应用多元统计分析课后习题答案详解北大高惠璇习题解答
合集下载
应用多元统计分析课后习题答案详解北大高惠璇(第五章部分习题解答)
![应用多元统计分析课后习题答案详解北大高惠璇(第五章部分习题解答)](https://img.taocdn.com/s3/m/04fd6c230722192e4536f6ea.png)
所以样品x=2.5判归 1. 判归G 因0.5218>0.3798>0.0984,所以样品 所以样品 判归
8
第五章 判别分析
5 − 3 设总体Gi 的均值为µ ( i ) (i = 1,2),同协差阵Σ. 1 ′µ (1) + a′µ ( 2 ) ), (其中a = Σ −1 ( µ (1) − µ ( 2) )), 记µ = (a 2 试证明(1)E(a′X | G1 ) > µ ; (2)E(a′X | G2 ) < µ . 1 (1) 1 (1) (2) ′X | G1) − µ = a′µ − (a′µ + a′µ ) = (a′µ(1) − a′µ(2) ) 解: E(a 2 2 1 (1) (2) −1 (1) (2) = (µ − µ )′Σ (µ − µ ) > 0, (因Σ > 0) 2 1 (1) (2) −1 (1) (2) 类似可证: E(a′X | G2 ) − µ = − (µ − µ )′Σ (µ − µ ) < 0,. 2 即 E(a′X | G1) > µ, E(a′X | G2 ) < µ .
第五章 判别分析
所以 q1 f1 ( x) = 0.1613, 类似可得 q2 f 2 ( x) = 0.0304, q3 f 3 ( x) = 0.1174,
所以样品x=2.5判归 1. 判归G 因0.1613>0.1174>0.0304,所以样品 所以样品 判归
7
第五章 判别分析
解三:后验概率判别法 解三 后验概率判别法, 后验概率判别法 计算样品x已知 已知,属 的后验概率: 计算样品 已知 属Gt的后验概率 qt f t ( x) P(t | x) = 3 (t = 1,2,3) ∑ qi fi ( x) 当样品x=2.5时,经计算可得 时 当样品
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)
![应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)](https://img.taocdn.com/s3/m/0c19c00b76c66137ee0619eb.png)
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
2 1
I I
p p
Ip I
p
1 1
2 2
1 2
2 1
I I
p p
Ip I
p
2(1 O
2
)
O
2(1
2
)
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相
互独立.
7
第二章 多元正态分布及参数的估计
(2) 因
Y
X X
(1) (1)
X X
(2) (2)
~
N2 p
(1) (1)
(2) (2)
,
2(1 O
2)
O 2(1
2
)
所以 X (1) X (2) ~ N p ( (1) (2) ,2(1 2 )); X (1) X (2) ~ N p ( (1) (2) ,2(1 2 )).
若(X1 , X2 ) 是二元正态分布,则由性质4可知,
应用多元统计分析课后习题答案高惠璇第五章部分习题解答
![应用多元统计分析课后习题答案高惠璇第五章部分习题解答](https://img.taocdn.com/s3/m/6ecea1348f9951e79b89680203d8ce2f006665ae.png)
u (2) a (2)
1 89765
(32,33)
2205
1465 4.8897 89765
u (1) u (2)
当X (1)
20 20
时,
u(
X
(1)
)
1 89765
(32,33)
20 20
4.3390
因u( X (1) ) 4.3390 u* , 判X (1) G2.
当X (1)
15 20
解 : (a) (ad )2 (ad )(ad )
aSa
aSa
a( X
(1)
X
(2) )( X aSa
(1)
X
(2) )a
def
aBa aSa
1
其中1为S 1B的最大特征值,且仅当a 1对应的
特征向量时等号成立.
又S 1B ( X (1) X (2) )( X (1) X (2) )S 1与
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
线性函数,当X
G1时,W
(X
)
~
N1
(
1
,
2 1
),
且
21
第五章 判别分析
1
E(W ( X
))
( (1)
)a
1 2
( (1)
2
PU a PU b
(1) 2
(2) 1
(1) 1
(2) 2
.
.
(b) (a)
4
第五章 判别分析
5-2 设三个总体的分布分别为: G1为N(2,0.52), G2为
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件
![应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件](https://img.taocdn.com/s3/m/c373787b4a35eefdc8d376eeaeaad1f347931150.png)
2( 2 )2
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件
![应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件](https://img.taocdn.com/s3/m/e0b47d8a846a561252d380eb6294dd88d0d23da6.png)
0 8
X (2)
X
(3)
0
X (5) CL4
第11页 11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
0 D(3) 10
9
0 8
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
D(4) 100
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=10.
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
( p) )
n2p nr2
D
2 pk
nq2 nr2
Dq2k
n p nq nr2
(X
(k)
X
( p) )'( X
(k)
X
( p)
X
( p)
X
(q) )
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
(q)
X
(q)
X
( p) )
第26页 26
故d*是一个距离.
第5页
5
第六章 聚类分析
(4) 设d (1)和d (2)是距离, 令d * d (1) • d (2).
d *虽满足前2个条件,但不一定满足三角不等式.
下面用反例来说明d *不一定是距离.
设di(j1)
d (2) ij
X (i) X ( j) (m 1), 则di*j
X (i) X ( j)
D
2 pk
nq nr
应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答
![应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答](https://img.taocdn.com/s3/m/07d1e4a2d0d233d4b14e696a.png)
(3) 试求误差平方和Q(m)<0.1的主成分解. 因Q(2)=0.07331<0.1,故m=2的主成分解满足要求.
10
j m 1
,
2 j
p
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵) (1) ( I AD 1 A) 1 AD 1 A I ( I AD 1 A) 1 ;
18
Q(2) 2 (0.1708 0.0475 0.0403 )
i 1 j 1 2 ij 2 2 2 3 3
故
0.06611
9
第八章 因子分析
或者利用习题8-4的结果:
Q(m)
i 1 j 1 2 2 2 3 2 2 ij p p p j m1 2 2 1 2 2 j
8 2 已知8 1中R的特征值和特征向量为 1 1.9633 l1 (0.6250 ,0.5932 ,0.5075 ), 2 0.6795 l2 (0.2186 ,0.4911 ,0.8432 ), 3 0.3672 l3 (0.7494 ,0.6379 ,0.1772 ). (1) 取公因子个数 m 1时, 求因子模型的主成分解 , 并计算误差平方和 Q (1).
1 11 12 1
B AB
1 11 2 1 11 2
B A 1 I m A B112 A
1 11 2
12
由逆矩阵的对应块相等,即得:
第八章 因子分析
B
1 11 2
D D AB
1 11 2
1
1
1 221
1 11 AD B
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
10
j m 1
,
2 j
p
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵) (1) ( I AD 1 A) 1 AD 1 A I ( I AD 1 A) 1 ;
18
Q(2) 2 (0.1708 0.0475 0.0403 )
i 1 j 1 2 ij 2 2 2 3 3
故
0.06611
9
第八章 因子分析
或者利用习题8-4的结果:
Q(m)
i 1 j 1 2 2 2 3 2 2 ij p p p j m1 2 2 1 2 2 j
8 2 已知8 1中R的特征值和特征向量为 1 1.9633 l1 (0.6250 ,0.5932 ,0.5075 ), 2 0.6795 l2 (0.2186 ,0.4911 ,0.8432 ), 3 0.3672 l3 (0.7494 ,0.6379 ,0.1772 ). (1) 取公因子个数 m 1时, 求因子模型的主成分解 , 并计算误差平方和 Q (1).
1 11 12 1
B AB
1 11 2 1 11 2
B A 1 I m A B112 A
1 11 2
12
由逆矩阵的对应块相等,即得:
第八章 因子分析
B
1 11 2
D D AB
1 11 2
1
1
1 221
1 11 AD B
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
应用多元统计分析课后习题答案详解北大高惠璇(第三章部分习题解答).ppt
![应用多元统计分析课后习题答案详解北大高惠璇(第三章部分习题解答).ppt](https://img.taocdn.com/s3/m/2a4fcb60524de518974b7d1d.png)
def
2 ln n( X 0 )01( X 0 )
因
X
H 0下
~
N
p (0,
1 n
0 ),
H 0下
n( X 0 ) ~ N p (0, 0 )
所以由§3“一﹑2.的结论1”可知
2 ln ~ 2 ( p).
20
第三章 多元正态总体参数的检验
3-6 (均值向量各分量间结构关系的检验) 设总体
若r=0时,则A=0,则两个二次型也是独 立的.
以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
7
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
令
r
由AB=O可得DrH11=O , DrH12=O . 因Dr为满秩阵,故有H11=Or×r,H12=Or×(n-r) .
由定义314可知15性质5在非退化的线性变换下t分别表示正态总体x的样本均值向量和离差阵则由性质1有1735对单个p维正态总体n均值向量的检验问题试用似然比原理导出检验h已知的似然比统计量及分布
第三章习题解答
第三章 多元正态总体参数的假设检验
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
~
N pr
(0, 22 ),
记
X
n p
xij
X (1) | X (2) , nr n( pr)
则
W
X X
X (1)X (1) X (2)X (1)
X X
(1) X (2) X
(2) (2)
WW1211
W12 W22
,
即
W11 X (1)X (1), W22 X (2)X (2)
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)
![应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)](https://img.taocdn.com/s3/m/d49eed8003d8ce2f0066239c.png)
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答
![应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答](https://img.taocdn.com/s3/m/07d1e4a2d0d233d4b14e696a.png)
p i 1 p
所以
Q(m)
i 1 j 1 2 ij
p
p
j m1
(
2 j i 1
p
2 2 i
)
j m 1
,
2 j
16
p
第八章 因子分析
8-5 试比较主成分分析和因子分析的 (1) 主成分分析不能作为一个模型来描述,它只 是通常的变量变换,而因子分析需要构造因子模型; (2) 主成分分析中主成分的个数和变量个数p相 同,它是将一组具有相关关系的变量变换为一组互 不相关的变量(注意应用主成分分析解决实际问题 时,一般只选取前m(m<p)个主成分),而因子分析的 目的是要用尽可能少的公共因子,以便构造一个结 构简单的因子模型;
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
18
2 11 2 21 2 3 2 31
a 1
2 31 2 3
a11a21 0.63 a11a31 0.45 a31a21 0.35
所以
Q(m)
i 1 j 1 2 ij
p
p
j m1
(
2 j i 1
p
2 2 i
)
j m 1
,
2 j
16
p
第八章 因子分析
8-5 试比较主成分分析和因子分析的 (1) 主成分分析不能作为一个模型来描述,它只 是通常的变量变换,而因子分析需要构造因子模型; (2) 主成分分析中主成分的个数和变量个数p相 同,它是将一组具有相关关系的变量变换为一组互 不相关的变量(注意应用主成分分析解决实际问题 时,一般只选取前m(m<p)个主成分),而因子分析的 目的是要用尽可能少的公共因子,以便构造一个结 构简单的因子模型;
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
18
2 11 2 21 2 3 2 31
a 1
2 31 2 3
a11a21 0.63 a11a31 0.45 a31a21 0.35
最新应用多元统计分析课后习题答案详解北大高惠璇(第五章部分习题解答)
![最新应用多元统计分析课后习题答案详解北大高惠璇(第五章部分习题解答)](https://img.taocdn.com/s3/m/01067a3014791711cc79173f.png)
* ( 2) 2 2
X ( 2 ) * ( 2 ) X ( 2) * ( 2) P P 2 2 2 2 P U a P U b (1) ( 2 ) (1) ( 2 ) . . 1 2 2 1 (b) (a )
10
第五章 判别分析
10 20 18 12 20 7 ( 2) 15, 25, 1 12 32, 2 7 5 . 先验概率q1 q2 , 而L(2 | 1) 10, L(1 | 2) 75.试问样品 20及X 15 各应判归哪一类? X (1) 20 20 ( 2) (1) 按Fisher准则
(1) (1)
14
第五章 判别分析
18 12 (2)Bayes 准则(假设 1 2 12 32 ) 解 :由定理5.2.1, 只须计算 h1 ( X ) q2 L(1 | 2) f 2 ( X ), h2 ( X ) q1 L(2 | 1) f1 ( X ), 并比较大小, 判X属损失最小者.考虑 h1 ( X ) L(1 | 2) f 2 ( X ) 75 f 2 ( X ) h2 ( X ) L(2 | 1) f1 ( X ) 10 f1 ( X ) 1 ( 2) 1 ( 2) 7.5 exp{ ( X ) ( X ) 2 1 (1) 1 (1) ( X ) ( X )} 2
11
第五章 判别分析
或取B ( )( ) 10 20 100 100 15 25 10, 10 100 100 (组间) 类似于例5.3.1的解法, A-1B的特征根就等于
X ( 2 ) * ( 2 ) X ( 2) * ( 2) P P 2 2 2 2 P U a P U b (1) ( 2 ) (1) ( 2 ) . . 1 2 2 1 (b) (a )
10
第五章 判别分析
10 20 18 12 20 7 ( 2) 15, 25, 1 12 32, 2 7 5 . 先验概率q1 q2 , 而L(2 | 1) 10, L(1 | 2) 75.试问样品 20及X 15 各应判归哪一类? X (1) 20 20 ( 2) (1) 按Fisher准则
(1) (1)
14
第五章 判别分析
18 12 (2)Bayes 准则(假设 1 2 12 32 ) 解 :由定理5.2.1, 只须计算 h1 ( X ) q2 L(1 | 2) f 2 ( X ), h2 ( X ) q1 L(2 | 1) f1 ( X ), 并比较大小, 判X属损失最小者.考虑 h1 ( X ) L(1 | 2) f 2 ( X ) 75 f 2 ( X ) h2 ( X ) L(2 | 1) f1 ( X ) 10 f1 ( X ) 1 ( 2) 1 ( 2) 7.5 exp{ ( X ) ( X ) 2 1 (1) 1 (1) ( X ) ( X )} 2
11
第五章 判别分析
或取B ( )( ) 10 20 100 100 15 25 10, 10 100 100 (组间) 类似于例5.3.1的解法, A-1B的特征根就等于
应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件
![应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件](https://img.taocdn.com/s3/m/4a0534e81b37f111f18583d049649b6648d709eb.png)
第10页 10
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求下列分块矩阵逆:
(3) 主成份分析是将主成份表示为原变量线性 组合,而因子分析是将原始变量表示为公因子和 特殊因子线性组合,用假设公因子来“解释”相 关阵内部依赖关系.
这两种分析办法又有一定联系.当预计办法采 用主成份法,因子载荷阵A与主成份系数相差一 个倍数;因子得分与主成份得分也仅相差一个常 数.这种情况下可把因子分析当作主成份分析推 广和发展.
并计算误差平方和Q(2).
解 : m 2的因子模型的主成分解为:
0.8757 0.1802
A(
1l1,
2
l2
)
0.8312
0.4048,
0.7111 0.6950
第7页
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
p
m
p
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S特性值,li为相应原则
特性向量。
第14页 14
第八章 因子分析
设A,D是因子模型主成份预计,即
应用多元统计分析课后习题答案详解北大高惠璇(第六章习题解答)
![应用多元统计分析课后习题答案详解北大高惠璇(第六章习题解答)](https://img.taocdn.com/s3/m/bcc3aa21804d2b160a4ec06f.png)
n
p
nr
nq
X (k)
np nr
X ( p)
nq nr
'
X (q)
25
第六章 聚类分析
Dr2k
np nr
2 ( X (k)
X
(
p
)
)'(
)
nq nr
2 ( X (k)
X
(q) )'(
)
n p nq nr2
(X
(k)
X
( p) )'( X
D(3) 1306 2 106 2
0 165 4
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=(165/4)1/2.
D(4) 1201 2
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=(121/2)1/2.
15
以下来验证d满足作为距离所要求的3个条件.
2
第六章 聚类分析
① ② ③
(2) 设d是距离,a >0为正常数.令d*=ad,显然有
① di*j cdij 0,且仅当X (i) X ( j)时di*j 0;
②
di*j
cdij
cd ji
d
* ji
, 对一切i,
j;
3
第六章 聚类分析
n
n
8
第六章 聚类分析
n
t 1
( xtj
xj )2
n t 1
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答
![应用多元统计分析课后习题答案详解北大高惠璇部分习题解答](https://img.taocdn.com/s3/m/f3d097c60722192e4436f6ac.png)
解:检验三个尺寸(变量)是否符合这一规律的问题
可提成假设检验问题.因为
1 : 2 : 3 6 : 4 :1 C 0
其中
C
1 0
0 1
6 4
23
,
注意:
第24页/共46页
1 3
6 , 且 2 4
1
3 1
12
63 43
00.
24
第三章 多元正态总体参数的检验
或
C
2 1
3 0
0 6
~
Nr (0, 11),
X (2) ( )
~
N pr (0, 22 ),
记
X
n p
xij
X (1) | X (2) , nr n( pr)
则
W
X
X
X (1)X (1) X (2)X (1)
X X
(1) X (2) X
(2) (2)
WW1211
W12 W22
,
即 W11 X (1)X (1), W22 X (2)X (2)
样本,样本均值为X,样本离差阵为A.记μ=(μ1,…,μp)′.为检验
H0:μ1=μ2=…=μp ,H1:μ1,μ2,…,μp至少有一对不相等.令
C 11
1 0
0 1
0 0
,
1 0 0 1( p1)p
则上面的假设等价于H0:Cμ=0p-1,H1:Cμ≠ 0p-1
试求检验H0 的似然比统计量和分布.
Tx2 n(n 1)(X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是pp非退化常数矩阵,d是p1常向量。
可提成假设检验问题.因为
1 : 2 : 3 6 : 4 :1 C 0
其中
C
1 0
0 1
6 4
23
,
注意:
第24页/共46页
1 3
6 , 且 2 4
1
3 1
12
63 43
00.
24
第三章 多元正态总体参数的检验
或
C
2 1
3 0
0 6
~
Nr (0, 11),
X (2) ( )
~
N pr (0, 22 ),
记
X
n p
xij
X (1) | X (2) , nr n( pr)
则
W
X
X
X (1)X (1) X (2)X (1)
X X
(1) X (2) X
(2) (2)
WW1211
W12 W22
,
即 W11 X (1)X (1), W22 X (2)X (2)
样本,样本均值为X,样本离差阵为A.记μ=(μ1,…,μp)′.为检验
H0:μ1=μ2=…=μp ,H1:μ1,μ2,…,μp至少有一对不相等.令
C 11
1 0
0 1
0 0
,
1 0 0 1( p1)p
则上面的假设等价于H0:Cμ=0p-1,H1:Cμ≠ 0p-1
试求检验H0 的似然比统计量和分布.
Tx2 n(n 1)(X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是pp非退化常数矩阵,d是p1常向量。
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件
![应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件](https://img.taocdn.com/s3/m/01ec368b185f312b3169a45177232f60dccce71f.png)
4.7067
取a 1 A1( (1) (2) )
d
1 65 1381
3323 ,
则aAa
1,
且a满足 : Ba Aa ( d 2 ).
12
第五章 鉴别分析
判别效率(a) aBa 4.7067.
aAa
Fisher线性判别函数为u( X ) aX
1 89765
(32
X1
33X
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
线性函数,当X
G1时,W
(
X
)
~
N1
(1,
2 1
), 且
20
第五章 鉴别分析
20 20
时,
u
(
X
(1)
)
1 89765
(32,33)
20 20
4.3390
因u( X (1) ) 4.3390 u* , 判X (1) G2.
当X (1)
15 20
时,
u
(
X
(2)
)
1 89765
(32,33)1250
3.8050
因u( X (2) ) 3.8050 u* 判X (2) G1.
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2 10
第五章 鉴别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)
应用多元统计分析课后习题答案高惠璇(第六章习题解答)
![应用多元统计分析课后习题答案高惠璇(第六章习题解答)](https://img.taocdn.com/s3/m/9dae5dfca58da0116c1749ad.png)
n n
第六章 聚类分析
ab ( xti xi ) x nx a b n n t 1 t 1 ( a b) 1 [n (a b)] (a b)(c d ) n n
n 2 n 2 ti 2 i
2
8
第六章 聚类分析
ac ( xtj x j ) x nx a c n n t 1 t 1 ( a c) 1 [n (a c)] (a c)(b d ) n n
6-6 设A,B,C为平面上三个点,它们之间的距离为
d
2 AB
d
2 AC
1.1, d
2 BC
1.0
将三个点看成三个二维样品,试用此例说明中间距离法 和重心法不具有单调性.
解:按中间距离法,取β =-1/4,将B和C合并为 一类后,并类距离D1=1,而A与新类Gr={B,C}的 类间平方距离为
X ( 2) X ( 3) 3 5 0 X (5) 7 10 8 0 CL 4
11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
D
( 3)
0 X ( 3) 10 0 CL 4 CL3 9 8 0
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
①
②
4
第六章 聚类分析
1 1 ③ d d ij c 1 c / d ij 1 c /( d ik d kj )
* ij
d ij
d kj d ik d ik d kj c d ik d kj c d ik d kj c d kj d ik d ik c d kj c d d
第六章 聚类分析
ab ( xti xi ) x nx a b n n t 1 t 1 ( a b) 1 [n (a b)] (a b)(c d ) n n
n 2 n 2 ti 2 i
2
8
第六章 聚类分析
ac ( xtj x j ) x nx a c n n t 1 t 1 ( a c) 1 [n (a c)] (a c)(b d ) n n
6-6 设A,B,C为平面上三个点,它们之间的距离为
d
2 AB
d
2 AC
1.1, d
2 BC
1.0
将三个点看成三个二维样品,试用此例说明中间距离法 和重心法不具有单调性.
解:按中间距离法,取β =-1/4,将B和C合并为 一类后,并类距离D1=1,而A与新类Gr={B,C}的 类间平方距离为
X ( 2) X ( 3) 3 5 0 X (5) 7 10 8 0 CL 4
11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
D
( 3)
0 X ( 3) 10 0 CL 4 CL3 9 8 0
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
①
②
4
第六章 聚类分析
1 1 ③ d d ij c 1 c / d ij 1 c /( d ik d kj )
* ij
d ij
d kj d ik d ik d kj c d ik d kj c d ik d kj c d kj d ik d ik c d kj c d d
应用多元统计分析课后习题答案高惠璇第七章习题解答
![应用多元统计分析课后习题答案高惠璇第七章习题解答](https://img.taocdn.com/s3/m/d665a654fbd6195f312b3169a45177232f60e48d.png)
= 0$。 • 因此,$E(X^2) = 0$。
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}
应用多元统计分析章节后习题答案详解北大高惠璇八章节习题解答
![应用多元统计分析章节后习题答案详解北大高惠璇八章节习题解答](https://img.taocdn.com/s3/m/1e325d499b6648d7c0c7460a.png)
15
第八章 因子分析
m1 lm 1 0 m 1 BB ( m1 lm1 ,, p l p ) p l 0 p p
故
j m 1
因
p
2 j
tr(BB BB ) tr(BB BB) tr[(E D)( E D)] tr[E E E D DE DD] Q(m) 0 0 ( i2 ) 2
(
i 1 2 2 2 2
p
2 2 i
)
2 2 3
Q(1) ( ) [( ) ( ) ( ) ] 2 2 0.6795 0.3672 [0.2331 0.3091 0.4943 ] 0.5966 0.3943 0.2023 2 2 2 2 2 Q(2) 3 [( 12 ) 2 ( 2 ) ( 3 ) ] 2 2 2 2 0.3672 [0.2007 0.1452 0.01131 ] 0.1348 0.06149 0.07331
18
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
1 1 1 21 A B112 B221 A D B
I m AB
A B
1 221
B
22
把B22· 1和B11· 2式代入以上各式,可得:
( D AA) 1 D 1 D 1 A( I m AD 1 A) 1 AD 1 A( D AA) 1 ( I m AD 1 A) 1 AD 1 I m A( D AA) 1 A ( I m AD 1 A) 1 (3) ( 2)
第八章 因子分析
m1 lm 1 0 m 1 BB ( m1 lm1 ,, p l p ) p l 0 p p
故
j m 1
因
p
2 j
tr(BB BB ) tr(BB BB) tr[(E D)( E D)] tr[E E E D DE DD] Q(m) 0 0 ( i2 ) 2
(
i 1 2 2 2 2
p
2 2 i
)
2 2 3
Q(1) ( ) [( ) ( ) ( ) ] 2 2 0.6795 0.3672 [0.2331 0.3091 0.4943 ] 0.5966 0.3943 0.2023 2 2 2 2 2 Q(2) 3 [( 12 ) 2 ( 2 ) ( 3 ) ] 2 2 2 2 0.3672 [0.2007 0.1452 0.01131 ] 0.1348 0.06149 0.07331
18
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
1 1 1 21 A B112 B221 A D B
I m AB
A B
1 221
B
22
把B22· 1和B11· 2式代入以上各式,可得:
( D AA) 1 D 1 D 1 A( I m AD 1 A) 1 AD 1 A( D AA) 1 ( I m AD 1 A) 1 AD 1 I m A( D AA) 1 A ( I m AD 1 A) 1 (3) ( 2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.19 0 0
D
0 0
0.51 0
0.075
4
第八章 因子分析
8 2 已知8 1中R的特征值和特征向量为
1 1.9633 l1 (0.6250,0.5932,0.5075), 2 0.6795 l2 (0.2186,0.4911,0.8432), 3 0.3672 l3 (0.7494,0.6379,0.1772).
应用多元统计分析
第八章习题解答
第八章 因子分析
2
第八章 因子分析
a121
2 1
1
a221
2 2
1
a321
2 3
1
a11a21 0.63
a11a31 0.45
a21 a31
0.63 0.45
7 5
, a21
7 5
a31
7 a31 5 a31 0.35,
a321
0.35 7
5
0.25
a31a21 0.35
则 D diag(BB)
E S (AA D) BB D,即BB E D.
15
第八章 因子分析
因
BB
m1lm 1
(
p lp
m1lm1, ,
p
l
p
)
m1
0
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求以下分块矩阵的逆:
B
D A
I
mA
p m
记B22•1 Im AD1 A, B11•2 D AA,
利用附录中分块求逆的二个公式(4.1)和(4.2)有:
11
第八章 因子分析
B 1
D A
I
A
m
1
B11 B 21
B12 B 22
D 1
D
1A
B1 22•1
AD
1
B 1 22•1
AD
1
D
1A
B1 22•1
B 1 22•1
E2
R
( AA
D)
1
0.63 1
00..13455 ( AA D)
8
第八章 因子分析
AA
D
1
0.8008 1
00..341099775
E2
0
0.1708 0
00.0.00440735
故
33
Q(2)
2 ij
2பைடு நூலகம்(0.17082
0.04752
0.04032 )
i1 j1
0.06611
a31 0.5, a21 0.7, a11 0.9,
2 1
1
a121
1
0.81
0.19,
2 2
1 a221
0.51,
2 3
1
a321
0.75
3
第八章 因子分析
故 m 1的正交因子模型为
X1 0.9F1 1 X 2 0.7F1 2 X 3 0.5F1 3
特殊因子ε=(ε1, ε2,…,εp)'的协差阵D为:
(Im AD1A)1 AD1A (1)
13
第八章 因子分析
8-4 证明公因子个数为m的主成分解,其误差平方
和Q(m)满足以下不等式
pp
p
Q(m)
2 ij
2j ,
i1 j1
j m1
其中E=S-(AA′+D)=(εij),A,D是因子模型的主成分估计.
解:设样本协差阵S有以下谱分解式:
p
m
p
9
第八章 因子分析
或者利用习题8-4的结果:
pp
p
p
p
Q(m)
2 ij
2j
(
2 i
)2
2j ,
i1 j1
j m1
i1
j m1
Q(1)
(22
32 )
[(
2 1
)
2
(
2 2
)2
(
2 3
)2 ]
0.67952 0.36722 [0.23312 0.30912 0.49432 ]
0.5966 0.3943 0.2023
(1)取公因子个数m 1时,求因子模型的主成分解,
并计算误差平方和Q(1).
解 : m 1的因子模型的主成分解为:
0.8757 0.2331 0
0
A(
1l1
)
0.8312 0.7111
,
D
0 0
0.3091 0
0.40943
5
第八章 因子分析
记 E1 R (AA D)
1
0.63 1
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S的特征值,li为相应的
标准特征向量。
14
第八章 因子分析
设A,D是因子模型的主成分估计,即
A 1l1 mlm ,
若记 B l m1 m1 p lp , 有
S (A | B) BA AA BB
解 : m 2的因子模型的主成分解为:
A(
1l1,
2
l2
)
0.8757 0.8312
00..41084082,
0.7111 0.6950
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
B 1 11•2
AB111•2
Im
B 1 11•2
A
AB111•2
A
由逆矩阵的对应块相等,即得:
12
第八章 因子分析
B 1 11•2
D 1
D1 AB221•1 AD 1
B11
AB111•2
B 1 22•1
AD
1
B 21
Im
AB111•2 A
B 1 22•1
B 22
把B22·1和B11·2式代入以上各式,可得:
Q(2)
32
[(
2 1
)2
(
2 2
)2
(
2 3
)
2
]
0.36722 [0.20072 0.14522 0.011312 ]
0.1348 0.06149 0.07331
(3) 试求误差平方和Q(m)<0.1的主成分解. 因Q(2)=0.07331<0.1,故m=2的主成分解满足要求.
10
第八章 因子分析
(D AA)1 D 1 D 1 A(I m AD 1 A)1 AD 1 (2) A(D AA)1 (I m AD 1 A)1 AD 1 (3) I m A(D AA)1 A (I m AD 1 A)1
由第三式和第二式即得 Im (Im AD1A)1 A(D AA)1 A
00..13455
1
0.7279 1
00..651292171
0
0.0979 0
00..102742171
6
第八章 因子分析
33
故 Q(1)
2 ij
2 (0.09792
0.17272
0.24112 )
i1 j1
0.1951
(2)取公因子个数m 2时,求因子模型的主成分解,
并计算误差平方和Q(2).