余留用”的预算管理办法。

定额或定项补助的具体内容和标准,可根据各级各类医院的不同的特点和业务收支状况以及财力可能进行确定。

大中型医院一般以定项补助为主,小型医院一般以定额补助为主。

第十条医院预算参考以前年度预算执行情况,根据预算年度收入的增减因素和措施,测算编制收入预算;根据事业发展需要、业务活动需要和财力可能,编制支出预算。

编制收支预算必须坚持以收定支、收支平衡、统筹兼顾,保证重点的原则。

不得编制赤字预算。

医院要逐步采用零基预算方法编制预算。

医院所有收支应全部纳入预算管理。

2009年全国高校招生统一考试——理科数学考试大纲

2009年全国高校招生统一考试——理科数学考试大纲

2009年全国高校招生统一考试——理科数学考试大纲Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取,因此,高考应具有较高的信度、效应,必要的区分度和适当的难度.Ⅱ.考试要求《普通高等学校招生全国统一考试在纲(理科·2009年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修Ⅱ的教学内容,作为理工农医类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,即考查中学数学的知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求,依次为了解、理解和掌握、灵活和综合运用三个层次.(1)解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释,举例或变式、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,录找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的事.运算包括对数值的计算、估值和皖似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍面调整运算的能力以及实施运算和计算的技能.(3)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系,能对图形进行分析、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察、研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明.实践能力是将客观事物数学化的能力.主要过程是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现,对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3..个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神.形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.二、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系.进而通过分类、梳理、综合,构建数学试卷的结构框架.(1)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想和方法的理解;要从学科的整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用.尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际.对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性.对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算.对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合.(4)对实践能力的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合我国中学数学教学的实际,考虑考生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平.(5)对创新意识的考查是对高层次理性思维的考查,在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅲ.考试内容1.平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积.理解两个向量共线的充要条件.(4)了解平面向量的基本定律,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.2.集合、简易逻辑考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.3.函数考试内容:映射.函数.函数的单调性、奇偶性.反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.函数的应用.考试要求:(1)了解映射的概念.理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.4.不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法,含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算述平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式|a|-|b|≤|a+b|≤|a|+|b|5.三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:sin 2α+cos 2α=1,cos ααsin =tan α,tan αcot α=1,正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.余三角形解法.考试要求:(1)了解任意角的概念、弦度的意义.能正确地进行弦度与角度的换算.(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图象和性质.会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A ,ω,φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsin x ,arccos x ,arctan x 表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.数列数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念.掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.7.直线和圆的方程考试内容:直线的倾斜角和斜率.直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念.理解圆的参数方程.8.圆锥曲线方程椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.9(A).①直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面问的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)理解平面的基本性质.会用斜二侧的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想象它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念.了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平行垂直的性质.平面的法向量点点与平面的距离直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)理解平面的基本性质.会用斜二侧的画法画水平放置的平面图形的直观图.能够画出空间两条直线.直线和平面的各种位置关系的图形.能够根据图形想象它们的位置关系.(2)掌握直线和平面平行的判定定理和性质定理.理解直线和平面垂直的概念.掌握直线和平面垂直的判定定理.掌握三垂线定理及其逆定理.(3)理解空间向量的概念.掌握空间向量的加法.减法和数乘.(4)了解空间向量的基本定理.理解空间向量坐标的概念.掌握空间向量的坐标运算.(5)掌握空间向量的数量积的定义及其性质.掌握用直角坐标数算空间向量数量积的公式.掌握空间两点间的距离公式.(6)理解直线的方向向量.平面的法向量.向量在平面内的射影等概念.(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.(8)了解多面体、凸多面体的概念,了解正多面体的概念.(9)了解棱柱的概念,掌握棱柱的性质.会画直棱柱的直观图.(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(11)了解球的概念,掌握球的性质.掌握球的表面积公式、体积公式.10.排列、组合、二项式定理考试内容:分类计数原理与分步计数原理排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.11.概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义.会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生k次的概率.12.概率与统计考试内容:离散型随机变量的分布列.离散型随机变量的期望值和方差.抽样方法.总体分布的估计.正态分布.线性回归.考试要求:(1)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列.(2)了解离散型随机变量的期望值、方差的意义.会根据离散型随机变量的分布列求出期望值、方差.(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.(4)会用样本频率分布去估计总体分布.(5)了解正态分布的意义及主要性质.(6)了解线性回归的方法和简单应用.13.极限考试内容:数学归纳法.数学归纳法的应用.数列的极限.函数的极限.极限的四则运算.函数的连续性.考试要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则.会求某些数列与函数的极限.(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.14.导数考试内容:导数的概念.导数的几何意义.几种常见函数的导数.两个函数的和、差、积、商的导数.复合函数的导数.基本导数公式.利用导数研究函数的单调性和极植.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.(2)熟记基本导数公式(c,xm(m为有理数),sinx,cosx,ex,ax,lnx,logx 的导数);掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.(3)理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单蜂函数)的最大值和最小值.15.数系的扩充——复数考试内容:复数的概念.复数的加法和减法.复数的乘法和除法.数系的扩充.考试要求:(1)了解复数的有关概念及复数的代数是表示和几何意义.(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(3)了解从自然数系列复数系的关系及扩充的基本思想.Ⅳ.考试形式与试卷结构考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题.试卷一般包括选择题、填空题和解答题等题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程.试卷应由容易题、中等难度题和难题组成,总体难度要适当,并以中等难度题为主.。

2010年浙江省高考数学【理】(含解析版)

 2010年浙江省高考数学【理】(含解析版)

2010年高考浙江卷理科数学试题及答案选择题目部分(共50分)参考公式:如果事件A 、B 互斥,那么柱体的体积公式P (A +B )=P (A )+P (B )�=Sh如果事件A 、B 相互独立,那么其中S 表示柱体的底面积,ℎ表示柱体的高P (A ·B )=P (A )·P (B )锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n �=13Sh次独立重复试验中恰好发生k 次的概率其中S 表示锥体的底面积,ℎ表示锥体的高��(�)=�����(1−�)�−�(�=0,1,2,⋯,�)球的表面积公式台体的体积公式퐸 .�=13ℎ(�1+�1�2+�2)球的体积公式其中S 1,S 2分别表示台体的上、下底面积�=43 3ℎ表示台体的高其中R 表示球的半径一、选择题目:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设�=�|�<4,�=�|�2<4(A )�⊆�(B )�⊆�(C )�⊆� �(D )�⊆� �(2)某程序框图如图所示,若输出的S=57,则判断框内为(A )�>4?(B )�>5?(C )�>6?(D )�>7?(3)设��为等比数列��的前�项和,8�2+�5=0,则�'EF ⊥(A )11(B )5(C)-8(D )-11(4)设0<�<,则“�sin2�<1”是“�sin�<1”的2(A)充分而不必不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)对任意复数�=�+yi(�,�∈ ),�为虚数单位,则下列结论正确的是(A)|�−�|=2�(B)�2=�2+�2(C)|�−�|≥2�(D)|�|≤|�|+|�|(6)设�,�是两条不同的直线,是一个平面,则下列命题正确的是(A)若�⊥�,�⊂,则�⊥(B)若�⊥,�//�,则�⊥(C)若�//�,�⊂,则�//�(D)若�//�,�//�,则�//�(7)若实数�,�满足不等式组�+3�−3≥0,2�−�−3≤0,且�+�的最大值为9,则实数�=(A)-2(B)-1(C)1(D)2(8)设F1,F2分别为双曲线�2�2−�2�2=1(�>0,�>0)的左、右焦点。

2009年高考数学考试说明比较性分析

2009年高考数学考试说明比较性分析

2009年高考数学考试说明比较性分析(李仲桂执笔)针对再版《指导意见》,认真阅读《2009浙江省普通高考考试说明》,结合参加省培训材料,对数学各个章节的教学内容,在高考中的地位和难度把握上做了一些初步分析。

一.考试要求基本不变按照能力立意为指导思想,考查基础知识的同时,注重考查能力,将知识与能力融为一体,全面检测学生的数学素养。

考试题型同2008年,仍是10选7填5解答,易中难比为3:5:2;满分150分,时间120分钟。

二.考试内容稍有变化一集合:《指导意见》与《说明》基本吻合。

基本要求同过去的高考要求二函数对复合函数的定义域作较深要求,但值域只停留在简单复合函数的问题上;分段函数问题我们比较重视,但从考试说明来看,“了解分段函数,能用分段函数来解决一些简单的数学问题“主要是涉及分段函数求函数值,求值域,求单调区间,至于分段函数的奇偶性则要求比较简单。

但学生这方面在初中好象研究得还可以,比想象中的好。

因此教学时可以省一点时间。

运用还是需要的。

数形结合思想的运用还是需要学生对函数图象有一个明晰的理解。

具体函数没有作明显的教学要求降低,但抽象函数有关性质则有难度有明显的下降。

考试说明:了解指数函数模型的实际背景,理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

理解指数函数的概念,会求与指数函数性质有关的问题。

对学生而言,指数幂的运算还需要再加强。

专家认为高考必须要求运算过关。

《考试说明》:理解对数的概念及其运算性质,知道用换底公式能将一般对数化成自然对数或常用对数,了解对数在处化运算中的作用。

理解对数函数的概念,会求与对数函数性质有关的问题。

好多年没有考的内容现在有可能会出现,不能掉以轻心,要引起足够关注。

关于同底的指对数函数互为反函数问题现在只要求了解,在说明中特别指出。

在《意见》中说,不必讨论形式化的反函数定义,也不要求求已知函数的反函数。

这一部分内容应该说要求还是很低,没有必要重点学习补充。

2009年浙江省高考数学试卷(理科)答案与解析

2009年浙江省高考数学试卷(理科)答案与解析

, ∴∠ADE=60°. 故选C
【点评】求直线和平面所成的角时,应注意的问题是:(1)先判断直 线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:① 构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到 的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点 明斜线和平面所成的角的值. 6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k 的值是( )
菁优网版权所有
,前n项和为Sn,则
= 15 . 【考点】等比数列的性质. 【专题】等差数列与等比数列.
菁优网版权所有
【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而 把a1和q代入 约分化简可得到答案. 【解答】解:对于
,∴
【点评】本题主要考查了等比数列中通项公式和求和公式的应用.属基 础题. 12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所 示,则该几何体的体积是 18 cm3.
, 满足:| |=3,| |=4, • =0.以 , , ﹣ 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) A.3 B.4 C.5 D.6 【考点】直线与圆相交的性质;向量的模;平面向量数量积的运算.
版权所有
菁优网
【专题】平面向量及应用. 【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内 切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于 圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出 答案. 【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为 3,4,5,进而可知其内切圆半径为1, ∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三 个交点, 对于圆的位置稍一右移或其他的变化,能实现4个交点的情况, 但5个以上的交点不能实现. 故选B 【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的 方法较为直观.

2009年全国高考浙江理科数学试题答案

2009年全国高考浙江理科数学试题答案
10. 对于正实数 α , 记 M α 为满足下述条件的函数 有
f (x) 构成的集合: ∀x1 , x2 ∈ R 且 x2 > x1 ,
−α ( x2 − x1 ) < f ( x2 ) − f ( x1 ) < α ( x2 − x1 ) .下列结论中正确的是 (
A.若 f ( x ) ∈ M α 1 , g ( x) ∈ M α 2 ,则 f ( x ) ⋅ g ( x) ∈ Mα 1⋅α 2 B.若 f ( x ) ∈ M α 1 , g ( x) ∈ M α 2 ,且 g ( x) ≠ 0 ,则


中国校长网
��� � � ⎛ ab ��� � ��� � 2a 2 b 2a 2 b ��� ab ⎞ 2 2 BC = ( 2 2 , − 2 2 ), AB = ⎜ − , ⎟ ,因 2 AB = BC, ∴4 a = b ,∴ e = 5 . a −b a −b ⎝ a + b a +b ⎠
V=
4 πR 3 3
h 表示棱台的高
其中 R 表示球的半径 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,只有 一项是符合题目要求的.
中国校长网资源频道


中国校长网
1.设 U = R , A = {x | x > 0} , B = {x | x > 1},则 A ∩ ð UB=( A. {x | 0 ≤ x < 1} 答案:B 【解析】 对于 CU B = x x ≤ 1 ,因此 A ∩ ð {x | 0 < x ≤ 1}. UB= B . {x | 0 <
f ( x ) + g ( x ) ∈ M α 1+α 2 .

2009年与2010年浙江省普通高考考试说明及样题对比

2009年与2010年浙江省普通高考考试说明及样题对比

2009年与2010年浙江省普通高考考试说明及样题对比
(理科综合化学部分)
1.增加的考点
另附:关于化学1B选修模块增加的考点
2. 表述变化的考点
二、样卷信息的认识
1、题号:7~13化学选择题部分没有改变,化学非选择题部分变为25~28题。

因为物理选择减少3个题,化学提平移。

题数没有改变
2、7个选择题考查的知识板块稍有改动,在2010的样卷中出现了关于物质结构相关问题的选项考查。

3. 四个大题2009与2010考查内容与方式的对比
2010样题承袭了其他省市高考试题特点,突出了数据处理能力考查,这是科学素养的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年与2010年对照版(红色的删除,蓝色的添加)浙江省普通高考考试说明数学(理科)Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ.考试要求根据普通高等学校对新生文化素质的要求,依据《普通高等学校招生全国统一考试大纲》和《浙江省普通高考考试说明》公布的内容范围命题,不超出《浙江省普通高中课程实验数学学科教学指导意见》中规定的必修模块和指定选修模块(IA)的范围。

数学学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

数学科的考试,要发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。

一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程及选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。

对知识的要求依次是了解、理解、掌握三个层次。

(一)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

(二)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

(三)掌握:要求对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

(一)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。

(二)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

(三)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的推理能力。

(四)运算求解能力:会根据法则和公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

(五)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。

数据处理能力主要依据统计中的方法对数据进行整理、分析,并解决给定的实际问题。

(六)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明。

主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。

(七)创新意识:能发现问题、提出问题,综合与灵活地应用所学数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。

三、个性品质要求个性品质是指考生个体的情感、态度和价值观。

具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架。

(一)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,从学科的整体高度和思维价值的高度考虑问题,使对数学基础知识的考查达到必要的深度。

(二)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度。

(三)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能。

对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际。

对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言的互相转化;对运算求解能力的考查主要是算法和推理的考查,考查以代数运算为主;数据处理能力的考查主要是运用概率统计的基本方法和思想解决实际问题的能力。

(四)对应用意识的考查主要采用解决应用问题的形式。

命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际、学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平。

(五)对创新意识的考查是对高层次理性思维的考查。

要创设新颖的问题情境,构造有一定深度和广度的数学问题,注重问题的多样化,体现思维的发散性。

精心设计考查数学主体内容、体现数学素质的试题;反映数、形运动变化的试题及研究型、探索型、开放型的试题。

(六)试题要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧。

要注意数学概念、数学本质和解决数学问题的常规方法。

试题设计力求情景熟、入口宽、方法多、有层次,并贴近学生实际,以使学生在公平的背景下展示真实水平。

Ⅲ.考试内容一、集合(一)集合的含义与表示1.了解集合的含义、元素与集合的“属于”关系。

2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(二)集合间的基本关系1.理解集合之间包含与相等的含义,能识别给定集合的子集。

2.在具体情境中,了解全集与空集的含义。

(三)集合的基本运算1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

3.能使用韦恩图(Venn)表达集合的关系及运算。

二、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域。

2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。

3.了解简单的分段函数,并能简单应用。

4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数的奇偶性。

5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值。

6.会运用函数图像理解和研究(讨论)函数的性质。

(二)指数函数1.了解指数函数模型的实际背景。

2. 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念,会解决与指数函数性质有关的问题。

4. 知道指数函数是一类重要的函数模型。

(三)对数函数1.理解对数的概念及其运算性质,知道利用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

2.理解对数函数的概念;能解决与对数函数性质有关的问题。

3.知道对数函数是一类重要的函数模型。

4.了解指数函数x y a =与对数函数log a y x =互为反函数(0,1a a >≠)。

(四)幂函数1.了解幂函数的概念。

2.结合函数x y =,2x y =,3x y =,x y 1=,21x y =的图像,了解它们的变化情况。

(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

2.理解并掌握函数在某个区间上存在零点的判定方法。

能利用函数的图象和性质判断函数零点的个数。

(能判断函数在某个区间上是否存在零点).(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长(变化)特征。

知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.(2.)能利用给定的函数模型解决简单的实际问题。

三、立体几何初步(一)空间几何体1.了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征。

2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,会用斜二测法画出它们的直观图。

3.会用平行投影与中心投影(这)两种方法,画出简单空间图形的三视图或直观图,了解空间图形的不同表示形式。

4.能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化。

5.会计算球、柱、锥、台的表面积和体积(不要求记忆公式)。

(二)点、直线、平面之间的位置关系1.理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。

◆公理2:过不在同一条直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

◆公理4:平行于同一条直线的两条直线互相平行。

◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

2.以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定。

理解以下判定定理。

◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。

◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。

理解以下性质定理,并能够证明。

◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。

◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。

相关文档
最新文档