初中数学竞赛九年级数学试题

合集下载

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。

13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。

14. 一个数的立方根等于它本身,这个数是________。

15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。

历年初中数学竞赛试题精选(含解答)

历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()A. m(1+a%)(1-b%)元B. m?a%(1-b%)元C. m(1+a%)b%元D. m(1+a%b%)元解:选C。

设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。

由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。

解:出发1小时后,①、②、③号艇与④号艇的距离分别为各艇追上④号艇的时间为对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。

解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则由①②得,代入③得:∴,故n的最小整数值为23。

答:要在2小时内抽干满池水,至少需要水泵23台解:设第一层有客房间,则第二层有间,由题可得由①得:,即由②得:,即∴原不等式组的解集为∴整数的值为。

答:一层有客房10间。

解:设劳动竞赛前每人一天做个零件由题意解得∵是整数∴=16(16+37)÷16≈3.3故改进技术后的生产效率是劳动竞赛前的3.3倍。

初中数学竞赛专项训练(2)(方程应用)一、选择题:答:D。

解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:,化简得,解得不合题意舍去)。

应选D。

答:C。

解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为所以,生产第9档次产品获利润最大,每天获利864元。

答:C。

解:若这商品原来进价为每件a元,提价后的利润率为,则解这个方程组,得,即提价后的利润率为16%。

答:B。

解:设甲乙合作用天完成。

由题意:,解得。

故选B。

答:A。

解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。

初中数学竞赛试题内容及答案

初中数学竞赛试题内容及答案

初中数学竞赛试题内容及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. ±4D. ±2答案:C3. 一个圆的半径是5厘米,那么它的直径是多少厘米?A. 10B. 15C. 20D. 25答案:A4. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C5. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是多少立方厘米?A. 24B. 12C. 6D. 8答案:B6. 如果一个角是直角的一半,那么这个角的度数是多少?A. 15°B. 30°C. 45°D. 60°答案:C7. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A8. 一个等腰三角形的底边长是10厘米,两腰相等,如果底角是45°,那么腰长是多少?A. 5B. 7.07C. 10D. 14.14答案:D9. 一个数的立方是-27,这个数是多少?A. -3B. 3C. -27D. 27答案:A10. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1D. 1/2答案:A二、填空题(每题2分,共20分)11. 一个数的平方加上8倍这个数再加上16等于0,这个数是______。

答案:-412. 如果一个三角形的三边长分别为3、4、5,那么这是一个______三角形。

答案:直角13. 一个数的立方根是2,那么这个数是______。

答案:814. 一个数的相反数是-5,这个数是______。

答案:515. 如果一个分数的分子是7,分母是14,化简后是______。

答案:1/216. 一个数的平方是25,那么这个数是______。

答案:±517. 一个数的绝对值是它本身,这个数是______。

全国各地初中(九年级)数学竞赛《几何》真题大全 (附答案)

全国各地初中(九年级)数学竞赛《几何》真题大全 (附答案)

全国各地初中(九年级)数学竞赛专题大全竞赛专题7 几何一、单选题 1.(2021·全国·九年级竞赛)某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒2.(2021·全国·九年级竞赛)如图所示,一次函数y kx b =+的图象过点(1,4)P 且与x 轴和y 轴的正半轴交于AB 、两点,点O 为坐标原点,当AOB 的面积最小时,k ,b 的值为( )A .4k =-,8b =B .4k =-,4b =C .2k =-,4b =D .2k =-,2b =3.(2021·全国·九年级竞赛)如图,已知DEF 的边长分别为3,2,正六边形网格由24个边长为2的正三角形组成,以这些正三角形的顶点画ABC ,使得ABC DEF ∽△△,相似比为ABk DE=,那么k 的不同值共有( )个.A .1B .2C .3D .4二、填空题4.(2021·全国·九年级竞赛)如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.5.(2021·全国·九年级竞赛)把两个半径为5及一个半径为8的圆形纸片放在桌面上,使它们两两外切.若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________. 6.(2021·全国·九年级竞赛)由一次函数2,2y x y x =+=-+和x 轴围成的三角形与圆心在(1,1)、半径为1的圆构成的图形覆盖的面积等于______.7.(2021·全国·九年级竞赛)某广场地面铺满了边长为36cm 的正六边形地砖,现向上抛掷半径为3cm 的圆碟,圆碟落地后与地面不相交的概率大约是_________. 三、解答题8.(2021·全国·九年级竞赛)平面上7个点,它们之间可以连一些线段,使7个点中任意三点必存在两点有线段相连.问最少要连几条线段?证明你的结论.9.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2.10.(2021·全国·九年级竞赛)设1M 是凸五边形12345A A A A A ,将1M 沿1i A A 方向平移,使1A 移到i A 得到凸五边形(2,3,4,5)i M i =.证明:12345,,,,M M M M M 中至少有两个图形,它们有公共内点.11.(2021·全国·九年级竞赛)在圆周上任取21个点,证明:以这些点为端点的弧中至少存在100条不超过120︒的弧.12.(2021·全国·九年级竞赛)两人A 和B 相约在12点与下午1点之间在某地会面,先到的人要等候另一人20分钟,过时就可以离开.如果每人可在指定的一小时内任何时刻到达,并且两人到达的时刻是彼此独立的(即一人到达的时刻与另一人到达的时刻没有影响),试计算两人能会面的概率.13.(2021·全国·九年级竞赛)平面上给出n个不全共线的点,求证:存在一条直线l,它恰通过其中两个点.14.(2021·全国·九年级竞赛)已知A,B,C,D为平面上两两距离不超过1的任意4点,今欲作一圆覆盖这4点(即A,B,C,D在圆内或圆周上)问圆的半径最小该是多少?试证明之.15.(2021·全国·九年级竞赛)任意凸四边形ABCD中总存在一条对角线和一条边,以它们为直径的两个圆可以覆盖这个四边形.16.(2021·全国·九年级竞赛)设甲是边长为1的正三角形纸片,乙是边长为1的正方形纸片,丙是边长为1的正五边形纸片,丁是边长为1的正六边形纸片.证明:(1)不能用甲、乙、丙合起来盖住一个半径为1的圆;(2)能用甲、乙、丙、丁合起来盖住一个半径为1的圆.17.(2021·全国·九年级竞赛)在一个半径等于6的圆内任意放入六个半径等于1的小圆.证明:其中总还有一块空位置,可以完整地放入一个半径为1的小圆.18.(2021·全国·九年级竞赛)将4张圆形纸片放在桌面上,使得其题中任何3张圆形纸片都有公共点,那么这4张圆形纸片是否一定有公共点?证明你的结论.19.(2021·全国·九年级竞赛)平面上给定了若干个圆,它们覆盖的面积为1.证明:从中可选出若干个两两不重叠的圆,使它们覆盖的面积不小于19.20.(2021·全国·九年级竞赛)证明:一个边长为5的正方形可以被3个边长为4的正方形所覆盖.21.(2021·全国·九年级竞赛)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当30α=︒时,通过计算说明此溶液是否会溢出;(2)现需要倒出不少于33000cm的溶液,当α等于60︒时,能实现要求吗?通过计算说明理由.22.(2021·全国·九年级竞赛)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时间是等可能的,如果甲的停泊时间是1小时,乙的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率(精确到0.001).23.(2021·全国·九年级竞赛)把长为a 的线段任意分成3条线段,求这3条线段能够构成一个三角形的3条边的概率.24.(2022·福建·九年级竞赛)如图,四边形ABCD 是平行四边形,∠DAC =45°,以线段AC 为直径的圆与AB 和AD 的延长线分别交于点E 和F ,过点B 作AC 的垂线,垂足为H .求证:E ,H ,F 三点共线.竞赛专题7 几何答案解析一、单选题 1.(2021·全国·九年级竞赛)某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒【答案】B 【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y z k ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B .2.(2021·全国·九年级竞赛)如图所示,一次函数y kx b =+的图象过点(1,4)P 且与x 轴和y 轴的正半轴交于A B 、两点,点O 为坐标原点,当AOB 的面积最小时,k ,b 的值为( )A .4k =-,8b =B .4k =-,4b =C .2k =-,4b =D .2k =-,2b =【答案】A 【详解】解 因函数y kx b =+的图象过点(1,4)P ,所以4,4k b b k =+=-,于是(4)y kx k =+-. 令0y =得4,0k A k -⎛⎫⎪⎝⎭. 令0x =得(0,4)B k -.连OP ,得 114122OABOAP OPBSSSOA OB =+=⨯⨯+⨯⨯ 14141(4)22k k k -=⨯⨯+⨯⨯- 11642k k ⎛⎫=-+ ⎪⎝⎭.显然0k <.令k u =-,则0u >,于是116116442822OABSu u u u⎛⎫=++≥+⨯⨯= ⎪⎝⎭.等号成立当且仅当16(0)u u u=>,即4u =,这时4,48k b k =-=-=. 故选A .注:OAB 的面积也可用114(4)22OABk SOA OB k k-=⨯⨯=⨯⨯-算出. 3.(2021·全国·九年级竞赛)如图,已知DEF 的边长分别为3,2,正六边形网格由24个边长为2的正三角形组成,以这些正三角形的顶点画ABC ,使得ABC DEF ∽△△,相似比为ABk DE=,那么k 的不同值共有( )个.A .1B .2C .3D .4【答案】C 【详解】作图知与DEF 相似的三角形,而相似比不同的三角形只有如图所示的三种,故选C .二、填空题4.(2021·全国·九年级竞赛)如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.【答案】550(010)y x x =+<< 【详解】解 由DP x =得10PC x =-. 又12BF BE PC EC ==,即11(10),10(10)22BF x AF BF x =-=-=+, 所以EFBAFPD y SS =+四边形11()22BE BF AF DP AD =⨯⨯++⨯ 111110(10)(10)102222x x x ⎡⎤=⨯⨯-+++⨯⎢⎥⎣⎦550(010)x x =+<<. 故应填550(010)y x x =+<<.5.(2021·全国·九年级竞赛)把两个半径为5及一个半径为8的圆形纸片放在桌面上,使它们两两外切.若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________. 【答案】1133.【详解】如图,设1O 的半径为8,2O ,3O 的半径为5,切点为A .由对称性,能盖住这3个圆的最小圆形纸片的中心O 在对称轴1O A 上,且与已知三个圆内切.若设这个圆形纸片的半径为r ,则在12Rt O O A 中22221122(85)512O A OO O A =-=+-=,在2Rt OO A 中,25OO r =-,1112(8)OA O A OO r =-=--,25O A =,于是,由22222OO O A OA =+得222(5)5(128)r r -=+-+,由此解出4011333r ==,即所求圆形纸片的最小半径等于1133.6.(2021·全国·九年级竞赛)由一次函数2,2y x y x =+=-+和x 轴围成的三角形与圆心在(1,1)、半径为1的圆构成的图形覆盖的面积等于______. 【答案】42π+【详解】如图,所覆盖面积2 114214222ABCS S S ππ=+=⨯⨯+⋅=+半圆.故答案为:42π+.7.(2021·全国·九年级竞赛)某广场地面铺满了边长为36cm 的正六边形地砖,现向上抛掷半径为3cm 的圆碟,圆碟落地后与地面不相交的概率大约是_________. 【答案】49【详解】解 要使圆碟与地砖的边缘不相交的条件是落地后圆碟的中心到正六边形地砖ABCDEF 的任何一边的距离不小于圆的半径63cm ,也就是圆碟的中心必落在与地砖ABCDEF 同中心且边与地砖边彼此平行、距离为63111111A B C D E F 内(图6-1).作OG AB ⊥于G ,交11A B 于1G 且163cm GG =,所以33336183OG AB ====1118363123OG OG GG =-==而113OG =,所以1132433OA ===,故11124A B OA ==. 设正六边形ABCDEF 和111111A B C D E F 的面积分别为S 和1S ,则所求概率为22211122224243639S A B p S AB =====.故应填49. 三、解答题8.(2021·全国·九年级竞赛)平面上7个点,它们之间可以连一些线段,使7个点中任意三点必存在两点有线段相连.问最少要连几条线段?证明你的结论.【答案】9条,见解析 【详解】解法一:设最少要连n 条线段,如图4-3中7个点之间共连有9条线段,其中任意三点间必有两点连有线段,故9n ≤.另一方面,我们证明9n ≥,下面分4种情形讨论: (1)若7点中存在一点1A 不与其他6点237,,,A A A 连线,则依题意1A ,i A ,j A (27)i j ≤<≤中必有2点连线,于是只可能i A 与j A 连有线,即237,,,A A A 这6点中任意两点连有线,图中一共连了65152⨯=条线. (2)若7点中存在一点1A 只连出一条线段,设1A 仅与2A 连有线而与其余5点3A ,4A ,5A ,6A ,7A ,没有连线,则同(1)可知3A ,4A ,5A ,6A ,7A 这5点中任意两点连有线,至少连有54102⨯=条线.(3)若每点出发至少连出2条线,且有一点恰连出2条线.设该点为1A ,它连出的两条线为12A A ,13A A ,则不与1A 相连的4个点每两点连有线,要连4362⨯=条线,而2A 连出的线段至少2条,除21A A 外,至少还有一条,所以此时至少要连6219++=条线. (4)若每点至少连出3条线,则至少要连73102⨯>条线. 综上所述,最少要连9条线段.解法二:设7点中从1A 出发所连的线段最少,只有k 条,设它们是121311,,,k A A A A A A +,其余6k -个点126,,,k B B B -都与1A 没有连线,于是对任意2点i B ,j B (16)i j k ≤<≤-,由已知条件知1A ,i B ,j B 中必有2点连有线,而1A 与i B ,1A 与j B 没有连线,故只可能i B 与j B 连有线,即16,,k B B -中每点与其余5k -点连有线,于是从各点连出的线段数的总和不少于(1)(6)(5)k k k k ++--221030k k =-+.但上述计数中每条线段计算了2次,故图中所连线段至少为()21210302k k -+=22551522k ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭22151522⎛⎫⎛⎫≥+- ⎪ ⎪⎝⎭⎝⎭1569=-=,即至少要连9条线段. 另一方面,如图4-3中,7点中连有9条线段时满足题设条件. 综上所述,最少要连9条线段.9.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 【答案】见解析 【详解】分析 把圆等分为9个扇形显然不行(虽然必有一扇形内至少有2点,但不保证它们的距离小于2),因此,我们先作一个与已知圆同心的小圆(其直径必须小于2,但不能太小),然后将余下的圆环部分8等分. 证明 设O 是已知圆心,如图,以O 为圆心作半径为0.9的圆,再将余下的圆环8等分,于是将已知圆面分成了9个部分,由抽屉原理知其中必有一部分内至少有已知10点中的101129-⎡⎤+=⎢⎥⎣⎦点,M N ,若,M N 在小圆内,则220.9 1.82MN OC ≤=⨯=<. 若,M N 同在一个扇面形内,则由余弦定理,有222cos45MN AC OC OA OC OA ≤+-⋅︒0.81 6.2520.9 2.50.7 3.912+-⨯⨯⨯<.从例2可以看出,分割图形制造“抽屉”时,可能不是将图形等分为几部分,而是要求分割的每一部分图形都具有所需要的性质(例2中每一部分图形内任意两点的距离都小于2),读者应用这种方法解题时,应该注意到这一点.10.(2021·全国·九年级竞赛)设1M 是凸五边形12345A A A A A ,将1M 沿1i A A 方向平移,使1A 移到i A 得到凸五边形(2,3,4,5)i M i =.证明:12345,,,,M M M M M 中至少有两个图形,它们有公共内点.【答案】见解析 【详解】证明 如图,以1A 为位似中心,以2:1为相似比作1M 的位似图形M ,则M 仍为凸五边形且1M 在M 内.下面我们证明2345,,,M M M M 都在M 内,例如先证4M 在M 内.设P 是4M 内任意一点,它是1M 内的点Q 经过平移得到的,于是14QP A A ∥,故14A A PQ 为平行四边形,又R 是14A A PQ 的两条对角线的交点,因Q 和4A 属于1M ,且1M 是凸五边形,故R 属于M ,而111,:2:1A R RP A P A R ==,故P 属于M .又P 是M ,内任意一点,所以4M 包含在M 之内,同理235,,M M M 都包含在M 内,设12345,,,,M M M M M 及M 的面积分别为12345,,,,S S S S S 及S ,则2123451152S S S S S S S S ++++=>⋅=.于是,由图形重叠原理知,12345,,,,M M M M M 中至少有两个图形,它们有公共内点.11.(2021·全国·九年级竞赛)在圆周上任取21个点,证明:以这些点为端点的弧中至少存在100条不超过120︒的弧.【答案】见解析 【详解】证明:我们称不超过120︒的弧为好弧.不妨设以1A 为端点的好弧最少,并且设它只有1n -条,它们是12131,,,n A A A A A A ,从而以231,,,n A A A -为端点的好弧都至少有1n -条,故以这n 个点为端点的好弧至少有1(1)2n n ⋅-条,除这n 个点外,其余21n -个点记为1221,,,n n A A A ++,从中任取两点,(121)i j A A n i j +≤<≤.因1i j A A A ,至少有一个内角不超过60︒,故11,,i j i j A A A A A A 中至少有一条弧不超过260120⨯︒=︒,根据1A 的取法,这条弧不能是1i A A 和1j A A ,而只能是j i A A ,即j i A A 是好弧.可见以1221,,,n n A A A ++中任意两点,(121)i j A A n i j +≤<≤为端点的弧都为好弧.这样的好弧有1(21)(20)2n n ⋅--条.综上所述知好弧至少有2211213991399(1)(21)(20)100222424y n n n n n ⎛⎫⎛⎫=⋅-+⋅--=-+≥+= ⎪ ⎪⎝⎭⎝⎭条.当10n =或11时,y 取到最小值100,于是结论成立.12.(2021·全国·九年级竞赛)两人A 和B 相约在12点与下午1点之间在某地会面,先到的人要等候另一人20分钟,过时就可以离开.如果每人可在指定的一小时内任何时刻到达,并且两人到达的时刻是彼此独立的(即一人到达的时刻与另一人到达的时刻没有影响),试计算两人能会面的概率. 【答案】59 【详解】解 我们用,x y 分别表示,A B 到达的时刻,而两人能会面的充分必要条件为20x y -≤,其中060,060x y ≤≤≤≤.我们用平面直角坐标系中的点(),x y 表示,A B 到达的时刻(从中午12点以后算起,以分为单位),于是所有可能结果是一个边长为60的正方形OABC .代表能够会面的点都落在图中画有阴影线的区域H 内(图6-2),于是21260240402H ADE OABC S S S =-⨯=-⨯⨯⨯正方形 226040=-,故两人能会面的概率为22226040251()6039HOABC S p S -===-=正方形. 答:两人能会面的概率等于59. 13.(2021·全国·九年级竞赛)平面上给出n 个不全共线的点,求证:存在一条直线l ,它恰通过其中两个点.【答案】见解析【详解】证明:平面上只有有限点,过每两点作一直线只有有限点直线,每条直线与不在这条直线上的点(由已知条件知这样的点必存在)配成对,则这样的点只有有限个,每个点线对中都有该点到直线的距离,记这些距离最小的点对为(,)P l ,则l 为所求.实际上,设l 上有不少于3个给定的已知点,则过P 作PA l ⊥于A (如图),则在l 上A 的某一侧(包括A )必有2个已知点,设为,M N (M 可能与A 重合,连PN ,并M 作MQ PN ⊥于Q ,过A 作AR PN ⊥于R ,则MQ AR AP d ≤<=,这与AP d =最小矛盾,于是结论得证.注 本题是英国著名数学家希尔维斯特(J.J. Sylvester)在其逝世前不久提出的一个有趣的问题.这个貌似简单的问题,当时困扰过不少的数学家,并且这状况持续350年之久,直到1933年,伽莱(T. Callai)给出了一个非常复杂的证明.不久以后,凯里(L. M. Kelly) 才给出上述很简单的证明,其证法的关键就是利用极端原理.14.(2021·全国·九年级竞赛)已知A ,B ,C ,D 为平面上两两距离不超过1的任意4点,今欲作一圆覆盖这4点(即A ,B ,C ,D 在圆内或圆周上)问圆的半径最小该是多少?试证明之. 3 【详解】注意最不利的情形点A 、B 、C 、D 中有3点构成边长等于1的正三角形,覆盖此三角形的圆的半径不小33 (1)A 、B 、C 、D 共线,这时4点在一条长度不超过1的线段内,结论显然成立;(2)A 、B 、C 、D 中有3点(例如A 、B 、C )构成一个三角形,第4点D 在此三角形内,不妨设60C ∠≥︒,以AB 为弦作圆O ,使AB 所对的弓形弧(含C 的一侧)为60︒,则此圆O 覆盖A 、B 、C 、D 4点.作此圆直径2AE R =,则22222(2)1R R AE BE AB -=-=≤,即3R ≤,故A 、B 、C 、D 4点被一个半径不大3 (3)A 、B 、C 、D 是一个凸四边形的4个顶点,则A C ∠+∠,B D ∠+∠中必有一个不小于180︒,不妨设180B D ∠+∠≥︒,同(2)可证ABC 的外接圆半径3≤180B D ∠+∠≥︒知D 点也在这个圆内或圆周上,故A 、B 、C 、D 3 315.(2021·全国·九年级竞赛)任意凸四边形ABCD 中总存在一条对角线和一条边,以它们为直径的两个圆可以覆盖这个四边形.【答案】见解析【详解】四边形的4个内角中至少有一个90≥︒,不妨设90A ∠≥︒,以对角BD 为直径的圆O 必覆盖ABD △.若90C ∠≥︒,圆O 覆盖四边形ABCD 结论成立,若90C ∠>︒,则C 在圆外,圆O 与CD 、CB 中至少一条线段相交,不妨设圆O 与CD 交于E ,于点分别以BD 、BC 为直径的两个圆覆盖四边形ABCD .16.(2021·全国·九年级竞赛)设甲是边长为1的正三角形纸片,乙是边长为1的正方形纸片,丙是边长为1的正五边形纸片,丁是边长为1的正六边形纸片.证明:(1)不能用甲、乙、丙合起来盖住一个半径为1的圆;(2)能用甲、乙、丙、丁合起来盖住一个半径为1的圆.【答案】(1)见解析;(2)见解析【详解】(1)因为对于半径为1的圆,边长为1的正三角形至多盖住60︒的弧,边长为1的正方形至多盖住90︒的弧,边长为1的正五边形至多盖住120︒的弧(因边长为1的正五边形对角线的长<边长为1的正六边形对角线的长3=,而6090120360︒+︒+︒<︒,所以甲、乙、丙合起来不得盖住半径为1的圆.(2)如图所示,用甲、乙、丙、丁合起来可盖住半径为1的圆.17.(2021·全国·九年级竞赛)在一个半径等于6的圆内任意放入六个半径等于1的小圆.证明:其中总还有一块空位置,可以完整地放入一个半径为1的小圆.【答案】见解析【详解】分析 与证明设半径为6的大圆O 内任意放入6个半径为1的小圆,则小圆圆心都在以O 为中心,615-=为半径的圆内.如果大圆内无论怎样再放入一个半径为1的小圆7O ,都要与6个小圆中某个(16)i O i ≤≤重叠,那么7112i O O ≤+≤,即半径为5的圆将被6个半径为2的圆所覆盖.由图形重叠原理知6个小圆的总面积将不小于半径为5的圆的面积.但实际上226224255ππππ⋅=<=⋅,得到矛盾,于是命题得证.注:本例的证题关键是将外圆缩小,而将里圆扩大,这是解决嵌入问题的一种技巧,即收缩与膨胀技巧或裁边与镶边技巧.18.(2021·全国·九年级竞赛)将4张圆形纸片放在桌面上,使得其题中任何3张圆形纸片都有公共点,那么这4张圆形纸片是否一定有公共点?证明你的结论.【答案】见解析.【解析】【分析】【详解】设4张圆形纸片是(1,2,3,4)k O k ,其中1O ,2O ,3O 有公共点1A ,1O ,2O ,4O 有公共点2A ,1O ,3O ,4O 有公共点3A ,2O ,3O ,4O 公共点4A .(1)若1A ,2A ,3A ,4A 共线(如图顺序),因为1A ,3A 都是圆形纸片1O 与3O 的公共点,故线段13A A 在圆形纸片1O 与2O 的公共部分内,又24A A 都是圆形纸片2O 与4O 的公共点,故线段24A A 在圆形纸片2O 与4O 的公共部分内,所以线段23A A 上任意一点都是这4张圆形纸片的公共点.(2)若1A ,2A ,3A ,4A 中有一点在以其余3点为顶点的三角形的边界上或内部(如图).因为1A ,2A ,3A 都在1O 内,故123A A A △被圆形纸片1O 所覆盖,从而4A 在圆形纸片1O 内,而4A 是圆形纸片2O ,3O ,4O 的公共点,所以4A 是这张圆形纸片的公共点.(3)若1A ,2A ,3A ,4A 是一个凸四边形的4个顶点(如图),同上可知线段13A A 在圆形纸片1O 与3O 的公共部分内,线段24A A 在圆形纸片2O 与4O 的公共部分内,所以13A A 与24A A 的交点是这4张圆形纸片的公共点.总之,这4张圆形纸片一定有公共点.19.(2021·全国·九年级竞赛)平面上给定了若干个圆,它们覆盖的面积为1.证明:从中可选出若干个两两不重叠的圆,使它们覆盖的面积不小于19. 【答案】见解析.【解析】【分析】【详解】从给定圆中选出半径最大的圆1O ,其半径为1r ,面积为1S ,则与圆1O 有重叠的圆连同圆1O 一起覆盖的面积()211139M r S π≤=,即1119S M ≥.然后去掉与圆1O 重叠的圆,再从剩下的圆(圆1O 除外)选出半径最大的圆2O ,其半径为2r ,并将与圆2O 有重叠的圆去掉.这样经过有限步可得有限个两两不重叠的圆1O ,2O ,…k O ,它们覆盖的面积为()12121199k k S S S M M M ++⋅⋅⋅+≥++⋅⋅⋅+=. 20.(2021·全国·九年级竞赛)证明:一个边长为5的正方形可以被3个边长为4的正方形所覆盖.【答案】见解析.【解析】【分析】【详解】设正方形ABCD 的边长为5,先放置一个边长为4的正方形CEFG ,其中C 为原正方形ABCD 的一个顶点,E 在边CD 上,F 在正方形ABCD 内,G 在边CB 上.连AF ,再放置第二个边长为4的正方形111AB C D ,其中A 是原正方形的一个顶点,且使D 在射线11D C 上(如图),由勾股定理有:2211D D AD AD =-2211543D C =-=<.故D 在线段11D C 内,且1111431C D D C D D =-=-=.设11B C 与CD 交于H ,则1541DE CD CE DC DH =-=-==<,故E 在线段DH 内,从而E 被正方形111AB C D 覆盖.又11145B AD B AC FAD ∠>∠=︒=∠,即AF 在1B AD 内,且1224AF DE AB ==,故F 也被正方形111AB C D 覆盖,这就证明了梯形AFED 可以被一个边长为4的正方形111AB C D 所覆盖.同理,梯形AFGB 也可以被一个边长为4的正方形222AB C D 所覆盖,于是正方形ABCD 可被3个边长为4的正方形所覆盖. 21.(2021·全国·九年级竞赛)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm 的正方形,高为30cm ,内有20cm 深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当30α=︒时,通过计算说明此溶液是否会溢出;(2)现需要倒出不少于33000cm 的溶液,当α等于60︒时,能实现要求吗?通过计算说明理由.【答案】(1)不会溢出,理由见解析;(2)不能实现要求,见解析.【解析】【分析】【详解】(1)当30α=︒时,如图a ,过C 作//CF BP 交AD 所在直线于F .在Rt CDF △中,20330,20cm,30cm FCD CD DF ∠=︒==<,所以点F 在线段AD 上,20330AF =此时容器内能容纳的溶液量为()3 ()203320203030201040003cm 2ABCF AF BC AB S ⎛⎫⎛+⋅=⋅=⋅⋅= ⎪ ⎪ ⎝⎭⎝⎭梯形.而容器中原有溶液量为()32020208000cm ⨯⨯=.因为3400038000⎛> ⎝⎭,所以当30α=︒时溶液不会溢出. (2)如图b ,当60α=︒时,过C 作//CF BP 交AB 所在直线于F .在Rt CBF △中,30cm 30BC BCF =∠=︒,,10320cm BF =<,所以点F 在线段AB 上,故溶液纵截面为Rt BFC △.因211503cm 2BFC S BC BF =⨯⨯=,容器内溶液量为315032030003cm =,倒出的溶液量为3(80003)3000cm -<,所以不能实现要求. 22.(2021·全国·九年级竞赛)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时间是等可能的,如果甲的停泊时间是1小时,乙的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率(精确到0.001).【答案】0.879.【解析】【分析】【详解】设自当天零时算起,甲、乙两船到达码头的时刻分别是x 和y ,则必须024,024x y ≤≤≤≤.我们视(),x y 为平面直角坐标系内的点,于是点(),x y 落在一个面积为224S =的正方形OABC 的内部或边界上(如下图).如果轮船不需要等候码头空出,那么当船甲先到时,船乙应迟来1个小时以上,即1y x -≥,即1y x ≥+;当船乙先到时,船甲应迟来2个小时以上,即2x y -≥,即2y x ≤-,即点(),x y 应在直线1y x =+的上方且在直线2y x =-的下方,也就是点(),x y 应在如图所示的两个三角形ADE 和CFG △中某一个的内部或边界上,故所求概率ADE CFGABCD S S p S +=四边形.而24123,24222CG CF AD AE ==-===-=,所以211222223231103220.879241152p ⨯⨯+⨯⨯===. 答:两船中任何一艘都不需要等候码头空出的概率为0.879.23.(2021·全国·九年级竞赛)把长为a 的线段任意分成3条线段,求这3条线段能够构成一个三角形的3条边的概率.【答案】14【解析】【分析】【详解】解 设其中两条线段的长为,x y ,则第3条线段的长为()a x y -+,于是,x y 的取值范围是0,0,0,0,0()0.x a x a y a y a a x y a x y a ⎧<<<<⎧⎪⎪<<⇔<<⎨⎨⎪⎪<-+<<+<⎩⎩ ① 要使3条线段构成一个三角形的3条边,其充要条件是其中任意一条线段的长度小于其余两条线段的长度之和.这等价于每条线段的长度都小于2a ,即 0,0,220,0,220().22a a x x a a y y a a a x y x y a ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇔<<⎨⎨⎪⎪⎪⎪<-+<<+<⎪⎪⎩⎩ ②将(),x y 视为平面直角坐标系的坐标,则满足条件①的点(),x y 在以()()()0,0,,0,0,O A a B a 为顶点的OAB 内.而满足条件②的点(),x y 在以(,),(0,),,0()2222a a a a C D E 为顶点的CDE △内,故所求概率为11222142CDE OAB a a CD DE Sp S a a OA OB ⨯⨯⨯====⨯⨯⨯.答:3条线段能构成一个三角形的三边的概率为14. 24.(2022·福建·九年级竞赛)如图,四边形ABCD 是平行四边形,∠DAC =45°,以线段AC 为直径的圆与AB 和AD 的延长线分别交于点E 和F ,过点B 作AC 的垂线,垂足为H .求证:E ,H ,F 三点共线.【答案】见解析【解析】【分析】如图:证明P ,A ,B ,C 四点共圆.可得CBE APC ∠=∠.①,证明C ,E ,B ,H 四点共圆,可得CHE CBE ∠=∠.②,证明C ,H ,F ,P 四点共圆,可得180APC CHF ∠=︒-∠.③,由①②③代换可得180CHE CHF ∠+∠=︒.可得结论;【详解】如图,延长BH 与直线AD 相交于点P ,连接CP .因为45DAC ∠=︒,BP AC ⊥,所以45BPA ∠=︒.又45BCADAC∠=∠=︒,所以BPA BCA ∠=∠,于是P ,A ,B ,C 四点共圆.所以CBE APC ∠=∠.①连接CE ,由AC 为圆直径,得90CEA CHB ∠=︒=∠,所以C ,E ,B ,H 四点共圆,于是CHE CBE ∠=∠.②连接CF ,由AC 为圆直径,得90CFP CHP ∠=︒=∠,所以C ,H ,F ,P 四点共圆,于是180APC CHF ∠=︒-∠.③由②,①,③,得180CHE CBE APC CHF ∠=∠=∠=︒-∠,所以180CHE CHF ∠+∠=︒.所以E ,H ,F 三点共线.【点睛】本题考查了圆内接罩边形的判断及性质,难度较大,解题的关键是构造圆内接四边形.。

全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国初中(九年级))数学竞赛专题大全竞赛专题5 不等式一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100B .112C .120D .1502.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 394041 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个B .64个C .72个D .81个5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1B .2C .3D .47.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能.A .1B .2C .3D .48.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004B .2005C .2006D .20079.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >>二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______.14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________.17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房?21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.23.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明;2ay bz cx k ++<. 26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗?28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高?29.(2021·全国·九年级竞赛)1132x x -+ 30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环)37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克?38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++.41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?竞赛专题5 不等式答案解析 (竞赛真题强化训练)一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100 B .112C .120D .150【答案】B 【解析】 【分析】 【详解】 由已知不等式得13156767,,787878n k k n nk n n +<<<<<<.因由已知条件,67n 与78n 之间只有 唯一一个整数k ,所以76287n n-≤解得112n ≤.当112n =时,9698k ≤≤,存在唯一97k =,所以n 的 最大值为112.故应选B .2.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<【答案】C 【解析】 【分析】 【详解】依题意得27077321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩或且,4x ⇒>且5x ≠.故选C .3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 39 40 41 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对 【答案】C 【解析】 【分析】 【详解】设穿39码和40码的学生分别有x 人和y 人,则()2052310x y +=-++=.(1)若y x ≥,即穿40码的人数最多时,中位数和众数都等于40,故选A 错;(2)若5x y ==,则中位数1(3940)39.52=+=,众数为39和40,中位数不等于众数,故选B 错;(3)平均数[]13853940(10)41342239.75220xp x x =⨯++⨯-+⨯+⨯=-,且010x ≤≤,于是39.2539.75p <≤,满足3940p ≤≤,故选C 正确.所以应选C .4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个 B .64个 C .72个 D .81个【答案】C 【解析】 【分析】 【详解】 解 因98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩中x 的整数值仅为1,2,3,所以01,34,98a b <≤<≤即9a <≤, 2432b <≤,故a 可取1,2,…,9这9个值,b 可取25,26,….32这8个值,所以有序对(),a b 有8972⨯=个.故选C .5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -【答案】C 【解析】 【分析】 【详解】解 由054ax ≤+≤得51ax -≤≤-,且已知0x >,所以0a <,15ax a ≤-≤-. 又不等式054ax ≤+≤的整数解是1,2,3,4,所以101a <-≤,且545a≤-<解得 1a ≤-且5114a -<-≤,故514a -≤<-,所以选C .6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】 【详解】选C .理由:由20094941=⨯,得200941= 又0x y <<2009200941641241541341441===20094114761641025369656===因此,满足条件的整数对(,)x y 为(41,1476),(164,1025),(369,656).共有3对.7.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能. A .1 B .2C .3D .4【答案】C 【解析】 【分析】 【详解】理由:设较大的四位数为x ,较小的四位数为y ,则534x y -=, ① 且22x y -能被10000整除.而22()()x y x y x y -=+-2672()x y =⨯+,则x y +能被5000整除.令()5000x y k k ++=∈N . ②由式①②解得2500267,2500267.x k y k =+⎧⎨=-⎩ 考虑到x ,y 均为四位数,于是,100025002679999,100025002679999,k k ≤+≤⎧⎨≤-≤⎩解得126755832500625k ≤≤. k 可取1,2或3.从而,x 可取的值有3个:2767,5267,7767.8.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004 B .2005C .2006D .2007【答案】B 【解析】 【分析】 【详解】解 (算两次方法)依题意,用剪刀沿不过顶点的直线剪成两部分时,所得各张多边形(包括三角形)的纸片的内角和增加了2180360⨯︒=︒,剪过k 刀后,可得(1)+k 个多边形,这些多边形的内角总和为360360(1)360k k ︒+⨯︒=+⨯︒.另一方面,因为这1k +个多边形中有34个为六十二边形,它们的内角总和为34(622)1802040180⨯-⨯=⨯︒︒,余下的多边形(包括三角形)有13433k k +-=-个,其内角总和至少为(33)180k -⨯︒,于是(1)3602040180(33)180k k +⨯︒≥⨯︒+-⨯︒,解得2005k ≥.其次,我们按如下方式剪2005刀时,可得到符合条件的结论.先从正方形剪下1个三角形和1个五边形,再将五边形剪成1个三角形和1个六边形,…,如此下去,剪了58刀后,得到1个六十二边形和58个三角形,取出其中33个三角形,每个各剪一刀,又可得到33个四边形和33个三角形,对这33个四边形,按上述方法各剪58刀,便得到33个六十二边形和3358⨯个三角形,于是共剪了583333582005++⨯=(刀),故选B .9.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定【答案】B 【解析】 【分析】 【详解】解 由已知条件及加法的单调性得1126352251124c c a b c c c a a a b c a a b b a b c b b ⎧+<++<+⎪⎪⎪+<++<+⎨⎪⎪+<++<+⎪⎩,即1736582371524c a b c c a a b c a b a b c b ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩①②③由①,②得17816176366c a b c a a a <++<=< (传递性),所以a c >. 由①,③得7673222b a bc c c c <++<=< (传递性),所以b c <.可见,a ,b ,c 的大小关系是a c b >>,故选B . 10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >>C .c a b >>D .c b a >>【答案】D 【解析】 【分析】 【详解】 解:因111221r r r ≥<+=+,故 ()(111a b r r r r r r =+<=+++, 1111r r r r c b r r r x +-+->=+⋅+.所以c b a >>. 故选:D . 二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 【答案】17 【解析】 【分析】 【详解】由已知条件得32,57a b b a >>.令32,57A a b B b a =-=-,则A ,B 均为正整数,解出52,737310a A B b A B =+=+≥+=.当1,1A B ==时等号成立,故b 的最小值为10,这时527a =+=,17a b +=.故应填17.12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______. 【答案】 4352【解析】 【分析】 【详解】 434370222y x ++≤=≤=. 又243x y -=所以24433x x x y x -+-=-=.故当0x =时,x y -取最小值43;当72x =时,x y -取最大值175(4)322+=所以应填45,32.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______. 【答案】6 【解析】 【分析】 【详解】 因122902303030a a a <+<+<<+<,所以1229,,,303030a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦每一个等于0或1.由题设知其中恰有18个等于1, 所以12111213290,1303030303030a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+==+=+=+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦于是111201,123030a a <+<≤+<,解得1183019,61063a a ≤<≤<所以[]106a =.故应填6. 14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________. 【答案】23x ≤≤ 【解析】 【分析】 【详解】由()2226923232(3)25x x x x x x x x x x --+=--=---=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 【答案】334 【解析】 【分析】 【详解】解 设[]6n m =则(01)6na a m =≤+<从而66n m a =+.当102a ≤<时, 22(021)3n m a a =+≤<,故23n m ⎡⎤=⎢⎥⎣⎦.于是由362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得662332m a m m m a ++==+,从而0a =.此时(6204)06133n m m =<≤≤. 当112a ≤<,223n m a =+由212222m m a m +≤+<+得213n m ⎡⎤=+⎢⎥⎣⎦代入 362n n n ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得2133m m m a ++=+,得13a =,与112a ≤<矛盾,舍去. 故所有的n 共有334个.16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________. 【答案】67a a x -<<(当0a >时);76a ax <<-(当0a <时);无解(当0a =时).【解析】 【分析】 【详解】解 原不等式化为()()670x a x a +-<,方程()()670x a x a +-=的两根为6a -和7a.若0a >,则67a a -<不等式的解为67a ax -<<; 若0a <,则76a a <-不等式的解为76a a x <<-; 若0a =,则67a a-=,不等式无解. 故应填:67a a x -<< (当0a >时); 76a ax <<-(当0a <时);无解(当0a =时). 17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________. 【答案】196 【解析】 【分析】 【详解】理由:设k 是m ,n 的最大公约数,则m 和n 可以表示为,m ka n kb ==(1k >,a ,b 均为正整数).于是,()3323()371753m n ka kb k k a b +=+=+==⨯.因为1k >且7与53都是质数,23232k a b k a k k +>≥>, 所以7k =且2353k a b +=,即34953a b ⨯+=.由a ,b 是正整数,得1,4a b ==. 所以7,28m n ==.故728196mn =⨯=.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本. 【答案】109 【解析】 【分析】 【详解】设100名学生捐书数分别是12100,,,a a a ,不妨设其中100a 为最大,于是100101000a +=()129100a a a a +++++()101118100a a a a ++++()192027100a a a a +++++(91a +++)9299100a a a +++190190190≤+++111902090=⨯=,所以100109a ≤.另一方面,当12999a a a ====,100109a =时,满足题目要求,故捐书最多的人最多能捐书109本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 【答案】 329 335或334 【解析】 【分析】 【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房? 【答案】宾馆的底楼有客房10间 【解析】 【分析】 【详解】设底楼有x 间客房,则2楼有()5+x 间客房. 简4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩依题意可得不等式组解不等式组得9.611x <<.又x 为正整数,所以10x =. 答:宾馆的底楼有客房10间.21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层? 【答案】这座大楼最多有5层【解析】 【分析】 【详解】设大楼有n 层,则楼层对的个数为(1)2n n -每架电梯停3层,有3232⨯=个楼层对, 所以(1)43,(1)242n n n n -⨯≥-≤,且n 为正整数,所以5n ≤.设置4部电梯使它们停靠的楼层分别为 ()()()()1,4,5,2,4,5,3,4,5,1,2,3满足题目要求,故这座大楼最多有5层.22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.【答案】4x =-或45【解析】 【分析】 【详解】原方程中显然0x ≠,故原方程可化为2241()2x x ⎡⎤+-=⎢⎥⎣⎦.又2222221()21()2()1x x x ⎡⎤⎡⎤⎡⎤+-=+-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故原方程可化为224[()]1x x=+,所以4x 为整数,设4n x =(n 为整数),原方程又化为2[]14n n =+.于是2124n n n +≤<+,即222(12)2(12)440,2(13)2(12)4802(13)2(13)n n n n n n n n ⎧≤≥+⎧--≥⎪⇒≤≤⎨⎨--<<<⎩⎪⎩或 或.2(12)2(13n <<).又n 为整数,所以1n =-或5n =,故4x =-或4523.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【答案】见解析 【解析】 【分析】 【详解】设[]x x α=-,则01a ≤≤,于是存在小于n 的正整数r ,使1r rn nα-≤<故[][]1r rx x x n n-+<<+, 故当0k n r ≤≤-时,[][][][]11r k r n rx x x x x n n n n--≤+≤+<++=-, 故[](0)k x x k n r n ⎡⎤+=≤≤-⎢⎥⎣⎦当11n r k n -+≤≤-时,[][][][][]1111111r n r k r n r x x x x x x n n n n n n--+--+=++≤+<++=++<+, 故[]1(11)k x x n r k n n ⎡⎤+=+-+≤≤-⎢⎥⎣⎦,于是[]1111[]()(n n r n r x x x x x x x n n n n n ---+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=++++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦[][]21)(1)(1)(1)[]1n r n x x n r x r x n x r n n -+-⎡⎤⎡⎤++++=-++-+=+-⎢⎥⎢⎥⎣⎦⎣⎦①. 又因为[][]1n x r nx n x r +-≤≤+,所以[][]1nx n x r =+-②. 由①及②便知要证等式成立.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 【答案】见解析 【解析】 【分析】 【详解】 (1)1(1)22a a a a +--≤=11(1)(1)22b bc c --≤三式平方后相乘得 31(1)(1)(1)()4a b b c c a -⋅-⋅-≤故()()()1,1,1a b b c c a ---中至少有一个不大于14.25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明; 2ay bz cx k ++<. 【答案】见解析 【解析】 【分析】 【详解】因3()()()()()()k a x b y c z abc xyz ay c z bz a x cx b y =+++=+++++++()()abc xyz k ay bz cx k ay bx cx =++++>++.又0k >,所以2ay bz cx k ++<.26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.【答案】见解析 【解析】 【分析】 【详解】因10abc =,故a ,b ,c 都不为零.又2222()2()0a b c a b c ab bc ca ++=+++++=且2220a b c ++>,所以0ab bc ca ++<,于是1110bc ca ab a b c abc++++=<. 27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗? 【答案】(1)50;(2)60%;(3)15人;(4)正确 【解析】 【分析】 【详解】(1)职工人数47911106350=++++++=;(2)年龄不小于38但小于44岁职工人数占职工总数的百分比为91110100%60%50++⨯=; (3)年龄在42岁以上职工人数()1063415=++-=(人); (4)设该厂职工的年龄平均值为n ,则11(34436738940114210446463)199239.84395050n ≥⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=>且11(36438740942114410466483)209241.84425050n <⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=<,故所作的估计是正确的.28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高? 【答案】2支玫瑰的价格高于3支百合的价格. 【解析】 【分析】 【详解】解 设玫瑰每支x 元,百合每支y 元,依题意得632445242x y x y +>⎧⎨+=-⎩①② 32⨯-⨯②①得918y <,故2y <. 53⨯-⨯①②得1854x >,故3x >.答:2支玫瑰的价格高于3支百合的价格.29.(2021·全国·九年级竞赛)1132x x -+ 【答案】8313x ---≤≤【解析】 【分析】 【详解】解 首先,由1030x x -≥⎧⎨+≥⎩得31x -≤≤.1132x x -≥+① 数上式两边均非负(当31x -≤≤时),两边平方后,整理得 9843x x --≥+②于是980x --≥,即98x ≤-结合31x -≤≤得938x -≤≤-.并且②式两边平方,得2(98)16(3)x x ≥--+,整理得264128330x x ++≥.③因方程264128330x x ++=的两根为1,2831x -±= 所以③的解为831x --≤或831x -+≥结合938x -≤≤-得原不等式的解为8313x ---≤≤30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 【答案】1144x -<<或364x -<<634x <【解析】 【分析】 【详解】解 不等式两边乘以4,化简为5115(1)(1)(1)(1)43414143x x x x +-->+--++-- 移项、整理得22151169161x x ->--,移项、通分得2224(646)0(169)(161)x x x -<--, 可化为222(646)(169)(161)0x x x ---<,即222139()()()0163216x x x ---<. 如右图得2116x <或2393216x <<,解得1144x -<<或364x -<<634x <<31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 【答案】15 【解析】 【分析】 【详解】因n ,k 为正整数,所以0,0n n k >+>. 由题中不等式得151387n k n +>>,即1513187k n >+>所以7687k n >>,故76,87k n k n ><. 令760,780A k n B n k =-≥=-≥,可解出87,76n A B k A B =+=+. 又因为A ,B 均为正整数,1,1A B ≥≥,所以8715n ≥+=.当且仅当1,1A B ==时n 取最小值15,这时k 有唯一值716113⨯+⨯=. 故所求n 的最小值为15.32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.【答案】41x -≤<-或4x <-或15x ≥.【解析】 【分析】 【详解】解 移项,通分整理得1020(1)(4)x x x -+≤++故得(Ⅰ) 1020(1)(4)0x x x -+≥⎧⎨++<⎩,或(Ⅱ)1020(1)(4)0x x x -+≤⎧⎨++>⎩.解(I ) 1541x x ⎧≤⎪⎨⎪-<<-⎩,∴41x -≤<-. 解(Ⅰ)1541x x x ⎧≥⎪⎨⎪--⎩或∴4x <-或15x ≥. 综上所述得,原不等式的解为41x -≤<-或4x <-或15x ≥.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 【答案】1x <-或1x > 【解析】 【分析】 【详解】解 移项通分得(21)(1)(3)(1)0(1)(1)x x x x x x -+-+->-+,即220(1)(1)x x x x -+>-+. 因22172()024xx x,故上述不等式化为()()110,1x x x -+>∴<-或1x >. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 【答案】3a =【解析】 【分析】 【详解】解 依题意,1,7--是方程28210ax ax ++=的两个根,且0a >,由韦达定理得 2(1)(7)a-⨯-=,所以3a =. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数. 【答案】18或20. 【解析】 【分析】 【详解】(1)当16x ≤时,平均数为564x x +=,中位数为2016182+=.由56184x+=,解得16x =,满足16x ≤;(2)当1620x ≤≤时,平均数564x x +=,中位数为202x +.由562042x x++=,解得16x =,不符合1620x <<;当20x ≥时,平均数为564x x +=,中位数为2020202+=.由56204x+=,解得24x =,符合20x ≥.因此,所求中位数为18或20.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环) 【答案】第10次至少要射9.9环 【解析】 【分析】 【详解】设前9次射击共得x 环,依题意得1(9.08.48.19.3)95x x -+++>,解得78.3x <,故78.30.178.2x ≤-=.依题目要求,第10次射击至少要达到的环数为()8.8100.178.29.9⨯+-=(环). 答:第10次至少要射9.9环37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克? 【答案】甲种盐水最多可用49g ,最少可用35g 【解析】【分析】【详解】设3种盐水应分别取,,xg yg zg ,1005%8%9%1007%060060047x y z x y z x y z ++=⎧⎪++=⨯⎪⎪≤≤⎨⎪≤≤⎪≤≤⎪⎩,解得20043100y x z x =-⎧⎨=-⎩所以02004600310047x x ≤-≤⎧⎨≤-≤⎩, 解得3549x ≤≤.答:甲种盐水最多可用40g ,最少可用35g .38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.【答案】见解析.【解析】【分析】【详解】设[],[]x x y y n αββ=+=+=+,其中0,1αβ≤<,m ,n 为整数.(1)若110,022αβ≤<≤<,则021,021,01αβαβ≤<≤<≤+<.这时有 [2][2][22][22]22x y m m m n αβ+=+++=+,[][][]x x y y +++[][()()][]m a m n n αββ=+++++++()22m m n n m n =+++=+,所以[2][2][][][]x y x x y y +=+++.(2)若111,122αβ≤<≤<,则122,122,12αβαβ≤<≤<≤+<.这时有 [2][2][22][22]2121x y m n m n αβ+=+++=+++222m n =++,[][][][][()()][]x x y y m m n n ααββ+++=+++++++()1221m m n n m n =++++=++.所以[2][2][][][]x y x x y y +>+++.(3)若110,122αβ≤<≤<(111,022αβ≤<≤<的情况类似),这时有021α≤<,13122,22βαβ≤<≤+<,这时有[2][2][22][22]221x y m a n m n β+=+++=++,[][][][()()]221x x y y m m n a n m n β+++=+++++++.综上所述,不论何种情况,都有[2][2][][][]x y x x y y +≤+++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)【答案】第10次最少要得9.9环.【解析】【分析】【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ② 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由②得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环.40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++. 【答案】见解析【解析】【分析】【详解】 (0,0)2a b ab a b +≥≥得 []()()()()11()2()()2()()x x y x z x x y x z x x x y x z x y x z x y x z +++++=⋅=+++++++①. 1()2()()y y y x y zy x y z ≤+++++②. 1()2()()z z z x z yz x z y ≤+++++③由①+②+③即得要证不等式. 41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?【答案】(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.【解析】【分析】【详解】解 (1)设该厂每天生产A 种矿泉水x 吨,则该厂每天生产B 种矿泉水10x +吨,依题意得()200100102000x x -+=,解得30,1040x x =+=.(2)设该厂每天生产A 吨矿泉水y 吨,依题意得该厂每天共生产30401080++=吨矿泉水且()10000200100808000y y ≥+-≥,其中100002003010040=⨯+⨯为该厂原来每天获得的利润,解上述不等式得020y ≤≤.答:(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.【答案】0m ≥【解析】【分析】【详解】解 ①化为()()120x x --<,故①的解为12x <<.②化为()()1210m x x ⎡⎤⎣⎦-+-<.③(1)当1m =,③为()210x -<,即1x <,符合题意.(2)当10m ->,即1m 时,③的解为211x m -<<-符合题意. (3)当10m -<,即1m <时,又分两种情形讨论: 若211m <-,即1m <-时,③的解为21x m <-或1x >,不符合题意; 若211m >-,即1m >-时,③的解为1x <或21x m>-. 要使①与②无公共解,必须221m ≥-即0m ≥,结合1m <得01m ≤<. 综上所述,得到要使①与②无公共解,m 的取值范围是0m ≥.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.【答案】m 的最大值为111-;m 的最小值为57- 【解析】【分析】【详解】 解 由325,231a b c a b c ++=+-=可解出73,711a c b c =-=-,于是()()37373711732m a b c c c c c =+-=-+--=-.由0,0,0a b c ≥≥≥得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩解得37711c ≤≤. 所以m 的最大值为71321111m =⨯-=-,m 的最小值为353277m =⨯-=-. 44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?【答案】这个班的学生人数可能是42,43,44,45,46,47,48.【解析】【分析】【详解】解 设3项活动都参加了的学生有n 人,于是由容斥原理I 知至少参加了一项活动人数为222019(968)38n n ++-+++=+.所以,这个班的学生人数为38442n n ++=+.另一方面参加了两项活动的学生人数分别是9,6,8,所以06n ≤≤,故424248n ≤+≤.综上所述,这个班的学生人数可能是42,43,44,45,46,47,48.。

九年级初中竞赛数学试卷

九年级初中竞赛数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -1/22. 若m和n是方程x^2 - 3x + 2 = 0的两个根,则m+n的值是()A. 3B. 2C. 1D. 03. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x - 55. 若a、b、c是等差数列的连续三项,且a+b+c=21,则b的值为()A. 7B. 14C. 21D. 286. 在等腰三角形ABC中,AB=AC,且∠BAC=60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°7. 若a^2 + b^2 = 1,且a+b=0,则ab的值为()A. 0B. 1C. -1D. 28. 下列方程中,有唯一解的是()A. x^2 - 4x + 4 = 0B. x^2 - 4x + 5 = 0C. x^2 - 4x + 6 = 0D. x^2 - 4x + 8 = 09. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1,-2),则a的值是()A. 1B. -1C. 2D. -210. 在梯形ABCD中,AD∥BC,AB=CD,AD=8cm,BC=12cm,则梯形的高是()A. 6cmB. 8cmC. 10cmD. 12cm二、填空题(每题5分,共50分)11. 已知等差数列{an}的第一项为2,公差为3,则第10项an=__________。

12. 若函数y = kx + b的图像过点(2,-1),则k+b=__________。

13. 在直角坐标系中,点P(-3,4)到原点O的距离是__________。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。

如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。

A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。

而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。

2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。

现在以D为圆心,DE为半径画圆弧,交AB于G。

则△DFE的面积是阴影部分面积的()。

A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。

而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。

所以,△DFE的高是DE的一半,即1/4AB。

因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。

而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。

所以,△DFE的面积是阴影部分面积的4倍。

3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。

现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。

A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。

其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。

初中数学竞赛试题(含答案)

初中数学竞赛试题(含答案)

DC B A初中数学竞赛试题(含答案)一、选择题(共8小题,每小题5分,满分40分。

以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1x-图象的大致形状是( )A B C D2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。

如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )A .70≤x ≤87.5B .70≤x 或x ≥87.5C .x ≤70D .x ≥87.53.如图,AB 是半圆的直径,弦AD,BC 相交于P,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .12B.2 CD4.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P,那么该抛物线的顶点坐标是( )A .(0,-2)B .19,24⎛⎫- ⎪⎝⎭C .19,24⎛⎫- ⎪⎝⎭D .19,24⎛⎫-- ⎪⎝⎭5.如图,△ABC 中,AB =AC,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是( )ABCD 6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有() yxOyxOyxOyxOA .6条B .7条C .8条D .无数条7.把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入20x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( )A .不存在B .有一组C .有两组D .多于两组 8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。

答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。

2024年全国初中数学知识竞赛试题及答案

2024年全国初中数学知识竞赛试题及答案
(1)若圆周上依次放着数 1,2,3,4,5,6,问:是否能经过有限 次操作后,对圆周上任意依次相连的 4 个数 a,b,c,d,都有
第9页
(a d )(b c) ≤0 ?请说明理由. (2 )若圆周上从小到大按顺时针方向依次放着2003 个正整数1 ,
2 ,…,2 0 0 3 ,问:是否能经过有限次操作后,对圆周上任意依次相连 的 4 个数a ,b ,c ,d ,都有(a d )(b c) ≤0 ?请说明理由.
1 0 .已知二次函数y ax2 bx c (其 中 a 是正整数)的图象经 过点 A ( - 1 ,4 ) 与点 B ( 2 ,1 ),并且与x 轴有两个不同的交点,则 b+c 的 最大值为 . 三、解答题(共 4 题,每小题 15 分,满分 60 分)
第3页
1 1 .如图所示,已知AB 是⊙O 的直径,B C 是⊙O 的切线,O C 平行于
第7页
注:1 3 B 和14B 相对于下面的13A 和14A 是较容易的题. 13B 和14B 与 前面的12 个题组成考试卷.后面两页13A 和14A 两题可留作考试后的研究题 。
1 3 A .如图所示,⊙O 的直径的长是关于 x 的二次方程 x2 2(k 2) x k 0
(k是整数)的最大整数根. P 是⊙O 外一点,过点 P 作⊙O 的切线 PA
和割线 P B C ,其中 A 为切点,点 B ,C 是直线 PBC 与⊙O 的交点.若
PA ,P B ,P C 的长都是正整数,且 PB 的长不是合数,求 PA2 PB2 PC2 的 值.
A O
解:
P
B
C
第8页
(第 13A 题图)
1 4 A .沿着圆周放着一些数,如果有依次相连的 4 个数 a,b,c,d 满 足不等式(a d )(b c) >0,那么就可以交换 b,c 的位置,这称为一次操 作.

初中数学九年级竞赛试卷

初中数学九年级竞赛试卷

一、选择题(每题5分,共20分)1. 下列各组数中,哪一组数不是勾股数?A. 3,4,5B. 5,12,13C. 6,8,10D. 7,24,252. 已知函数y=2x-1,当x=3时,y的值为:A. 5B. 6C. 7D. 83. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)4. 下列关于无理数说法正确的是:A. 无理数都是无限不循环小数B. 无理数都是无限循环小数C. 无理数都是整数D. 无理数都是分数5. 已知一个等差数列的前三项分别为2,5,8,则该数列的第四项为:A. 10C. 12D. 13二、填空题(每题5分,共25分)6. 若等腰三角形底边长为10,腰长为6,则该三角形的面积为______。

7. 在直角坐标系中,点P(-3,4)到原点O的距离为______。

8. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的两个实数根之和为______。

9. 若一个圆的半径为r,则该圆的周长为______。

10. 若等比数列的首项为2,公比为3,则该数列的前5项和为______。

三、解答题(每题10分,共30分)11. 解方程:2x^2 - 4x - 6 = 0。

12. 已知三角形ABC中,∠A = 60°,∠B = 45°,AB = 8,求AC的长度。

13. 已知函数y = kx + b,其中k和b为常数,且函数图象经过点A(2,3)和B (-1,-1),求该函数的解析式。

四、应用题(15分)14. 某商店销售两种商品,商品甲每件售价100元,商品乙每件售价80元。

已知商品甲的利润率为20%,商品乙的利润率为15%。

若要使两种商品的利润总额达到3000元,问需要购买商品甲和商品乙各多少件?答案:一、选择题:1. C2. A3. A4. A二、填空题:6. 247. 58. 59. 2πr10. 242三、解答题:11. x = 3 或 x = -112. AC = 8√313. y = 2x - 5四、应用题:14. 解:设购买商品甲x件,商品乙y件,则100x 20% + 80y 15% = 300020x + 12y = 30005x + 3y = 150x = 30 - 3y由于商品甲和商品乙的售价分别为100元和80元,且要使利润总额达到3000元,故y的取值范围为:30 - 3y ≤ 30y ≥ 0结合以上条件,得到y的取值范围为0 ≤ y ≤ 10。

j初中九年级数学竞赛试题下载

j初中九年级数学竞赛试题下载

j初中九年级数学竞赛试题下载一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. 0.33333(无限循环)C. √2D. 1/32. 如果一个圆的半径是5,那么它的周长是多少?A. 10πB. 20πC. 30πD. 40π3. 以下哪个方程的解集是空集?A. x^2 + 4x + 4 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 + 3x + 2 = 04. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第10项是多少?A. 143B. 144C. 145D. 1465. 一个长方体的长、宽、高分别是2, 3, 4,那么它的对角线长度是多少?A. 5B. √29C. √35D. √41二、填空题(每题4分,共20分)6. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是_________三角形。

7. 一个数的立方根等于它本身,这个数可能是_________。

8. 将一个圆分成四个扇形,每个扇形的圆心角为90°,那么这四个扇形的面积之和等于_________。

9. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,且f(1) = 2,f(-1) = -2,那么a + c的值是_________。

10. 一个数列的前n项和为S(n),如果S(3) = 9,S(5) = 25,那么S(4)的值是_________。

三、解答题(每题10分,共30分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。

12. 给定一个等差数列,首项为a1,公差为d。

如果这个数列的前n 项和为S(n),证明S(n) = na1 + n(n-1)d/2。

13. 一个直角三角形的两条直角边分别为6和8,求斜边的长度,并证明勾股定理。

四、综合题(每题15分,共20分)14. 有一个长方体,其长、宽、高分别是a, b, c。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

竞赛初中数学试题及答案

竞赛初中数学试题及答案

竞赛初中数学试题及答案一、选择题(每题2分,共10分)1. 已知一个等腰三角形的两边长分别为3cm和5cm,那么这个三角形的周长是()。

A. 11cmB. 13cmC. 16cmD. 无法确定2. 下列哪个数是无理数()。

A. 0.5B. √2C. 22/7D. 03. 一个数的相反数是-3,那么这个数是()。

A. 3B. -3C. 0D. 64. 若a、b、c是等差数列,且a+c=10,b=5,则a、b、c的值分别是()。

A. 2, 5, 8B. 3, 5, 7C. 4, 5, 6D. 5, 5, 55. 一个圆的半径为2cm,那么这个圆的面积是()。

A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²二、填空题(每题2分,共10分)6. 一个数的平方是25,那么这个数是______或______。

7. 一个数增加20%后是120,那么这个数原来是______。

8. 已知一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边长是______cm。

9. 一个数的绝对值是5,那么这个数是______或______。

10. 一个数除以-2的商是-3,那么这个数是______。

三、解答题(每题5分,共20分)11. 已知一个二次函数y=ax²+bx+c,其中a=1,b=-3,c=2,求当x=1时,y的值。

12. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,面积不变,求原长方形的长和宽。

13. 一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和,求数列的第8项。

14. 一个圆的直径是10cm,求这个圆的周长和面积。

答案:一、选择题1. B2. B3. A4. A5. B二、填空题6. ±57. 1008. 59. ±510. 6三、解答题11. 当x=1时,y=1-3+2=0。

全国各地初中(九年级)数学竞赛《函数》真题大全 (附答案)

全国各地初中(九年级)数学竞赛《函数》真题大全 (附答案)

全国各地初中(9年级)数学竞赛专题大全竞赛专题6 函数一、单选题1.(2021·全国·九年级竞赛)2420x x y -+,则x y -的值为( ). A .2B .6C .2或2-D .6或6-2.(2021·全国·九年级竞赛)如图,两个反比例函数1k y x=和2ky x =在第一象限内的图象分别是1l 和2l ,设点P 在1l 上,PC x ⊥轴于点C ,交2l 于点,A PD y ⊥轴于点D ,交2l 于点B ,则四边形PAOB 的面积为( ).A .12k k +B .12k k -C .12k kD .21k k -3.(2021·全国·九年级竞赛)如右图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线交双曲线1y x=于点Q ,连接OQ ,当点P 向右运动时,Rt QOP 的面积( ).A .逐渐增大B .逐渐减小C .保持不变D .无法确定4.(2021·全国·九年级竞赛)设a ,b ,c 是ABC 三边的长,二次函数2()22b b y a x cx a =----在1x =取最小值83b -,则ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形5.(2021·全国·九年级竞赛)若函数22(1)32y k x x k k =++++-的图象与x 轴交点的纵坐标为4-,则k 的值是( ) A .1-B .2-C .1-或2D .1-或2-6.(2021·全国·九年级竞赛)设[]x 表示不超过实数x 的最大整数,{}[]x x x =-,则200983201083401783200920092009⨯⨯⨯⎡⎤⎡⎤⎡⎤+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦( ). A .249075 B .250958 C .174696 D .2510007.(2021·全国·九年级竞赛)在实数范围内,设1988(2)(1)(2)(1)511111a a a a a x a a ⎡⎤--+--⎢⎥+=⎢⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1B .2C .4D .68.(2021·全国·九年级竞赛)设抛物线24y x kx =++与x 轴有两个不同交点()()12,0,,0x x ,则下列结论中一定成立的是( ).A .221217x x += B .22128x x +=C .221217x x +< D .22128x x +>9.(2021·全国·九年级竞赛)设Rt ABC △的三个顶点A ,B ,C 均在抛物线2y x 上,并且斜边AB 平行于x 轴,若斜边上的高为h ,则( ) A .1h <B .1h =C .12h <<D .2h >10.(2021·全国·九年级竞赛)设,n k 为正整数,12132(3)(1)4,(5)4,(7)4A n n A n A A n A +-+=++=++431(9)4,,(21)4,k k A n A A n k A -++=+++,已知1002005A =,则n 的值为( ).A .1806B .2005C .3612D .4100二、填空题11.(2021·全国·九年级竞赛)边长为整数的等腰三角形一腰上的中线将其周长分为1:2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是_________. 12.(2021·全国·九年级竞赛)若0abc ≠,则||||||||a b c abca b c abc +++的最大值是________,最小值是__________. 13.(2021·全国·九年级竞赛)若0x >,则24411x x x y ++-+=的最大值是________.14.(2021·全国·九年级竞赛)设x 为正实数,则函数21y x x x=-+的最小值是______.15.(2021·全国·九年级竞赛)已知,a b 为抛物线()()2y x c x c d =----与x 轴交点的横坐标,a b <,则||||a c c b -+-的值为______.16.(2021·全国·九年级竞赛)设正ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA PM 十的最大值和最小值分别记为s 和t ,则22s t -=_______. 17.(2021·全国·九年级竞赛)若2008个数122008,,,a a a 满足:12a =,2n a -1112008n n n a a a --⎛⎫+ ⎪⎝⎭102008+=,其中,2n =,3,…,2008.那么2008a 可能达到的最大值是_________.18.(2021·全国·九年级竞赛)设333199519961997,0x y z xyz ==>,且2223333199519961997199519961997x y z ++111x y z++=_______. 19.(2021·全国·九年级竞赛)如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是_________.20.(2021·全国·九年级竞赛)函数23||7y x x =-+的图象与函数22336y x x x x =-+-+的图象的交点个数是_______.21.(2021·全国·九年级竞赛)不论m 取任何实数,抛物线2221y x mx m m =+++-的顶点都在一条直线上,则这条直线的解析式是______.22.(2021·全国·九年级竞赛)如果一次函数y mx n =+与反比例函数3n x y x -=的图象相交于点1,22⎛⎫⎪⎝⎭,那么该直线与双曲线的另一个交点为________.23.(2021·全国·九年级竞赛)函数|1||2||3|y x x x =+++++,当x =_______时,y 有最小值,最小值等于_______.24.(2021·全国·九年级竞赛)当x 变化时,分式22365112x x x x ++++的最小值是_______.25.(2021·全国·九年级竞赛)代数式21133110x x +的最小值是_______.26.(2021·全国·九年级竞赛)已知a ,b 是正数,并且二次函数22y x ax b =++和22y x bx a =++的图象都与x 轴相交,则22a b +的最小值是________. 三、解答题27.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 28.(2021·全国·九年级竞赛)试求1231997x x x x -+-+-++-的最小值.29.(2021·全国·九年级竞赛)当12x ≤≤2121x x x x +---30.(2021·全国·九年级竞赛)一幢33层的大楼里有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次.对每个人来讲,他往下走一层楼感到1分不满意,往上走一层感到3分不满意.现有32个人在第一层,并且他们分别住在第2层至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小值?最小值是多少?(有些人可以不坐电梯直接从楼梯上楼) 31.(2021·全国·九年级竞赛)求函数22233x y x x +=++的最大值和最小值.32.(2021·全国·九年级竞赛)已知,,a b c 都是正整数,且抛物线2y ax bx c =++与x 轴有2个不同的交点A 和B ,若,A B 到原点的距离都小于1,求a b c ++的最小值.33.(2021·全国·九年级竞赛)求2221026249T x y z xy yz z =++---+的最小值.34.(2021·全国·九年级竞赛)在40与100之间任取一个实数x ,如果[]7x =,那么1610x ⎡=⎣的概率是多少?这是[]a 表示不超过a 的最大整数(要求答案写成最简分数的形式).35.(2021·全国·九年级竞赛)如图,D E F 、、分别是ABC 的三边BC CA AB 、、上任意一点,证明:,,AEF BFD CDE △△△中至少有一个三角形的面积不大于ABC 的面积的四分之一.36.(2021·全国·九年级竞赛)某林场安排了7天的植树工作,从第二天起每天都比前一天增加5个植树的人,但从第二天起每人每天都比前一天少植5棵树,且同一天植树的人,植相同数量的树.若7天共植树9947棵,则植树最多的那天共植了多少棵?植树最少的那天,有多少人在植树?37.(2021·全国·九年级竞赛)一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中某一层停一次.对于每个人来说他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别在第2至第33层的每一层,问:电梯停在哪一层,可以使32人不满意的总分达到最小?最小值是多少?(有些人可以不坐电梯而直接从楼梯上楼). 38.(2021·全国·九年级竞赛)已知正整数m ,n 17434m m n -+=,求n 的最大值. 39.(2021·全国·九年级竞赛)对于1,2,3,,i n =,有|| 1 i x <且有12||||||n x x x +++=122009||n x x x ++++.求正整数n 的最小值.40.(2021·全国·九年级竞赛)整数012010,,,x x x 满足条件:00x =,10|||1|x x =+,21|||1|x x =+,…,201020091x x =+,求122010x x x +++的最小值.41.(2021·全国·九年级竞赛)平面内给定一个方向l 和一个凸图形F ,其面积为()S F ,内接于F 且有一边平行于l 的所有三角形中面积最大的记为,其面积记()S .求最大正实数c ,使对平面内任意给定的凸图形F ,都有()()S c S F ≥⋅.42.(2021·全国·九年级竞赛)已知x ,y ,z 是正数且1x y z ++=,比较149A x y z=++与36B =的大小,并问A 能否等于B ?43.(2021·全国·九年级竞赛)(1)证明:若x 取任意整数时,二次函数2y ax bx c =++总取整数值,那么2,,a a b c -都是整数;(2)写出上述命题的逆命题,并判断真假,且证明你的结论.44.(2021·全国·九年级竞赛)已知一次函数12y x =,二次函数221y x =+,是否存在二次函数23y ax bx c =++,其图象经过点(5,2)-,且对任意实数,这三个函数对应的函数值123,,y y y ,都有132y y y ≤≤成立?若存在,求出函数3y 的解析式;若不存在,请说明理由.45.(2021·全国·九年级竞赛)点(4,0),(0,3)A B 与点C 构成边长是3,4,5的直角三角形.如果点C 在反比例函数ky x=的图象上,求k 可能取到的一切值. 46.(2021·全国·九年级竞赛)已知一次函数y ax b =+的图象经过点(3,32),(3),(,2)A B C c c --,求222a b c ab bc ca ++---的值.47.(2021·全国·九年级竞赛)如图,在直角梯形OABC 中,//OA BC ,A ,B 两点的坐标分别是(13,0)A ,(11,12)B ,动点P ,Q 分别从O ,B 两点同时出发,点P 以每秒3个单位长的速度沿OA 方向运动,点Q 以每秒1个单位长的速度沿线段BC 运动,线段OB 与PQ 的交点为D ,过D 作//DE OA 交AB 于E ,射线QE 交x 轴于点F ,设P ,Q 运动的时间为t 秒.(1)当t 为何值时,以P A B Q 、、、为顶点的四边形是平行四边形,请写出推理过程.(2)设以P A E Q 、、、为顶点的图形面积为y ,求y 关于运动时间t 的函数关系式,并求出y 的最大值. (3)当t 为何值时,PQF △为等腰三角形?请写出推理过程.48.(2021·全国·九年级竞赛)已知抛物线21:34c y x x =--+和抛物线22:34c y x x =--相交于A ,B 两点,点P 在抛物线1c 上,且位于点A 与点B 之间;点Q 在抛物线2c 上,也位于点A 与点B 之间. (1)求线段AB 的长;(2)当//PQ y 轴时,求PQ 长度的最大值.49.(2021·全国·九年级竞赛)已知x ,y ,z 为实数,且满足2023x y z x y z +-=⎧⎨-+=⎩,求222x y z ++的最小值.50.(2021·全国·九年级竞赛)函数22(21)y x k x k =+-+的图象与x 轴的两个交点是否都在直线1x =的右侧,若是,请说明理由;若不一定,请求出两个交点在直线1x =的右侧时,k 的取值范围.竞赛专题6 函数答案解析一、单选题1.(2021·全国·九年级竞赛)2420x x y -+,则x y -的值为( ). A .2 B .6C .2或2-D .6或6-【答案】D 【解析】 【分析】 【详解】解:2420x x y -+,2420x x y -+=,240x -,20x y +=,即2,2x y x =±=-,于是()236x y x x x -=--==或6-. 故选:D .2.(2021·全国·九年级竞赛)如图,两个反比例函数1k y x=和2ky x =在第一象限内的图象分别是1l 和2l ,设点P 在1l 上,PC x ⊥轴于点C ,交2l 于点,A PD y ⊥轴于点D ,交2l 于点B ,则四边形PAOB 的面积为( ).A .12k k +B .12k k -C .12k kD .21k k -【答案】B 【解析】 【分析】 【详解】OACOBDPOOD PAOB S S SS=--长方形四边形.设(,),(,),(,)P a b A c d B e f ,则122,,ab k cd k ef k ===,所以12212111111222222PAOB S PC PD AC OC BD OD ab cd ef k k k k k =⨯-⨯⨯-⨯⨯=--=--=-四边形.故选:B .3.(2021·全国·九年级竞赛)如右图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线交双曲线1y x=于点Q ,连接OQ ,当点P 向右运动时,Rt QOP 的面积( ).A .逐渐增大B .逐渐减小C .保持不变D .无法确定【答案】C 【解析】 【分析】 【详解】设(,)Q a b ,则,OP a PQ b ==,且1b a=,所以111222OPQS OP PQ ab =⨯⨯=⨯=. 故选:C .4.(2021·全国·九年级竞赛)设a ,b ,c 是ABC 三边的长,二次函数2()22b by a x cx a =----在1x =取最小值83b -,则ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形【答案】D 【解析】 【分析】 【详解】解 依题意可得2220,,42,231,2,52()52338()223ba b a a b c b c a a b c ABC b a c b c b b b a c a b⎧⎪->⎧⎪>⎧⎪⎪=⎪⎪-⎪⎪=⇒+=⇒⇒+=⇒⎨⎨⎨⎪⎪⎪-=⎪⎪⎪=⎩⎩⎪----=-⎪⎩是直角三角形.故应选D .注:从前面的例题可以看出,解有关二次函数的最值问题,不仅要熟悉有关二次函数的性质,还要灵活运用相关的不等式知识、几何知识等,才能使问题得到顺利解决.5.(2021·全国·九年级竞赛)若函数22(1)32y k x x k k =++++-的图象与x 轴交点的纵坐标为4-,则k 的值是( ) A .1- B .2-C .1-或2D .1-或2-【答案】B【分析】 【详解】解 因0x =时,4y =-代入函数关系得2432k k -=+-,即(1)(2)0k k ++=,所以1k =-或2k =-.故应选D .注:本题中的函数可以是一次函数,也可以是二次函数.不能一开始就默认它是二次函数,约定10k +≠,从而错误地选择了B .6.(2021·全国·九年级竞赛)设[]x 表示不超过实数x 的最大整数,{}[]x x x =-,则200983201083401783200920092009⨯⨯⨯⎡⎤⎡⎤⎡⎤+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦( ). A .249075 B .250958 C .174696 D .251000【答案】A 【解析】 【分析】 【详解】原式(20090)83(20091)83(20092008)83200920092009+⨯+⨯+⨯⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦083183200883838383200920092009⨯⨯⨯⎡⎤⎡⎤⎡⎤=++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦083183200883083183200883832009200920092009200920092009⨯⨯⨯⨯⨯⨯⎧⎫⎧⎫⎧⎫=⨯++++----⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭83083183200883200983(122008)2009200920092009⨯⨯⨯⎧⎫⎧⎫⎧⎫=⨯++++----⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭083183200883200983831004200920092009⨯⨯⨯⎧⎫⎧⎫⎧⎫=⨯+⨯----⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭.显然,2009与83互质,083,183,,200883⨯⨯⨯除以2009有2009个不同的余数.所以,08318320088301200810042009200920092009⨯⨯⨯+++⎧⎧⎫⎧⎫+++==⎨⎨⎬⎨⎬⎩⎩⎭⎩⎭. 故原式200983831004100416674782328249075=⨯+⨯-=+=.7.(2021·全国·九年级竞赛)在实数范围内,设1988(2)(1)(2)(1)511111a a a a a x a a ⎡⎤--+--⎢⎥+=⎢⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1 B .2C .4D .6【答案】D【分析】 【详解】解:要使x 有意义,必须且只需(2)(1)0,(2)(1)0,(2)(1)0,1,110,21101a a a a a a a a a a a⎧--≥⎪⎧--=--≥⎪⎪⎪⇒≠⇒=-⎨⎨-≠⎪⎪≠⎩⎪+≠⎪-⎩. 所以1988198********05(1)1()(2)(2)1611(1)12x ⨯⨯-+=+=-=-=--+, 故x 的个位数字为6, 故选:D .8.(2021·全国·九年级竞赛)设抛物线24y x kx =++与x 轴有两个不同交点()()12,0,,0x x ,则下列结论中一定成立的是( ).A .221217x x += B .22128x x += C .221217x x +< D .22128x x +> 【答案】D 【解析】 【分析】 【详解】由2244016k k =-⨯>⇒>.又因1212,4x x k x x +=-=,所以()2222121212281688x x x x x x k +=+-=->-=. 故选:D .9.(2021·全国·九年级竞赛)设Rt ABC △的三个顶点A ,B ,C 均在抛物线2y x 上,并且斜边AB 平行于x 轴,若斜边上的高为h ,则( ) A .1h < B .1h = C .12h << D .2h >【答案】B 【解析】 【分析】 【详解】解 设A 的坐标为()2,a a ,点C 的坐标为()2,(|||| )c c c a <,则B 点的坐标为()2,a a -.由勾股定理可得()22222()AC a c a c =-+-,()22222()BC c a a c =++-,则22222(2)4AC BC AB a a +===, 于是()()222222224a c a c a ++-=,即()22222a c a c -=-.由于22a c >,所以221a c -=,即斜边上的高h =(A 的纵坐标)-(C 的纵坐标)221a c =-=. 注:(1)如图仅画出了0c a <<的情形,在其他情形下,计算是完全相同的.(2)设()()1122,,,A x y B x y ,利用勾股定理可得计算A 与B 的距离的公式为()()2222121AB x x y y =-+-.10.(2021·全国·九年级竞赛)设,n k 为正整数,12132(3)(1)4,(5)4,(7)4A n n A n A A n A +-+=++=++431(9)4,,(21)4,k k A n A A n k A -++=+++,已知1002005A =,则n 的值为( ).A .1806B .2005C .3612D .4100【答案】A 【解析】 【分析】 【详解】2221[(1)2][(1)2]4(1)24(1)1A n n n n n +++-+=+-++=+, 2222[(3)2][(3)2]4(3)24(3)3A n n n n n +++-+=+-+=+=+, 2223[(5)2][(5)2]4(5)24(5)5A n n n n n +++-++-+++,同理451007,9,,21001199200520051991806A n A n A n n n =+=+=+⨯-=+=⇒=-=.故选:A . 二、填空题11.(2021·全国·九年级竞赛)边长为整数的等腰三角形一腰上的中线将其周长分为1:2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是_________. 37【解析】 【分析】设等腰三角形的腰为x ,底为y ,周长被分为的两部分的长分别为n 和2n ,则222x x n x y n ⎧+=⎪⎪⎨⎪+=⎪⎩或222x x n x y n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得25(,),33n n x y ⎛⎫= ⎪⎝⎭或4,33n n ⎛⎫ ⎪⎝⎭.因为25233n n ⨯<(此时不能够成三角形,舍去),所以4(,),33n n x y ⎛⎫= ⎪⎝⎭,其中n 是3的倍数.则三角形面积2221472336n n n S ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.当0n ≥时,S 随着n 的增大而增大.所以3n =时.S 37 12.(2021·全国·九年级竞赛)若0abc ≠,则||||||||a b c abca b c abc +++的最大值是________,最小值是__________. 【答案】 4 -4 【解析】 【分析】 【详解】 因为1||a a =±,1||b b =±,1||c c =±,1||abc abc =±,所以44||||||a b ca b c -≤++≤. 当a ,b ,c 全为正时等于4,当a ,b ,c 全为负时等于4-,故其最大值是4,最小值是4-. 13.(2021·全国·九年级竞赛)若0x >,则24411x x x y ++-+=的最大值是________.32 【解析】 【分析】 【详解】因0x >,244222441111111x x x x y xx x x ++++==++++-+22222211121232x x x x x x+⋅+⋅等号成立当且仅当221(0)x x x =>,即1x =,所以0x >时,1y 32y 3232=+ 故答案为:0x >时,1y 32y 3232=+ 14.(2021·全国·九年级竞赛)设x 为正实数,则函数21y x x x=-+的最小值是______.【答案】1【分析】 【详解】 211(1)10211(0)y x x x x x x=-++-≥+⋅=>,等号当且仅当1x =且1x x =,即1x =时成立,故y 的最小值为1, 故答案为:1.15.(2021·全国·九年级竞赛)已知,a b 为抛物线()()2y x c x c d =----与x 轴交点的横坐标,a b <,则||||a c c b -+-的值为______. 【答案】b a - 【解析】 【分析】 【详解】依题意,该抛物线开口向上,又当x a =或b 时,0y =.当x c =时,20y =-<,所以a c b <<,故||||a c c b c a b c b a -+-=-+-=-.故答案为:b a -.16.(2021·全国·九年级竞赛)设正ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA PM 十的最大值和最小值分别记为s 和t ,则22s t -=_______. 【答案】43 【解析】 【分析】 【详解】因为PA CA ≤,PM CM ≤,故当P 处于BC 边顶点C 这一极端位置时,PM PA 十取最大值,最大值为32s CM CA =+=.如图4-1,作正'A BC ,设'M 为'A B 的中点,则由'PBM PBM ≌得'PM PM ,于是''PA PM PA PM AM +=+≥.连'CM ,则'ACM ∠='ACB BCM ∠+∠=603090︒+︒=︒,所以'AM =22'AC CM +=222(3)7+'7PA AM PM +≥=A 、P 、'M 共线时等号成立,即PA AM +的最小值为7t =22s t -=22(32)(7)3-=4317.(2021·全国·九年级竞赛)若2008个数122008,,,a a a 满足:12a =,2n a -1112008n n n a a a --⎛⎫+ ⎪⎝⎭102008+=,其中,2n =,3,…,2008.那么2008a 可能达到的最大值是_________.【答案】200620082 【解析】 【分析】 【详解】依题意11102008n n nn a a a a --⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,12008n n a a -= ①或11n n a a -=② 于是连续两次第②类变换互相抵消,保持原数不变,并且当连续三次变换依次是“第①类变换,第②类变换,第①类变换”时,其效果相当为进行一次第②类变换,故从12a =出发变到2008a ,一共要经过2007次变换,相当于进行若干次第①类变换和至多2次第②类变换,并且第②类变换只有第一次、最后一次进行才可能使2008a 最大.其中以前2006次进行第①类变换,最后一次进行第②类变换时,2008a 达到最大值200620082.18.(2021·全国·九年级竞赛)设333199519961997,0x y z xyz ==>,且2223333199519961997199519961997x y z ++111x y z++=_______. 【答案】1 【解析】 【分析】 【详解】解:因0xyz >,故3331995199619970x y z k ===>,则3331995,1996,1997k k k x y z ===, 3333333k k k k k kx y z x y z++, 两端三次方得3111111()x y z x y z++=++.又0,0,0x y z >>>,所以1111x y z++=.故答案为:1.19.(2021·全国·九年级竞赛)如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是_________. 【答案】17- 【解析】 【分析】 【详解】解:因为当2x =-时,535328257ax bx cx a b c ++-=----=, 所以328212a b c +=-+,于是当2x =时,5353282512517ax bx cx a b c ++-=++-=--=-. 故答案为:17-.20.(2021·全国·九年级竞赛)函数23||7y x x =-+的图象与函数22336y x x x x =-+-+的图象的交点个数是_______. 【答案】4 【解析】 【分析】 【详解】第一个函数化为2237(0),37(0),x x x y x x x ⎧++<=⎨-+≥⎩第二个函数化为26(03),266(03).x y x x x x ≤≤⎧=⎨-+⎩或 分别作它们的图象知,它们共有4个交点.或者分别解方程组(22237,37,(0),00)2666y x x y x x x x y x x y ⎧=++=-+<≤≤⎨=-+=⎩及2237,(3)266y x x x y x x ⎧=-+>⎨=-+⎩,可得4个交点为(1111(985,6285,(35),6,(35),6,(313),82222A B C D ⎛⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎝⎭⎝⎭⎝⎭.故答案为:4.21.(2021·全国·九年级竞赛)不论m 取任何实数,抛物线2221y x mx m m =+++-的顶点都在一条直线上,则这条直线的解析式是______. 【答案】1y x =-- 【解析】 【分析】 【详解】二次函数化为2()1y x m m =++-,得顶点坐标为,1,x m y m =-⎧⎨=-⎩消去m 得1y x =--.故答案为:1y x =--.22.(2021·全国·九年级竞赛)如果一次函数y mx n =+与反比例函数3n x y x -=的图象相交于点1,22⎛⎫⎪⎝⎭,那么该直线与双曲线的另一个交点为________. 【答案】51,2⎛⎫-- ⎪⎝⎭【解析】 【分析】 【详解】将1,22x y ==代入,31y mx n ny x =+⎧⎪⎨=-⎪⎩得12,2261,m n n ⎧=+⎪⎨⎪=-⎩于是1,23.n m ⎧=⎪⎨⎪=⎩ 解方程13,2312y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩得1,22x y ⎧=⎪⎨⎪=⎩或1,5.2x y =-⎧⎪⎨=-⎪⎩故另一交点为51,2⎛⎫-- ⎪⎝⎭.故答案为:51,2⎛⎫-- ⎪⎝⎭.23.(2021·全国·九年级竞赛)函数|1||2||3|y x x x =+++++,当x =_______时,y 有最小值,最小值等于_______.【答案】 2- 2 【解析】 【分析】 【详解】解 当3x ≤-时,(1)(2)(3)3(2)y x x x x =-+-+-+=-+; 当32x -<≤-时,(1)(2)(3)y x x x x =-+-+++=-;当21x -<≤-时,(1)(2)(3)4y x x x x =-+++++=+; 当1x >-时,(1)(2)(3)3(2)y x x x x =+++++=+.故|1||2||3|y x x x =+++++在(,2]-∞-上递减,在[2,)-+∞上递增,当2x =-时,y 取最小值2.故应填2,2-(如图).注:①一般说来,对于含绝对值的一次函数,应分区间将绝对值符号去掉变成折线函数,再根据函数的增减性(一次项系数为正时递增,为负时递减)就不难得出所求函数的最大(或最小)值.如果作出其图象,那么其结果是一目了然的.②本题的一种简单解法是利用差的绝对值的几何意义来求解:因为||x a -表示数轴上坐标为x 的点P 到坐标为a 的点A 的距离,故|1||2||3|y x x x =+++++表示数轴上坐标为x 的点P 到坐标分别为1,2,3---的点,,A B C 的距离之和.显然当P 与B 重合时,即2x =-时,这个距离之和为最小,其最小值为线段AC 的长度|(1)(3)|2---=.又如,若要求|9||8||3||1||5||6|y x x x x x x =-+-+-++++++的最小值,则它等价于求数轴上坐标为x 的点P ,分别到坐标为9,8,3,1,5,6---的各点,,,,,A B C D E F 的距离之和的最小值. 显然当P 在线段CD 上,即当13x -≤≤时,这个距离之和取最小值,并且最小值|9(6)||8(5)||3(1)|32AF BE CD =++=--+--+--=.24.(2021·全国·九年级竞赛)当x 变化时,分式22365112x x x x ++++的最小值是_______.【答案】4 【解析】 【分析】 【详解】解 令22365112x x y x x ++=++,去分母整理得 2(6)(212)2100y x y x y -+-+-=.若6y =,则①化为20=,矛盾.故6y ≠. 因为作为x 的方程①有实根x ,故()22(212)4(6)(210)410244(4)(6)0y y y y y y y =----=--+=---≥,即(4)(6)0y y --≤,解得46y ≤≤. 而6y ≠,所以46y ≤<.4y =代入①可得1x =-,故当1x =-时,y 取最小值4.故应填4.注:例5~7中求最值的方法叫做判别式法.这是求函数最值的重要方法之一.但应该注意的是,化简整理为一个关于x 的二次方程后(其余数是变量y 的函数),对其二次项系数是否为零应进行讨论,只有在二次项系数不等于零的情形才能应用判别式法(若使二次项系数等于0的y 的值存在,则这个值也是函数y 可取到的值,在求最值时,应将这个值考虑在内进行讨论).25.(2021·全国·九年级竞赛)代数式21133110x x +的最小值是_______. 【答案】3223【解析】 【分析】 【详解】解 设21133110y x x =+,则()222(110)1133y x x +=+,即22222032233113y xy x +=⨯+⨯.关于x 的方程222322322031130x yx y ⨯-+⨯-=有实根,所以 ()()222222(220)432233113411332230y y y =--⨯⨯⨯⨯-=⨯-⨯≥(因为22220432234113+⨯⨯=⨯),所以3223y ≥. 当且仅当223x =y 取最小值3223 故应填322326.(2021·全国·九年级竞赛)已知a ,b 是正数,并且二次函数22y x ax b =++和22y x bx a =++的图象都与x 轴相交,则22a b +的最小值是________. 【答案】20 【解析】 【分析】 【详解】解 因两条抛物线都与x 轴相交,故其判别式218a b =-及22(2)4b a =-都不小于零,即22222280,8,8440a b a b a b a b b a b a⎧⎧-≥≥⎪⇒⇒+≥+⎨⎨-≥≥⎪⎩⎩. 因,a b 都是正数,所以423(8)64644a b a a a ≥≥⇒≥⇒≥,及242b a b ≥≥⇒≥,所以22224220a b +≥+=,即22a b +的最小值为20.故应填20.注:本题中求最值的方法叫做放缩法,即根据题目条件,将各变量的值适当放缩为一个常数,从而求出其最值. 三、解答题27.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 【答案】见解析 【解析】 【分析】 【详解】分析 把圆等分为9个扇形显然不行(虽然必有一扇形内至少有2点,但不保证它们的距离小于2),因此,我们先作一个与已知圆同心的小圆(其直径必须小于2,但不能太小),然后将余下的圆环部分8等分. 证明 设O 是已知圆心,如图,以O 为圆心作半径为0.9的圆,再将余下的圆环8等分,于是将已知圆面分成了9个部分,由抽屉原理知其中必有一部分内至少有已知10点中的101129-⎡⎤+=⎢⎥⎣⎦点,M N ,若,M N 在小圆内,则220.9 1.82MN OC ≤=⨯=<. 若,M N 同在一个扇面形内,则由余弦定理,有222cos45MN AC OC OA OC OA ≤+-⋅︒0.81 6.2520.9 2.50.7 3.912+-⨯⨯⨯<.从例2可以看出,分割图形制造“抽屉”时,可能不是将图形等分为几部分,而是要求分割的每一部分图形都具有所需要的性质(例2中每一部分图形内任意两点的距离都小于2),读者应用这种方法解题时,应该注意到这一点.28.(2021·全国·九年级竞赛)试求1231997x x x x -+-+-++-的最小值.【答案】997002. 【解析】 【分析】 【详解】解:要求1219961997x x x x -+-+⋯+-+-的最小值,只要在数轴上找出x 所对应的点,使这点到1,2,3,…,1997所对应的点的距离之和最小即可. 如图1-1所示,当999x =时,原式的值最小,最小值为999199929999989999999991000999100199919969991997-+-+⋯+--+-+-+⋯+-+-+99899721012997998=++⋯++++++⋯++(9981)99822+⨯=⨯997002=.29.(2021·全国·九年级竞赛)当12x ≤≤2121x x x x +--- 【答案】21x -. 【解析】 【分析】 【详解】解:令2121(12)A x x x x x +---≤≤,则 222212(21)21A x x x x x x =+-----22224422(2)x x x x x =--+=--()()22222241x x x x x =--=--=-,又0,12A x >≤≤,所以1A x =-30.(2021·全国·九年级竞赛)一幢33层的大楼里有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次.对每个人来讲,他往下走一层楼感到1分不满意,往上走一层感到3分不满意.现有32个人在第一层,并且他们分别住在第2层至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小值?最小值是多少?(有些人可以不坐电梯直接从楼梯上楼) 【答案】当电梯停在第27层时,不满意总分最小,最小值为316分 【解析】 【分析】 【详解】解易知这32人恰好是从第2层到第33层各住1人.对于每个乘电梯上下楼的人,他所住的层数一定不小于直接上楼的人所住的层数(事实上,设住s 层的人乘电梯,而住第t 层的人直接上楼,s t <,则这2人不满意分数之和为3t ;若两人交换上楼方式,则2人不满意分数之和为33s t <,即不满意总分减小. 设电梯停在第x 层,在第一层有y 人没有乘电梯而直接上楼,那么不满意总分为3[12(33)]3(12)[12(2)]S x y x y =+++-++++++++--,其中3[12(33)]x +++-是住在第1x +层至第33层的人(共33x -人)的不满意总分之和,3(12)y +++是直接从楼梯上楼的人(共y 人)的不满意总分之和,12(2)x y +++--是从第2y +层至第1x -层的人(共2x y --人)的不满意总分之和,于是331(33)(34)(1)(2)(1)222S x x y y x y x y =--+++----222102231684x xy x y y =--+++ 222(102)231684x y x y y =-++++()221021215180308648y x y y +⎛⎫=-+-+ ⎪⎝⎭22102152(6)31631648y x y +⎛⎫=-+-+≥ ⎪⎝⎭,且当27,6x y ==时,316S =.答:当电梯停在第27层时,不满意总分最小,最小值为316分.注:求含2个或2个以上变量的代数式的最大(小)值时,配方法是其中有效方法之一;另一种方法则是利用已有不等式将含有变量的代数式化为一个不大于(或不小于)一个常数c 的不等式,并能确定等号可以成立,则常数c 便是所求的最大值(或最小值);第三种方法就是化为一元二次方程用判别式法(参看§5例4~7),等等.31.(2021·全国·九年级竞赛)求函数22233x y x x +=++的最大值和最小值.【答案】当2x =-时,y 取最小值2-;当0x =时,y 取最大值23,理由见解析. 【解析】 【分析】 【详解】将原式整理为关于x 的方程:2(32)(32)0yx y x y +-+-=.若0y =,则1x =-,即0y =是函数的一个值;若0y ≠,则因关于x 的方程有实根,所以2(32)4(32)(32)(324)0y y y y y y =---=---≥,即(32)(2)0y y -+≤,解得223y -≤≤.由此可看出0y =即不是最大值也不是最小值. 当2y =-时,由222233x x x +-=++,解得2x =-;当23y =时,由2222333x x x +=++,解得0x =.所以当2x =-时,y 取最小值2-;当0x =时,y 取最大值23.32.(2021·全国·九年级竞赛)已知,,a b c 都是正整数,且抛物线2y ax bx c =++与x 轴有2个不同的交点A 和B ,若,A B 到原点的距离都小于1,求a b c ++的最小值. 【答案】11,见解析. 【解析】 【分析】【详解】设()()()1212,0,,0A x B x x x <,则1212120,0,00b x x ax x c x x a ⎧+=-<⎪⎪⇒<<⎨⎪⋅=>⎪⎩. 又2402b ac b ac =->⇒>① 又因为121,1OA x OB x =<=<, 故121210,101cx x x x c a a-<<-<<⇒=<⇒<.② 因0a >,抛物线开口向上,故1x =-时,0y a b c =-+>,得b a c <+.而,b a c +均为正整数,故1a c b +≥+,于是由①得21()1a c ac a c +>⇒>,由②1a c >,即1a c >,于是22(1)(11)4a c >≥+=,所以5a ≥.又22514b ac >⨯,所以5b ≥.取5,5,1a b c ===时,2551y x x =++满足题目条件,故a b c ++的最小值为55111++=. 33.(2021·全国·九年级竞赛)求2221026249T x y z xy yz z =++---+的最小值. 【答案】5 【解析】 【分析】 【详解】解 ()()()22222692445T x xy y y yz z z z =-++-++-++222(3)()(2)55x y y z z =-+-+-+≥.当6,2x y z ===时,T 取最小值5.注:例2~3中求最值的方法是常用的配方法.34.(2021·全国·九年级竞赛)在40与100之间任取一个实数x ,如果[]7x =,那么1610x ⎡=⎣的概率是多少?这是[]a 表示不超过a 的最大整数(要求答案写成最简分数的形式). 【答案】780【解析】 【分析】 【详解】因[]7x =,故2278,78x x <≤≤≤.而要使[16]10x =,即22101611,2.5 2. 75,2.5 2.75x x x ≤≤≤,故所求概率22222.75 2.25 1.31257871580p -===-. 35.(2021·全国·九年级竞赛)如图,D E F 、、分别是ABC 的三边BC CA AB 、、上任意一点,证明:,,AEF BFD CDE △△△中至少有一个三角形的面积不大于ABC 的面积的四分之一.【答案】见解析 【解析】 【分析】 【详解】证明 记123,,,ABC AEF BFD CDE S S S S S S S S ====,于是11sin 21sin 2AE AF A S AE AFS AB ACAB AC A ⋅⋅⋅⋅==⋅⋅⋅⋅.同理32,S S BF BD CD CE S BA BC S CA CB⋅⋅==⋅⋅, 所以1233222()()()S S S AF FB BD DC CE EA S AB BC CA ⋅⋅⋅⋅⋅=⋅⋅ 222222122264AF FB BD DC CE EA AB BC CA +++⎛⎫⎛⎫⎛⎫⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≤=⋅⋅. 31234S S S S . 由平均值原理得123,,S S S 中必有一个不大于S4.即证. 36.(2021·全国·九年级竞赛)某林场安排了7天的植树工作,从第二天起每天都比前一天增加5个植树的人,但从第二天起每人每天都比前一天少植5棵树,且同一天植树的人,植相同数量的树.若7天共植树9947棵,则植树最多的那天共植了多少棵?植树最少的那天,有多少人在植树? 【答案】植树最少的那天有54人或24人植树. 【解析】 【分析】 【详解】设第4天有m 人植树,每人植树n 棵,则第4天共植树mn 棵;第3天有5m -人植树,每人植5n +棵,则第3天共植树(5)(5)m n -+棵.同理,第2天共植树(10)(10)m n -+棵;第1天共植树(15)(15)m n -+棵;第5天共植树(5)(5)m n +-棵;第6天共植树(10)(10)m n +-棵;第7天共植树(15)(15)m n +-棵.由七天共植树9947棵得(15)(15)(10)(10)m n m n -++-++(5)(5)(5)(5)m n mn m n -++++-(10)(10)m n ++-(15)(15)9947m n ++-=.化简得77009947mn -=,1521mn =.因221521313=⨯.又每天都有人植树,所以15m >,15n >,故39m n ==.因为第4天植树棵数为39391521⨯=,其他各天植树棵数为(39)(39)a a -+=21521a -(5a =,10或15),所以第4天植树最多,这一天共植树1521棵. 当15a =时,2239a -的植树棵数最少.又当15a =时,植树人数为391554+=或391524-=,所以植树最少的那天有54人或24人植树. 37.(2021·全国·九年级竞赛)一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中某一层停一次.对于每个人来说他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别在第2至第33层的每一层,问:电梯停在哪一层,可以使32人不满意的总分达到最小?最小值是多少?(有些人可以不坐电梯而直接从楼梯上楼). 【答案】当电梯停在第27层时,这32人不满意的总分达到最小,最小值为316分. 【解析】 【分析】 【详解】易知,这32人恰好是第2至第33层各住一人,对于每个乘电梯上、下梯的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.事实上,设住s 层的人乘电梯,而住第t 层的人直接走楼梯上楼,且s t <,交换两人上楼方式,其余人不变,则不满意总分不增.现分别证明如下:设电梯停在第x 层,①当x s t ≤<时,若住在第s 层的坐电梯,住第t 层的人直接走楼梯上楼,则这两者不满意总分为3(1)3()t s x -+-=3333t s x +--;交换两人上楼方式,则两者不满意总分为3(1)3()s t x -+-=3333t s x +--,两者相等;②当s x t <<时,若住s 层的人乘电梯,而住第t 层的人直接走楼梯上楼,则这两人不满意总分为3(1)()t x s -+-=33t x s +--;交换两人上楼方式,则这两者不满意总分为3(1)3()s t x -+-=3333t x s -+-,前者比后者多4()0x s ->;③当s t x <≤时,若住s 层的人乘电梯,住t 层的人直接走楼梯上楼,则这两者不满意总分为3(1)()t x s -+-=33t x s +--;交换两人上楼方式,则这两者的不满意总分为3(1)()s x t -+-=33s x t +--,前者比后者多4()0t s ->.今设电梯停在第x 层,设有y 人直接走楼梯上楼,则11y x +≤-,那么不满意总分为3(12)s y =+++3[12(33)]x ++++-[12(11)]x y ++++---3(1)3(33)(34)22y y x x +--=++(2)(1)2x y x y ----222102231684x xy x y y =--+++222(102)231684x y x y y =-++++=210224y x +⎡⎤-⎢⎥⎣⎦()211518030688y y +-+210224y x +⎛⎫=-+ ⎪⎝⎭215(6)3163168y +-+≥. 当27x =,6y =时,316s =,所以,当电梯停在第27层时,这32人不满意的总分达到最小,最小值为316分.38.(2021·全国·九年级竞赛)已知正整数m ,n 17434m m n -+=,求n 的最大值. 【答案】104 【解析】 【分析】 【详解】设70a m =-,104104a a n -+=,两边平方得22222104a a n +-=.令222104a b -=(b 为正整数),则2()()104a b a b -+=.由于-a b 与a b +同奇偶,即同为偶数,所以当2a b -=时,a b +取最大值52104⨯.这时,222()104n a b =+=为最大,所以n 的最大值为104. 39.(2021·全国·九年级竞赛)对于1,2,3,,i n =,有|| 1 i x <且有12||||||n x x x +++=122009||n x x x ++++.求正整数n 的最小值.【答案】正整数n 的最小值为2010. 【解析】 【分析】 【详解】 作整体估计如下:2009=1212||||||||n n x x x x x x +++-+++12||||||n x x x n ≤+++<,所以2010n ≥.当2010n =时,取121005x x x ===20092010=,10061007x x ===201020092010x =-,则||1i x <(1,2,,2010) i =且122010|||||x x x +++2009=+122010||x x x +++,满足题目条件,故所求n 的最小值为2010.40.(2021·全国·九年级竞赛)整数012010,,,x x x 满足条件:00x =,10|||1|x x =+,21|||1|x x =+,…,201020091x x =+,求122010x x x +++的最小值.【答案】122010x x x +++的最小值为7.【解析】 【分析】 【详解】由已知条件可得:2210021x x x =++,2221121x x x =++,…,2220102009200921x x x =++,各式相加整理后得22010x =()2001200922010x x x x +++++.又00x =,故有122010x x x +++=2201020101220102x x +-()220101120112x =+-. 因122010x x x +++为整数,故()220101x +为奇数,又2243201045<<且2432011-=16214>=2452011-,所以122010x x x +++2145201172≥-=.。

初三数学竞赛试题及答案精选

初三数学竞赛试题及答案精选

全国初中数学联赛试题第一试一、选择题1.已知a=355,b=444,c=533,则有[ ]A.a<b<c B.c<b<a C.c<a<b D.a<c<bA.1 B.2 C.3 D.43.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S △CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则[ ]A.a>0且b>0 B.a<0且b>0C.a>0且b<0 D.a<0且b<0二、填空题1.在12,22,32…,952这95个数中,十位数字为奇数的数共有____个。

4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC·BC,则∠CAB=______.第二试一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图)求证F为△CDE的内心。

二、在坐标平面上,纵坐标与横坐标都是整数理由。

三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和。

初中数学联赛参考答案第一试一、选择题1.讲解:这类指数幂的比较大小问题,通常是化为同底然后比较指数,或化为同指数然后比较底数,本题是化为同指数,有c=(53)11=12511<24311=(35)11=a<25611=(44)11=b。

选C。

利用lg2=0.3010,lg3=0.4771计算lga、lgb、lgc也可以,但没有优越性。

2.讲解:这类方程是熟知的。

先由第二个方程确定z=1,进而可求出两个解:(2,21,1)、(20,3,1).也可以不解方程组直接判断:因为x≠y(否则不是正整数),故方程组①或无解或有两个解,对照选择支,选B。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛九年级数学试题
一、选择题
1.2cos45°的值等于()
A.B.C.D.
2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()
A.
B. C. D.
3.一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()
A.11 B.11或12 C.13 D.11和13
4.如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()
A.80° B.75° C.65° D.45°
5.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()
A.B.C.D.
6.如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()
A.S>1 B.S>2 C.1<S<2 D.1≤S≤2
7.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()
A .B

C

D

第4题图
8.小明去爬山,在山脚看山顶角度为30°,小明在坡比为7:24的山坡上走2500米,此时小明看山顶的角度为60°,求山高( )
A .1200-350
B .1200﹣350
C .350+350
D .700 正半轴上,反比例函数y=(k ≠0)9.如图,正方形ABCD 的顶点B ,C 在x 轴的上的点
E (n ,),过点E 的直线l 在第一象限的图象经过顶点A (m ,2)和CD 边交x 轴于点
F ,交y 轴于点
G (0,﹣2),则点F 的坐标是( ) A .(,0) B .(,0)C .(,0)D .(,0)
10.如图,已知:∠MON=30°,点A 1、A 2、
A 3…在射线ON 上,点
B 1、B 2、B 3…
在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的
边长为( )
A .6
B .12
C .32
D .64 二、填空题
11.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA= _________ .
12.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离
为 _________ .
13.双曲线y 1、y 2在第一象限的图象如图,
,过y 1
上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是 _________ .
14.如图,正方形A 1B 1B 2C 1,A 2B 2B 3C 2,A 3B 3B 4C 3,…,A n B n B n+1C n ,按如图所示放置,使点A 1、A 2、A 3、A 4、…、A n 在射线OA 上,点B 1、B 2、B 3、B 4、…、B n 在射线OB 上.若∠AOB=45°,OB 1=1,图中阴影部分三角形的面积由小到大依次记作S 1,S 2,
S 3,…,S n ,则S n = _________ .
第12题图
第13题图
15.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交
AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 _________ .
三、解答题 16.计算:﹣2tan60°+(
﹣1)
﹣()﹣1

17.先化简,再求值:
其中x 是方程 的解.
18.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 _________ 名; (2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?
201514
41312+++÷⎪⎪⎭
⎫ ⎝⎛+--x x x x x 第14题图
第15题图
19.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:
(1)港口A与小岛C之间的距离;
(2)甲轮船后来的速度.
20. 如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
21.如图,直线y=﹣x+3与x轴、y轴分别相交x轴于点B、交y轴于点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
22. 如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x 轴的另一个交点为C,连接BC.
(1)求抛物线的解析式及点C的坐标;
(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;
(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.。

相关文档
最新文档