北师大版八年级数学上名校课堂单元测试(三)(含答案)

合集下载

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试题(答案解析)

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试题(答案解析)

一、选择题1.已知点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( ) A .(﹣1,2)B .(﹣2,1)C .(﹣1,﹣2)D .(﹣2,﹣1)2.已知点(,2)A m 和(3,)B n 关于y 轴对称,则2021()m n +的值为( ) A .0B .1C .1-D .2020(5)-3.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m <4.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( ) A .(2,3)- B .(2,3) C .(3,2) D .(3,2)- 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)7.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°8.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7B .1-C .1-或7D .7-或19.如图,在3×3的正方形网格中有四个格点A ,B ,C ,D ,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )A .点AB .点BC .点CD .点D10.下列数据中不能确定物体的位置的是( )A .1单元201号B .北偏东60°C .清风路32号D .东经120°,北纬40° 11.在平面直角坐标系中,点(2,1)P 向左平移3个单位长度得到的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.已知点()2 6,2P m m -+.(1)若点P 在y 轴上,P 点的坐标为______.(2)若点P 的纵坐标比横坐标大6,则点P 在第______象限.(3)若点P 在过点()2,3A 且与x 轴平行的直线上,则点P 的坐标为______. (4)点P 到x 轴、y 轴的距离相等,则点P 的坐标为______. 14.平面直角坐标系中,点()()4,2,2,4A B -,点(),0P x 在x 轴上运动,则AP BP +的最小值是_________.15.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.16.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 17.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.18.若点M (a -3,a +4)在y 轴上,则a =___________.19.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________.20.规定:在平面直角坐标系xOy 中,任意不重合的两点 M(x 1,y 1),N(x 2,y 2)之间的折线距离为1212(,)d M N x x y y =-+-.如图①点M(-2,3)与点 N(1,-1)之间的折线距离为(,)d M N = ______;如图②点 P(3,-4),若点 Q 的坐标为(t ,3),且(,)8d P Q =,则t 的值为__________.三、解答题21.作图题,如图,△ABC 为格点三角形(不要求写作法)(1)请在坐标系内用直尺画出△111A B C ,使△111A B C 与△ABC 关于y 轴对称; (2)请在坐标系内用直尺画出△222A B C ,使△222A B C 与△ABC 关于x 轴对称;22.已知在平面直角坐标系中(1)画出△ABC 关于x 轴成轴对称图形的三角形A ′B ′C ′; (2)写出A ′,B ′,C ′的坐标.23.如图,在平面直角坐标系中,已知△ABC 的三个顶点A (﹣3,1),B (﹣2,3),C (2,1),直线l 上各点的横坐标都为1.(1)画出△ABC 关于直线l 对称的△A ′B ′C ′; (2)请直接写出点A ′、B ′、C ′的坐标;(3)若点M 在△ABC 内部,直接写出点M (a ,b )关于直线l 对称点M ′的坐标. 24.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题: (1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.25.如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC ∆经过一次轴对称变换后得到'''A B C ∆,图中标出了点C 的对应点'C()1在给定方格纸中画出变换后的'''A B C ∆;()2画出AC 边上的中线BD 和BC 边上的高线AE ; ()3求'''A B C ∆的面积.26.已知在平面直角坐标系(如图)中有三个点0,23,1),()4,,3(()A B C --.请解答以下问题:(1)在坐标系内描出点A B C ,,;(2)画出以A B C ,,三点为顶点的三角形,并列式求出该三角形的面积;(3)若要在y 轴找一个点P ,使以A C P 、、三点为顶点的三角形的面积为6,请直接写出满足要求的点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据第三象限点的横坐标与纵坐标都是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答即可. 【详解】解:∵点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1, ∴点P 的横坐标为﹣1,纵坐标为﹣2, ∴点P 的坐标为(﹣1,﹣2). 故选:C . 【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键,也是最容易出错的地方.2.C解析:C 【分析】根据平面直角坐标系中点的对称的知识点可得到m 、n 的值,代入求值即可. 【详解】∵点(,2)A m 与点(3,)B n 关于y 轴对称,∴32m n =-⎧⎨=⎩,∴()()202120213+21m n +=-=-,故选择:C .【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.3.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32, 解不等式②,得:m >0,∴不等式组的解集为m >32, 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.B解析:B 【分析】根据关于x 轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案. 【详解】解:∵点P (3,a )关于x 轴的对称点为Q (b ,-2), ∴a=2,b=3,∴点(a ,b)的坐标为(2,3), 故选:B . 【点睛】此题主要考查了关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.5.D解析:D 【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限, 故选D .6.A解析:A 【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2, 即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2). 故选A . 【点睛】本题考查点的坐标. 7.B解析:B 【分析】 根据12PBC ABC S S ∆∆=得出点P 到BC 的距离等于AD 的一半,即点P 在过AD 的中点且平行于BC 的直线l 上,则此问题转化成在直线l 上求作一点P ,使得点P 到B 、C 两点距离之和最小,作出点C 关于直线l 的对称点C ’,连接BC ’,然后根据条件证明△BCC ’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.8.C解析:C【分析】根据点M(2,3)与点N(2,y)之间的距离是4,可得|y−3|=4,从而可以求得y的值.【详解】∵点M(2,3)与点N(2,y)之间的距离是4,∴|y−3|=4,∴y−3=4或y−3=−4,解得y=7或y=−1.故选:C.【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.9.D解析:D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【详解】如图所示:原点可能是D点.故选D.【点睛】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.10.B解析:B【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:A、1单元201号,是有序数对,能确定物体的位置,故本选项错误;B、北偏东60°,不是有序数对,不能确定物体的位置,故本选项正确;C、清风路32号,“清风路”相当于一个数据,是有序数对,能确定物体的位置,故本选项错误;D、东经120°北纬40°,是有序数对,能确定物体的位置,故本选项错误;故选:B.【点睛】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.11.B解析:B【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(2,1)向左平移3个单位后的坐标为(-1,1),点(-1,1)在第二象限.故选:B.【点睛】本题考查了点的平移,解答本题的关键是求出平移后点的坐标:向左平移a个单位,坐标P (x ,y )⇒P (x-a ,y ).12.B解析:B 【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答. 【详解】 ∵m 2≥0, ∴−m 2−1<0,∴点P (−m 2−1,2)在第二象限. 故选:B . 【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.二、填空题13.(1);(2)二;(3);(4)或【分析】(1)y 轴上点的坐标特点是横坐标为0据此求解可得;(2)由题意可列出等式2m-6+6=m+2求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等根据这个解析:(1)()0,5;(2)二;(3)()4,3-;(4)()10,10或1010,33⎛⎫- ⎪⎝⎭【分析】(1)y 轴上点的坐标特点是横坐标为0,据此求解可得; (2)由题意可列出等式2m-6+6=m+2,求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等,根据这个性质即可求解.(4)点P 到x 轴、y 轴的距离相等,所以点P 的横坐标与纵坐标相等或互为相反数,据此可解. 【详解】解:(1)∵点P 在y 轴上, ∴2m-6=0, 解得m=3,∴P 点的坐标为(0,5); 故答案为(0,5);(2)根据题意得2m-6+6=m+2, 解得m=2,∴P 点的坐标为(-2,4), ∴点P 在第二象限; 故答案为:二;(3)∵点P 在过A (2,3)点且与x 轴平行的直线上,∴点P 的纵坐标为3,∴m+2=3,∴m=1,∴点P 的坐标为(-4,3).故答案为:(-4,3);(4)∵点P 到x 轴、y 轴的距离相等,∴2m-6=m+2或2m-6+ m+2=0,∴m=8或m=43, ∴点P 的坐标为()10,10或1010,33⎛⎫- ⎪⎝⎭. 故答案为:()10,10或1010,33⎛⎫-⎪⎝⎭. 【点睛】本题考查平面直角坐标系中点的特点;熟练掌握平面直角坐标系中坐标轴上点的特点,与坐标轴平行的直线上点的特点是解题的关键. 14.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理AP BP +的最小值为:故答案为:【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.15.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.16.﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围【详解】解:∵点P (aa+1)在平面直角坐标系的第二象限内∴解得:﹣1<a <0则a 的取值范围是:﹣1<a <0故答案为:﹣1<a <0【解析:﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围.【详解】解:∵点P (a ,a +1)在平面直角坐标系的第二象限内,∴010a a <⎧⎨+>⎩, 解得:﹣1<a <0.则a 的取值范围是:﹣1<a <0.故答案为:﹣1<a <0.【点睛】本题考查了点的坐标,正确掌握各象限内点的坐标特点是解题的关键.17.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 18.3【分析】在y 轴上的点横坐标为零即a-3=0即可解答【详解】解:∵点M (a -3a +4)在y 轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征第一象限内点的坐标特征为(解析:3【分析】在y 轴上的点横坐标为零,即a-3=0,即可解答【详解】解:∵点M(a-3,a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.19.【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】∵点P在第四象限且点P到x轴和y轴的距离分别为68∴点P 的横坐标是8纵坐标是-6即点P的坐标为故答案为【点睛】此题考查点-解析:(8,6)【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P在第四象限,且点P到x轴和y轴的距离分别为6、8,-.∴点P的横坐标是8,纵坐标是-6,即点P的坐标为(8,6)-.故答案为(8,6)【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.20.=2或t=4;【分析】①直接根据折线距离的定义计算即可②根据折线距离的定义由得到方程求解即可【详解】解:①根据折线距离的定义点M(-23)与点N(1-1)之间的折线距离为:d(MN)=|-2-1|+解析:=2或t=4;【分析】①直接根据“折线距离”的定义计算即可d P Q=,得到方程求解即可②根据“折线距离”的定义,由(,)8【详解】解:①根据“折线距离”的定义,点M(-2,3)与点N(1,-1)之间的折线距离为:d(M,N)=|-2-1|+|3-(-1)|=3+4=7;d P Q=,②∵(,)8∴|3-t|+|-4-3|=8,∴|3-t|=1,∴3-t=1或3-t=-1解得:t=2或t=4;故答案为:①7;②t=2或t=4;【点睛】本题考查了坐标与图形性质及一元一次方程的应用,解题的关键是读懂材料,弄清楚“折线距离”的定义.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用关于y轴对称的点的坐标特征写出点A1和点B1、点C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点A2和点B2、点C2的坐标,然后描点即可.【详解】解:如图所示,△A1B1C1和△A2B2C2即为所求:【点睛】本题考查轴对称变换,解题的关键是熟练掌握轴对称的性质,属于中考常考题型.22.(1)作图见解析,(2)A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可;(2)根据所画图形可直接写出A′,B′,C′的坐标.【详解】解:(1)所画图形如下所示,其中△A′B′C′即为所求;(2)A′、B′、C′的坐标分别为:A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【点睛】本题考查了轴对称变换作图的知识,注意:做轴对称的关键是找到图形各顶点的对称点.23.(1)详见解析;(2)A′(5,1)、B′(4,3)、C′(0,1);(3)(﹣a+2,b)【分析】(1)利用网格图的特点及轴对称的性质,分别确定A、B、C关于直线l的对称点A′、B′、C′,然后依次连接即可;(2)直接利用网格图即可在坐标系中确定点A′、B′、C′的坐标;(3)比较点A、B、C和点A′、B′、C′的坐标规律即可得出M′的坐标.【详解】解:(1)如图:△A′B′C′即为所求,(2)A′(5,1)、B′(4,3)、C′(0,1);(3)M′的坐标(﹣a+2,b).【点睛】此题主要考查轴对称的性质,正确理解关于轴对称的点的坐标特点是解题关键.24.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A的坐标,向左1个单位,向下2个单位为坐标原点,建立平面直角坐标系即可;(2)根据平面直角坐标系标注体育馆和食堂即可;(3)根据四边形所在的矩形的面积减去四周四个小直角三角形的面积列式计算即可得解.【详解】解:(1)建立平面直角坐标系如图所示;(2)体育馆(1,3)C -,食堂(2,0)D 如图所示;(3)四边形ABCD 的面积111145332313122222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯, 20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.25.(1)见解析;(2)见解析;(3)152【分析】(1)连接CC′,作CC′的垂直平分线l ,然后分别找A 、B 关于直线l 的对称点A′、B′,连接A′、B′、C′,即可得到A B C ''';(2)作AC 的垂直平分线找到中点D ,连接BD ,BD 就是所求的中线;从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(3)根据三角形面积公式即可求出A B C '''的面积.【详解】解:(1)如图,A B C '''即为所求;(2)如图,线段BD 和线段AE 即为所求;(3)111553222A B C ABC S S BC AE '''∆∆==⋅⋅=⨯⨯=. 【点睛】 本题主要考查几何变换作图,作已知图形关于某直线的对称图形的一般步骤:(1)找:在原图形上找特殊点(如线段的端点、线与线的交点等);(2)作:作各个特殊点关于已知直线的对称点;(3)连:按原图对应连接各对称点.熟练掌握作图步骤是解题的关键. 26.(1)见解析;(2)画图见解析,192;(3)(0,5)或(0,1)- 【分析】(1)利用点的坐标的意义描点;(2)用一个矩形的面积分别减去三个三角形的面积去计算ABC ∆的面积;(3)设(0,)P t ,利用三角形面积公式得到1|2|462t ⨯-⨯=,然后求出t 即可. 【详解】解:(1)如图,(2)如图,ABC ∆为所作,11119753174452222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=;(3)设(0,)P t ,以A 、C 、P 三点为顶点的三角形的面积为6, ∴1|2|462t ⨯-⨯=,解得5t =或1t =-,P ∴点坐标为(0,5)或(0,1)-.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等边三角形的判定与性质.。

初中数学北师大版(2012)八年级上册 第三章位置与坐标 单元测试(有答案)

初中数学北师大版(2012)八年级上册 第三章位置与坐标 单元测试(有答案)

初中数学北师大版(2012)八年级上册 第三章位置与坐标 单元测试一、单选题1.根据下列表述,能确定位置的是( )A.济川中学东B.东经116︒,北纬52︒C.南偏东60︒D.华夏影院第7排2.会议室“2排3号”记作()2,3,那么“3排2号”记作( )A.()2,3B.()3,2C.(2,3)--D.(3,2)--3.小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( )A.先向北直走700米,再向西走100米B.先向北直走100米,再向西走700米C.先向北直走300米,再向西走400米D.先向北直走400米,再向西走300米4.如图在正方形网格中,若()()1120A B ,,,,则C 点的坐标为( )A. (32)--,B. (3)2-,C. (23)--,D. (2)3-,5.在平面直角坐标系中,点2(21),P x -+所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6.若3y =,则()P x y ,在( )A.第一象限B.第二象限C.第三象限D.第四象限7.点(,)P a b 与点(2,3)Q --关于x 轴对称,则a b +=( )A.-5B.5C.1D.-18.已知:点(1,3)A m -与点(2,1)B n -关于x 轴对称,则2019()m n +的值为( )A.0B.1C.-1D.201939.在平面直角坐标系中,点A 的坐标为(2,3)-,点B 的坐标为(2,3)--,那么点A 和点B 的位置关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于坐标轴和原点都不对称10.如图1是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(),2B ,白棋②的位置可记为(),1D ,则白棋⑨的位置应记为( )A. (5)C ,B. (4)C ,C. (4)C ,D. (5)C ,二、填空题11.剧院里6排3座用(6)3,表示,则()8,5表示___排___座?12.在平面直角坐标系中,点(3,2)-到x 轴的距离是________.13.点(1,2)P 关于x 轴的对称点1P 的坐标是__________.14.已知点1()1P a +,关于原点的对称点在第四象限,则a 的取值范围是_____.三、解答题15.在图中建立适当的平面直角坐标系,使,A B 两点的坐标分别为(41)-,和(14)-,,写出点,C D 的坐标,并指出它们所在的象限.16.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,CAB △的顶点均在格点上,点C 的坐标为(4,1)-.(1)请以y 轴为对称轴,画出与ABC △对称的111A B C △,并直接写出点111,,A B C 的坐标;(2)ABC △的面积是.(3)点(1,1)P a b +-与点C 关于x 轴对称,则a =_______,b =_________.参考答案1.答案:B因为单独一个数据无法确定位置,所以选项A ,C,D 都不能确定其位置,只有选项B 能确定其位置.故选B2.答案:B会议室“2排3号”记作()2,3,那么“3排2号”记作()3,23.答案:A如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .4.答案:B根据()()1120A B ,,,,可得出原点的坐标,再结合图形即可确定出点C 的坐标.∵点A 的坐标是:(1)1,,点B 的坐标是:(2)0,,∴原点坐标如下图所示:∴点C 的坐标是:(3)2-,.故选:B .5.答案:B∵20-<,210x +>,∴点()22,1P x -+在第二象限,故选B.6.答案:D∵3y =,∴2020x x -≥⎧⎨-≥⎩,解得:2x =,∴0033y =+-=-,∴点P 的坐标为(2)3-,,在第四象限. 故选D.7.答案:C由点(,)P a b 与点(2,3)Q --关于x 轴对称, ∴2a =-,3b =,则231a b +=-+=.故答案为:C.8.答案:B∵点(1,3)A m -与点(2,1)B n -关于x 轴对称, ∴12m -=,13n -=-,∴3m =,2n =-,∵()20191m n +=,故选:B.9.答案:A∵点A 的坐标为(2,3)-,点B 的坐标为(2,3)--, ∴点A 和点B 的位置关系是关于x 轴对称.故选A.10.答案:B∵黑棋的位置可记为(2)B ,, ∴白棋⑨的位置应记为(4)C ,.故选B .11.答案:8排5座根据题意知第1个数表示排数,第2个数表示座数, ∴(8)5,表示8排5座,故答案为8排5座.12.答案:2根据点到x 轴的距离等于纵坐标的长度.点()32P -,到x 轴的距离为2.故答案是:2.13.答案:(1,2)-∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数, ∴点(1,2)P 关于x 轴的对称点1P 的坐标为(1,2)-.14.答案:1a <-∵()1,1P a +关于原点对称的点在第四象限, ∴P 点在第二象限,∴10a +<,解得:1a <-,故答案为:1a <-.15.答案:解:建立平面直角坐标系如图:得()12,(1)2C D --,,.由图可知,点C 在第三象限,点D 在第一象限.16.答案:(1)如图所示:111(1,4),(5,4),(4,1)A B C ------; (2)11433331622ABC S =⨯-⨯⨯-⨯⨯=△; (3)∵(1,1)P a b +-与点(4,1)C -关于x 轴对称, ∴1411a b +=⎧⎨-=⎩,解得32a b =⎧⎨=⎩, 故答案为:3,2.。

北师大版八年级数学上名校课堂单元测试(三)(含答案)

北师大版八年级数学上名校课堂单元测试(三)(含答案)

北师⼤版⼋年级数学上名校课堂单元测试(三)(含答案)
单元测试(三) 位置与坐标
(时间:45分钟满分:100分)
⼀、选择题(每⼩题3分,共30分)
1.根据下列表述,能确定位置的是( )
A.光明剧院2排B.某市⼈民路
C.北偏东40°D.东经112°,北纬36°
2.如图,在阴影区域的点是( )
A.(-1,2)
B.(-1,-2)
C.(1,-2)
D.(3,7)
3.下列说法正确的有( )
①点(0,0)是坐标原点;②点(2,3)和点(3,2)是同⼀个点;③点(0,-3)在y轴上.A.1个B.2个C.3个D.0个4.在平⾯直⾓坐标系中,点P (x2+1,-2)所在的象限是( )
A.第⼀象限B.第⼆象限C.第三象限D.第四象限5.下列两点是关于x轴对称的点是( )
A.(-1,3)和(1,-3) B.(3,-5)和(-3,-5)
C.(-2,4)和(2,-4) D.(5,-3)和(5,3)
6.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为( )
A.(0,2) B.(2,0)
C.(0,-3) D.(-3,0)
7.已知点M到x轴的距离为3,到y轴的距离为2,且在第四象限内,则点M的坐标为( ) A.(-2,3) B.(2,-3) C.(3,2) D.不能确定。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试卷(包含答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试卷(包含答案解析)(1)

一、选择题1.在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( )A .1个B .2个C .3个D .4个2.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是( )A .A (4,30°)B .B (1,90°)C .D ( 4,240°) D .E (3,60°) 3.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 5.若点(0,2)A -与点B 关于x 轴对称,则点B 的坐标为( )A .(0,2)-B .(2,0)C .(0,2)D .(2,0)- 6.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8867.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 8.A(-2,-3)到x 轴的距离为( )A .-2B .-3C .3D .2 9.如图,平面直角坐标系中,一蚂蚁从A 点出发,沿着···A B C D A →→→→循环爬行,其中A 点的坐标为()2,2-,B 点的坐标为()2,2--,C 点的坐标为()2,6-,D 点的坐标为()2,6,当蚂蚁爬了2020个单位时,蚂蚁所处位置的坐标为( )A .()2,2--B .()2,2-C .()2,6-D .()0,2- 10.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,3 11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,,这样依次得到点1A ,2A ,3A ,,n A ,.若点1A 的坐标为(2,4),点2020A 的坐标为( ) A .(-3,3)B .(-2,-2)C .(3,-1)D .(2,4) 12.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且三角形PAB 的面积是3,则点P 的坐标是( )A .(0,4)-B .(2,0)-C .(0,4)-或(0,8)-D .(4,0)或(2,0)- 二、填空题13.已知P (a,b ),且ab <0,则点P 在第_________象限.14.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 15.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.16.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.17.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 18.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.19.已知,点P 的坐标为(2,3)-,点Q 坐标为(,3)Q m ,且6PQ =,则m =____. 20.点P (2,3)关于y 轴的对称点Q 的坐标为__________ .三、解答题21.如图,在平面直角坐标系中,已知A (0,2),B (1,0),点C 在第一象限,AB =AC ,∠BAC =90°.(1)求点C 到y 轴的距离;(2)点C 的坐标为 .22.如图,在平面直角坐标系中,每个小方格的边长都是1个单位长度.(1)画出ABC 关于y 轴对称的A B C ''';(2)写出点A '、B '、C '的坐标;(3)求出ABC 的面积.23.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.24.在如图所示的平面直角坐标系中,完成下列任务.(1)描出点(1,1)A ,(3,1)B ,(3,2)C -,(1,2)D -,并依次连接A ,B ,C ,D ; (2)画出四边形ABCD 关于y 轴对称的四边形1111D C B A ,并写出顶点1A ,1C 的坐标. 25.已知点()5,12A a a --,解答下列问题:(1)若点A 到x 轴和y 轴的距离相等,求点A 的坐标;(2)若点A 向右平移若干个单位后,与点()2,3B --关于x 轴对称,求点A 的坐标.26.如图,在平面直角坐标系xoy 中,(15)A -,,()10B -,,(43)C -,.(1)在图中作出ABC 关于y 轴的对称图形111A B C △;(2)若以线段AB 为一边作格点△ABD ,使所作的△ABD 与△ABC 全等,则所有满足条件的点D 的坐标是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分类讨论:当C 点在y 轴上,设C (0,t ),根据三角形面积公式得到12 |t ﹣3|•2=6,当C 点在x 轴上,设C (m ,0),根据三角形面积公式得到12|m +2|•3=6,然后分别解绝对值方程求出t 和m 即可得到C 点坐标.【详解】解:分两种情况:①当C 点在y 轴上,设C (0,t ),∵三角形ABC 的面积为6, ∴12•|t ﹣3|•2=6, 解得t =9或﹣3.∴C 点坐标为(0,﹣3),(0,9),②当C 点在x 轴上,设C (m ,0),∵三角形ABC 的面积为6, ∴12•|m +2|•3=6, 解得m =2或﹣6.∴C点坐标为(2,0),(﹣6,0),综上所述,C点有4个,故选:D.【点睛】此题重点考查学生对平面直角坐标系上的点的应用,掌握平面直角坐标系的点的性质是解题的关键.2.C解析:C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A(5,30°),B(2,90°),D(4,240°),E(3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A不正确;B(2,90°),故B不正确;D(4,240°),故C正确;E(3,300°),故D不正确.故选择:C.【点睛】本题考查新定义坐标问题,仔细分析题中的C、F两例,掌握定义的含义,抓住表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数是解题关键.3.D解析:D【分析】根据点的坐标的定义,确定一个位置需要两个数据解答即可.【详解】解:能够准确表示张家口市这个地点位置的是:东经114.8°,北纬40.8°.故选:D.【点睛】本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.4.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A(a,-b)在第三象限,∴a<0,-b<0,∴-a>0,b>0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.5.C解析:C【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】解:点A 与点B 关于x 轴对称,点A 的坐标为(0,-2),则点B 的坐标是(0,2). 故选:C .【点睛】本题考查了关于x 轴对称的点的坐标,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.6.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 7.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得.【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△ 故选B【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.8.C解析:C【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值.【详解】解:点A(-2,-3)到x 轴的距离为|-3|=3.故选C.【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值.9.A解析:A【分析】根据蚂蚁的爬行规律找到蚂蚁爬行一循环的长度是24,∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A 左边4个单位长度处,即可解题.【详解】解:∵A点坐标为(2,﹣2),B点坐标为(﹣2,﹣2),C点坐标为(﹣2,6),∴AB=2﹣(﹣2)=4,BC=6﹣(﹣2)=8,∴从A→B→C→D→A一圈的长度为2(AB+BC)=24.∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A左边4个单位长度处,即(-2,﹣2).故选:A【点睛】本题考查了点的运动规律问题,属于简单题,确定蚂蚁爬行的循环规律是解题关键.10.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.11.C解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.【详解】∵A1的坐标为(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1).故选:C【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.12.D解析:D【分析】根据三角形的面积求出AP的长,再分点P在点A的左边与右边两种情况讨论求解.【详解】解:∵点B(0,2),∴S△PAB=1AP×2=3,2解得AP=3,若点P在点A的左边,则OP=AP-OA=3-1=2,如图,此时,点P的坐标为(-2,0),过点P在点A的右边,则OP=AP+OA=3+1=4,此时,点P的坐标为(4,0),综上所述,点P的坐标为(4,0)或(-2,0),故选:D.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于分情况讨论,作出图形更形象直观.二、填空题13.二四【分析】先根据ab <0确定ab 的正负情况然后根据各象限点的坐标特点即可解答【详解】解:∵ab <0∴a >0b <0或b >0a <0∴点P 在第二四象限故答案为二四【点睛】本题主要考查了各象限点的坐标特点解析:二,四【分析】先根据ab <0确定a 、b 的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab <0∴a >0,b <0或b >0,a <0∴点P 在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.14.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x 解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9,∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.15.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.16.【分析】先根据点的坐标求出四边形ABCD 的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A (11)B (﹣11)C (﹣1﹣2)D (1﹣2)∴AB =1﹣(﹣1)=2BC =1﹣(解析:()0,1【分析】先根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.17.或【解析】【分析】分x<00≤x<3x≥3三种情况分别讨论即可得【详解】当x<0时2x<0x-3<0由题意则有-2x-(x-3)=5解得:x=当0≤x<3时2x≥0x-3<0由题意则有2x-(x-3解析:2或2 -3【解析】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23 -,当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去),综上,x的值为2或23 -,故答案为2或2 3 -.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 18.(-43)【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点A的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.19.4或-8【分析】根据点的纵坐标相等两点间的距离等于横坐标的差的绝对值列方程求解即可【详解】解:∵点P坐标为(23)点Q坐标为Q(m3)∴点PQ的纵坐标相等PQ∥x轴∵PQ=6∴|-2-m|=6∴-2解析:4或-8【分析】根据点的纵坐标相等,两点间的距离等于横坐标的差的绝对值列方程求解即可.【详解】解:∵点P坐标为(-2,3),点Q坐标为Q(m,3),∴点P、Q的纵坐标相等,PQ∥x轴,∵PQ=6,∴|-2-m|=6,∴-2-m=6或-2-m=-6,解得:m=-8或m=4.故答案为:4或-8.【点睛】本题考查了点的坐标,观察出两点的纵坐标相等从而确定出两点间的距离等于横坐标的差的绝对值是解题的关键.20.【分析】根据平面直角坐标系中任意一点P(xy)关于y轴的对称点的坐标是(-xy)即求关于y轴的对称点时:纵坐标不变横坐标变成相反数据此即可解答【详解】解:点P(23)关于y轴的对称点Q的坐标为(-2解析:(2,3)【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,据此即可解答.【详解】解:点P(2,3)关于y轴的对称点Q的坐标为(-2,3).故答案为:(-2,3).【点睛】本题考查了关于x轴、y轴的对称点的坐标.解题的关键是掌握关于x轴、y轴的对称点的坐标的特征.三、解答题21.(1)2;(2)(2,3).【分析】(1)过点C作CD⊥y轴,垂足为D,然后证明△AOB≌△CDA,则CD=OA,即可得到答案;(2)由(1)可知,CD=OA,AD=OB,即可求出答案.【详解】解:(1)过点C作CD⊥y轴,垂足为D,如图:∵CD ⊥y 轴,∴∠AOB=∠CDA=90°,∵∠BAC=90°,∴∠CAD+∠BAO=∠ABO+∠BAO=90°,∴∠CAD=∠ABO ,∵AB=AC ,∴△AOB ≌△CDA ,∴CD=OA ,AD=OB ,∵A (0,2),B (1,0),∴CD=OA=2;∴点C 到y 轴的距离为2;(2)由(1)可知,CD=OA ,AD=OB ,∵OA=2,OB=1,∴OD=2+1=3,∴点C 的坐标为(2,3);故答案为:(2,3).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质进行解题,注意正确的作出辅助线.22.(1)答案见解析;(2)()3,2A '、()4,3B '-、()1,1C '-;(3)132. 【分析】(1)首先根据关于y 轴对称的点的特点找到相应的,,A B C ''',然后顺次连接,,A B C '''即可;(2)直接根据A B C '''在坐标系中的位置即可写出各标点的坐标;(3)用所在ABC 的长方形的面积减去三个小三角形的面积即可.【详解】解:(1)如图所示,A B C '''即为所求;(2)由图可知,()3,2A '、()4,3B '-、()1,1C '-.(3)A B C '''的面积为11113352323152222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查作图能力,掌握轴对称图形的作法是解题的关键.23.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.24.(1)见解析;(2)见解析,1(1,1)A -,1(3,2)C --【分析】(1)直接利用已知点坐标在坐标系中描出各点得出答案;(2)画出四边形ABCD 关于y 轴对称的对称点,顺次连接对称点即可得到四边形1111D C B A ,再写出顶点1A ,1C 的坐标即可.【详解】解:(1)四边形ABCD 即为所求作的图形.(2)四边形1111D C B A 即为所求作的图形.此时1(1,1)A -,1(3,2)C --【点睛】本题考查了作图中的轴对称变换,熟练掌握对称的作图方法是解题的关键.25.(1)点A 的坐标为()3,3--或()9,9-;(2)()6,3-.【分析】(1)分别根据点A 的位置列方程求解即可;(2)根据平移规律求解即可.【详解】解:(1)若点A 在第一象限或第三象限,512a a -=-,解得2a =,5123a a -=-=-.∴点A 的坐标为()3,3--,若点A 在第二象限或第四象限,5120a a -+-=,解得4a =-,59a -=-,129a -=,∴点A 的坐标为()9,9-.综上所述,点A 的坐标为()3,3--或()9,9-.(2)∵若点A 向右平移若干个单位,其纵坐标不变,为()12a -,又∵点A 向右平移若干个单位后与点()2,3B --关于x 轴对称,∴()1230a -+-=,∴1a =-,∴5156a -=--=-,()121213a -=-⨯-=,即点A 的坐标为()6,3-.【点睛】此题主要考查了关于x轴对称的点的坐标特征,关键是掌握点的坐标变化规律.26.(1)见解析;(2)作图见解析;点D坐标为(-4,2)、(2,3)、(2,2).【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可;(2)根据网格特点和全等三角形的判定可以找到满足条件的点D.【详解】(1)画出图形如图所示;(2)如图,满足条件的点D有三个,则点D坐标(-4,2)、(2,3)、(2,2),故答案为:(-4,2)、(2,3)、(2,2).【点睛】本题考查了基本作图-轴对称变换、坐标与图形、全等三角形的判定,利用格点判断三角形全等,熟练掌握轴对称变换的画法是解答的关键.。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试(有答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试(有答案解析)(2)

一、选择题1.在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( ) A .1个 B .2个 C .3个 D .4个 2.在平面直角坐标系中,点(-1,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112m B .2505mC .220092m D .2504m4.已知A ,B 两点关于x 轴对称,若点A 坐标为(2,-3),则点B 的坐标是( ) A .(2,-3)B .(-2,3)C .(-2,-3)D .(2,3)5.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m6.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( ) A .32B .1-C .32或1- D .32或1 7.如图,在平面直角坐标系中,有点A (1,0) ,点A 第一次跳动至()11,1A -,第二次点1A 跳动至()22,1A ,第三次点2A 跳动至()32,2A -,第四次点3A 跳动至()43,2A …,依次规律跳动下去,则点2019A 与点2020A 之间的距离是( )A .2019B .2020C .2021D .20228.如下图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2020次运动到点( )A .()2020,2-B .()2020,0C .()2019,1D .()2019,09.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018,2)B .(2019,0)C .(2019,1)D .(2019,2)10.点()4,0P -位于平面直角坐标系的( ) A .第二象限B .第三象限C .x 轴上D .y 轴上11.如图,已知点1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,,则点2020A 的坐标为( )A .(505,505)B .(506,505)-C .(505,505)--D .(505,505)-12.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( ) A .2B .3C .4D .5二、填空题13.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2022A 的坐标是__________.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________15.平面直角坐标系中,点()()4,2,2,4A B -,点(),0P x 在x 轴上运动,则AP BP +的最小值是_________.16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.若过点()()3,7,5M a N --、的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是_________.18.已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.19.点M (2,-3)到x 轴的距离是______;到y 轴的距离是______.20.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.三、解答题21.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3),点B 坐标为(2,1),则C 点坐标为 ;(2)画出△ABC 关于y 轴对称的图形为△A 1B 1C 1,并写出点B 1的坐标为 ;写出△A 1B 1C 1的面积为 ;(3)在y 轴上画出P 点,使得PA+PC 的值最小,最小值为 .22.△ABC 在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上. (1)作出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)在y 轴上作点D ,使得AD +BD 最小,并求出最小值.23.已知,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向上平移4个单位长度,再向左平移5个单位长度,画出平移后所得的△A 1B 1C 1,并写出C 1的坐标;(2)画出△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,并写出点B 2坐标;24.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标25.(探究):(1)在图1中,已知线段AB 、CD ,其两条线段的中点分别为E 、F ,请填写下面空格.①若(1,0)A -,(3,0)B ,则E 点坐标为______. ②若(2,2)C -,(2,1)D --,则F 点坐标为______. (2)请回答下列问题①在图2中,已知线段AB 的端点坐标为()11,A x y ,()22,B x y ,求出图中线段AB 的中点P 的坐标(用含1x ,1y ,2x ,2y 的代数式表示),并给出求解过程.②(归纳):无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为()11,A x y ,()22,B x y ,线段AB 的中点为(,)P x y 时,x =______,y =______.(直接填写,不必证明)③(运用):在图3中,在平面直角坐标系中AOB 的三个顶点(0,0)O ,(2,3)A -,(4,1)B ,若以A ,O ,B ,M 为顶点的四边形是平行四边形,请利用上面的结论直接写出顶点M 的坐标(不需写出解答过程)26.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)作出ABC关于y轴的对称图形A B C''';(2)写出点A',B',C'的坐标;(3)在y轴上找一点P,使PA PC+最短(不写作法).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分类讨论:当C点在y轴上,设C(0,t),根据三角形面积公式得到12|t﹣3|•2=6,当C点在x轴上,设C(m,0),根据三角形面积公式得到12|m+2|•3=6,然后分别解绝对值方程求出t和m即可得到C点坐标.【详解】解:分两种情况:①当C点在y轴上,设C(0,t),∵三角形ABC的面积为6,∴12•|t﹣3|•2=6,解得t=9或﹣3.∴C点坐标为(0,﹣3),(0,9),②当C点在x轴上,设C(m,0),∵三角形ABC的面积为6,∴12•|m+2|•3=6,解得m=2或﹣6.∴C点坐标为(2,0),(﹣6,0),综上所述,C点有4个,故选:D.【点睛】此题重点考查学生对平面直角坐标系上的点的应用,掌握平面直角坐标系的点的性质是解题的关键.2.B解析:B【分析】根据点的横纵坐标的符号可确定所在象限.【详解】解:∵该点的横坐标为负数,纵坐标为正数,∴所在象限为第二象限,故选:B.【点睛】本题考查了象限内点的坐标特征;用到的知识点为:第二象限点的符号特点为(−,+).3.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.4.D解析:D【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案. 【详解】∵A ,B 两点关于x 轴对称,点A 坐标为(2,-3), ∴点B 坐标为(2,3), 故选:D . 【点睛】本题考查了关于x 轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数.5.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环 ∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.6.D解析:D 【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案. 【详解】 由题意,得2-x=3x-4或2-x+(3x-4)=0, 解2-x=3x-4得x=32, 解2-x+(3x-4)=0得x=1,x 的值为32或1, 故选D . 【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.7.C解析:C 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点2019A 与点2020A 的坐标,进而可求出点2019A 与点2020A 之间的距离; 【详解】观察发现,第2次跳动至点的坐标是()2,1, 第4次跳动至点的坐标是()3,2, 第6次跳动至点的坐标是()4,3, 第8次跳动至点的坐标是()5,4,⋯第2n 次跳动至点的坐标是()1,+n n , 则第2020次跳动至点的坐标是()1011,1010, 第2019次跳动至点的坐标是()1010,1010-, ∵点2019A 与点2020A 的纵坐标相等,∴点2019A 与点2020A 之间的距离()101110102021=--=; 故选C . 【点睛】本题主要考查了规律型点的坐标应用,准确理解是解题的关键.8.D解析:D 【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2020除以4,然后根据商和余数的情况确定运动后点的坐标即可. 【详解】 解:20204505÷=,∴动点P 第2020次运动为第505个循环组的第4次运动,横坐标505412019⨯-=,纵坐标为0,∴点P 此时坐标为(2019,0).故选:D . 【点睛】本题考查了规律型:点的坐标,本题为平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.9.D解析:D【分析】分析点P 的运动规律,找到循环次数即可.【详解】解:分析图象可以发现,点P 的运动每4次纵坐标循环一次,横坐标等于运动的次数, ∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2), 故选:D .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环. 10.C解析:C【分析】根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是:第一象限(+,+) ;第二象限(-,+) ;第三象限(-,-);第四象限(+,-) ;x 轴纵坐标为0;y 轴横坐标为0.【详解】解:点()4,0P -的纵坐标为0,∴点()4,0P -位于平面直角坐标系的x 轴上.故选:C .【点睛】本题考查了各象限内、坐标轴上点的坐标的符号,记住各象限内点的坐标的符号是解决的关键.11.C解析:C【分析】由2020A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2020A 在第三象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20204=505÷,∴点2020A 在第三象限,又∵4(1,1)A --,8(2,2)--A ,∴()2020-505,-505A .即点2020A 的坐标为()-505,-505. 故答案选C .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键. 12.C解析:C【分析】由垂线段最短可知点BC ⊥AC 时,BC 有最小值,从而可确定点C 的坐标.【详解】解:如图所示:由垂线段最短可知:当BC ⊥AC 时,BC 有最小值.∴点C 的坐标为(1,-1),∴线段的最小值为4.故选:C【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题13.【分析】根据图象可得移动8次图象完成一个循环从而可得出点的坐标【详解】解:A1(01)A2(11)A3(10)A4(20)A5(2-1)A6(3-1)A7(30)A8(40)A9(41)…2022÷解析:()1011,1-【分析】根据图象可得移动8次图象完成一个循环,从而可得出点2022A 的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,-1),A 6(3,-1),A 7(3,0),A 8(4,0),A 9(4,1),…,2022÷8=252…6,所以2022A 的坐标为(252×4+3,-1),∴点2022A 的坐标是是()1011,1-.故答案为:()1011,1-.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.14.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.15.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4 解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理()()222+4+4+2=62AP BP +的最小值为:62故答案为: 2【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.16.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.17.【分析】根据MN 与x 轴平行可以求得M 点坐标进一步可以求得点M 关于y 轴的对称点的坐标【详解】解:∵MN 与x 轴平行∴两点纵坐标相同∴a=-5即M 为(-3-5)∴点M 关于y 轴的对称点的坐标为:(3-5)故解析:()3,5-【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5)∴点M 关于y 轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.18.或【分析】本题根据两点在同一平行于轴的直线上确定点N 的纵坐标继而根据两点距离确定点N 的横坐标【详解】由已知得:点N 的纵坐标为设点N 的横坐标为则MN 的距离可表示为∵∴求解得:或故点N 坐标为或故填:或【 解析:(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =, ∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.19.32【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值到y 轴的距离是它的横坐标的绝对值【详解】解:点A (2-3)到x 轴的距离是3到y 轴的距离是2故答案为32【点睛】本题考查了平面内的点到坐标轴的距离解析:3, 2【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值.【详解】解:点A (2,-3)到x 轴的距离是3,到y 轴的距离是2.故答案为3,2.【点睛】本题考查了平面内的点到坐标轴的距离和点的坐标的关系,掌握平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值是关键.20.(-43)【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A 的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.三、解答题21.(1)见解析,(5,5);(2)见解析,(-2,1),5;(3)见解析,210.【分析】(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在B的下方1个单位,建立直角坐标系,即可得出C点坐标;(2)根据关于y轴对称的点的坐标特点可得各点的对称点,再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1,再利用△A1B1C1所在的正方形的面积减去三个直角三角形的面积即可求出△A1B1C1的面积;(3)直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接AC1与y轴相交,此交点即为点P.再利用勾股定理求出AC1,即可得出PA+PC的最小值.【详解】解:(1)如图所示:即为作出的平面直角坐标系,∴C点坐标为(5,5);故答案为:(5,5);(2)如图所示:△A1B1C1'即为所求,∵A(1,3),B (2,1),C(5,5),∴A1(-1,3),B1(-2,1),C1(-5,5),∴△A1B1C1的面积为:111441224345⨯-⨯⨯-⨯⨯-⨯⨯=;222故答案为:(-2,1),5;(3)如图所示:点P即为所求作的点.∵点C的对称点为C1,∴连接AC1与y轴相交于一点即为点P,此时PA+PC的值最小,由勾股定理得AC122+=26210∴PA+PC的最小值为10.故答案为:10【点睛】本题考查了轴对称与坐标变化和勾股定理,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图是解答本题的关键.22.(1)见解析;(2,﹣4);(2)见解析,AD+BD最小值是2【分析】(1)根据题意和图形,可以画出△ABC 关于x 轴对称的△A1B1C1,并写出点A1的坐标; (2)根据轴对称和两点之间线段,可以得到使得AD +BD 最小时点D 所在的位置,然后利用勾股定理求出AD +BD 的最小值即可.【详解】解:(1)如右图所示,点1A 的坐标是(2,﹣4);(2)作点B 关于y 轴的对称点B′,连接AB′与y 轴交于点D ,则此时AD +BD 最小, ∵AB′=223332+=,∴AD +BD 最小值是32.【点睛】本题主要考查了平面直角坐标系中的图形变换,准确分析计算是解题的关键.23.(1)图见解析,()12,1C - ;(2)图见解析,()24,2B --.【分析】(1)根据平移的规律分别确定点A 1、B 1、C 1的位置,即可做出△A 1B 1C 1,进而写出C 1的坐标;(2)根据轴对称的规律分别确定点A 2、B 2、C 2的位置,即可做出△A 1B 1C 1,进而写出B 2的坐标;【详解】解:(1)如图,△A 1B 1C 1即为所求作的三角形,C 1的坐标为()2,1-;(2)如图,三角形△A 2B2C 2即为所求作的三角形,B2的坐标为()24,2B --.【点睛】本题考查了平面直角坐标系中平移和轴对称的规律,理解平移和轴对称的规律是解题的关键.24.(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案. (2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()1,0P -即为所求点.【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)①()1,0;②12,2⎛⎫- ⎪⎝⎭;(2)①点P 坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭;②122x x x +=,122y y y +=;③(2,4)或(6,2)-或(6,2)-. 【分析】(1)①根据线段中点的几何意义解题;②根据线段中点的几何意义解题.(2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,可判定四边形PEFN 是矩形 ,得到=,PE FN PN EF =,继而证明t R PAE t ()R BPN AAS ≅,得到,AE PN PE BN ==,可证AE EF =,BN NF =,最后根据线段的和差解题即可; ②由①种归纳得到答案;(3)分两种情况讨论:以AB 为对角线或以AB 为边,作出相应的平行四边形,再利用平行四边形对角线互相平分的性质及中点公式,先解得平行四边形对角线交点坐标,最后根据中点公式解题即可.【详解】(1)①(1,0)A -,(3,0)B ,4AB ∴= E 是AB 的中点,∴线段2AE =E ∴()1,0故答案为:()1,0;②(2,2)C -,(2,1)D --,3CD ∴= F 是CD 的中点,∴线段32CF = 1(2,)2F ∴- 故答案为: 12,2⎛⎫- ⎪⎝⎭; (2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,////PN AF x ∴轴,////PE BF y 轴,∴四边形PEFN 是平行四边形=90BFE ∠︒∴四边形PEFN 是矩形∴=,PE FN PN EF =//PN AFBPN BAF ∴∠=∠在t R PAE 与t R BPN 中PEA BNP PAE BPN AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴t R PAE t ()R BPN AAS ≅,AE PN PE BN ∴==AE EF =,BN NF =,点A 坐标为()11,x y ,点B 坐标为()22,x y ,∴点E 坐标为()1,x y ,点N 坐标为()2,x y ,点F 坐标为()21,x y ,1AE x x ∴=-,2EF x x =-,2BN y y =-,1FN y y =-12x x x x ∴-=-,21y y y y -=-,122x x x +∴=,122y y y +=, ∴点P 坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭; ②122x x x +=,122y y y +=; ③分两种情况讨论:当以AB 为对角线时,AB 的中点12431(,)22O -++ 1(1,2)O ∴在1AOBM 中,111OO O M =1O ∴是1OM 的中点,设111(,)M a b11+0+0=1,=222a b ∴ 11=2=4a b ∴,1(2,4)M ∴;当以AB 为边时,①AO 的中点22030(,)22O -++ 23(1,)2O ∴- 在2AM OB 中,222BO O M =2O ∴是2BM 的中点,设222(,)M a b22+4+13=1,=222a b ∴- 22=6=2a b ∴-,2(6,2)M ∴-;当以AB 为边时,②BO 的中点34010(,)22O ++ 31(2,)2O ∴ 在3AOM B 中,333AO O M =3O ∴是3AM 的中点,设333(,)M a b332+31=2,=222a b -∴ 22=6=2a b ∴-,3(6,2)M ∴-综上所述,满足条件的点P 有三个,坐标分别是(2,4)或(6,2)-或(6,2)-.【点睛】本题考查坐标与图形,涉及平行四边形的性质、中点公式、矩形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 26.(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.。

北师大版八年级上册数学第三章检测试题(附答案)

北师大版八年级上册数学第三章检测试题(附答案)

北师大版八年级上册数学第三章检测试题(附答案)一、单选题(共12题;共24分)1.下列选项所给数据,能让你在地图上准确找到位置的是()A. 东经128°B. 西经71°C. 南纬13°D. 东经118°,北纬24°2.若a>0,b<-2,则点(a,b+2)应在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.4.如图,直角坐标系中,点A(- 2,2)、B(0,1)点P 在x 轴上,且△PAB 的等腰三角形,则满足条件的点P 共有()个5题A. 1B. 2C. 3D. 45.如图,在平面直角坐标系xOy中,A、B为一次函数图象上的两点,若点A的坐标为(x,y),点B的坐标为(x+a,y+b),则下列结论正确是()A. a>0B. a<0C. b=0D. b>06.点B(m2+1,﹣1)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.在平面直角坐标系中,正方形的顶点坐标分别为A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称轴P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2016的坐标为()A. (0,2)B. (2,0)C. (0,-2)D. (﹣2,0)8.在平面直角坐标系中,点A(1,3)关于原点O对称的点A′的坐标为()A. (-1,3)B. (1,-3)C. (3,1)D. (-1,-3)9.如果点P(5,y)在第四象限,则y的取值范围是().A. y<0B. y>0C. y≤0D. y≥010.如图,在平面直角坐标中,过格点A,B,C做一圆弧,点B与下列格点的连线中,能够与该圆弧相切的格点的坐标是( )A. (0,3)B. (5,1)C. (6,1)D. (7,1)11.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2019的坐标是()A. (4,0)B. (-2,2)C. (2,-4)D. (-4,2)12.把100个苹果分给若干个小朋友,每个人至少一个,且每个人分的数目不同.那么最多有()人?A. 11B. 12C. 13D. 14二、填空题(共6题;共12分)13.点M(2,-4)关于原点对称的点的坐标是________.14.如图是某校的平面示意图,如果分别用(3,﹣1)、(﹣3,2)表示图中图书馆和实验楼的位置,那么校门的位置可表示为________16题15.点P(3,2)关于y轴对称的点的坐标是________ .18题16.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.17.点P(5,3)关于y轴对称的点的坐标是 ________18.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是________.三、解答题(共2题;共13分)19.已知四边形AOCD是放置在平面直角坐标系内的梯形,其中O是坐标原点,点A,C,D的坐标分别为(0,8),(5,0),(3,8).若点P在梯形内,且△PAD的面积等于△POC的面积,△PAO的面积等于△PCD 的面积. 求点P的坐标.20.已知点A(﹣5,0),B(3,0),在坐标平面内找一点C,能满足S△ABC=16,求点C的坐标,这个点的坐标有何规律?四、作图题(共1题;共10分)21.画出△ABC关于y轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.五、综合题(共3题;共41分)22.如图,,,点B在x轴上,且.(1)求点B的坐标;(2)求的面积;(3)在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.23.如图,在平面直角坐标系中,点A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.(1)图1中,点C的坐标为________;(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点 B 作BF⊥BE交y轴于点F.①当点E为线段CD的中点时,求点F的坐标;②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.24.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C(3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标________;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC=S△MAB,请求出M点坐标.答案一、单选题1. D2. D3.A4. D5. B6.D7. A8. D9. A 10. B 11. A 12.C二、填空题13. (-2,4)14.(0,﹣2)15. (﹣3,2)16.(4,4)17. (﹣5,3)18.三、解答题19. 解:如图,过点P作PE⊥y轴于点E.因为:点A,C,D的坐标分别为(0,8),(5,0),(3,8),△PAD的面积等于△POC的面积,所以:×3AE= ×5OE,即3(8-OE)=5OE,解得:OE=3所以:△PAD的面积=△POC的面积= ×3×5=7.5,,△PAO的面积=△PCD的面积=[﹙3﹢5﹚×8÷2-2×7.5]÷2=8.5则×8PE=8.5,即PE= ,所以:点P的坐标是(,3).20.解:如图,∵A(﹣5,0),B(3,0),∴AB=3﹣(﹣5)=3+5=8,S△ABC= AB?CO= ×8?CO=16,解得:CO=4,当点C在y轴的正半轴时,点C的坐标为(0,4),当点C在y轴的负半轴时,点C的坐标为(0,﹣4);∵到x轴距离等于4的点有无数个,∴在平面内使△ABC的面积为16的点有无数个,这些点到x轴的距离等于4.四、作图题21. 解:如图,A1(-3,4),B1(-1,2),C1(-5,1).五、综合题22. (1)解:当点B在点A的右边时,点B的坐标为(2,0);当点B在点A的左边时,点B的坐标为(-4,0).所以点B的坐标为(2,0)或(-4,0)=6. (3)(2)解:三角形ABC的面积为×3×4解:设点P到x轴的距离为h,则×3h=10,解得h=.①当点P在y轴正半轴时,点P的坐标为(0,);②当点P在y轴负半轴时,点P的坐标为(0,-).综上所述,点P的坐标为(0,)或(0,-)23. (1)解:C(4,1)(2)解:①法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,∴OM=2,∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.法二:在OB的延长线上取一点M..∵∠ABC=∠AOB=90°∴∠ABO+∠CBM=90°.∠ABO+∠BAO =90°.∴∠BAO=∠CBM .∵C(4,1).D(0,1).又∵CD∥OM ,CD=4.∴∠DCB=∠CBM.∴∠BAO=∠ECB..∵∠ABC=∠FBE=90°∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE= CD=2,∵A(0,3),OA=3,∴OF=1.∴F(0,1) ,② .24. (1)(0,﹣4)(2)解:∵B、E关于直线a对称,∴PB=PE,∴△PBA周长=AB+BP+PA=AB+PE+PA∵两点之间线段最段,∴△PBA周长的最小值=AB+AE= ,∴直线AE的解析式:y=﹣4x﹣4,当y=﹣1时,x= ,∴P点坐标(,﹣1)(3)解:设M(m,﹣1),当M在第四象限,∵S△ABC=S△MAB,∴点M在过C且平行于AB的直线上,∵直线AB的解析式为:y=2x+2,设直线CM的解析式为:y=2x+n,,∴0=2×3+n∴n=﹣6,∴直线CM的解析式为:y=2x﹣6,∴m= ,∴M(,﹣1),当M在第三象限,直线AB与直线a交于G(﹣,﹣1),,∴×(﹣﹣m)×(2+1)﹣×(﹣﹣m)×1= ×4×2∴m=﹣5.5,∴M(﹣5.5,﹣1).。

(北师大版)初中数学八年级上册第三章综合测试03含答案解析

(北师大版)初中数学八年级上册第三章综合测试03含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第三章综合测试一、单选题1.下列数据不能确定目标的位置是( )A .教室内的3排2列B .东经100︒北纬45︒C .永林大道12号D .南偏西40︒2.如图,是岑溪市几个地方的大致位置的示意图,如果用()0,0表示孔庙的位置,用()1,5表示东山公园的位置,那么体育场的位置可表示为( )A .()1,1−−B .()0,1C .()1,1D .()1,1−3.已知点()2,24P m m +−在y 轴上,则点P 的坐标是( )A .()8,0B .()0,8−C .()8,0−D .()0,84.已知点()2,1A ,过点A 作x 轴的垂线,垂足为C ,则点C 的坐标为( )A .()1,2B .()1,0C .()0,1D .()2,05.已知点()12,5P a −−关于x 轴的对称点和点()3,Q b 关于y 轴的对称点相同,则(),A a b 关于x 轴对称的点的坐标为( )A .()1,5−B .()1,5C .()1,5−D .()1,5−−6.如图,如果四角星的顶点A 的位置用()5,8表示,那么顶点B 的位置可以表示为( )A .()2,5B .()5,2C .()3,5D .()5,3二、填空题7.课间操时,小华、小军、小刚的位置如图所示,小军对小华说:如果我的位置用()0,2−表示,小刚的位置用()2,0表示,那么你的位置可以表示为________.8.若点P 在y 轴正半轴上且到x 轴的距离是3,则P 点的坐标________.9.在直角坐标系中,点A 在x 轴上,且到原点的距离为5,则A 点的坐标为________;过点()3,4−且平行于x 轴的直线与y 轴的交点坐标为________.10.已知点P 关于x 轴的对称点为(),1a −,关于y 轴的对称点为()2,b −,那么点P 的坐标是________.三、解答题11.阅读与理解:如图,一只甲虫在55⨯的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“−”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A 到B 记为:()1,4A B →++,从D 到C 记为:()1,2D C →−+.思考与应用:(1)图中A C →(________,________);B C →(________,________);D A →(________,________).(2)若甲虫从A 到P 的行走路线依次为:()()()3,21,31,2++→++→+−,请在图中标出P 的位置.(3)若甲虫的行走路线为()()()()1,42,01,24,2A →++→+→+−−−−,请计算该甲虫走过的总路程.四、作图题12.下图是某市的部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系(2)分别写出市场、超市、体育场的坐标(小正方形网格的单位长度为1).13.2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门隆重举行,以盛大的阅兵仪式和群众游行欢庆伟大祖国的这一盛大节日.如图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图,如果这个坐标系分别以正东、正北方向为轴、y 轴的正方向,以天安门为坐标原点建立平面直角坐标系.(1)请根据题意画出平面直角坐标系;(2)写出天安门、故宫、王府井、人民大会堂、中国国家博物馆这五个景点位置的坐标.14.在直角坐标系中描出下列各组点,并将各组内点用线段依次连接起来:①()6,5−,()10,3−,()9,3−,()3,3−,()2,3−,()6,5−②()9,3−,()9,0−,()3,0−,()3,3−观察所得的图形,你觉得它像什么?15.如图.将ABC △向右平移4个单位得到A B C '''△.(1)写出A ,B ,C 的坐标;(2)画出A B C '''△;(3)求ABC △的面积.第三章综合测试答案解析一、1.【答案】D【解析】A 、教室内的3排2列,能确定目标的位置,故本选项不合题意;B 、东经100︒北纬45︒,能确定目标的位置,故本选项不合题意;C 、永林大道12号,能确定目标的位置,故本选项不合题意;D 、南偏西40︒,不能确定目标的位置,故本选项符合题意.故答案为:D.根据坐标确定位置需要两个数据对各选项分析判断利用排除法求解.【考点】用坐标表示地理位置2.【答案】A【解析】由题意可建立如下图所示的平面直角坐标系:平面直角坐标系中,原点O 表示孔庙的位置,点A 表示东山公园的位置,点B 表示体育场的位置,则点B 的坐标为()1,1−−故答案为:A.根据孔庙和东山公园的位置,可知坐标轴的原点、单位长度、坐标轴的正方向,据此建立平面直角坐标系,从而可得体育场的位置.【考点】用坐标表示地理位置3.【答案】B【解析】横坐标为0,20m +=,2m =−;把2m =−代入24m −,得()2248⨯−−=−;故点P 的坐标为(0,)8−;故答案为:B.根据点在坐标轴上的性质,在y 轴上的点横坐标为0,20m +=可以求出m ,再代入纵坐标24m −,可以求出P 点坐标。

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试(答案解析)

(北师大版)北京市八年级数学上册第三单元《位置与坐标》测试(答案解析)

一、选择题1.若点Р位于平面直角坐标系第四象限,且点Р到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为( )A .()1,2-B .()1,2-C .()2,1-D .()2,1-2.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m < 3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1- B .1 C .0 D .2021- 4.若点(0,2)A -与点B 关于x 轴对称,则点B 的坐标为( )A .(0,2)-B .(2,0)C .(0,2)D .(2,0)- 5.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 6.平面直角坐标系中,点P (-2,1)关于y 轴对称点P 的坐标是( )A .()2,1-B .()2,1-C .()2,1--D .()2,17.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 8.平面直角坐标系中,P (-2a -6,a -5)在第三象限,则a 的取值范围是( ) A .a >5B .a <-3C .-3≤a ≤5D .-3<a <59.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1)10.如图,在48 的长方形网格OABC 中,动点(0,3)P 从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3)11.关于点P (-2,0)在直角坐标平面中所在的象限说法正确的是( ) A .点P 在第二象限B .点P 在第三象限C .点P 既在第二象限又在第三象限D .点P 不在任何象限12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.点P 的坐标是(1,4),它关于y 轴的对称点坐标是_____________.14.若点(3+m ,a -2)关于y 轴对称点的坐标是(3,2),则m +a 的值为______.15.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 16.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a+b=___.17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 18.已知点(,)P m n 在y 轴的左侧,(,)P m n 到x 轴的距离是5,到y 轴的距离是3,则Р点坐标是________________.19.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________. 20.点A 的坐标为()5,3-,点A 关于x 轴的对称点为点B ,则点B 的坐标是______.三、解答题21.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为A (1,3),B (2,1),C (5,1).(1)直接写出点B 关于x 轴对称的对称点1B 的坐标为______,直接写出点B 关于y 轴对称的对称点2B 的坐标为_____,直接写出12AB B 的面积为_______; (2)在y 轴上找一点P 使1PA PB +最小,则点P 坐标为_______;说明理由. 22.如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3). (1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于y 轴对称的△A 1B 1C 1; (3)写出点B 1的坐标; (4)求△ABC 的面积.23.在如图所示的平面直角坐标系中,描出点A(3,2)和点B (-1,4).(1)求点A (3,2)关于x 轴的对称点C 的坐标; (2)计算线段BC 的长度.24.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标. 25.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标26.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,ABC 的三个顶点都在格点上.(1)AB =______;AC =______;BC =______. (2)画出ABC 关于EF 成轴对称的111A B C △;(3)在直线MN 上找一点P ,使PAB △的周长最小,请用画图的方法确定点P 的位置,并直接写出PAB △周长的最小值为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】可先判断出点的坐标的符号,再跟据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到具体坐标即可.【详解】】解:∵P 到x 轴的距离为1,到y 轴的距离为2, ∴P 纵坐标可能为±1,横坐标可能为±2, ∵点M 在第四象限, ∴P 坐标为(2,-1). 故选:D . 【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.2.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32, 解不等式②,得:m >0,∴不等式组的解集为m >32, 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.A解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.C解析:C 【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得答案. 【详解】解:点A 与点B 关于x 轴对称,点A 的坐标为(0,-2),则点B 的坐标是(0,2). 故选:C . 【点睛】本题考查了关于x 轴对称的点的坐标,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.5.B解析:B 【分析】直接利用关于y 轴对称点的性质得出答案. 【详解】解:∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m=-3,n=2. 故选:B . 【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.D解析:D 【分析】直接利用关于y 轴对称点的特点得出答案. 【详解】点P (﹣2,1)关于y 轴对称点P 的坐标是:(2,1). 故选D . 【点睛】此题主要考查了关于y 轴对称点的特点,正确记忆横纵坐标的符号是解题关键.7.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.8.D解析:D 【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a 的取值范围即可. 【详解】∵点P 在第三象限, ∴26050a a --<⎧⎨-<⎩,解得:-3<a<5, 故选D. 【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a 的取值范围.9.B解析:B 【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0) 【详解】由题意知:AB=2,BC=4,CD=2,DA=4, ∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位), 2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD 和x 轴的正半轴的交点上, ∴其坐标为(1,0). 故选:B . 【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.10.B解析:B 【分析】根据入射角与反射角的定义作出图形,可知每6次反弹为一个循环组,依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),÷=,∵202063364∴当点P第2020次碰到矩形的边时的坐标与点P第4次反弹碰到矩形的边时的坐标相同,∴点P的坐标为(5,0),故选:B.【点睛】此题考查了直角坐标系中点的坐标的表示方法,动点的运动规律,正确理解题中点的运动变化规律得到点的坐标的规律是解题的关键.11.D解析:D【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可.【详解】解:点P(-2,0)不在任何象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据关于y 轴对称的点的特征即可得解;【详解】∵点的坐标是∴点P 关于y 轴的点是;故答案是【点睛】本题主要考查了关于对称轴对称点的应用准确计算是解题的关键 解析:()1,4-【分析】根据关于y 轴对称的点的特征即可得解; 【详解】∵点P 的坐标是(1,4), ∴点P 关于y 轴的点是()1,4-; 故答案是()1,4-. 【点睛】本题主要考查了关于对称轴对称点的应用,准确计算是解题的关键.14.【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数纵坐标不变可得再解即可【详解】∵点()关于y 轴对称点的坐标是(32)∴解得:∴故答案为:【点睛】本题主要考查了关于y 轴的对称点的坐标特点关键是 解析:2-【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得33m +=-,22a -=,再解即可. 【详解】∵点(3m +,2a -)关于y 轴对称点的坐标是(3,2), ∴33m +=-,22a -=,解得:6m =-,4a =,∴2m a +=-,故答案为:2-.【点睛】本题主要考查了关于y 轴的对称点的坐标特点,关键是掌握点的坐标的变化规律. 15.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x 解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9,∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.16.-8【分析】根据关于x 轴对称的点的横坐标相等纵坐标互为相反数关于y 轴对称的点的纵坐标相等横坐标互为相反数得出ab 的值即可得答案【详解】解:由题意得a+3=-2b-1=-4解得a=-5b=-3所以a+解析:-8【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数,得出a 、b 的值即可得答案.【详解】解:由题意,得a+3=-2,b-1=-4.解得a=-5,b=-3,所以a+b=(-5)+(-3)=-8故答案为:-8.【点睛】本题考查关于x 轴对称的点的坐标,熟记对称特征:关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数是解题关键. 17.7或﹣4【分析】根据题意可以求得a 的值然后再对t 进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t >2时h=t ﹣1则3(t ﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值.【详解】由题意可得,“水平底”a=1﹣(﹣2)=3,当t>2时,h=t﹣1,则3(t﹣1)=18,解得,t=7;当1≤t≤2时,h=2﹣1=1≠6,故此种情况不符合题意;当t<1时,h=2﹣t,则3(2﹣t)=18,解得t=﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.18.(-35)或(-3-5)【分析】根据点到x轴的距离等于纵坐标的长度到y轴的距离等于横坐标的长度解答【详解】∵点P(mn)在y轴的左侧∴m<0∵到x轴的距离是5∴点P的纵坐标为±5∵到y轴的距离是3∴解析:(-3,5)或(-3,-5)【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵点P(m,n)在y轴的左侧,∴m<0,∵到x轴的距离是5,∴点P的纵坐标为±5,∵到y轴的距离是3,∴点P的横坐标是-3,∴点P的坐标为:(-3,5)或(-3,-5),故答案为:(-3,5)或(-3,-5).【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度也很重要.19.【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】∵点P 在第四象限且点P 到x 轴和y 轴的距离分别为68∴点P 的横坐标是8纵坐标是-6即点P 的坐标为故答案为【点睛】此题考查点 解析:(8,6)-【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P 在第四象限,且点P 到x 轴和y 轴的距离分别为6、8,∴点P 的横坐标是8,纵坐标是-6,即点P 的坐标为(8,6)-.故答案为(8,6)-.【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.20.【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x 轴对称点的坐标准确计算是解题的关键解析:()5,3【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点A 的坐标为()5,3-,∴关于x 轴的对称点为点B ()5,3;故答案是()5,3.【点睛】本题主要考查了关于x 轴对称点的坐标,准确计算是解题的关键.三、解答题21.(1)(2,1)-,(2,1)-,7;(2)50,3⎛⎫ ⎪⎝⎭;理由见解析.【分析】(1)根据关于x 轴、y 轴对称的点的坐标特征即可得到B 1、B 2坐标,利用分割法即可求得△AB 1B 2面积;(2)根据轴对称的性质得到B 3(﹣2,﹣1),求得直线B 3A 解析式继而令0x =时即可求解.【详解】(1)(2,1)B 关于x 轴对称点B ,1B ∴坐标为(2,1)-(2,1)B 关于y 轴对称点2B2B ∴坐标为(2,1)-∴S △AB 1B 2面积=11144231424222⨯-⨯⨯-⨯⨯-⨯⨯ 16324=---7=故12AB B 的面积为7,(2)点P 坐标为50,3⎛⎫ ⎪⎝⎭,理由如下:∵B 1(2,﹣1)关于y 轴对称点B 3(﹣2,﹣1),连接B 3A 交于y 轴于P 则P 为所求,设直线B 3A 表达式为(0)y kx b k =+≠,把B 3(﹣2,﹣1),A (1,3)代入得123k b k b -=-+⎧⎨=+⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩4533y x ∴=+ 当0x =时53y =50,3P ⎛⎫∴ ⎪⎝⎭【点睛】本题考查轴对称有关知识,解题的关键是熟练掌握关于x 轴、y 轴对称的点的坐标特征及轴对称的性质.22.(1)答案见解析;(2)答案见解析;(3)B 1(2,1);(4)4(1)根据点C的坐标,向右一个单位,向下3个单位,确定出坐标原点,然后建立平面直角坐标系即可;(2)根据轴对称得到点A1、B1、C1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出点B1的坐标,(4)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)建立如图所示的平面直角坐标系:(2)(3)由(2)可得点B1的坐标为B1(2,1);(4)△ABC的面积=111 341223244 222.【点睛】本题考查轴对称作图问题,用到的知识点:图象的变换轴对称,看关键点的变换即可. 23.点A和点B的位置如图,见解析;(1)点A关于x轴的对称点C的坐标为(3,-2);(2)BC=13【分析】先根据已知描出点A和点B的位置;(1)根据平面内两个关于x轴对称的点,横坐标不变,纵坐标互为相反数即可确定C的坐标;(2)直接用两点距离公式即可求解.解:点A 和点B 的位置如图:(1)点A 关于x 轴的对称点C 的坐标为(3,-2);(2)BC=()()22243152213⎡⎤--+--==⎣⎦. 【点睛】本题考查的主要是平面直角坐标系内点的计算,掌握点的对称规律以及两点距离公式是解题的关键.24.(1)见解析;(2)见解析;P ()2,0【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(2)作点A 关于x 轴的对称点,再连接A′B ,与x 轴的交点即为所求.【详解】(1)如图所示,111A B C △即为所求.(2)如图所示,点P 即为所求,其坐标为()2,0.【点睛】本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.25.(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案.(2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()1,0P -即为所求点.【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)21317;(2)见解析;(3)图见解析,2225【分析】(1) 根据勾股定理结合每一格点都是1个单位分别计算即可;(2) 根据根据轴对称的意义找到对称轴作图即可;(3)作A 点关于直线MN 的对称点A′,连接A′B 与MN 交于点P ,此时A′B 的长即为PAB △周长的最小值.【详解】(1)根据勾股定理可得:222222AB =+ ,222313AC +221417BC =+=; 故答案为:21317;(2)如图:(3)如图:作A点关于直线MN的对称点A′,连接A′B与MN交于点P,△APB的周长为AP+BP+AB,∵A′P=AP,∴△APB的周长为AP+BP+AB= A′P+BP+AB=A′B+A B,由勾股定理得:22A B'=+=2425∴△APB的周长为2225【点睛】此题考查坐标系中关于轴对称的坐标点的变化,最小值作对称图形根据关于轴对称的线段相等的性质解题即可.。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试卷(含答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试卷(含答案解析)(2)

一、选择题1.若点Р位于平面直角坐标系第四象限,且点Р到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为( )A .()1,2-B .()1,2-C .()2,1-D .()2,1-2.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗 3.平面直角坐标系中,点P (-2,1)关于y 轴对称点P 的坐标是( )A .()2,1-B .()2,1-C .()2,1--D .()2,1 4.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 5.在平面直角坐标系中,点P (﹣3,4)关于x 轴的对称点的坐标是( )A .(﹣4,﹣3)B .(﹣3,﹣4)C .(3,4)D .(3,﹣4)6.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7B .1-C .1-或7D .7-或17.已知点()1,3P x x --在第一象限或第三象限,则x 的取值范围是( ) A .3x = B .1x < C .13x << D .1x <或3x > 8.A(-2,-3)到x 轴的距离为( )A .-2B .-3C .3D .29.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( ) A .()0,1-B .()1,2--C .()2,1--D .()2,310.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次接着运动到点(2,0),第三次接着运动到点(3,2),…,按这样的运动规律经过第2020次运动后,动点P 的坐标是( )A .(2020,1)B .(2020,0)C .(2020,2)D .(2020,2020)11.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2020秒时,点所在位的坐标是( )A .(64,44)B .(45,5)C .(44,5)D .(44,4)12.如图是小刚画的一张脸,如果用(0,2)表示A 点所在的眼睛,用(2,2)表示B 点所在的眼睛,那么C 点表示的嘴的位置可以表示成( )A .(1,0)B .(-1,0)C .( -1,1)D .(1,-1)二、填空题13.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.14.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 15.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________. (2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.16.如图是我国空军“八一”飞行表演队在珠海国际航展上的一个飞行队形,若轰炸机A 、B 的平面坐标分别为A (-3,1)和B (1,-1),那么轰炸机C 的平面坐标是_______.17.为了培养学生社会主义核心价值观,张老师带领学生去 参观天安门广场的升旗仪式.如图是张老师利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,表示金水桥的点的坐标为(1,﹣2),表示本仁殿的点的坐标为(3,﹣1),则表示乾清门的点的坐标是______.18.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 19.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______. 20.已知点P 在第四象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是______.三、解答题21.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3),点B 坐标为(2,1),则C 点坐标为 ;(2)画出△ABC 关于y 轴对称的图形为△A 1B 1C 1,并写出点B 1的坐标为 ;写出△A 1B 1C 1的面积为 ;(3)在y 轴上画出P 点,使得PA+PC 的值最小,最小值为 .22.如图,在平面直角坐标系中,已知A (0,2),B (1,0),点C 在第一象限,AB =AC ,∠BAC =90°. (1)求点C 到y 轴的距离; (2)点C 的坐标为 .23.如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3). (1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于y 轴对称的△A 1B 1C 1; (3)写出点B 1的坐标; (4)求△ABC 的面积.24.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.25.如图,在平面直角坐标系中,直线l 过点M (1,0)且与y 轴平行,△ABC 的三个顶点的坐标分别为A (-2,5),B (-4,3),C (-1,1). (1)作出△ABC 关于x 轴对称111A B C △;(2)作出△ABC 关于直线l 对称222A B C △,并写出222A B C △三个顶点的坐标.(3)若点P 的坐标是(-m ,0),其中m >0,点P 关于直线l 的对称点P 1,求PP 1的长.26.请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标; (2)直接写出由超市、文化馆、市场围成的三角形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】可先判断出点的坐标的符号,再跟据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到具体坐标即可.【详解】】解:∵P到x轴的距离为1,到y轴的距离为2,∴P纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴P坐标为(2,-1).故选:D.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.2.A解析:A【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A . 【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--, . 3.D解析:D 【分析】直接利用关于y 轴对称点的特点得出答案. 【详解】点P (﹣2,1)关于y 轴对称点P 的坐标是:(2,1). 故选D . 【点睛】此题主要考查了关于y 轴对称点的特点,正确记忆横纵坐标的符号是解题关键.4.C解析:C 【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可. 【详解】解:根据第四象限的点的横坐标是正数,可得﹣m >0,解得m <0. 故选:C . 【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.5.B解析:B 【解析】试题分析:平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.解:点A (﹣3,4)关于x 轴的对称点的坐标是(﹣3,﹣4), 故选B .考点:关于x 轴、y 轴对称的点的坐标.6.C解析:C 【分析】根据点M (2,3)与点N (2,y )之间的距离是4,可得|y−3|=4,从而可以求得y 的值.【详解】∵点M (2,3)与点N (2,y )之间的距离是4, ∴|y−3|=4, ∴y−3=4或y−3=−4, 解得y =7或y =−1. 故选:C . 【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.7.D解析:D 【分析】在第一象限或第三象限内的点的横纵坐标均为同号,列式求值即可. 【详解】因为点()1,3P x x --在第一象限或第三象限, 所以10,30x x ->->或10,30x x -<-< 解得:1x <或3x > 故选:D 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.8.C解析:C 【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值. 【详解】解:点A(-2,-3)到x 轴的距离为|-3|=3. 故选C. 【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值.9.D解析:D 【分析】由经过点A 的直线a ∥x 轴,可知点C 的纵坐标与点A 的纵坐标相等,可设点C 的坐标(x ,3),根据点到直线垂线段最短,当BC ⊥a 时,点C 的横坐标与点B 的横坐标相等,即可得出答案. 【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.10.B解析:B【分析】分析图象发现点P的运动每4次位置循环一次,每循环一次向右移动4个单位,根据这个规律先确定2020次运动是多少个循环,然后根据循环次数确定点P的位置.【详解】分析图象可以发现,点P的运动每4次位置循环一次,每循环一次向右移动4个单位.∴2020=505 4,当第505次循环结束时,点P的位置在(2020,0),故答案为:B.【点睛】本题主要考查了平面直角坐标系中点的运动规律问题,分析图象得出规律是解题的关键. 11.D解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2020=452﹣5=2025﹣5,∴第2025秒时,动点在(45,0),故第2020秒时,动点在(45,0)向左一个单位,再向上4个单位,即(44,4)的位置. 故选:D . 【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.12.A解析:A 【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出C 的位置对应的点的坐标. 【详解】 解:如图,C 的位置可以表示为(1,0). 故选:A . 【点睛】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.二、填空题13.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2 【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值. 【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5, ∴2n =-,()45m --=, ∴9m =-或1, 故答案为:9-或1;2-. 【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.14.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x 解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9, ∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.15.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A在x轴上方时,点A的纵坐标一定大于0,即0y>则340x->解得43 x>故答案为:43 x>.【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.16.(-1-2)【分析】根据A(-31)和B(1-1)的坐标以及与C的关系进行解答即可【详解】解:因为A(-31)和B(1-1)所以可得点C的坐标为(-1-2)故答案为(-1-2)【点睛】本题考查了坐标解析:(-1,-2)【分析】根据A(-3,1)和B(1,-1)的坐标以及与C的关系进行解答即可.【详解】解:因为A(-3,1)和B(1,-1),所以可得点C的坐标为(-1,-2).故答案为(-1,-2).【点睛】本题考查了坐标问题,关键是根据A(-3,1)和B(1,-1)的坐标以及与C的关系解答.17.(13)【详解】分析:根据金水桥的点的坐标(1-2)确定坐标原点的位置然后建立坐标系进而可确定乾清门的点的坐标位置详解:如图所示:乾清门的点的坐标是(13)故答案为(13)点睛:此题主要考查了坐标确解析:(1,3)【详解】分析:根据金水桥的点的坐标(1,-2)确定坐标原点的位置,然后建立坐标系,进而可确定乾清门的点的坐标位置.详解:如图所示:乾清门的点的坐标是(1,3),故答案为(1,3).点睛:此题主要考查了坐标确定位置,关键是正确建立坐标系.18.或【解析】【分析】分x<00≤x<3x≥3三种情况分别讨论即可得【详解】当x<0时2x<0x-3<0由题意则有-2x-(x-3)=5解得:x=当0≤x<3时2x≥0x -3<0由题意则有2x-(x-3解析:2或2-3 【解析】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23-, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去), 综上,x 的值为2或23-, 故答案为2或23-. 【点睛】本题考查了坐标与图形的性质,根据x 的取值范围分情况进行讨论是解题的关键. 19.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键. 20.【分析】根据各象限内点的坐标特征解答即可【详解】解:因为点P 在第四象限且点P 到x 轴的距离是2到y 轴的距离是3所以点P 的坐标为(3-2)故答案为:(3-2)【点睛】本题考查了各象限内点的坐标的符号特征解析:()3,2-【分析】根据各象限内点的坐标特征解答即可.【详解】解:因为点P在第四象限,且点P到x轴的距离是2,到y轴的距离是3,所以点P的坐标为(3,-2),故答案为:(3,-2).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题21.(1)见解析,(5,5);(2)见解析,(-2,1),5;(3)见解析,210.【分析】(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在B的下方1个单位,建立直角坐标系,即可得出C点坐标;(2)根据关于y轴对称的点的坐标特点可得各点的对称点,再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1,再利用△A1B1C1所在的正方形的面积减去三个直角三角形的面积即可求出△A1B1C1的面积;(3)直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接AC1与y轴相交,此交点即为点P.再利用勾股定理求出AC1,即可得出PA+PC的最小值.【详解】解:(1)如图所示:即为作出的平面直角坐标系,∴C点坐标为(5,5);故答案为:(5,5);(2)如图所示:△A1B1C1'即为所求,∵A(1,3),B (2,1),C(5,5),∴A1(-1,3),B1(-2,1),C1(-5,5),∴△A1B1C1的面积为:111⨯-⨯⨯-⨯⨯-⨯⨯=;441224345222故答案为:(-2,1),5;(3)如图所示:点P即为所求作的点.∵点C的对称点为C1,∴连接AC1与y轴相交于一点即为点P,此时PA+PC的值最小,由勾股定理得AC1=22+=,26210∴PA+PC的最小值为210.故答案为:210.【点睛】本题考查了轴对称与坐标变化和勾股定理,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图是解答本题的关键.22.(1)2;(2)(2,3).【分析】(1)过点C作CD⊥y轴,垂足为D,然后证明△AOB≌△CDA,则CD=OA,即可得到答案;(2)由(1)可知,CD=OA,AD=OB,即可求出答案.【详解】解:(1)过点C作CD⊥y轴,垂足为D,如图:∵CD⊥y轴,∴∠AOB=∠CDA=90°,∵∠BAC=90°,∴∠CAD+∠BAO=∠ABO+∠BAO=90°,∴∠CAD=∠ABO,∵AB=AC,∴△AOB≌△CDA,∴CD=OA,AD=OB,∵A(0,2),B(1,0),∴CD=OA=2;∴点C到y轴的距离为2;(2)由(1)可知,CD=OA,AD=OB,∵OA=2,OB=1,∴OD=2+1=3,∴点C的坐标为(2,3);故答案为:(2,3).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质进行解题,注意正确的作出辅助线.23.(1)答案见解析;(2)答案见解析;(3)B1(2,1);(4)4【分析】(1)根据点C的坐标,向右一个单位,向下3个单位,确定出坐标原点,然后建立平面直角坐标系即可;(2)根据轴对称得到点A1、B1、C1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出点B1的坐标,(4)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)建立如图所示的平面直角坐标系:(2)(3)由(2)可得点B1的坐标为B1(2,1);(4)△ABC的面积=111 341223244 222.【点睛】本题考查轴对称作图问题,用到的知识点:图象的变换轴对称,看关键点的变换即可.24.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】 (1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.25.(1)答案见解析;(2)答案见解析,点A 2(4,5),点B 2(6,3),点C 2(3,1);(3)PP 1=2+2m【分析】(1)分别作出点A 、B 、C 关于x 轴对称的点,然后顺次连接;(2)分别作出点A 、B 、C 关于直线l 对称的点,然后顺次连接,并写出△A 2B 2C 2三个顶点的坐标(3)根据对称的性质即可得出答案.【详解】解:(1)如图所示,111A B C 即为所求;(2)如图所示,△A 2B 2C 2即为所求,由图可知,点A 2的坐标是(4,5),点B 2的坐标是(6,3),点C 2的坐标是(3,1); (3)PP 1=2(1+m )=2+2m .【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.26.(1)画坐标轴见解析,火车站(0,0),体育场(﹣4,3),医院(﹣2,﹣2);(2)19.【分析】(1)以文化宫向右3个单位,向下1个单位为坐标原点建立平面直角坐标系,然后分别写出各位置坐标即可;(2)用三角形所在的矩形的面积减去四周三个小三角形的面积,列式计算即可得解.【详解】解:(1)画坐标轴如图所示,火车站(0,0),体育场(﹣4,3),医院(﹣2,﹣2);(2)三角形的面积=7×6﹣12×5×4﹣12×2×6﹣12×2×7=42﹣10﹣6﹣7=42﹣23=19.。

北京师范大学附属实验中学八年级数学上册第三单元《轴对称》检测(答案解析)

北京师范大学附属实验中学八年级数学上册第三单元《轴对称》检测(答案解析)

一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ;(3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③ 2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021-3.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ). A .0 B .1 C .2 D .3 4.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒5.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( ) A .11 B .13 C .11或13 D .9或15 6.已知等腰三角形有一边长为5,一边长为2,则其周长为( )A .12B .9C .10D .12或97.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm8.平面直角坐标系中,点A (3,2)与点B 关于y 轴对称,则点B 的坐标为( )A .(3,-2)B .(-3,-2)C .(-3,2)D .(-2,3)9.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABDACDSS=.A .1B .2C .3D .410.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系11.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1212.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③二、填空题13.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.14.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.15.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________. 16.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.17.在△ABC 中,按以下步骤作图:①分别以A ,C 为圆心,以大于12AC 的同样长为半径画弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连结CD .请回答:若BC=DC ,∠B=100°,则∠ACB 的度数为____.18.已知,如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于点P ,下列说法:①∠APE =∠C ,②AQ =BQ ,③BP =2PQ ,④AE +BD =AB ,其正确的个数是_____.19.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD于E,AB=6,AC=14,∠ABC=3∠C,则BE=____.20.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.三、解答题21.如图1,△ABC中AB=AC,DE垂直平分AB分别交AB,AC于点D,E.(1)若∠C=70°,则∠A的大小为;(2)若AE=BC,求∠A的度数;(3)如图2,点M是边BC上的一个定点,若点N在直线DE上,当BN+MN最小时,点N在何处?请用无刻度直尺作出点N的位置.(不需要说明理由,保留作图痕迹)22.如图,已知:射线AM是△ABC的外角∠NAC的平分线.(1)作BC 的垂直平分线PF ,交射线AM 于点P ,交边BC 于点F ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P 作PD ⊥BA ,PE ⊥AC ,垂足分别为点D ,E ,请补全图形并证明BD =CE .23.如图,在四边形ABCD 中,//AB CD ,ABC ∠的平分线交CD 的延长线于点E ,F 是BE 的中点,连接CF 并延长交AD 于点G . (1)求证:BCG DCG ∠=∠.(2)若50CGD ︒∠=,58ABC ︒∠=,求ADE ∠的度数.24.在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP AQ =,20BAP ∠=︒,求AQB ∠的度数; (2)点P ,Q 是BC 边上的两个动点(不与B ,C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全; ②求证:PA PM =.25.已知:如图,//AC BD ,AE ,BE 分别平分CAB ∠和ABD ∠,点E 在CD 上.用等式表示线段AB 、AC 、BD 三者之间的数量关系,并证明.26.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可. 【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线. ∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确; 由作图(2)可知CP=CD=DP ,即CDP 为等边三角形, 又∵CD OP ⊥, ∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠, 又∵=AOP BOP ∠∠, ∴=CPO AOP ∠∠, ∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误. 综上,正确的有②③④.故选:B . 【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.A解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.D解析:D 【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断. 【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理, 易证△ABD ≌△ACE ;命题1:若AB=AC ,AD=AE ,则BD=CE ,此命题为真命题; 命题2:若AB=AC ,BD=CE ,则AD=AE ,此命题为真命题; 命题3:若AD=AE ,BD=CE ,则AB=AC ,此命题为真命题. 故选:D . 【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.4.B解析:B【分析】分∠A是顶角和底角两种情况分类讨论求得∠B的度数,即可得到答案.【详解】当∠A是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B是顶角时,则∠A是底角,∴∠B=180°-80°-80°=20°,当∠C是顶角时,则∠A和∠B都是底角,∴∠B=∠A=80°,综上所述:∠B的度数为:50°或20°或80°.观察各选项可知∠B不可能是60°.故选B.【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.5.C解析:C【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.6.A解析:A【分析】由等腰三角形有一边长为5,一边长为2,可分两种情况:①5为腰长,2为底边长;②2为腰长,5为底边长,依次分析即可求得答案.【详解】解:①若5为腰长,2为底边长,∵5,5,2能组成三角形,此时周长为:5+5+2=12;②若2为腰长,5为底边长,∵2+2=4<5,不能组成三角形,故舍去;∴三角形周长为12.故选:A.【点睛】此题考查等腰三角形的性质与三角形的三边关系,解题的关键是注意分类讨论.7.B解析:B【分析】根据折叠的性质得到:DE=CD,BE=BC=5cm,求出AE=4cm,根据△ADE的周长为AD+DE+AE=AC+AE代入数值计算即可得解.【详解】由折叠得:DE=CD,BE=BC=5cm,∵AB=9cm,∴AE=AB-BE=9cm-5cm=4cm,∴△ADE的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm,故选:B.【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.8.C解析:C【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点A(3,2)关于y轴对称点的坐标为B(−3,2).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.D解析:D【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断. 利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 【详解】解:∵∠C =90°,∠B =30°, ∴∠BAC =60°,由作法得AD 平分∠BAC ,所以①正确; ∴∠BAD =∠CAD =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确; ∵∠B =∠BAD , ∴DA =DB ,∴点D 在AB 的垂直平分线上,所以③正确; ∵如图,在直角△ACD 中,∠CAD =30°, ∴CD =12AD , ∴BC =CD+BD =12AD+AD =32AD ,S △DAC =12AC•CD =14AC•AD . ∴S △ABC =12AC•BC =12AC•32AD =34AC•AD , ∴S △DAC :S △ABC =14AC•AD :34AC•AD =1:3, ∴S △DAC :S △ABD =1:2.即S △ABD =2S △ACD ,故④正确. 故选:D . 【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.10.B解析:B 【分析】分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等; 【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD ,又AB=A′B′,∴△ABD ≅△A′B′E ,同理△ACD ≅△A′C′E ;∴ABD A B E SS ''=,ACD A C E S S ''=, 故ABD ACD A B E A C E S S S S ''''+=+,又ABC ,A B C '''的面积分别为1S 、2S ,∴12S S故选:B .【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.11.C解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==, ∴2222543AD AB BD =--=, ∴3sin 5AD B AB ==. 故选:C .【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.C解析:C根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题13.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC为等腰三角形AD为底边上的高∴AB=ACBD=DC∵△ABC的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD△的周长.【详解】∵△ABC为等腰三角形,AD为底边上的高,∴AB=AC,BD=DC,∵△ABC的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.14.3cm【分析】过点P作PF⊥OB于F根据角平分线上的点到角的两边距离相等可得PF=PE根据角平分线的定义可得∠AOC=∠BOC根据两直线平行内错角相等可得∠AOC=∠OPD两直线平行同位角相等可得∠解析:3cm【分析】过点P作PF⊥OB于F,根据角平分线上的点到角的两边距离相等可得PF=PE,根据角平分线的定义可得∠AOC=∠BOC,根据两直线平行,内错角相等可得∠AOC=∠OPD,两直线平行,同位角相等可得∠PDF=∠AOB,再求出∠BOC=∠OPD,根据等角对等边可得PD=OD,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF=12PD,进而即可求解.如图,过点P 作PF ⊥OB 于F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PE =PF ,∵OC 平分∠AOB ,∴∠AOC =∠BOC ,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°,∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF =12PD =12×6=3cm , ∴PE =PF =3cm .故答案为:3cm .【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.15.【分析】题中没有指明长为的边长是腰还是底则分两种情况进行分析还应验证是否满足三角形的三边关系【详解】当腰长是时底边长不能构成三角形;当底长是时三角形的腰能构成三角形其他两边长为故答案为:【点睛】本题 解析:9,9【分析】题中没有指明长为6的边长是腰还是底,则分两种情况进行分析,还应验证是否满足三角形的三边关系.【详解】当腰长是6时,底边长246612=--=,6、6、12不能构成三角形;当底长是6时,三角形的腰()24629=-÷=,6、9、9能构成三角形,其他两边长为9、9.故答案为:9,9.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目—定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.17.30°【分析】依据等腰三角形的性质即可得到∠BDC 的度数再根据线段垂直平分线的性质即可得出∠A 的度数进而得到∠ACB 的度数【详解】解:根据题意如图:∵BC=DC ∠ABC=100°∴∠BDC=∠CBD解析:30°【分析】依据等腰三角形的性质,即可得到∠BDC 的度数,再根据线段垂直平分线的性质,即可得出∠A 的度数,进而得到∠ACB 的度数.【详解】解:根据题意,如图:∵BC=DC,∠ABC=100°,∴∠BDC=∠CBD=180°-100°=80°,根据题意得:MN是AC的垂直平分线,∴CD=AD,∴∠ACD=∠A,∴∠A=1(18080)50⨯︒-︒=︒,2∴∠ACB=∠CBD-∠A=80°-50°=30°.故答案为:30°.【点睛】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.18.3【分析】根据等边三角形的性质可得AB=AC∠BAE=∠C=60°再利用边角边证明△ABE和△CAD全等然后得到∠1=∠2结合角的关系得到∠APE=∠C;再结合30°直角三角形的性质得到BP=2PQ解析:3【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再利用“边角边”证明△ABE和△CAD 全等.然后得到∠1=∠2,结合角的关系,得到∠APE=∠C;再结合30°直角三角形的性质,得到BP=2PQ;再结合边的关系,得到AC=AB;即可得到答案.【详解】证明:如图所示:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,60AB AC BAE C AE CD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△CAD (SAS ),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ ⊥AD ,∴∠PBQ=90°-∠BPQ=90°-60°=30°,∴BP=2PQ .故③正确,∵AC=BC .AE=DC ,∴BD=CE ,∴AE+BD=AE+EC=AC=AB ,故④正确,无法判断BQ=AQ ,故②错误,∴正确的有①③④,共3个;故答案为:3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,解题的关键是灵活运用所学知识解决问题.19.【分析】如图延长交于证明可得再求解再证明:可得从而可得答案【详解】解:如图延长交于AD 平分∠BAC 故答案为:【点睛】本题考查的是三角形的内角和定理三角形的外角的性质角平分线的定义等腰三角形的判定与性 解析:4.【分析】如图,延长BE ,交AC 于G , 证明,AGB ABG ∠=∠ 可得,AG AB = ,GE BE = 再求解CG ,再证明:C CGB ∠=∠, 可得,BG CG = 从而可得答案. 【详解】解:如图,延长BE ,交AC 于G ,AD 平分∠BAC ,,GAE BAE ∴∠=∠,BE AD ⊥90AEG AEB ∴∠=∠=︒,,AGB ABG ∴∠=∠6AG AB ∴==,,GE BE = 14AC =,8CG ∴=,,AGB C CBG ∠=∠+∠2,ABC ABG CBG AGB CBG C CBG ∴∠=∠+∠=∠+∠=∠+∠3,ABC C ∠=∠32,C C CBG ∴∠=∠+∠,C CBG ∴∠=∠8BG CG ∴==,1 4.2BE BG ∴== 故答案为:4.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角平分线的定义,等腰三角形的判定与性质,掌握以上知识是解题的关键.20.10°【分析】设∠B =∠C =x ∠CDE =y 分别表示出∠DAE 构建方程解方程即可求解【详解】解:设∠B =∠C =x ∠EDC =y ∵AD =AE ∴∠ADE =∠AED =x +y ∵∠DAE =180°−2(x +y )=解析:10°【分析】设∠B =∠C =x ,∠CDE =y ,分别表示出∠DAE ,构建方程解方程即可求解.【详解】解:设∠B =∠C =x ,∠EDC =y ,∵AD =AE ,∴∠ADE =∠AED =x +y ,∵∠DAE =180 °−2(x +y )=180 °−20 °−2x ,∴2y =20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.(1)40°;(2)36°;(3)见解析【分析】(1)根据等腰三角形的两底角相等和三角形内角和等于180°即可求解;(2)根据DE垂直平分AB可得BE=AE,进而可知∠A=∠ABE,再由AE=BC,可得∠C=∠BEC,进而得出∠ABC=∠C=2∠A,再由三角形内角和即可求出∠A;(3)由已知可知B关于直线DE的对称点是A点,由此可知当A、M、N三点在同一直线上时,BN+MN=AN+MN最小.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠C=70°,∴∠A=180°-70°-70°=40°,故答案为:40°;(2)如图:连接BE,∵DE垂直平分AB,∴BE=AE,∴∠A=∠ABE,又∵AE=BC,∴BE=BC,∴∠C=∠BEC,∵∠BEC=∠A+∠ABE=2∠A,∴∠ABC=∠C=2∠A,又∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,∴∠A=36°;(3)如图,连接AM 交DE 于N 点;即N 点为所求.【点睛】本题主要考查了线段垂直平分线的性质、等腰三角形的性质、三角形内角和及最短路径等知识点,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.22.(1)见解析;(2)见解析【分析】(1)利用基本作图作BC 的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB 、PC ,根据线段垂直平分线的性质得到PB =PC ,根据角平分线的性质得PD =PE ,则可判断Rt △BDP ≌Rt △CEP ,从而得到BD =CE .【详解】解:(1)如图,PF 为所作;(2)证明:如图,连接PB 、PC ,如图,∵PF 垂直平分BC ,∴PB =PC ,∵AM 是△ABC 的外角∠NAC 的平分线,PD ⊥BA ,PE ⊥AC ,∴PD =PE ,在Rt △BDP 和Rt △CEP 中,PB PC PD PE =⎧⎨=⎩, ∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.23.(1)见解析;(2)111ADE ︒∠=.【分析】(1)根据BE 平分ABC ∠,得到12ABF CBF ABC ∠=∠=∠,由 AB CD ∥,可证得BCE 是等腰三角形,根据F 为BE 的中点,可证BCG DCG ∠=∠;(2)根据AB CD ∥,58ABC ︒∠=,可得 122BCD ︒∠=,利用CG 平分BCD ∠,求得1612GCD BCD ︒∠=∠=,根据 50CGD ︒∠=,ADE CGD GCD ∠=∠+∠,可求得 111ADE ∠=︒.【详解】解:(1)∵BE 平分ABC ∠, ∴12ABF CBF ABC ∠=∠=∠. ∵AB CD ∥,∴ABF E ∠=∠,∴CBF E ∠=∠,∴BC =CE , ∴BCE 是等腰三角形.∵F 为BE 的中点,∴CF 平分BCD ∠,即BCG DCG ∠=∠.(2)∵AB CD ∥, ∴180ABC BCD ∠+∠=︒.∵58ABC ︒∠=,∴122BCD ︒∠=.∵CG 平分BCD ∠, ∴1612GCD BCD ︒∠=∠=. ∵50CGD ∠=︒,ADE CGD GCD ∠=∠+∠,∴111ADE ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,平行线的性质,三角形外角的性质等等知识点,判断出△BCE 是等腰三角形是解题的关键.24.(1)80°;(2)①见解析;②见解析【分析】(1)根据等边三角形的性质求解即可;(2)①根据题意画图即可;②过点A 作AH BC ⊥于点H ,根据等边三角形的性质得到PAB QAC ∠=∠,再根据点Q ,M 关于直线AC 对称,得到AP=AM ,得到APM ∆为等边三角形,即可得到答案;【详解】(1)ABC ∆为等边三角形,60B ∴∠=︒,80APC BAP B ∴∠=∠+∠=︒,AP AQ =,80AQB APC ∴∠=∠=︒;(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥于点H ,如图.ABC ∆为等边三角形,AP AQ =,BAH CAH ∴∠=∠,PAH QAH ∠=∠,PAB QAC ∴∠=∠,点Q ,M 关于直线AC 对称,QAC MAC ∴∠=∠,AQ AM =,60MAC PAC PAB PAC ∴∠+∠=∠+∠=︒,AP AM =,APM ∴∆为等边三角形,PA PM ∴=.【点睛】本题主要考查了等边三角形的判定与性质,准确分析判断是解题的关键.25.AB=AC+BD ,证明见详解.【分析】延长AE ,交BD 的延长线于点F ,先证明AB=BF ,进而证明△ACE ≌△FDE ,得到AC=DF ,问题得证.【详解】解:延长AE ,交BD 的延长线于点F ,∵//AC BD ,∴∠F=∠CAF ,∵AE 平分CAB ∠,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,,∵BE平分ABF∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.26.(1)见解析;(2)见解析;(0,5);(3)(﹣a﹣4,b)【分析】(1)利用A、C点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A、B、C关于直线l的对称点A1、B1、C1即可;(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(-a-2,b),然后把(-a-2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A1B1C1为所作的三角形;C1的坐标为:(0,5);(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(-a-2,b),然后把(-a-2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).∴P1的坐标是(﹣a﹣4,b).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测题(有答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测题(有答案解析)(1)

一、选择题1.如图,在直角坐标系中,直线l 是经过点()1,0-,且平行于y 轴的直线,点(),1P a -与点()3,Q b 关于直线l 对称,则+a b 的值为( ).A .2B .6C .-2D .-62.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 3.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 4.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 5.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7 B .1- C .1-或7 D .7-或1 6.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1,A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2019次跳动至点2019A 的坐标是( )A .()505,1009-B .()505,1010C .()504,1009-D .()504,10107.如图,在3×3的正方形网格中有四个格点A ,B ,C ,D ,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )A .点AB .点BC .点CD .点D8.下列语句正确的有( )个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A .0B .1C .2D .3 9.已知(4,2)P a +在第一象限内,且点P 到两坐标轴的距离相等,则a 的值为( ) A .2 B .3 C .-6 D .2或-6 10.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2020秒时,点所在位的坐标是( )A .(64,44)B .(45,5)C .(44,5)D .(44,4) 11.如图是小刚画的一张脸,如果用(0,2)表示A 点所在的眼睛,用(2,2)表示B 点所在的眼睛,那么C 点表示的嘴的位置可以表示成( )A .(1,0)B .(-1,0)C .( -1,1)D .(1,-1) 12.关于点P (-2,0)在直角坐标平面中所在的象限说法正确的是( )A .点P 在第二象限B .点P 在第三象限C .点P 既在第二象限又在第三象限D .点P 不在任何象限二、填空题13.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 14.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 16.为了培养学生社会主义核心价值观,张老师带领学生去 参观天安门广场的升旗仪式.如图是张老师利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,表示金水桥的点的坐标为(1,﹣2),表示本仁殿的点的坐标为(3,﹣1),则表示乾清门的点的坐标是______.17.在如图所示的平面直角坐标系内,四边形OBCD 是边长为1的正方形,分别取,BC OD 边的中点11C D 、,连结11C D ,得到第一个四边形11OBC D ;再分别取11OB C D 、边的中点12A D 、,连结12,A D 得到第二个四边形112A BC D ;再分别取112BC A D 、边的中点23,C D 、连结23C D ,得到第三个四边113A BC D ,……,按这种方法做下去,则第2017个四边形100810092017A BC D 中的顶点2017D 的坐标为________________________.18.如图,,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)···,根据这个规律,第2020个点的横坐标为______.19.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,……,按这样的运动规律,动点P 第2018次运动到点的坐标是________.20.在平面直角坐标系中,已知点(,0)A a 和点(0,4)B ,且直线AB 与坐标轴围成的三角形的面积等于12,则a 的值是________.三、解答题21.如图,在平面直角坐标系中,已知A (0,2),B (1,0),点C 在第一象限,AB =AC ,∠BAC =90°.(1)求点C 到y 轴的距离;(2)点C 的坐标为 .22.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为A (1,3),B (2,1),C (5,1).(1)直接写出点B 关于x 轴对称的对称点1B 的坐标为______,直接写出点B 关于y 轴对称的对称点2B 的坐标为_____,直接写出12AB B 的面积为_______;(2)在y 轴上找一点P 使1PA PB 最小,则点P 坐标为_______;说明理由.23.如图,在平面直角坐标系中,ABC 各顶点的位置如图所示.(1)写出ABC 三个顶点的坐标;(2)并在图中画出ABC 关于x 轴对称的图形A B C ''';(3)写出A B C '''三个顶点的坐标.24.如图,长方形ABCD 的长AB 为a ,宽BC 为b ,点A 的坐标为(1,1).(1)若长方形ABCD 的周长为14,面积为10,求22a b +的值;(2)若点C 关于x 轴的对称点的坐标为(3,)b b a -,求()23122b a a b a b --÷⋅的值. 25.如图,在平面直角坐标系中,ABC 的三个顶点分别为()2,3A ,()3,1B ,()2,2C --.(1)请在图中作出ABC 关于y 轴的轴对称图形A B C '''(A ,B ,C 的对称点分别是A ',B ',C '),并直接写出A ',B ',C '的坐标.(2)求A B C '''的面积.26.如图,直线l 1∥l 2,直线l 3交直线l 1于点B ,交直线l 2于点D ,O 是线段BD 的中点.过点B 作BA ⊥l 2于点A ,过点D 作DC ⊥l 1于点C ,E 是线段BD 上一动点(不与点B ,D 重合),点E 关于直线AB ,AD 的对称点分别为P ,Q ,射线PO 与射线QD 相交于点N ,连接PQ .(1)求证:点A 是PQ 的中点;(2)请判断线段QN 与线段BD 是否相等,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】结合题意,根据坐标、轴对称的性质列方程并计算,即可得到答案.【详解】∵点(),1P a -与点()3,Q b 关于直线l 对称∴()()131a --=--,1b =-∴5a =-∴()516a b +=-+-=-故选:D .【点睛】本题考查了直角坐标系、坐标、轴对称、一元一次方程的知识;解题的关键是熟练掌握坐标、轴对称的性质,从而完成求解.2.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.A解析:A【分析】 根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积.【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时, n 的面积()150********=⨯⨯+=. 故选:A .【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.4.B解析:B【分析】根据题意得出除了点C 外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB 上,从而求出a 的取值范围.【详解】解:∵点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,∴a <4﹣a ,解得:a <2,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A ,B ,C 的坐标分别是(0,a ),(0,4﹣a ),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.5.C解析:C【分析】根据点M(2,3)与点N(2,y)之间的距离是4,可得|y−3|=4,从而可以求得y的值.【详解】∵点M(2,3)与点N(2,y)之间的距离是4,∴|y−3|=4,∴y−3=4或y−3=−4,解得y=7或y=−1.故选:C.【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.6.B解析:B【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2019=504×4+3即可得出点A2019的坐标.【详解】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2019=504×4+3∴A2019(504+1,504×2+2),即()505,1010.故选:B.【点睛】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”是解题的关键.7.D解析:D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【详解】如图所示:原点可能是D点.故选D.【点睛】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.8.A解析:A【分析】根据轴对称图形的对称轴的确定方法,确定事件的概率计算方法,平行线的性质,平行公理依次判断即可得到答案.【详解】(1)线段是轴对称图形,对称轴是这条线段的垂直平分线和这条线段所在直线,故本选项错误;(2)确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,故本选项错误;(3)两直线平行,同位角相等,故本选项错误;(4)经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A.【点睛】此题考查轴对称图形的对称轴的确定方法,确定事件的概率计算方法,平行线的性质,平行公理,正确掌握各知识点是解题的关键.9.A解析:A本题可通过横坐标为4确定点P到纵轴距离,继而根据点P到坐标轴距离相等列方程求解.【详解】a+=,由已知得:24a+=,因为点P在第一象限,故:24a=.解得:2故选:A.【点睛】本题考查平面直角坐标系、一元一次方程、绝对值的化简,易错点在于若坐标含有未知数,考查距离问题时需要加绝对值或者分类讨论,确保结果不重不漏.10.D解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2020=452﹣5=2025﹣5,∴第2025秒时,动点在(45,0),故第2020秒时,动点在(45,0)向左一个单位,再向上4个单位,即(44,4)的位置.故选:D.【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.11.A解析:A【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出C的位置对应的点的坐标.【详解】解:如图,C的位置可以表示为(1,0).【点睛】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.D解析:D【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可.【详解】解:点P(-2,0)不在任何象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题13.-7或9【分析】根据纵坐标相同可知MN∥x轴然后分点N在点M的左边与右边两种情况求出点N的横坐标即可得解【详解】∵点M(13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x解析:-7或9【分析】根据纵坐标相同可知MN∥x轴,然后分点N在点M的左边与右边两种情况求出点N的横坐标,即可得解.【详解】∵点M(1,3)与点N(x,3)的纵坐标都是3,∴MN∥x轴,∵MN=8,∴点N在点M的左边时,x=1−8=−7,点N在点M的右边时,x=1+8=9,∴x的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.14.【分析】作AD⊥OB于D则∠ADB=90°OD=1AD=3OB=3得出BD=2由勾股定理求出AB即可;由题意得出AC+BC最小作A关于y轴的对称点连接交y 轴于点C点C即为使AC+BC最小的点作轴于E解析:5作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,'⊥轴于E,由勾股定理求出A B',即可得出结果.点C即为使AC+BC最小的点,作A E x【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22+=,345∴△ABC13+5.13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.15.7或﹣4【分析】根据题意可以求得a的值然后再对t进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t>2时h=t﹣1则3(t﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值.【详解】由题意可得,“水平底”a =1﹣(﹣2)=3,当t >2时,h =t ﹣1,则3(t ﹣1)=18,解得,t =7;当1≤t ≤2时,h =2﹣1=1≠6,故此种情况不符合题意;当t <1时,h =2﹣t ,则3(2﹣t )=18,解得t =﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.16.(13)【详解】分析:根据金水桥的点的坐标(1-2)确定坐标原点的位置然后建立坐标系进而可确定乾清门的点的坐标位置详解:如图所示:乾清门的点的坐标是(13)故答案为(13)点睛:此题主要考查了坐标确解析:(1,3)【详解】分析:根据金水桥的点的坐标(1,-2)确定坐标原点的位置,然后建立坐标系,进而可确定乾清门的点的坐标位置.详解:如图所示:乾清门的点的坐标是(1,3),故答案为(1,3).点睛:此题主要考查了坐标确定位置,关键是正确建立坐标系.17.【分析】易得的坐标从和中依此类推找到规律即可求解【详解】∵四边形是边长为的正方形且分别是边的中点∴;∵分别是边的中点∴;∵分别是边的中点∴;同理:;;∴;;故答案为:【点睛】本题考查了坐标与图形的性 解析:1009100811122⎛⎫- ⎪⎝⎭, 【分析】 易得1102D ⎛⎫ ⎪⎝⎭,,21122D ⎛⎫ ⎪⎝⎭,,321122D ⎛⎫ ⎪⎝⎭,,42211122D ⎛⎫- ⎪⎝⎭,,53211122D ⎛⎫- ⎪⎝⎭,的坐标,从2D 、3D 和4D 、5D 中依此类推,找到规律,即可求解.【详解】∵四边形OBCD 是边长为1的正方形,且11C D 、分别是BC OD ,边的中点, ∴1102D ⎛⎫ ⎪⎝⎭,; ∵12A D 、分别是11OB C D 、边的中点, ∴21122D ⎛⎫ ⎪⎝⎭,;∵23C D 、分别是112BC A D 、边的中点, ∴321122D ⎛⎫ ⎪⎝⎭,; 同理:42211122D ⎛⎫- ⎪⎝⎭,;53211122D ⎛⎫- ⎪⎝⎭,; ∴20161008100811122D ⎛⎫- ⎪⎝⎭,;20171009100811122D ⎛⎫- ⎪⎝⎭,; 故答案为:1009100811122⎛⎫-⎪⎝⎭, . 【点睛】本题考查了坐标与图形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.45【分析】观察图形可知以最外边的矩形边长上的点为准点的总个数等于x 轴上右下角的点的横坐标的平方并且右下角的点的横坐标是奇数时最后以横坐标为该数纵坐标为0结束当右下角的点横坐标是偶数时以横坐标为1纵 解析:45【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),则第2020个(45,5).∴第2020个点的横坐标为45,故答案为:45.【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键. 19.【分析】先根据运动规律可得出第246次运动到的点的坐标再归纳类推出一般规律由此即可得【详解】由图可知第2次运动到点即第4次运动到点即第6次运动到点即归纳类推得:第n 次运动到点(其中且为偶数)因为且为 解析:()2017,0【分析】先根据运动规律可得出第2、4、6次运动到的点的坐标,再归纳类推出一般规律,由此即可得.【详解】由图可知,第2次运动到点(1,0),即(21,0)-,第4次运动到点(3,0),即(41,0)-,第6次运动到点(5,0),即(61,0)-,归纳类推得:第n 次运动到点(1,0)n -(其中2n ≥,且为偶数),因为20182>,且为偶数,所以第2018次运动到点(20181,0)-,即(2017,0),故答案为:(2017,0).【点睛】本题考查了点坐标规律探索,依据题意,正确归纳类推出一般规律是解题关键. 20.【分析】由点AB 的坐标可得出OAOB 的长结合△OAB 的面积为12即可得出关于a 的含绝对值符号的一元一次方程解之即可得出结论【详解】解:∵点A 的坐标为(a0)点B 的坐标为(04)∴OA=|a|OB=4解析:6±【分析】由点A ,B 的坐标可得出OA ,OB 的长,结合△OAB 的面积为12,即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:∵点A 的坐标为(a ,0),点B 的坐标为(0,4),∴OA=|a|,OB=4.又∵S △OAB =12,∴1×4×|a|=12,2±.解得:a=6±.故答案为:6【点睛】本题考查了坐标与图形性质、三角形的面积以及解含绝对值符号的一元一次方程,利用三角形的面积公式,找出关于a的含绝对值符号的一元一次方程是解题的关键.三、解答题21.(1)2;(2)(2,3).【分析】(1)过点C作CD⊥y轴,垂足为D,然后证明△AOB≌△CDA,则CD=OA,即可得到答案;(2)由(1)可知,CD=OA,AD=OB,即可求出答案.【详解】解:(1)过点C作CD⊥y轴,垂足为D,如图:∵CD⊥y轴,∴∠AOB=∠CDA=90°,∵∠BAC=90°,∴∠CAD+∠BAO=∠ABO+∠BAO=90°,∴∠CAD=∠ABO,∵AB=AC,∴△AOB≌△CDA,∴CD=OA,AD=OB,∵A(0,2),B(1,0),∴CD=OA=2;∴点C到y轴的距离为2;(2)由(1)可知,CD=OA,AD=OB,∵OA=2,OB=1,∴OD=2+1=3,∴点C的坐标为(2,3);故答案为:(2,3).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质进行解题,注意正确的作出辅助线.22.(1)(2,1)-,(2,1)-,7;(2)50,3⎛⎫ ⎪⎝⎭;理由见解析.【分析】(1)根据关于x 轴、y 轴对称的点的坐标特征即可得到B 1、B 2坐标,利用分割法即可求得△AB 1B 2面积;(2)根据轴对称的性质得到B 3(﹣2,﹣1),求得直线B 3A 解析式继而令0x =时即可求解.【详解】(1)(2,1)B 关于x 轴对称点B , 1B ∴坐标为(2,1)-(2,1)B 关于y 轴对称点2B2B ∴坐标为(2,1)-∴S △AB 1B 2面积=11144231424222⨯-⨯⨯-⨯⨯-⨯⨯ 16324=---7=故12AB B 的面积为7,(2)点P 坐标为50,3⎛⎫ ⎪⎝⎭,理由如下:∵B 1(2,﹣1)关于y 轴对称点B 3(﹣2,﹣1),连接B 3A 交于y 轴于P 则P 为所求,设直线B 3A 表达式为(0)y kx b k =+≠, 把B 3(﹣2,﹣1),A (1,3)代入得123k b k b -=-+⎧⎨=+⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩ 4533y x ∴=+ 当0x =时53y = 50,3P ⎛⎫∴ ⎪⎝⎭【点睛】本题考查轴对称有关知识,解题的关键是熟练掌握关于x轴、y轴对称的点的坐标特征及轴对称的性质.23.(1)△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1);(2)见解'''各顶点的坐标分别为A'(4,0),B'(-1,-4),C'(-3,-1).析;(3)A B C【分析】(1)根据第二象限和x轴上点的坐标特征写出A、B、C点的坐标;(2)利用关于x对称点的坐标特征画出图像即可;'''各点坐标即可.(3)利用关于x对称点的坐标特征写出A B C【详解】解:(1)△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1);'''为所作;( 2 )如图,A B C(3)A B C '''各顶点的坐标分别为A '(4,0),B '(-1,-4),C '(-3,-1).【点睛】本题考查了作图-对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.24.(1)29;(2)45-【分析】(1)根据题干可得7a b +=,10ab =,根据222()2a b a b ab +=+-,即可求解; (2)根据题干可得C 点坐标(1,1)a b ++,C 关于x 轴的对称点为(3,)b b a -,根据横坐标相等,纵坐标互为相反数,列出方程求解即可.【详解】解:(1)由题意,得7a b +=,10ab =, 2222()272029a b a b ab ∴+=+-=-=.(2)由题意,得点C 的坐标为(1,1)a b ++.点C 关于x 轴的对称点的坐标为(3,)b b a -,13(1)()0a b b b a +=⎧∴⎨++-=⎩, 解得52a b =⎧⎨=⎩, ()263122322b a b a a a b a b a b b -∴-÷⋅=-⋅⋅222455b a =-=-=-. 【点睛】本题考查完全平方公式、整式的混合运算、图形与坐标,解题的关键是熟知运算法则. 25.(1)答案见解析;()2,3A '-,()3,1B '-,()2,2C '-;(2) 6.5A B C S '''=△.【分析】(1)分别作出点A ,B ,C 的对称点A ′,B ′,C ′,顺次连接,然后再根据各点在坐标系中的位置写出坐标即可得;(2)利用割补法求解可得.【详解】(1)如图所示.()2,3A '-,()3,1B '-,()2,2C '-(2)如图,正方形ADEC´的面积为:5×5=25△A´DE 的面积为:11212⨯⨯= △A´AC´的面积为:145102⨯⨯= △BEC´的面积为:1537.52⨯⨯=251107.5 6.5A B C S '''=---=△【点睛】本题主要考查轴对称变换的作图以及用割补法求三角形面积,熟练掌握轴对称变换的性质是解题的关键.26.(1)见解析;(2)相等,理由见解析【分析】(1)由点E 关于直线AB ,AD 的对称点分别为P ,Q ,连接AE ,PE ,QE ,根据对称点的性质得出对应的边和对应的角相等,即AP =AE ,AQ =AE ,∠1=∠2,∠3=∠4,再根据垂直的性质得出∠2+∠3=90°,∠1+∠2+∠3+∠4=180°,即P ,A ,Q 三点在同一条直线上,根据中点的定义得出结论.(2)连接PB ,根据对称的性质得到BP =BE ,DQ =DE ,∠5=∠6,∠7=∠8,根据垂直的性质∠7+∠9=90°,∠8+∠10=90°,得∠9=∠10,由平行的性质得∠6=∠9从而得到∠OBP =∠ODN ,易证明△BOP ≌△DON 得到B P =DN ,BE =DN ,等量转换得到QN =BD .【详解】解:(1)连接AE,PE,QE,如图∵点E关于直线AB,AD的对称点分别为P,Q ∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ∵AB⊥l2,∴∠2+∠3=90°∴∠1+∠2+∠3+∠4=180°∴P,A,Q三点在同一条直线上∴点A是PQ的中点.(2)QN=BD,理由如下:连接PB∵点E关于直线AB,AD的对称点分别为P,Q ∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8∵l1//l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10又∵AB⊥l2,DC⊥l2,∴AB//CD∴∠6=∠9,∴∠5+∠6=∠9+∠10即∠OBP=∠ODN∵O是线段BD的中点,∴OB=OD在△BOP 和△DON 中ODN PBO BO ODPOB DON ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOP ≌△DON∴BP =DN ,∴BE =DN∴QN =DQ +DN =DE +BE =BD【点睛】本题考查了对称点,平行线的性质和判定,三角形全等的性质和判定,解题的关键是学会添加常用的辅助线构造全等三角形解决问题.。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测卷(答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》检测卷(答案解析)(2)

一、选择题1.若点A (a ,-l ),与点B (4,b )关于y 轴对称,则( ) A .4,1a b ==-B .4,1a b =-=C .4,1a b =-=-D .4,1a b ==2.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m < 3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1- B .1 C .0 D .2021- 4.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( )A .(2,3)-B .(2,3)C .(3,2)D .(3,2)- 5.点A (3,4)关于x 轴的对称点的坐标为( ) A .(3,﹣4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3)6.在平面直角坐标系中,点()3,4-在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2) B .(﹣1,2) C .(﹣1,﹣2) D .(﹣2,1) 8.在平面直角坐标系中,下列各点在第三象限的是( )A .()1,2B .()2,1-C .()2,1-D .()1,2--9.如图,在平面直角坐标系上有点()1,0A ,点A 第一次跳至点()11,1A -,第二次向右跳动3个单位至点()22,1A ,第三次跳至点()32,2A -,第四次向右跳动5个单位至点()43,2A , ...依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .()50,50B .()51,50C .()50,51D .()49,5010.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次接着运动到点(2,0),第三次接着运动到点(3,2),…,按这样的运动规律经过第2020次运动后,动点P 的坐标是( )A .(2020,1)B .(2020,0)C .(2020,2)D .(2020,2020)11.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( ) A .2B .3C .4D .512.关于点P (-2,0)在直角坐标平面中所在的象限说法正确的是( ) A .点P 在第二象限B .点P 在第三象限C .点P 既在第二象限又在第三象限D .点P 不在任何象限二、填空题13.如图,在平面直角坐标系xOy 中,()3,1A ,()5,1B ,()2,3C .若坐标系内存在与点C 不重合的点D ,使ABC 与ABD △全等,则点D 坐标为______.14.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.15.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应该是________.18.已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.19.如图,小强告诉小华,图中A ,B ,C 三点的坐标分别为(-1,4),(5,4),(1,6),小华一下就说出了点D 在同一坐标系中的坐标为___________.20.规定:在平面直角坐标系xOy 中,任意不重合的两点 M(x 1,y 1),N(x 2,y 2)之间的折线距离为1212(,)d M N x x y y =-+-.如图①点M(-2,3)与点 N(1,-1)之间的折线距离为(,)d M N = ______;如图②点 P(3,-4),若点 Q 的坐标为(t ,3),且(,)8d P Q =,则t 的值为__________.三、解答题21.已知在平面直角坐标系中(1)画出△ABC 关于x 轴成轴对称图形的三角形A ′B ′C ′; (2)写出A ′,B ′,C ′的坐标.22.如图,在平面直角坐标系中,已知A (0,2),B (1,0),点C 在第一象限,AB =AC ,∠BAC =90°. (1)求点C 到y 轴的距离; (2)点C 的坐标为 .23.如图,在平面直角坐标系中,ABC 各顶点的位置如图所示. (1)写出ABC 三个顶点的坐标;(2)并在图中画出ABC 关于x 轴对称的图形A B C '''; (3)写出A B C '''三个顶点的坐标.24.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标:________;(2)求ABC 的面积:(3)点(),2P a a -与点Q 关于x 轴对称,若6PQ =,则点P 的坐标为________. 25.如图,在平面直角坐标系中,A (-2,4),B (-3,1),C (1,-2). (1)在图中作出△ABC 关于y 轴的对称图形△A′B′C′; (2)写出点A′、B′、C′的坐标; (3)连接OB 、OB′,请直接回答: ①△OAB 的面积是多少?②△OBC 与△OB′C′这两个图形是否成轴对称.26.请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标; (2)直接写出由超市、文化馆、市场围成的三角形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据y 轴对称的坐标特点求解确定即可. 【详解】∵A (a ,-l ),与点B (4,b )关于y 轴对称, ∴4,1a b =-=-, 故选C . 【点睛】本题考查了点的坐标的对称性,熟记对称点的坐标特点是解题的关键.2.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0?m m -⎧⎨-⎩>①<②, 解不等式①,得:m >32, 解不等式②,得:m >0,∴不等式组的解集为m >32, 故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.A解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B解析:B 【分析】根据关于x 轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案. 【详解】解:∵点P (3,a )关于x 轴的对称点为Q (b ,-2), ∴a=2,b=3,∴点(a ,b)的坐标为(2,3), 故选:B . 【点睛】此题主要考查了关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.5.A解析:A 【分析】利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ),得出即可. 【详解】点A (3,4)关于x 轴对称点的坐标为:(3,-4). 故选:A . 【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】-,∵点()3,4-在第二象限,∴点()3,4故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).7.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.8.D解析:D【分析】根据各象限内点的坐标特征解答对各选项分析判断后利用排除法求解即可.【详解】解:A、(1,2)在第一象限,故本选项不符合题意;B、(-2,1)在第二象限,故本选项不符合题意;C、(2,-1)在第四象限,故本选项不符合题意;D、(-1,-2)在第三象限,故本选项符合题意.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.B解析:B【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),故第100次跳动至点的坐标是(51,50).故选:B.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.10.B解析:B【分析】分析图象发现点P的运动每4次位置循环一次,每循环一次向右移动4个单位,根据这个规律先确定2020次运动是多少个循环,然后根据循环次数确定点P的位置.【详解】分析图象可以发现,点P的运动每4次位置循环一次,每循环一次向右移动4个单位.∴2020=505 4,当第505次循环结束时,点P的位置在(2020,0),故答案为:B.【点睛】本题主要考查了平面直角坐标系中点的运动规律问题,分析图象得出规律是解题的关键. 11.C解析:C【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【详解】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(1,-1),∴线段的最小值为4.故选:C 【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.12.D解析:D 【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可. 【详解】解:点P (-2,0)不在任何象限, 故选:D . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题13.或或【分析】根据题意画出符合条件的图形根据图形结合ABC 的坐标即可得出答案【详解】解:如图所示共有3个符合条件的点∵△ABD 与△ABC 全等∴AB=ABBC=AD 或AC=AD ∵A (31)B (51)C (解析:()2,1-或()6,3或()6,1- 【分析】根据题意画出符合条件的图形,根据图形结合A 、B 、C 的坐标即可得出答案. 【详解】解:如图所示,共有3个符合条件的点,∵△ABD 与△ABC 全等,∴AB=AB ,BC=AD 或AC=AD ,∵A (3,1)、B (5,1)、C (2,3).∴D 1的坐标是()2,1-,D 2的坐标是()6,3,D 3的坐标是()6,1-,故答案为:()2,1-或()6,3或()6,1-.【点睛】本题考查了全等三角形的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解此题的关键.14.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握点的坐标特点是解题关键. 15.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,,可得:20204=505A是蚂蚁运动了505个周期,即点2020A,此时与之对应的点是4A的坐标为(2,0),点4A的坐标为(1010,0)则点2020【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.16.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.17.21:05【分析】根据镜子中的成像与实际物体是相反的原理可利用轴对称性质作出图像向左或向右的对称【详解】因为镜子中的成像与实际物体是相反的利用轴对称性质作出图像向右的对称图故填:21:05【点睛】本解析:21:05【分析】根据镜子中的成像与实际物体是相反的原理,可利用轴对称性质作出图像向左或向右的对称.【详解】因为镜子中的成像与实际物体是相反的,利用轴对称性质作出图像向右的对称图故填:21:05.【点睛】本题主要考查轴对称图形在实际生活中的问题,解题的关键是要知道:在镜子中的像与现实中的像恰好是左右颠倒.18.或【分析】本题根据两点在同一平行于轴的直线上确定点N 的纵坐标继而根据两点距离确定点N 的横坐标【详解】由已知得:点N 的纵坐标为设点N 的横坐标为则MN 的距离可表示为∵∴求解得:或故点N 坐标为或故填:或【 解析:(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =, ∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.19.(02)【分析】根据点A 的坐标横坐标加1纵坐标减2即可得到点D 的坐标【详解】解:∵点D 在点A (-14)右边一个单位下边2个单位∴点D 的横坐标为-1+1=0纵坐标为4-2=2∴点D 的坐标为(02)故答解析:(0,2)【分析】根据点A 的坐标,横坐标加1,纵坐标减2即可得到点D 的坐标.【详解】解:∵点D 在点A (-1,4),右边一个单位,下边2个单位,∴点D 的横坐标为-1+1=0,纵坐标为4-2=2,∴点D 的坐标为(0,2).故答案为:(0,2).【点睛】本题考查了点的坐标,准确观察图形,判断出点D与已知点的关系是解题的关键.20.=2或t=4;【分析】①直接根据折线距离的定义计算即可②根据折线距离的定义由得到方程求解即可【详解】解:①根据折线距离的定义点M(-23)与点N(1-1)之间的折线距离为:d(MN)=|-2-1|+解析:=2或t=4;【分析】①直接根据“折线距离”的定义计算即可d P Q=,得到方程求解即可②根据“折线距离”的定义,由(,)8【详解】解:①根据“折线距离”的定义,点M(-2,3)与点N(1,-1)之间的折线距离为:d(M,N)=|-2-1|+|3-(-1)|=3+4=7;d P Q=,②∵(,)8∴|3-t|+|-4-3|=8,∴|3-t|=1,∴3-t=1或3-t=-1解得:t=2或t=4;故答案为:①7;②t=2或t=4;【点睛】本题考查了坐标与图形性质及一元一次方程的应用,解题的关键是读懂材料,弄清楚“折线距离”的定义.三、解答题21.(1)作图见解析,(2)A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可;(2)根据所画图形可直接写出A′,B′,C′的坐标.【详解】解:(1)所画图形如下所示,其中△A′B′C′即为所求;(2)A′、B′、C′的坐标分别为:A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【点睛】本题考查了轴对称变换作图的知识,注意:做轴对称的关键是找到图形各顶点的对称点.22.(1)2;(2)(2,3).【分析】(1)过点C作CD⊥y轴,垂足为D,然后证明△AOB≌△CDA,则CD=OA,即可得到答案;(2)由(1)可知,CD=OA,AD=OB,即可求出答案.【详解】解:(1)过点C作CD⊥y轴,垂足为D,如图:∵CD⊥y轴,∴∠AOB=∠CDA=90°,∵∠BAC=90°,∴∠CAD+∠BAO=∠ABO+∠BAO=90°,∴∠CAD=∠ABO,∵AB=AC,∴△AOB≌△CDA,∴CD=OA,AD=OB,∵A(0,2),B(1,0),∴CD=OA=2;∴点C到y轴的距离为2;(2)由(1)可知,CD=OA,AD=OB,∵OA=2,OB=1,∴OD=2+1=3,∴点C的坐标为(2,3);故答案为:(2,3).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质进行解题,注意正确的作出辅助线.23.(1)△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1);(2)见解'''各顶点的坐标分别为A'(4,0),B'(-1,-4),C'(-3,-1).析;(3)A B C【分析】(1)根据第二象限和x轴上点的坐标特征写出A、B、C点的坐标;(2)利用关于x对称点的坐标特征画出图像即可;(3)利用关于x对称点的坐标特征写出A B C'''各点坐标即可.【详解】解:(1)△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1);( 2 )如图,A B C'''为所作;(3)A B C'''各顶点的坐标分别为A'(4,0),B'(-1,-4),C'(-3,-1).【点睛】本题考查了作图-对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.24.(1)作图见详解,(−2,1);(2)8.5;(3)(5,3)或(−1,−3)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求解即可.(3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.【详解】(1)如图,△A1B1C1即为所求.点C1的坐标(−2,1).故答案为:(−2,1);(2)S△ABC=5×5−12×1×3−12×4×5−12×2×5=8.5.(3)∵点(),2P a a -与点Q 关于x 轴对称,∴Q (),2a a -,∵6PQ =,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P (5,3)或(−1,−3).故答案为:(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.25.(1)见解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC 与△OB′C′这两个图形关于y 轴成轴对称.【分析】(1)先确定A 、B 、C 关于y 轴的对称点A′、B′、C′,然后再顺次连接即可;(2)直接根据图形读出A′、B′、C′的坐标即可;(3)①运用△OAB 所在的矩形面积减去三个三角形的面积即可;②根据图形看△OBC 与△OB′C′是否有对称轴即可解答.【详解】解:(1)如图;△A′B′C′即为所求;(2)如图可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB的面积为:4×3-12×3×1-12×4×2-12×3×1=5;②∵△OBC与△OB′C′这两个图形关于y轴成轴对称∴△OBC与△OB′C′这两个图形关于y轴成轴对称.【点睛】本题主要考查了轴对称变换和不规则三角形面积的求法,作出△ABC关于y轴的对称图形△A′B′C′以及运用拼凑法求不规则三角形的面积成为解答本题的关键.26.(1)画坐标轴见解析,火车站(0,0),体育场(﹣4,3),医院(﹣2,﹣2);(2)19.【分析】(1)以文化宫向右3个单位,向下1个单位为坐标原点建立平面直角坐标系,然后分别写出各位置坐标即可;(2)用三角形所在的矩形的面积减去四周三个小三角形的面积,列式计算即可得解.【详解】解:(1)画坐标轴如图所示,火车站(0,0),体育场(﹣4,3),医院(﹣2,﹣2);(2)三角形的面积=7×6﹣12×5×4﹣12×2×6﹣12×2×7=42﹣10﹣6﹣7=42﹣23=19.。

北京市师大实验八年级数学上册第三单元《轴对称》检测题(有答案解析)

北京市师大实验八年级数学上册第三单元《轴对称》检测题(有答案解析)

一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.52.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个3.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形4.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm5.如图,在ABC 中,34B ∠=︒,BCA ∠的平分线CD 交AB 于点D ,若DE 垂直平分BC 交BC 于点E ,则A ∠的度数为( )A .90°B .68°C .78°D .88°6.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 7.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.58.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABD ACD S S =.A .1B .2C .3D .49.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 10.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( ) A . B .C .D .11.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤ 12.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80° 二、填空题13.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.14.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.15.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.16.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________17.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .18.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b 则BEF 的周长的最小值是__________.19.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.20.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.三、解答题21.如图,以△ABC 的两边AB 和AC 为腰在△ABC 外部作等腰Rt △ABD 和等腰Rt △ACE ,AB =AD ,AC =AE ,∠BAD =∠CAE =90°.(1)连接BE 、CD 交于点F ,如图①,求证:BE =CD ,BE ⊥CD ;(2)连接DE ,AM ⊥BC 于点M ,直线AM 交DE 于点N ,如图②,求证:DN =EN .22.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.23.已知45MAN ∠=︒,点B 为射线AN 上一定点,点C 为射线AM 上一动点(不与点A 重合),点D 在线段BC 的延长线上,且CD CB =.过点D 作DE AM ⊥于点E .(1)当点C 运动到如图1的位置时,点E 恰好与点C 重合,此时AC 与DE 的数量关系是 ;(2)当点C 运动到如图2的位置时,依题意补全图形,并证明:2AC AE DE =+; (3)在点C 运动的过程中,点E 能否在射线AM 的反向延长线上?若能,直接用等式表示线段AC ,AE ,DE 之间的数量关系;若不能,请说明理由.24.如图,在ABC 中,AB AC =,CD AB ⊥,BE AC ⊥,垂足为D 、E ,BE 、CD 相交于点O .(1)求证:DBC ECB △△≌;(2)求证:OD OE =.25.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.26.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______)(2)在图中作出ABC 关于y 轴对称的图形222A B C △.(3)求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】延长AD 到G 使得DG AD =,连接BG ,证明()△△ACD GBD SAS ≅,根据全等三角形的性质可得到CAD G ∠=∠,AC=BD ,等量代换得到BE=BG ,再由等腰三角形的性质得到G BEG ∠=∠,推出EF=AF ,即可解决问题;【详解】如图,延长AD 到G 使得DG AD =,连接BG ,∵AD 是△ABC 的中线,∴CD=BD ,在△ACD 与△GBD 中,CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩,∴()△△ACD GBDSAS ≅, ∴CAD G ∠=∠,AC=BD ,∵BE=AC ,∴BE=BG ,∴G BEG ∠=∠,∵BEG AEF ∠=∠,∴AEF EAF ∠=∠,∴EF=AF ,∴AF CF BF AF +=-,即69AF AF +=-, ∴32AF =; 故选:B .【点睛】 本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质求解是解题的关键. 2.C解析:C【分析】根据三角形内角和定理求出∠CAB ,求出∠CAD=∠BAD=∠B ,推出AD=BD ,AD=2CD 即可.【详解】解:∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B ,∴AD=BD ,AD=2CD ,②正确;∴BD=2CD ,③正确;根据已知不能推出CD=DE ,故④错误;故选:C .【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.3.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A 、B ,根据对顶角的定义判断C ,根据等边三角形的判定判断D .【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B .已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL 可以得出两个三角形全等,故本选项是真命题;C 、相等的角不一定是对顶角,故错误,是假命题;D 、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C .【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.4.B解析:B【分析】过P 作PC 垂直于MN ,由等腰三角形三线合一性质得到MC=CN ,求出MC 的长,在直角三角形OPC 中,利用30度角所对的直角边等于斜边的一半求出OC 的长,由OC-MC 求出OM 的长即可.【详解】解:过P 作PC ⊥MN ,∵PM=PN ,∴C 为MN 中点,即MC=NC=12MN=1, 在Rt △OPC 中,∠AOB=60°,∴∠OPC=30°,∴OC= 12OP=4, 则OM=OC-MC=4-1=3cm ,故选:B .【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.5.C解析:C【分析】由垂直平分线的性质,可得∠DCB=34B ∠=︒,由角平分线的定义得∠ACB=2∠DCB=68°,进而即可求解.【详解】∵DE 垂直平分BC 交BC 于点E ,∴DB=DC ,∴∠DCB=34B ∠=︒,∵CD 是BCA ∠的平分线,∴∠ACB=2∠DCB=68°,∴∠A=180°-34°-68°=78°,故选C.【点睛】本题主要考查垂直平分线的性质,等腰三角形的性质,角平分线的定义以及三角形内角和定理,熟练垂直平分线的性质定理,是解题的关键.6.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.7.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.8.D解析:D【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解:∵∠C =90°,∠B =30°,∴∠BAC =60°,由作法得AD 平分∠BAC ,所以①正确;∴∠BAD =∠CAD =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确;∵∠B =∠BAD ,∴DA =DB ,∴点D 在AB 的垂直平分线上,所以③正确;∵如图,在直角△ACD 中,∠CAD =30°,∴CD =12AD , ∴BC =CD+BD =12AD+AD =32AD ,S △DAC =12AC•CD =14AC•AD . ∴S △ABC =12AC•BC =12AC•32AD =34AC•AD , ∴S △DAC :S △ABC =14AC•AD :34AC•AD =1:3, ∴S △DAC :S △ABD =1:2.即S △ABD =2S △ACD ,故④正确.故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.9.D解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角.10.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.11.D解析:D【分析】①由等腰直角三角形的性质可得出结论;②证明△ADE≌△BCE,可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④AE≠DE,故④不正确;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】解:①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确②在△DAE和△CBE中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE ,∴△ADE 不是等腰三角形,⑤∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故⑤正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.12.D解析:D【分析】由50︒的角是顶角或底角,依据三角形内角和计算得出顶角的度数.【详解】当50︒的角为顶角时,它的顶角为50︒,当50︒的角为底角时,它的顶角为18050280︒-︒⨯=︒,∴它的顶角为50︒或80︒,故选:D.【点睛】此题考查等腰三角形等边对等角的性质,三角形内角和定理,熟记等边对等角的性质是解题的关键.二、填空题13.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A 1的横坐标为12=1212-, ∵160ODB ∠=°,∴∠OB 1D =30°,∵A 1B 2//x 轴,∴∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=3212-, 同理可得,A 4的横坐标为12+1+2+4=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 6的横坐标是62163==31.522-, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.14.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠B1A1A2=∠A1B1A2=60°∵∠MON=30°,∴∠OB1A1=30°,∠OB1A2=90°∴OA1=A1B1=12OA2,同理可得OA2=A2B2=12OA3,OA3=A3B3=12OA4∵48OA=∴OA3=1842⨯==312-,OA2=1422⨯==212-,OA1=1112122-⨯==,以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.15.35°【分析】连接OB同理得AO=OB=OC由等腰三角形的性质得∠A=∠ABO∠C=∠CBO进而得到∠A+∠C=∠ABC由等腰三角形三线合一得∠AOD=∠BOD∠BOE=∠COE由平角的定义得∠DO解析:35°【分析】连接OB,同理得AO=OB=OC,由等腰三角形的性质得∠A=∠ABO,∠C=∠CBO,进而得到∠A+∠C=∠ABC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠DOE=145°,最后由四边形内角和定理可得结论.【详解】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°-∠DOE-∠BDO-∠BEO=35°;故答案为:35°【点睛】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,四边形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.110°或80°【分析】根据等腰三角形的性质先求出∠BAC的度数然后分3种情况:①AD=AE时②AD=ED时③当AE=DE时分别求解即可【详解】∵在△ABC中AB=AC∠B=40°∴∠B=∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC的度数,然后分3种情况:①AD=AE时,②AD=ED时,③当AE=DE时,分别求解,即可.【详解】∵在△ABC中,AB=AC,∠B=40°,∴∠B=∠C=40°∴∠BAC=100°,①AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不符合题意舍去,②AD=ED时,∠DAE=∠DEA,∴∠DAE=1(180°−40°)=70°,2∴∠BAD=∠BAC−∠DAE=100°−70°=30°,∴∠BDA=180°−∠B−∠BAD=110°,③当AE=DE时,∠DAE=∠ADE=40°,∴∠BAD=100°−40°=60°,∴∠BDA=180°−40°−60°=80°,综上所述:∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.17.4【分析】先根据线段的垂直平分线的性质得到DB=DA则有∠A=∠ABD而∠C=∠DBC=利用三角形的内角和可得∠A+∠ABD=得到∠ABD=在Rt△BED中根据含角的直角三角形三边的关系即可得到DE解析:4【分析】先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90︒,∠DBC=30︒,利用三角形的内角和可得∠A+∠ABD=903060︒-︒=︒,得到∠ABD= 30︒,在Rt△BED中,根据含30︒角的直角三角形三边的关系即可得到DE的长度.【详解】解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,∵∠C=90︒,∠DBC=30︒,DC=4cm,∴BD=8cm,∠A+∠ABD=903060︒-︒=︒,∴∠ABD=30︒,在Rt△BED中,∠EBD=30︒,BD=8cm,∴DE=142BD=cm,即D到AB的距离为4cm,故答案为:4.【点睛】本题考察线段垂直平分线的性质、等腰三角形的性质以及含30︒角的直角三角形的性质,解题关键是掌握相关性质.18.【分析】过C作CE⊥AB于E交AD于F连接BF则BF+EF最小证△ADB≌△CEB得CE=AD=b即BF+EF=b再根据等边三角形的性质可得BE=a从而可得结论【详解】解:过C作CE⊥AB于E交AD解析:+a b【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=b,即BF+EF=b,再根据等边三角形的性质可得BE=a,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.19.100【分析】连接AO延长交BC于D根据线段垂直平分线的性质可得OB=OA=OC再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A即可求解【详解】解:连接AO延长交BC于D∵O为△A解析:100【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A,即可求解.【详解】解:连接AO延长交BC于D,∵O 为△ABC 三边垂直平分线的交点,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.故答案为:100.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键.20.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022+【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=222222+=,如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=A P+PC′=AC′,此时AP+PC22+=26210所以△PAC周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.三、解答题21.(1)见详解;(2)见详解.【分析】(1)只要证明△ABE ≌△ADC 即可解决问题;(2)延长AN 到G ,使AG=BC ,连接GE ,先证AEG CAB △≌△,再证GE ADN N △≌△即可解决问题.【详解】(1)证明:∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,又∵∠BAD=∠CAE=90°,∴∠BAD+∠DAE=∠CAE+∠DAE ,即∠BAE=∠DAC ,∴△ABE ≌△ADC ,∴BE=DC ,∠ABE=∠ADC ,又∵∠DOF=∠AOB ,∠BOA+∠ABE=90°,∴∠ABE+∠DOF=90°∴∠ADC+∠DOF=90,即BE ⊥DC .(2)延长AN 到G 使AG=BC ,连接GE ,AM BC ⊥,AC 90MAC M ∴∠+∠=︒,90NAE MAC ∠+∠=︒,ACM=NAE ∴∠∠,同理可证:ABC DAN ∠=∠ AC=AE ,∴()AEG CAB SAS △≌△,GE AB AD ∴==,ABC G ∠=∠,DAN G ∴∠=∠,又NA=GNE D ∠∠,∴GE ADN N △≌△,DN=EN ∴.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.22.(1)4;(2)见解析【分析】(1)证△ADE ≌△CDF (ASA ),得AE=CF=2,即可得出答案;(2)由全等三角形的性质得DE=DF ,则△DEF 是等腰直角三角形,得∠DEF=∠DFE=45°,再由三角形的外角性质即可得出结论.【详解】(1)解:∵△ABC 中,∠BAC=90°,AB=AC ,AD 是高,∴BD=CD=AD=12BC ,∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°, ∵DF ⊥DE ,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中, ADE CDF AD CDBAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ),∴AE=CF=2,∵AC=AB=6,∴AF=AC-CF=6-2=4;(2)证明:由(1)得:△ADE ≌△CDF ,∴DE=DF ,又∵∠EDF=90°,∴△DEF 是等腰直角三角形,∴∠DEF=∠DFE=45°,∵∠AGF=∠DAE+∠AEG=45°+∠AEG ,∠AED=∠DEF+∠AEG=45°+∠AEG ,∴∠AGF=∠AED .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.23.(1)AC DE =;(2)补全图形见解析,证明见解析;(3)能,2.AC AE DE +=【分析】(1)先证明AC 是BD 的垂直平分线,可得:45ABD ADB ∠=∠=︒,可得:90DAB ∠=︒,可得45CAD CDA ∠=∠=︒,从而可得结论; (2)如图,过B 作BG AM ⊥于G ,证明:,BCG DCE ≌ 可得,,BG DE CG CE == 再证明:,AG BG DE == 从而可得()22,AC DE CE =+ ()2,AE DE DE CE +=+ 于是可得结论;(3)如图,过B 作BG AM ⊥于G ,同(2)理可得:(),BCG DCE AAS ≌AG BG =,可得,,CG CE BG DE == ,AG BG DE == 再证明2,AG AC AE =+从而可得结论.【详解】解:(1)当,E C 重合时,点D 在线段BC 的延长线上,CD CB =,DE AM ⊥,AC ∴是BD 的垂直平分线,,AB AD ∴=,ABD ADB ∴∠=∠45MAN ∠=︒,45ABD ∴∠=︒,45ABD ADB ∴∠=∠=︒,90DAB ∴∠=︒,45CAD CDA ∴∠=∠=︒,.AE DE ∴=故答案:.AE DE =(2)补全图形如图所示,过B 作BG AM ⊥于G ,DE AM ⊥,90DEC BGC ∴∠=∠=︒,,,BC DC BCG DCE =∠=∠(),BCG DCE AAS ∴≌,,BG DE CG CE ∴==45,MAN BG AM ∴∠=︒⊥,45GAB GBA ∴∠=∠=︒,,AG BG DE ∴==()()222,AC AG CG DE CE ∴=+=+()2,AE DE AG CG CE DE DE CE +=+++=+2.AC AE DE ∴=+(3)点E 能在射线AM 的反向延长线上,如图,过B 作BG AM ⊥于G ,同理可得:(),BCG DCE AAS ≌AG BG =,,,CG CE BG DE ∴==,AG BG DE ∴==2,AG AC CG AC CE AC AC AE AC AE ∴=+=+=++=+2.AC AE DE ∴+=【点睛】本题考查的是线段的垂直平分线的定义及性质,等腰三角形的判定,三角形全等的判定与性质,掌握以上知识是解题的关键.24.(1)见解析;(2)见解析【分析】(1)由“AAS”即可证明△BDC ≌△CEB ;(2)由△BDC ≌△CEB ,推出BD=CE ,∠BCD=∠CBE ,得到OB=OC ,即可证明结论.【详解】(1)∵CD AB ⊥,BE AC ⊥,∴∠BDC=∠BEC=90︒,∵AB=AC ,∴∠ABC=∠ACB ,在△BDC 和△CEB 中,90BDC BEC ABC ACB BC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△CEB (AAS );(2)∵△BDC ≌△CEB ,∴CD=BE ,∠BCD=∠CBE ,∴OB=OC ,∴OD=OE .【点睛】本题考查了等腰三角形和全等三角形的判定和性质,关键是利用AAS 证明△BDC ≌△CEB . 25.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==. ∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.26.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x 轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案; (2)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A (3,3),B (1,1),C (4,−1).∴点A 关于x 轴的对称点A 1(3,−3),B 关于x 轴的对称点B 1(1,−1),C 关于x 轴的对称点C 1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC的面积为:3×4−12×2×2−12×2×3−12×1×4=5.【点睛】本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.。

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试(含答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第三单元《位置与坐标》测试(含答案解析)(2)

一、选择题1.在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( ) A .1个B .2个C .3个D .4个 2.若点A (a ,-l ),与点B (4,b )关于y 轴对称,则( )A .4,1a b ==-B .4,1a b =-=C .4,1a b =-=-D .4,1a b ==3.已知点Q 的坐标为()2,27a a -+-,且点Q 到两坐标轴的距离相等,则点Q 的坐标是( ) A .()3,3 B .()3,3- C .()1,1-D .()3,3或()1,1-4.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021-5.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,…,按这样的运动规律,第2021次运动后,动点2021P 的纵坐标是( )A .1B .2C .2-D .06.在平面直角坐标系中,点()25,1N a -+一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点()1,3P x x --在第一象限或第三象限,则x 的取值范围是( ) A .3x =B .1x <C .13x <<D .1x <或3x >8.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.A(-2,-3)到x 轴的距离为( )A .-2B .-3C .3D .210.我们规定:在平面直角坐标系xOy 中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212, d M N x x y y =-+-,例如图①中,点()2,3M -与点()1,1N -之间的折线距离为()(),2131347d M N =----++==.如图②,已知点() 3,4P -若点Q 的坐标为(),2t ,且(),10d P Q =,则t 的值为( )A .1-B .5C .5或13-D .1-或711.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点'(1,1)P y x -++叫做点P 伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1234,,,,,,n A A A A A ,若点1A 的坐标为(3,1),则点2020A 的坐标为( )A .(0,4)B .(3,1)-C .(0,2)-D .(3,1)12.如图,在48⨯的长方形网格OABC 中,动点(0,3)P 从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3)二、填空题13.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2022A 的坐标是__________.14.如图,在平面直角坐标系中,以A(2,0),B(0,1)为顶点作等腰直角三角形ABC (其中∠ABC=90°,且点C落在第一象限),则点C关于y轴的对称点C'的坐标为______.15.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是_____.17.长方形共有_________________条对称轴.18.如图,将正整数按如图所示规律排列下去,若用有序数对(m,n)表示m排从左到右第n个数,如(4,3)表示9,则(15,4)表示______.19.如图,,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)···,根据这个规律,第2020个点的横坐标为______.5,3-,点A关于x轴的对称点为点B,则点B的坐标是______.20.点A的坐标为()三、解答题21.已知在平面直角坐标系中(1)画出△ABC关于x轴成轴对称图形的三角形A′B′C′;(2)写出A′,B′,C′的坐标.22.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B (0,n),且|m﹣n﹣3|+(2n﹣6)2=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)OA=________,OB=_________.(2)连接PB,若△POB的面积为3,求t的值;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样点P,使△EOP≌△AOB,若存在,请直接写出t的值;若不存在,请说明理由.23.如图,平面直角坐标系中,横、纵坐标均为整数的点称为“格点”,如:点A、点B.请利用图中..的“格点”完成下列作图或解答.(1)点A 的坐标为 ;(2)在第三象限内标出“格点”C ,使得CA =CB ;(3)在(2)的基础上,标出“格点”D ,使得△DCB ≌△ABC ;(4)点E 是y 轴上一点,连接AE 、BE ,当AE +BE 取最小值时,点E 的坐标为 .24.已知ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =.直角顶点C 在x 轴上,锐角顶点B 在y 轴上,过点A 作AD x ⊥轴,垂足为点D .当点B 不动,点C 在x 轴上滑动的过程中.(1)如图1,当点C 的坐标是()1,0-,点A 的坐标是()3,1-时,请求出点B 的坐标; (2)如图2,当点C 的坐标是()1,0时,请写出点A 的坐标;(3)如图3,过点A 作直线AE y ⊥轴,交y 轴于点E ,交BC 延长线于点F .AC 与y 轴交于点G .当y 轴恰好平分ABC ∠时,请写出AE 与BG 的数量关系.25.如图,在边长为1的正方形组成的网格中,ABC ∆的顶点均在格点上,A (-3,2),B (-4,-3),C (﹣1,﹣1).(1)画出ABC ∆关于y 轴对称的图形A B C '''∆;(2)写出A '、B '、C '的坐标(直接写出答案)A ' ;B ' ;C ' ; (3)写出A B C '''∆的面积为 .(直接写出答案)(4)在y轴上求作一点 P,使得点P到点A与点C的距离之和最小.26.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分类讨论:当C点在y轴上,设C(0,t),根据三角形面积公式得到12|t﹣3|•2=6,当C点在x轴上,设C(m,0),根据三角形面积公式得到12|m+2|•3=6,然后分别解绝对值方程求出t和m即可得到C点坐标.【详解】解:分两种情况:①当C点在y轴上,设C(0,t),∵三角形ABC的面积为6,∴12•|t﹣3|•2=6,解得t=9或﹣3.∴C点坐标为(0,﹣3),(0,9),②当C点在x轴上,设C(m,0),∵三角形ABC 的面积为6, ∴12•|m +2|•3=6, 解得m =2或﹣6.∴C 点坐标为(2,0),(﹣6,0), 综上所述,C 点有4个, 故选:D . 【点睛】此题重点考查学生对平面直角坐标系上的点的应用,掌握平面直角坐标系的点的性质是解题的关键.2.C解析:C 【分析】根据y 轴对称的坐标特点求解确定即可. 【详解】∵A (a ,-l ),与点B (4,b )关于y 轴对称, ∴4,1a b =-=-, 故选C . 【点睛】本题考查了点的坐标的对称性,熟记对称点的坐标特点是解题的关键.3.D解析:D 【分析】根据点Q 到两坐标轴的距离相等列出方程,然后求解得到a 的值,再求解即可. 【详解】解:∵点Q 到两坐标轴的距离相等, ∴|-2+a|=|2a-7|, ∴-2+a =2a-7或-2+a =-2a+7, 解得a=5或a=3,当a=5时,-2+a =-2+5=3, 2a-7=2×5-7=3; 当a=3时,-2+a =-2+3=1, 2a-7=2×3-7=-1; 所以,点Q 的坐标为()3,3或()1,1-. 故选D . 【点睛】本题考查了点坐标,掌握坐标到坐标轴的距离的表示方法,以及掌握各象限内点的坐标特征是解题的关键.4.A解析:A关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.B解析:B 【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,进而可得经过第2021次运动后,动点P 的坐标. 【详解】观察点的坐标变化可知: 第1次从原点运动到点(1,1), 第2次接着运动到点(2,0), 第3次接着运动到点(3,-2), 第4次接着运动到点(4,0), 第5次接着运动到点(5,2), 第6次接着运动到点(6,0), 第7次接着运动到点(7,1), …,按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环, 所以2021÷6=336…5, 所以经过第2021次运动后, 动点P 的坐标是(2021,2). 故选:B . 【点睛】本题考查了规律型-点的坐标,解决本题的关键是观察点的坐标变化寻找规律.6.B解析:B根据点的坐标特征求解即可. 【详解】横坐标是50-<,纵坐标是210a +>, ∴点N (5-,21a +)一定在第二象限, 故选:B . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).7.D解析:D 【分析】在第一象限或第三象限内的点的横纵坐标均为同号,列式求值即可. 【详解】因为点()1,3P x x --在第一象限或第三象限, 所以10,30x x ->->或10,30x x -<-< 解得:1x <或3x > 故选:D 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.8.B解析:B 【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答. 【详解】 ∵m 2≥0, ∴−m 2−1<0,∴点P (−m 2−1,2)在第二象限. 故选:B . 【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.9.C解析:C 【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值. 【详解】解:点A(-2,-3)到x 轴的距离为|-3|=3. 故选C. 【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值.10.D解析:D 【分析】根据折线距离的定义可得关于t 的绝对值方程,解方程即可求出t 的值,进而可得答案. 【详解】解:∵()3,4P -,点Q 的坐标为(),2t ,(),10d P Q =, ∴34210t -+--=, 解得:1t =-或7t =. 故选:D . 【点睛】本题考查了坐标与图形,正确理解折线距离、掌握绝对值方程的解法是解题的关键.11.C解析:C 【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A 2020的坐标即可. 【详解】解:A 1的坐标为(3,1), 则A 2(−1+1,3+1)=(0,4), A 3(−4+1,0+1)=(−3,1), A 4(0,−2), A 5(3,1), …,依此类推,每4个点为一个循环组依次循环, ∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同为(0,−2), 故选:C . 【点睛】此题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组,依次循环是解题的关键.12.B解析:B【分析】根据入射角与反射角的定义作出图形,可知每6次反弹为一个循环组,依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵202063364÷=,∴当点P 第2020次碰到矩形的边时的坐标与点P 第4次反弹碰到矩形的边时的坐标相同,∴点P 的坐标为(5,0),故选:B.【点睛】此题考查了直角坐标系中点的坐标的表示方法,动点的运动规律,正确理解题中点的运动变化规律得到点的坐标的规律是解题的关键.二、填空题13.【分析】根据图象可得移动8次图象完成一个循环从而可得出点的坐标【详解】解:A1(01)A2(11)A3(10)A4(20)A5(2-1)A6(3-1)A7(30)A8(40)A9(41)…2022÷解析:()1011,1-【分析】根据图象可得移动8次图象完成一个循环,从而可得出点2022A 的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,-1),A 6(3,-1),A 7(3,0),A 8(4,0),A 9(4,1),…,2022÷8=252…6,所以2022A 的坐标为(252×4+3,-1),∴点2022A 的坐标是是()1011,1-.故答案为:()1011,1-.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.14.【分析】过点C 向y 轴引垂线CD 利用△OAB ≌△DBC 确定DCDO 的长度即可确定点C 的坐标对称坐标自然确定【详解】如图过点C 作CD ⊥y 轴垂足为D ∵∠ABC=90°∴∠DBC+∠OBA=90°∵∠OAB解析:()1,3-【分析】过点C 向y 轴,引垂线CD ,利用△OAB ≌△DBC ,确定DC ,DO 的长度,即可确定点C 的坐标,对称坐标自然确定.【详解】如图,过点C 作CD ⊥y 轴,垂足为D ,∵∠ABC=90°,∴∠DBC+∠OBA=90°,∵∠OAB+∠OBA=90°,∴∠DBC=∠OAB ,∵AB=BC ,∠BDC=∠AOB=90°∴△OAB ≌△DBC ,∴DC=OB ,DB=OA ,∵A (2,0),B (0,1)∴DC=OB=1,DB=OA=2,∴OD=3,∴点C (1,3),∴点C 关于y 轴的对称点坐标为(-1,3),故答案为:(-1,3).【点睛】本题考查了点的坐标及其对称点坐标的确定,熟练分解点的坐标,利用三角形全等,把坐标转化为线段的长度计算是解题的关键.15.(65)【分析】通过新数组确定正整数n 的位置An=(ab)表示正整数n 为第a 组第b 个数(从左往右数)所有正整数从小到大排列第n 个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n的位置,A n=(a,b)表示正整数n为第a组第b个数(从左往右数),所有正整数从小到大排列第n个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n,而1+2+3+4+…+(a-1)<n,能确第a组a个数从哪一个是开起,直到第b个数(从左往右数)表示正整数nA7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P7=(4,1),理解规律A20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a,b)的含义,会用新数组来确定正整数n 的位置.16.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第2021,1解析:()【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.17.【分析】依据轴对称图形的概念即在平面内如果一个图形沿一条直线折叠直线两旁的部分能够完全重合这样的图形叫做轴对称图形据此即可进行判断【详解】如下图长方形有2条对称轴故答案为2【点睛】解答此题的主要依据解析:2【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【详解】如下图长方形有2条对称轴,故答案为2.【点睛】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.18.109【分析】每排数据的个数等于排号数则可计算出前14排共有105个数然后再往后数4个数即可【详解】解:前14排共有1+2+3+…+14=105个数所以第15排的第4个数为109即(154)表示10解析:109【分析】每排数据的个数等于排号数,则可计算出前14排共有105个数,然后再往后数4个数即可.【详解】解:前14排共有1+2+3+…+14=105个数,所以第15排的第4个数为109,即(15,4)表示109.故答案为109.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.19.45【分析】观察图形可知以最外边的矩形边长上的点为准点的总个数等于x轴上右下角的点的横坐标的平方并且右下角的点的横坐标是奇数时最后以横坐标为该数纵坐标为0结束当右下角的点横坐标是偶数时以横坐标为1纵解析:45【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),则第2020个(45,5).∴第2020个点的横坐标为45,故答案为:45.【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.20.【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x轴对称点的坐标准确计算是解题的关键5,3解析:()【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;【详解】5,3-,∵点A的坐标为()∴关于x轴的对称点为点B()5,3;5,3.故答案是()【点睛】本题主要考查了关于x轴对称点的坐标,准确计算是解题的关键.三、解答题21.(1)作图见解析,(2)A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可;(2)根据所画图形可直接写出A′,B′,C′的坐标.【详解】解:(1)所画图形如下所示,其中△A′B′C′即为所求;(2)A′、B′、C′的坐标分别为:A′(3,﹣4),B′(1,﹣2),C′(5,﹣1).【点睛】本题考查了轴对称变换作图的知识,注意:做轴对称的关键是找到图形各顶点的对称点.22.(1)6,3;(2)t=4或8;(3)当t=3或9时,△POQ与△AOB全等【分析】(1)根据非负数的性质列出方程,解方程分别求出m、n;(2)分点P在线段AO上、点P在线段AO的延长线上两种情况,根据三角形面积公式计算;(3)分点P在线段AO上、点P在线段AO的延长线上两种情况,根据全等三角形的性质列出方程,解方程得到答案.【详解】解:(1)∵|m﹣n﹣3|+(2n﹣6)2=0,|m﹣n﹣3|≥0,(2n﹣6)2≥0,∴|m﹣n﹣3|=0,(2n﹣6)2=0,∴m﹣n﹣3=0,2n﹣6=0,解得,m=6,n=3,∴OA=6,OB=3,故答案为:6;3;(2)当点P在线段AO上时,OP=6﹣t,则12×(6﹣t)×3=3,解得,t=4,当点P在线段AO的延长线上时,OP=t﹣6,则12×(t﹣6)×3=3,解得,t=8,∴当t=4或8时,△POB的面积等于3;(3)如图1,当点P在线段AO上时,∵△POE≌△BOA,∴OP=OB,即6﹣t=3,解得,t=3,如图2,当点P在线段AO的延长线上时,∵△POE≌△BOA,∴OP=OB,即t﹣6=3,解得,t=9,∴当t=3或9时,△POQ与△AOB全等.【点睛】本题主要考查了坐标与图形的性质、绝对值的非负性,准确计算是解题的关键.23.(1)(1,3);(2)图见解析;(3)图见解析;(4)(0,2)【分析】(1)通过点A的位置,直接写出坐标,即可;(2)利用勾股定理和“格点”的定义,直接画出图形即可;(3)根据全等三角形的判定定理,直接作图,即可;(4)作点A关于y轴的对称点A′,连接BA′,交y轴于点E,即可求解.【详解】(1)由点A在平面直角坐标系中的位置,可知:点A的坐标为(1,3),故答案是:(1,3);(2)如图所示:CB=5,22345+=,故点C即为所求点;(3)如图所示:点D即为所求点;(4)作点A 关于y 轴的对称点A′,连接BA′,交y 轴于点E ,此时AE +BE 取最小值,点E 的坐标为(0,2).故答案是:(0,2).【点睛】本题主要考查坐标与图形,熟练掌握勾股定理,轴对称的性质,全等三角形的判定定理,是解题的关键.24.(1)(0,2);(2)(-1,-1);(3)BG=2AE ,理由见详解【分析】(1)先证明Rt∆ADC ≅Rt∆COB ,结合条件,即可得到答案; (2)先证明∆ADC ≅∆COB ,结合点B ,C 的坐标,求出AD ,OD 的长,即可得到答案; (3)先证明∆BGC ≅∆AFC ,再证明∆ABE ≅∆FBE ,进而即可得到答案. 【详解】(1)∵点C 的坐标是()1,0-,点A 的坐标是()3,1-,∴AD=OC ,又∵AC=BC ,∴Rt∆ADC ≅ Rt∆COB (HL ),∴OB=CD=2,∴点B 的坐标是(0,2);(2)∵AD ⊥x 轴,∴∠DAC+∠ACD=90°,又∵∠OCB+∠ACD=90°,∴∠DAC=∠OCB ,又∵∠ADC=∠COB=90°,AC=BC ,∴∆ADC ≅ ∆COB (AAS ),∵点C 的坐标是()1,0∴AD=OC=1,∵点B 的坐标是(0,2),∴CD=OB=2,∴OD=2-1=1,∴点A 的坐标是(-1,-1);(3)BG=2AE ,理由如下:∵ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =,AE y ⊥轴,∴∠BCA=∠ACF=90°,∠AEG=90°,∴∠GBC+∠BGC=90°,∠GAE+∠AGE=90°,又∵∠BGC=∠AGE ,∴∠GBC=∠FAC ,在∆BGC 和 ∆A FC 中,∵∠GBC=∠FAC ,BC AC =, ∠GBC=∠FAC ,∴∆BGC ≅∆AFC (ASA ),∴BG=AF ,∵BE ⊥AF ,y 轴恰好平分ABC ∠,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,BE=BE ,∴∆ABE ≅∆FBE ,∴AE=FE ,∴AF=2AE∴BG=2AE .【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握“一线三垂直”模型,是解题的关键.25.(1)作图见解析;(2)(3,2),(4,-3),(1,-1);(3)6.5;(4)作图见解析.【分析】(1)根据轴对称的性质,对应点之间的连线被对称轴垂直平分,描出对应点,依次连接即可;(2)根据点的位置写出坐标即可;(3)用矩形面积减去三个小三角形面积即可;(4)连接AC′交y 轴于点P ,连接PC ,根据轴对称的性质,对应线段相等和两点之间线段最短点P 即为所求.【详解】解:(1)如图,△A'B'C'即为所求.(2)A′(3,2),B′(4,-3),C′(1,-1).故答案为(3,2),(4,-3),(1,-1);(3)113515223 6.522A B C S '''∆=⨯-⨯⨯-⨯⨯⨯=; (4)如图,点P 即为所求.【点睛】 本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)图详见解析;(2)4;(3)点P 的坐标(0,5)或(0,3)-【分析】(1)确定出点A 、B 、C 的位置,连接AC 、CB 、AB 即可;(2)过点C 向x 、y 轴作垂线,垂足为D 、E ,△ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积;(3)当点P 在y 轴上时,根据△ABP 的面积4=可求4AP =,即可得出点P 的坐标.【详解】解:(1)如图所示:(2)过点C 向x 、y 轴作垂线,垂足为D 、E .∴四边形DOEC 的面积3412=⨯=,△BCD 的面积12332=⨯⨯=,△ACE的面积1244 2=⨯⨯=,△AOB的面积1211 2=⨯⨯=.△ABC的面积=四边形DOEC的面积-△ACE的面积-△BCD的面积-△AOB的面积;∴123414ABCS=---=.(3)当点P在y轴上时,△ABP的面积142BO AP==,即1242AP⨯⨯=,解得:4AP=.所以点P的坐标为(0,5)或(0,3)-.【点睛】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积-△ACE的面积-△BCD的面积-△AOB的面积是解题的关键.。

北师大版数学八年级上册第三章单元测试题(含答案可打印)

北师大版数学八年级上册第三章单元测试题(含答案可打印)

北师大版数学八年级上册第三章单元测试题(含答案可打印)平度市西关中学八年级数学上册第三章测试题图形的平移与旋转测试时间:90分钟满分:120分一、选择题(每小题3分,共30分)1. 以下现象:①荡秋千;②呼啦圈;③跳绳;④转陀螺.其中是旋转的有().(A)①②(B)②③(C)③④(D)①④2. 下列图形中只能用其中一部分平移可以得到的是().(A)(B)(C)(D)3. 下列标志既是轴对称图形又是中心对称图形的是().(A)(B)(C)(D)4. 如图1,四边形EFGH是由四边形ABCD平移得到的,已知,AD=5,∠B=70°,则下列说法中正确的是( ). (A)FG=5, ∠G=70°(B)EH=5, ∠F=70°(C)EF=5,∠F=70°(D) EF=5,∠E=70°5. 如图3,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=45°,则∠AOD的度数为().(A)55°(B)45°(C)40°(D)35°6. 同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,如图3中所有小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以A为中心().(A)顺时针旋转60°得到(B)逆时针旋转60°得到(C)顺时针旋转120°得到(D)逆时针旋转120°得到7. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是().8. 下列图形中,绕某个点旋转180°能与自身重合的图形有().(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆. (A )2个(B )3个(C )4个(D )5个9. 如图4,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF,则下列结论中,错误的是().(A )BE=EC(B )BC=EF(C )AC=DF(D )△ABC ≌△DEF10. 下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是().(A )?30 (B )?45 (C )?60 (D )?90二、填空题(每小题3分,共30分)11. 在旋转的过程中,要确定一个图形的旋转后的位置,除了知道原来图形的位置和旋转方向外,还需要知道和 .12. 如图5所示,右边的图形是左边的图形向右平移格得到的.13. 如图6,在Rt OAB ?中,90OAB ∠=?,6OA AB ==,将OAB ?绕点O 沿逆时针方向旋转90?得到11OA B ?,则线段1OA 的长是;1AOB∠的度数是 .14. 下列图形中,不能由图形M 经过一次平移或旋转得到的是 .15. 小明把自己的左手手印和右手手印按在同一张白纸上,左手手印(填“能”或“不能”)通过旋转与右手手印完全重合在一起.16. 如图7,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是.17. 如图8所示,在平面内将Rt △ABC 绕直角顶点C 逆时针旋转90°得到Rt △EFC.若AB=5,BC=1,则线段BE 的长为.18. 如图9,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转一定的角度后能与△CB /P 重合.若PB=3,则P /P = .19. 如图10所示,△ABC 与△111C B A 关于直线m 对称,将△111C B A 向右平移得到△222C B A , 由此得出下列判断:(1)AB//22B A ;(2)∠A=∠2A ;(3)AB=22B A ,其中正确有.(填序号)20. 聪聪和亮亮玩一种游戏,他们要将图11(1)和图11(2)中的三角形通过水平或竖直平移的方法得到图11(3),平移的过程中,每次水平或竖直平移一格,先拼完的为胜,聪聪选择了图11(1),亮亮选择了图11(2),那么______先获胜.三、简答题(共60分)21.(8分)如图12,将四边形ABCD 绕O 点旋转后得到一个四边形,请在图中依次标上点A ,B ,C ,D 的对应点E ,F ,G ,H :22. (10分)如图13,四边形ABCD 是平行四边形,(1)图中哪些线段可以通过平移而得到;(2)图中哪些三角形可以通过旋转而得到.图7 FB23.(10分)如图14,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP/重合,如果AP=3,那么线段P P/的长是多少?24.(12分)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图15).试问线段HG与线段HB相等吗?请先观察猜想,再说明你的理由.25.(10分)同学们用直尺和三角板画平行线,这种画平行线的方法利用了怎样的移动?由此我们得出了什么结论?26.(10分)请你以“爱护地球,保护地球----植树造林”为题,以等腰三角形为“基本图形”利用平移设计一组有意义的图案,完成后与同学进行交流.参考答案答案提示:一、选择题1.D2.B3.A4.B5.B6.C7.B8.C9.A 10.C二、填空题11. 旋转中心,旋转角 12. 4 13. 6,135° 14. ③ 15. 能 16.41 17. 7 18. 23 19. (1)(2)(3) 20. 亮亮三、简答题21. 略22. (1)AB 和DC ,AD 和BC ,AO 和OC ,BO 和OD .(2)△AOB 和△COD ,△COB 和△AOD ,△CDA 和△ABC ,△ABD 和△CBD.23. 解:根据旋转的性质可知将△ABP 绕点A 逆时针旋转后与△ACP / 重合△ABP ≌△ACP /,所以AP=A P /,∠BAC=∠PA P /=90°.所以在Rt △AP P / 中,P P /=233322=+.24. 解:相等.连接AH ,根据旋转性质,因为AG=AB ,AH=AH ,∠AGH=∠ABH=90°,所以△AGH ≌△ABH,所以HG=HB.25. 平移,平行公理:同位角相等两直线平行.26. 略。

北师大版八年级上册数学单元测试卷附答案第三章 位置与坐标

北师大版八年级上册数学单元测试卷附答案第三章 位置与坐标

第三章位置与坐标一、选择题(共20小题;共100分)1. 已知点在第三象限,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 若点与点关于轴对称,则,的值分别是3. 如图,在平面直角坐标系中,,,则的面积为A. B. C. D.4. 点与坐标原点、围成的三角形的面积为A. B. C. D.5. 在平面直角坐标系中,若点的坐标为,点的坐标为,则的面积为A. B. C. D.6. 点位于轴左方,距轴个单位长,位于轴上方,距轴个单位长,点的坐标是A. B. C.7. 点关于的对称点的坐标为8. 正方形的边长为,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形内投一粒米,则米粒落在阴影部分的概率为D.9. 第六届北京农业嘉年华在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学根据数学知识将草莓博览园的游览线路进行了精简.如图,分别以正东、正北方向为轴、轴建立平面直角坐标系,如果表示国际特色农产品馆的坐标为,表示科技生活馆的点的坐标为,则表示多彩农业馆所在的点的坐标为A. B.10. 已知点,点,点在轴的正半轴上,若三角形的面积为,则点的坐标为A. B. C. D.11. 从车站向东走,再向北走到小红家;从车站向北走,再向西走到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为A. ;B. ;C. ;D. ;12. 点关于轴对称的点的坐标是B. C. D.13. 如图,已知的面积是,,,则四边形的面积为A. B. C. D.14. 如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,有如下四个结论:当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为;当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为;当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为;当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为.上述结论中,所有正确结论的序号是A. B. C. D.15. 如图,两个三角形的面积分别是和,对应阴影部分的面积分别是,则等于A. B. C. D. 无法确定16. 如图,在四边形中,,,,,且,则四边形的面积为A. B. C. D.17. 如图,将正六边形放入平面直角坐标系后,若点,,的坐标分别为,,,则点的坐标为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(三) 位置与坐标
(时间:45分钟满分:100分)
一、选择题(每小题3分,共30分)
1.根据下列表述,能确定位置的是( )
A.光明剧院2排B.某市人民路
C.北偏东40°D.东经112°,北纬36°
2.如图,在阴影区域的点是( )
A.(-1,2)
B.(-1,-2)
C.(1,-2)
D.(3,7)
3.下列说法正确的有( )
①点(0,0)是坐标原点;②点(2,3)和点(3,2)是同一个点;③点(0,-3)在y轴上.A.1个B.2个C.3个D.0个
4.在平面直角坐标系中,点P (x2+1,-2)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限5.下列两点是关于x轴对称的点是( )
A.(-1,3)和(1,-3) B.(3,-5)和(-3,-5)
C.(-2,4)和(2,-4) D.(5,-3)和(5,3)
6.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为( )
A.(0,2) B.(2,0)
C.(0,-3) D.(-3,0)
7.已知点M到x轴的距离为3,到y轴的距离为2,且在第四象限内,则点M的坐标为( ) A.(-2,3) B.(2,-3)
C.(3,2) D.不能确定
8.已知M(1,-2),N(-3,-2),则直线MN 与x 轴,y 轴的位置关系分别为( ) A .相交,相交 B .平行,平行 C .垂直相交,平行 D .平行,垂直相交
9.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于1
2MN 的长为半径画弧,两弧在第二象限交于点P.
若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )
A .a =b
B .2a +b =-1
C .2a -b =1
D .2a +b =1
10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )
A .2
B .3
C .4
D .5 二、填空题(每小题4分,共16分)
11.点A(-3,0)关于y 轴对称的点的坐标是________.
12.如图,①②③是三枚棋子,若①号棋子的坐标是(-1,-2),③号棋子的坐标是(2,-1),则②号棋子的坐标是________.
13.在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为________.
14.在平面直角坐标系中,已知点A(-5,0),B(5,0),点C 在坐标轴上,且AC +BC =6,写出满足条件的所有点C 的坐标________________. 三、解答题(共54分)
15.(8分)已知点A(2m+1,m+9)在第一象限,且点A到x轴和y轴的距离相等,求点A 的坐标.
16.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A′B′C′;
(3)写出点B′的坐标.
17.(8分)交通规则上有许多标志,如图1所示是某地的两个限制数量,某货车的迎面的截面图形坐标如图2所示,问该车能否通过此路段,并说明理由.
18.(10分)(1)写出图中多边形ABCDEF各顶点坐标;
(2)A与B,E与D的横坐标有什么关系?
(3)B与D,C与F坐标的特点是什么?
(4)线段AB与ED所在直线的位置关系是怎样的?
19.(10分)如图,在平面直角坐标系中,分别写出△ABC的顶点坐标,并求出△ABC三边的长和△ABC的面积.
20.(10分)如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY 上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β),例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下列问题:
(1)如图3中,如果点N在平面内的位置记为N(6,30),那么ON=________,∠XON=________;
(2)如果点A、B在平面内的位置分别记为A(4,30),B(4,90),试求A、B两点间的距离.
参考答案
1.D 2.D 3. B 4.D 5.D 6.C 7.B 8.D 9.B 10.C 11.(3,0) 12.(1,1) 13.(9,81) 14.(0,2),(0,-2),(-3,0),(3,0)
15.由题意,得2m +1=m +9.解得m =8.所以2m +1=m +9=17.所以点A 的坐标为(17,17) 16.(1)图略. (2)图略.(3)B′(2,1). 17.不能通过.
理由:限宽3 m ,而车身宽1.3×2=2.6<3,宽能通过;限高3.5 m ,而车身高1.85×2=3.7>3.5,高度不能通过. 故该车不能通过此路段.
18.(1)A(-4,3),B(-4,0),C(0,-2),D(5,0),E(5,3),F(0,5). (2)相同.
(3)(3)B 、D 纵坐标为0,C 、F 横坐标为0. (4)(4)平行.
19.A(2,3),B(-2,-1),C(1,-3).
AB =42+42=42,AC =62+12=37,BC =22+32=13. S △ABC =4×6-12×4×4-12×2×3-12×6×1=10.
20.(1)6 30°
(2)因为∠BOX =90°,∠AOX =30°,所以∠AOB =60°.因为OA =OB =4,所以△AOB 是等边三角形.所以AB =OA =4.。

相关文档
最新文档