2019年四川省绵阳中考数学模拟试题(含答案)

合集下载

2019年四川省绵阳市中考数学试卷(含答案解析)

2019年四川省绵阳市中考数学试卷(含答案解析)

2019年四川省绵阳市中考数学试卷(含答案解析)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若=2,则a的值为()A.﹣4B.4C.﹣2D.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣43.(3分)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)6.(3分)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.87.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8 8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b39.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.412.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.15.(3分)单项式x﹣|a﹣1|y与2x y是同类项,则a b=.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE =2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m ≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+P A的最小值.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O 出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.2019年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若=2,则a的值为()A.﹣4B.4C.﹣2D.【分析】根据算术平方根的概念可得.【解答】解:若=2,则a=4,故选:B.【点评】本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数0.0002用科学记数法表示为2×10﹣4,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:是中心对称图形.故选:B.【点评】此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.【分析】主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点评】此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【分析】过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠F AE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.【点评】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.(3分)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.8【分析】根据绝对值的意义,由与最接近的整数是5,可得结论.【解答】解:∵,∴5<,且与最接近的整数是5,∴当|x﹣|取最小值时,x的值是5,故选:A.【点评】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11﹣3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5﹣7)2+(7﹣7)2+(11﹣7)2+(3﹣7)2+(9﹣7)2]=8.结论正确,故D符合题意;故选:D.【点评】本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点评】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【分析】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ=,∴(sinθ﹣cosθ)2=.故选:A.【点评】本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.4【分析】二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<﹣<,∴1<﹣<,当﹣<时,b>﹣3a,∵当x=2时,y=4a+2b+c=0,∴b=﹣2a﹣c,∴﹣2a﹣c>﹣3a,∴2a﹣c>0,故②正确;③当x=时,y的值为a+b+c,给a+b+c乘以4,即可化为a+2b+4c,∵抛物线的对称轴在1<﹣<,∴x=关于对称轴对称点的横坐标在和之间,由图象可知在和2之间y为负值,2和之间y为正值,∴a+2b+4c与0的关系不能确定,故③错误;④∵﹣,∴2a+b<0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>﹣4ab,∵a>0,b<0,∴ab<0,∴,即,故④正确.故选:C.【点评】本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM =AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.【点评】本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【分析】根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.(3分)单项式x﹣|a﹣1|y与2x y是同类项,则a b=1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【分析】直接利用顺水速=静水速+水速,逆水速=静水速﹣水速,进而得出等式求出答案.【解答】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【分析】过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.【点评】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE =2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【分析】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.【分析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:(1)2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0=+2﹣2×﹣1=+2﹣﹣1=1;(2)原式=×﹣×=﹣﹣=﹣=﹣,当a=,b=2﹣时,原式=﹣=﹣.【点评】本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【分析】(1)由B组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18﹣11=7,95~100的频数为36﹣(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°×=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设每天的定价增加了a个20元,则有2a个房间空闲,根据题意有:m=(20﹣2a)(200+20a﹣80)=﹣40a2+160a+2400=﹣40(a﹣2)2+2560,∵﹣40<0,∴当a=2时,m取得最大值,最大值为2560,此时房间的定价为200+2×20=240元.答:当每间房间定价为240元时,乙种风格客房每天的利润w最大,最大利润是2560元.【点评】本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m ≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【分析】(1)将点A(4,1)代入y=,即可求出m的值,进一步可求出反比例函数解析式;(2)先证△CDB∽△CEA,由CE=4CD可求出BD的长度,可进一步求出点B的坐标,以及直线AC的解析式,直线AC与坐标轴交点的坐标,可证直线AC与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM长度的最小值.【解答】解:(1)将点A(4,1)代入y=,得,m2﹣3m=4,解得,m1=4,m2=﹣1,∴m的值为4或﹣1;反比例函数解析式为:y=;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B==4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=﹣1,b=5,∴y AB=﹣x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CF=OC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OM=CF=.【点评】本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+P A的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME﹣S△CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+P A的最小值是3.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O 出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【分析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG 可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,。

2019年四川绵阳市中考数学模拟试题(一)含答案

2019年四川绵阳市中考数学模拟试题(一)含答案

初中毕业考试暨高中阶段学校招生考试模拟试卷1(满分:140分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.如图是正方体的平面展开图,每个面上标有一个汉字,与“我”字相对的面上的字是()第2题A.魅B.力C.绵D.阳3.下列运算正确的是()A.a2a3=a6B.(a2)3=a6C.a6÷a2=a3D.a6﹣a2=a44.2014年12月10日从省教厅获悉,今年起我省编制并实施全面改善贫困地区义务教育薄弱学校基本办学条件计划《实施方案》,目前,已安排下达2014年“全面改薄”中央专项资金19.4亿元.用科学记数法表示19.4亿为()A.19.4×108B.1.94×108C.1.94×109D.19.4×1095.如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD 的度数是()第5题A.80°B.90°C.100°D.110°6.如图,假设可以随意在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.第6题第7题7.如图,直线l1∥l2,∠1=∠2=35°,∠P=90°,则∠3等于()A.50°B.55°C.60°D.65°8.某种商品进价为每件a元,销售商先以高出进价50%定价,后又以7折的价格销售,这时一件该商品的在买卖过程中盈亏情况为()A.赢利0.05a元B.赢利0.5a元C.亏损0.05a元D.亏损0.3a元9.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF= ()A.B.C.D.第9题第10题10.如图,Rt△ABE中,∠B=90°,延长BE到C,使EC=AB,分别过点C,E作BC,AE 的垂线两线相交于点D,连接AD.若AB=3,DC=4,则AD的长是()A.5 B.7C.5D.无法确定11.如图所示的三角形数垒,a、b是某行的前两个数,当a=7时,b= ()A.20 B.21 C.22 D.23第11题第12题12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.B.2C.D.1第II卷非选择题(共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.因式分解:4a2b﹣b3=.14.化简:÷(+)=.15.如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)第15题第16题16.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O 重合.若BC=3,则折痕CE的长为.17.如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去边长为的正方形.第17题第18题18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是.三、解答题(本大题共7小题,共86分,解答应写出必要的文字说明,证明过程或演算步骤)19.(16分)(1)计算:﹣(﹣1)2015×()﹣2﹣|1﹣|;(2)解不等式组.20.(11分)我们知道,每年的4月23日是”世界读书日”,某校为了鼓励学生去发现读书的乐趣,享受阅读的过程,随机调查了部分学生,就”你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表.请根据统计表提供的信息解答下列问题:各类频数频率卡通画 a 0.56时文杂志32 b武侠小说30 0.15文学名著 c d(1)这次随机调查了名学生,统计表中d=.(2)假如以此统计表绘制出扇形统计图,则武侠小说对应的圆心角度数是多少?21.(11分)九年级(1)班团支书计划组织部分同学在元旦进行鲜花销售活动,在元旦当天,预计销售康乃馨和百合花,经过市场调研,他们知道康乃馨的批发价是每枝1.5元,百合花每枝4元,而市场销售价为康乃馨每枝2元,百合花每枝5元.(1)如果用300元钱进货,售出全部鲜花之后所得利润为80元,求两种鲜花各进多少枝?(2)团支部将这些鲜花平均分给甲乙两个小组去销售,由于甲组每小时售出的花是乙组的两倍,因此比乙组提前1小时售完,求甲组每小时售出多少枝花.22.(11分)已知一次函数y=2x﹣k与反比例函数y=的图象相交于A、B,其中A的横坐标为3.(1)求A、B两点的坐标;(2)若直线AB上有一点P,使得△APO∽△AOB,求P坐标.第22题23.(11分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.第23题24.(12分)已知y=ax2+bx﹣3过(2,﹣3),与x轴交于A(﹣1,0),B(x2,0),交y 轴于C.(1)求抛物线的解析式;(2)过点C作CD∥x轴,交抛物线于D,是否存直线y=kx+1将四边形ACDB分成面积相等的两部分,若存在,请求k的值;若不存在,请说明理由;(3)若直线y=m(﹣3<m<0)与线段AC、BC分别交于D、E两点,则在x轴上是否存在点P,使得△DPE为等腰直角三角形,若存在,请求P点的坐标;若不存在,请说明理由.第24题25.(14分)如图1,在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠FAE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(2)设AB=12,求线段FC的长.(3)如图2,过AE中点G的直线分别交AB、CD于P、Q;求的值.第25题绵阳市2018年初中毕业考试暨高中阶段学校招生考试模拟试卷1(参考答案)一、1.B解析:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选B.2.D解析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“我”字相对的面上的字是阳.故选D.3.B解析:A、a2a3=a5,故本选项错误;B、(a2)3=a6,正确;C、a6÷a2=a4,故本选项错误;D、a6﹣a2不是同类项,不能合并,故本选项错误;故选B.4.C解析:19.4亿=19 4000 0000=1.94×109.故选C.5.C解析:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,∴∠ADC+∠DCB=160°.又∵∠ADC、∠DCB的平分线相交于点O,∴∠ODC=∠ADC,∠OCD=,∴∠ODC+∠OCD=80°,∴∠COD=180°﹣(∠ODC+∠OCD)=100°.故选C.6.C解析:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选C.7.B解析:如图,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2=35°,∴∠3+∠4=110°,∵∠P=90°,∠2=35°,∴∠4=90°﹣35°=55°,∴∠3=110°﹣55°=55°.故选B.8. A 解析:总售价=a(1+50%)×0.7=1.05a,∵1.05a﹣a=0.05a,∴赢利0.05a元,故选A.9.B解析:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB=BD,∴BD==,∠BOC=90°,∴OB=,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB=.故选B.10.C解析:如图,∵∠C=∠B=90°,∠AED=90°,∴∠1=∠2.在△ABE与△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,BE=CD=4,∴在直角△ABE中,由勾股定理,得AE2=AB2+BE2=32+42=52.则AE=5.在等腰直角△AED中,AD=AE=5.故选C.11.C解析:根据分析,可得第n行的第一个数是n,所以当a=7时,a、b是第7行的前两个数;因为4﹣2=2,7﹣4=3,11﹣7=4,所以第6行的第2个数是:11+5=16,所以第7行的第2个数是b=16+6=22.故选C.12.A解析:连结AE,OD、OE.∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠OAD=60°,∵点E为BC的中点,∠AEB=90°,∴AB=AC,∴△ABC是等边三角形,边长是4.△EDC 是等边三角形,边长是2.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选A.二.13.b(2a﹣b)(2a+b)解析:4a2b﹣b3=b(4a2﹣b2)=b(2a﹣b)(2a+b).14.x解析:原式=÷(+)=÷=•=x.15.10解析:如图,作AD⊥CD于D点.∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,∴∠CAB=30°.∴BC=AC=10m,在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,∴BD=15.∴在Rt△ABD中,AB=BD÷cos30°=15÷=10m.16.2解析:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.17.5cm 解析:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意,得(100﹣2x)(50﹣2x)=3600,展开,得x2﹣75x+350=0,解得x1=5,x2=70(不合题意,舍去),则铁皮各角应切去边长为5cm的正方形.18.①④解析:①当x=1时图象在x轴下方时,y<0,即a+b+c<0,①正确;②当x=﹣1时图象在x轴上方,y>0,即a﹣b+c>0,②错误;③由抛物线的开口向上知a>0,∵﹣<1,∴2a+b>0,③错误;④∵图象开口向上,∴a>0,∵对称轴在y轴右侧∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,④正确.三.19.解:(1)原式=3﹣(﹣1)×4﹣(﹣1)=3+4﹣+1=8﹣;(2)∵解不等式①,得x<﹣3,解不等式②,得x≥﹣5,∴不等式组的解集为﹣5≤x<﹣3.20.解:(1)调查的总人数是:30÷0.15=200,则b=32÷200=0.16,d=1﹣0.56﹣0.16﹣0.15=0.13.故答案是200,0.13;(2)360°×0.15=54°.则武侠小说对应的圆心角度数是54°.21.解:(1)设康乃馨进货x枝,百合进货y枝,根据题意,得,解得.答:康乃馨进货40枝,百合进货60枝.(2)设乙组每小时售出a枝花,根据题意,得﹣=1解得a=25,经检验:a=25是分式方程的解,2×25=50.答:甲组每小时售出50枝花.22.解:(1)∵一次函数y=2x﹣k与反比例函数y=的图象相交于A和B两点,其中有一个交点A的横坐标为3,∴,解得k=4.∴一次函数的解析式为:y=2x﹣4;反比例函数的关系式为y=.(2)解,得,,∴A(3,2),B(﹣1,﹣6);∴OA2=32+22=13,AB==4,∵△APO∽△AOB,∴=,∴OA2=AP•AB,即13=AP•4,解得AP=,∵点P在直线y=2x﹣4上,∴设P(x,2x﹣4),∴AP=,解得x=3±,∴P点坐标为(3+,2+2)或(3﹣,6﹣2).23.(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.24.解:(1)∵y=ax2+bx﹣3过(2,﹣3),A(﹣1,0),∴,解得a=1,b=﹣2,∴抛物线的解析式为:y=x2﹣2x﹣3.(2)如图1,设直线y=kx+1与x轴交于点E,于CD交于点F,A(﹣1,0),B(3,0),E(),F();S四边形ACFE=(CF+AE)•OC=(1);S四边形EFDB=(DF+BE)•OC=(5);即(1)=(5),k=.(3)存在点P.直线y=m与y轴交点为F(0,m),①当DE为腰时,分别过D、E作DP1⊥x 轴于P1,作EP2⊥x轴于P2;如图2,则△DP1E和△DEP2均为等腰直角三角形,又DP1=DE=EP2=OF=﹣m,又AB=x B﹣x A=3+1=4,又△ECD∽△BCA,即,即m=;P1(,0),P2(,0);②当DE为底时,过P3作GP3⊥DE于G,如图3,又DG=GE=GP3=OF=﹣m,由△ECD∽△BCA,,即m=;P3(,0)综上所述,P1(,0),P2(,0),P3(,0).2019年四川绵阳市中考数学模拟试题(一)含答案图1 图2 图325.解:(1)AF=BC+FC ,证明如下:如图1,过E 作EM ⊥AF 交AF 于点M ,∵∠BAE=∠FAE ,∴BE=ME ,在Rt △ABE 和Rt △AME 中,, ∴Rt △ABE ≌Rt △AME (HL ),∴AM=AB=BC ,ME=BE=EC ,在Rt △MFE 和Rt △CFE 中,,∴Rt △MFE ≌Rt △CFE (HL ),∴MF=FC ,∴AF=AM+MF=BC+FC ;(2)设FC=x ,由(1)可知MF=x ,AM=AD=AB=12,则DF=12﹣x ,AF=12+x ,在Rt △AFD 中,由勾股定理,得AD 2+DF 2=AF 2,即122+(12﹣x )2=(12+x )2,解得x=3, 即FC=3;(3)如图2,过G 作RS ∥BC ,交AB 于点R ,交CD 于点S ,∵G 为AE 中点,∴R 为AB 中点,∴RG=BE=BC ,GS=RS ﹣RG=BC ﹣RG=BC ﹣BC=BC ,∵AB ∥CD ,∴===.。

2019年四川绵阳中考数学试题(解析版)

2019年四川绵阳中考数学试题(解析版)

2019年四川省绵阳市初中学业水平考试数 学第Ⅰ卷(选择题,共36分){题型:1-选择题}一、选择题:本大题共12个小题,每小题3分共36分。

在每小题所给出的四个选项中,只有一项是符合题目要求的。

{题目}1.(2019年四川绵阳T1)若√a =2,则a 的值为( )A .−4B .4C .−2D .√2{答案}B {解析}本题主要考查算术平方根,解题的关键是掌握算术平方根的定义,()222=a ,∴a =4,因此本题选B .{分值}3{章节:[1-6-1]平方根}{考点:算术平方根}{类别:常考题}{难度:1-最简单}{题目}2.(2019年四川绵阳T2)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为( )A .31020-⨯.B .41020-⨯.C .3102-⨯D .4102-⨯{答案}D{解析}本题考查了科学记数法的表示,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此本题选D . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较小的数科学计数法}{类别:常考题}{难度:2-简单}{题目}3.(2019年四川绵阳T3)对如图的对称性表述,正确的是( )A .轴对称图形B .中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形又不是中心对称图形{答案}B{解析}主要考查了中心对称图形的性质,直接利用中心对称图形的性质得出答案.因此本题选B .{分值}3{章节:[1-23-2-2]中心对称图形}{考点:中心对称图形}{类别:常考题}{难度:2-简单}{题目}4.(2019年四川绵阳T4)下列几何体中,主视图是三角形的是( )A .B .C .D .{答案}C{解析}本题考查了三视图,A 选项正方体的主视图是正方形,故此选项错误;B 选项圆柱的主视图是长方形,故此选项错误;C 选项圆锥的主视图是三角形,故此选项正确;D 选项六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;因此本题选C .{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{难度:2-简单}{题目}5.(2019年四川绵阳T5)如图,在平面直角坐标系中,四边形OABC 为菱形,O (0,0),A (4,0),∠AOC =60°,则对角线交点E 的坐标为( )A .(2,3)B .(3,2)C .(3,3)D .(3,3){答案}D{解析}本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.过点E 作EF ⊥x 轴于点F ,∵四边形OABC 为菱形,∠AOC =60°,∴∠AOE =21∠AOC =30°,∠FAE =60°,∵A (4,0),∴OA =4,∴AE =21AO =2421=⨯,∴121==AE AF ,3122222=-=-=AF AE EF , ∴OF =AO -AF =4-1=3,∴E (3,3).因此本题选D .{分值}3{章节:[1-18-2-2]菱形}{考点:菱形的性质}{类别:常考题}{难度:3-中等难度}{题目}6.(2019年四川绵阳T6)已知x 是整数,当30-x 取最小值时,x 的值是( )A .5B .6C .7D .8{答案}A {解析}本题考查了算术平方根的估算和绝对值的意义,∵363025<<,∴6305<<,()012012130211530306>-=-=---,∴()530306->-,因此5与30更接近,因此本题选A .{分值}3{章节:[1-16-3]二次根式的加减}{考点:二次根式的应用}{类别:常考题}{难度:3-中等难度}{题目}7.(2019年四川绵阳T7)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A .极差是6B .众数是7C .中位数是5D .方差是8{答案}D{解析}本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A .极差=11-3=8,结论错误,故A不符合题意; B .众数为5,7,11,3,9,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D .平均数是(5+7+11+3+9)÷5=7,方差S 2=51[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.因此本题选D .{分值}3{章节:[1-20-1-2]中位数和众数}{考点:折线统计图}{考点:中位数}{考点:众数}{考点:极差}{考点:方差}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年四川绵阳T8)已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3{答案}A {解析}本题考查了幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.∵4m=a ,8n =b , ∴22m +6n =22m ×26n =(22)m •(23)2n =4m •82n =4m •(8n )2 =ab 2,因此本题选A .{分值}3{章节:[1-14-1]整式的乘法}{考点:同底数幂的乘法}{考点:幂的乘方}{考点:积的乘方}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年四川绵阳T9)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A .3种B .4种C .5种D .6种{答案}C{解析}本题考查了一元一次不等式组的应用,设该店购进甲种商品x 件,则购进乙种商品(50-x )件,根据题意,得:()()⎩⎨⎧>-+≤-+45050201042005010060x x x x ,解得:20≤x <25,∵x 为整数,∴x=20、21、22、23、24, ∴该店进货方案有5种,因此本题选C .{分值}3{章节:[1-9-3]一元一次不等式组}{考点:一元一次不等式组的应用}{类别:常考题}{难度:3-中等难度}{题目}10.(2019年四川绵阳T10)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=( )A .51B .55C .553D .59 {答案}A{解析}本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cosθ-55sinθ=5,∴cosθ-sinθ=55,∴(sinθ-cosθ)2=51.因此本题选A . {分值}3{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形}{类别:常考题}{难度:3-中等难度}{题目}11.(2019年四川绵阳T11)如图,二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1.下列四个结论:①abc <0;②2a -c >0;③a +2b +4c >0;④4a b +b a <-4,正确的个数是( )A .1B .2C .3D .4{答案}D{解析}本题考查了二次函数图象与字母系数的取值范围问题,①∵抛物线开口向上,∴a >0,∵抛物线对称轴在y 轴的右侧,∴b <0,∵抛物线与y 轴的交点在x轴上方,∴c >0,∴abc <0,所以①正确;②∵图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1,∴2122202+<-<+a b ∴2321<-<a b ,当232<-a b 时,b >-3a ,∵当x =2时,y =4a +2b +c =0,∴b =-2a -21c ,∴-2a -21c >-3a ,∴2a -c >0,故②正确; ③∵12<-a b ,∴2a +b >0,∵c >0,4c >0,∴a +2b +4c >0,故③正确;④∵12<-ab ,∴2a +b >0,∴(2a +b )2>0,4a 2+b 2+4ab >0,4a 2+b 2>-4ab ,∵a >0,b <0,∴ab <0,∴422-<+ab b a ,即44-<+ab b a ,故④正确.因此本题选D . {分值}3{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{考点:二次函数的系数与图象的关系}{类别:常考题}{难度:3-中等难度}{题目}12.(2019年四川绵阳T12)如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( )A .322B .625C .223D .6213 {答案}B{解析}本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,解答过程如下∵∠ADC =90°,CD =AD =3,∴AC =32,∵AB =5,BG =23,∴AG =27,∵AB ∥DC ,∴△CEK ∽△AGK ,∴KG EK AK CK AG CE ==,∴KGEK AK CK ==271,∴72==KG EK AK CK ,∵CK +AK =32,∴CK =322,过E 作EM ⊥AB 于M ,则四边形ADEM 是矩形,∴EM =AD =3,AM =DE =2,∴MG =23,∴EG =25322=+MG EM ,∵72=KG EK ,∴EK =35,∵∠HEK =∠KCE =45°,∠EHK =∠CHE ,∴△HEK ∽△HCE ,∴553351==HK HE ,∴设HE =3x ,HK =5x ,∵△HEK ∽△HCE ,∴EHHK HC EH =,∴x x x x3532253=+,解得:x =610,∴HK =625,因此本题选B .{分值}3{章节:[1-27-1-2]相似三角形的性质}{考点:相似三角形的性质}{考点:矩形的性质}{考点:勾股定理}{类别:发现探究}{难度:5-高难度}第Ⅱ卷(非选择题共84分){题型:1-填空题}二填空题:本大题共6个小题,每小题3分,共18分。

2019年绵阳市中考数学模拟试题与答案

2019年绵阳市中考数学模拟试题与答案

2019年绵阳市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

) 1. 用科学记数法表85000为A.0.85×105B.8.5×104C.85×10-3D.8.5×10-42. 7的相反数是A. 7B. -7C.71 D. 71- 3.下列图案属于轴对称图形的是4. 不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是5.下列计算中,正确的是A .532632a b a =⨯B .()2242a a -=- C .()725a a= D .221x x =- 6. 一次函数y=x-2的图象不经过A .第一象限B .第二象限C .第三象限D .第四象限7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为A .120元B .100元C .80元D .60元 8.如图,△ABC 中,∠C=70°,若沿图中虚线截去∠C ,则∠1+∠2=A .360°B .250°C .180°D .140°9. 世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极参加“献爱心”捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A.20,20B.30,20C.30,30D.20,3010.如图,四边形ABCD 中,∠BAD =∠ACB=90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是A .y =225x 2B .y =425x 2C .y =25x 2D .y =45x 2第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11. 因式分解:()233x x x -+-= .12.若31=+x x ,则=+xx 221 ▲ . 13.若正多边形的一个外角是45°,则该正多边形的边数是 ▲ .14. 如图,反比例函数)0( x xky = 与一次函数y=x+4的图象交于A 、B 两点的横坐标分别为 -3,-1,则关于x 的不等式)0(4<+<x kx xk的解集为_______.15.如图,线段AC 与BD 相交于点O ,CD AB ∥,若OA ∶OC =4∶3,ABO △的面积是2,则CDO△的面积等于 ▲ .16.如图,边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋转75°,使点B 落在抛物线y =ax 2(a <0)的图象上,则该抛物线的解析式为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:()()()︒⨯---+-+⎪⎭⎫ ⎝⎛-30tan 3312120172018311001218.(本题8分)化简aa a a a a --+-÷-2123422,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数.19.(本题10分)如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于 点F ,连接BE ,∠F=45°. (1)求证:四边形ABCD 是矩形;(2)若AB=14,DE=8,求sin∠AEB的值。

2019四川省绵阳中考数学模拟试题(卷)

2019四川省绵阳中考数学模拟试题(卷)

2019年绵阳中考数学模拟试题(本试卷共有三大题25小题,考试时间120分钟,满分140分)第Ⅰ卷(选择题 36分)一、选择题(本大题共12 个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求) 1.20191的倒数是( ) A .2019 B .﹣2019 C .20191D .20191 【答案】A2.下面四个标志图是中心对称图形的是( )A .B .C .D .【答案】B3.绵阳2018年实现地区生产总值2304亿元 .其中2304亿这个数用科学记数法表示为( )A .2.304×103B .2.304×1010C .2.304×1011D .23.04×1010 【答案】C4. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天最多能生产x 辆,则关于x 的不等式为( )A .15x >20(x+6)B .15(x+6)≥20xC .15x >20(x ﹣6)D .15(x+6)>20x【答案】D5. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.绵C.阳D.城【答案】D6. 在Rt△ABC中,∠ACB=90°,∠A=60°,AC=3cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.3cm【答案】D7. 如图,DE∥BC,∠D=2∠DBC,∠1=∠2,则∠DEB的度数为()A.30°B.45°C.60°D.无法计算【答案】A8.若将点P(1,﹣m)向右平移2个单位后,再向上平移1个单位得到点Q(n,3),则点(m,n)的坐标为()A.(3,﹣2)B.(2,﹣3)C.(3,2)D.(﹣2,3)【答案】D9.从三个方向看到一几何体的图形如图所示,则这个几何体中小正方体的个数有()A .4个B .5个C .6个D .7个【答案】B10. 一个质地均匀的正方形骰子的六个面上分别有1到6的点数,将骰子抛掷两次,抛第一次将朝上一面的点数记为x .抛第二次,将朝上一面的点数记为y ,则点(x ,y )落在直线y=﹣2x+8上的概率为( ) A .181 B .121 C .91 D .41 【答案】B11. 如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=60米,则小岛B 到公路l 的距离为( )A .30米B .303米C .403米D .(30+303)米【答案】B12. 将正奇数按下表排成5列: 第一列 第二列 第三列 第四列 第五列 第1行 1 3 5 7 第2行 15 13 11 9 第3行17192123第4行 31 29 27 25…根据上面规律,2019应在( )A .第252行第2列B .第253行第1列C .第253行第2列D .第253行第3列 【答案】D第Ⅱ卷(非选择题 共104分)二、 填空题(本大题共6个小题,每小题3分,共18分.把答案填写在题中横线上) 13.计算:364-= . 【答案】-4 14. 函数y=6223--x x ,其中x 的取值范围是 . 【答案】x ≠315. 如图所示,在菱形ABCD 中,AB=2,∠BAD=120°,M 为BC 上一点,N 为CD 上一点,∠MAN=60°,则四边形AMCN 的面积为 .【答案】316. 如图,AB 是⊙0的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为l ,P 是线段AB 上的任意一点,则图中阴影部分的面积为 .【答案】3π 17. 已知a 、b 为不等的两个实数,且a 2﹣3a ﹣2020=0,b 2﹣3b ﹣2020=0,则a 2﹣2a+b= . 【答案】202318. 如图,D 为正三角形ABC 内一点,BD=5,CD=3,∠ADC=150°,则AD 的长为 .【答案】4三、 解答题(本大题共7个小题,共86分。

2019四川省绵阳中考数学试卷(word版,含答案)

2019四川省绵阳中考数学试卷(word版,含答案)

2019年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +b a<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( )A. 2√23B. 5√26C. 3√22D. 13√26二、填空题(本大题共6小题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b−1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h .17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______. 18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−b 2-1a+b )÷bb−a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=m2−3m(m≠0且m≠3)x的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.如图,AB是⊙O的直径,点C为BD⏜的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B 作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1 =2√63+2-2√63-1=1;(2)原式=a(a+b)(a−b)×b−ab -1a+b ×b−ab =-ab(a+b)-b−ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算; (2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键.20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5, 补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率. 21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500, 解得{y =200x=300,答:甲、乙两种客房每间现有定价分别是300元、200元; (2)设当每间房间定价为x 元, m =x (20-x−20020×2)-80×20=−110(x −200)2+2400,∴当x =200时,m 取得最大值,此时m =2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m 最大,最大利润是2400元. 【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m 关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题. 本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A (4,1)代入y =m2−3mx,得,m 2-3m =4, 解得,m 1=4,m 2=-1,∴m 的值为4或-1;反比例函数解析式为:y =4x ;(2)∵BD ⊥y 轴,AE ⊥y 轴, ∴∠CDB =∠CEA =90°, ∴△CDB ∽△CEA , ∴CDCE =BDAE , ∵CE =4CD , ∴AE =4BD , ∵A (4,1), ∴AE =4, ∴BD =1, ∴x B =1, ∴y B =4x =4, ∴B (1,4),将A (4,1),B (1,4)代入y =kx +b , 得,{k +b =44k+b=1, 解得,k =-1,b =5, ∴y AB =-x +5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22.【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC的解析式,直线AC与坐标轴交点的坐标,可证直线AC与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB =∠BEC =90°,∵∠EBC =∠ABC ,∴△BEC ∽△BCA ,∴BC AB =BEBC ,∴BC 2=AB •BE =6×2=12, ∴BF =BC =2√3.【解析】(1)根据AAS 证明:△BFG ≌△CDG ;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt △AHC ≌Rt △AEC (HL ),得AE=AH ,再证明Rt △CDH ≌Rt △CBE (HL ),得DH=BE=2,计算AE 和AB 的长,证明△BEC ∽△BCA ,列比例式可得BC 的长,就是BF 的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2,∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0,∴a =12,∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32.令y =0,解得x 1=-1,x 2=3,∴B (3,0),∴AB =OA +OB =4,∵△ABD 的面积为5,∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=-2,x 2=4,∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4),=−14(a −32)2+2516, ∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1, ∴AG =1+32=52,EG =158,∴AG EG =52158=43, ∵∠AGE =∠AHP =90°∴sin ∠EAG =PHAP =EG AE =35,∴PH=35AP,∵E、F关于x轴对称,∴PE=PF,∴PE+35AP=FP+HP=FH,此时FH最小,∵EF=158×2=154,∠AEG=∠HEF,∴sin∠AEG=sin∠HEF=AGAE =FHEF=45,∴FH=45×154=3.∴PE+35PA的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A(-1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S △ACE=S△AME-S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OE AF =ODAD=√22,∴AF=√2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AE AD =AFAG,∴AG⋅AE=AD⋅AF=4√2t,又∵AE=OA+OE=2√2+t,∴AG=√2t2√2+t,∴EG=AE-AG=222+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FH FD =FBAD=4−√2t4,∵AF∥CD,∴FG DG =AFCD=√2t4,∴FG DF =√2t4+√2t,∴4−√2t4=√2t4+√2t,解得:t1=√10−√2,t2=√10+√2(舍去),∴EG=EH=222+t =√10−√2)222+10−2=3√10−5√2;(3)过点F作FK⊥AC于点K,由(2)得EG=22√2+t,∵DE=EF,∠DEF=90°,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG⋅FK=t3+8t2√2+t.【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

(完整版)2019年绵阳市数学中考模拟试题及答案(二)

(完整版)2019年绵阳市数学中考模拟试题及答案(二)

2019 年绵阳市数学中考模拟试题(二)(120 分钟完卷,总分 140 分)一、 选择题。

(每小题 3 分,共 36 分)1. ﹣2 的绝对值是()A .±2B .2C .﹣2D .2. 如图所示的立体图形的主视图是()A.B .C .D .3. 下列成语描述的事件为随机事件的是()A. 水涨船高B .守株待兔C .水中捞月D .缘木求鱼4.380 亿用科学记数法表示为()A .38×109B .0.38×1013C .3.8×1011D .3.8×10105. 不等式组的解集表示在数轴上正确的是() A .B .C .D .6. 如图,a ∥b ,点 B 在直线 b 上,且 AB ⊥BC ,∠1=35°,那么∠2=( )A .45°B .50°C .55°D .60°7. 下列图形中,是轴对称图形,但不是中心对称图形的是()A.B .C .D .8. 对于一组统计数据 3,3,6,5,3.下列说法错误的是()A. 众数是 3B .平均数是 4C .方差是 1.6D . 中 位 数 是 69.若一次函数 y =mx +n (m ≠0)中的 m ,n 是使等式 m =成立的整数,则一次函数 y =mx +n (m ≠0)的图象一定经过的象限是()A. 一、三B .三、四C .一、二D .二、四10. 如图,在矩形 ABCD 中,AB =2,AD =2,点 E 是CD的中点,连接 AE ,将△ADE 沿直线 AE 折叠,使点 D 落在点 F 处,则线段 CF 的长度是()A.1 B .C .D .11. 如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠OCA =50°,AB =4,则的长为( )A.πB.πC.πD.π12.已知抛物线y=x2+1 具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x2+1 上一个动点,则△PMF 周长的最小值是()A.3 B.4C.5 D.6二、填空题。

2019四川省绵阳中考数学试卷(含答案)

2019四川省绵阳中考数学试卷(含答案)

2019年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( ) A. 2√23B. 5√26C. 3√22D. 13√26二、填空题(本大题共6小题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b−1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______. 18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−b 2-1a+b )÷bb−a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=m2−3m(m≠0且m≠3)的图象在第一象限交于点A、xB,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.如图,AB是⊙O的直径,点C为BD⏜的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1 =2√63+2-2√63-1=1;(2)原式=a(a+b)(a−b)×b−ab -1a+b ×b−ab =-ab(a+b)-b−ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5, 补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500, 解得{y =200x=300,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20-x−20020×2)-80×20=−110(x−200)2+2400,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A(4,1)代入y=m2−3mx,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y=4x;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴CD CE =BDAE,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B=4x=4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,{k+b=44k+b=1,解得,k=-1,b=5,∴y AB=-x+5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22.【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.【答案】证明:(1)∵C 是BC ⏜的中点, ∴CD⏜=BC ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC⏜=BF ⏜, ∴CD ⏜=BF ⏜, ∴CD =BF ,在△BFG 和△CDG 中, ∵{∠F =∠CDG∠FGB =∠DGC BF =CD, ∴△BFG ≌△CDG (AAS );(2)如图,过C 作CH ⊥AD 于H ,连接AC 、BC ,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BC AB =BEBC,∴BC2=AB•BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC (HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE 和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2, ∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0, ∴a =12,∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为5, ∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32, 解得x 1=-2,x 2=4, ∴D (4,52),设直线AD 的解析式为y =kx +b , ∴{4k +b =52−k +b =0,解得:{k =12b =12,∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516,∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1,∴AG =1+32=52,EG =158, ∴AGEG =52158=43,∵∠AGE =∠AHP =90° ∴sin ∠EAG =PH AP=EG AE =35,∴PH =35AP , ∵E 、F 关于x 轴对称, ∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小, ∵EF =158×2=154,∠AEG =∠HEF ,∴sin∠AEG =sin∠HEF =AG AE =FHEF =45, ∴FH =45×154=3.∴PE +35PA 的最小值是3. 【解析】(1)先写出平移后的抛物线解析式,经过点A (-1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME -S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OE AF =ODAD=√22,∴AF=√2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AE AD =AFAG,∴AG⋅AE=AD⋅AF=4√2t,又∵AE=OA+OE=2√2+t,∴AG=√2t2√2+t,∴EG=AE-AG=22√2+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FH FD =FBAD=4−√2t4,∵AF∥CD,∴FG DG =AFCD=√2t4,∴FG DF =√2t4+√2t,∴4−√2t4=√2t4+√2t,解得:t1=√10−√2,t2=√10+√2(舍去),∴EG=EH=22√2+t =√10−√2)22√2+√10−√2=3√10−5√2;(3)过点F作FK⊥AC于点K,由(2)得EG=22√2+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG⋅FK=32√2+t.【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG 可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t 的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

四川省绵阳市2019年中考[数学]考试真题与答案解析

四川省绵阳市2019年中考[数学]考试真题与答案解析

四川省绵阳市2019年中考[数学]考试真题与答案解析一、选择题本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求。

1.﹣3的相反数是( )A.﹣3B.﹣C.D.32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )A.2条B.4条C.6条D.8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( )A.0.69×107B.69×105C.6.9×105D.6.9×1064.下列四个图形中,不能作为正方体的展开图的是( )A.B.C.D.5.若有意义,则a的取值范围是( )A.a≥1B.a≤1C.a≥0D.a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A.160钱B.155钱C.150钱D.145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE 交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )A.1B.2C.3D.48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )A.B.C.D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE =72°,则∠ACD=( )A.16°B.28°C.44°D.45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )A.1.2小时B.1.6小时C.1.8小时D.2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4米B.5米C.2米D.7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=( )A.B.2C.D.二、填空题本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.因式分解:x3y﹣4xy3= .14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为 .15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn = .16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC 的距离的最小值为 .18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m 的取值范围是 三、解答题本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.20.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.23.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.24.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD 的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案解析一.选择题1-5 DBDDA6-10 CBACC 11-12 BA二.填空题13.xy(x+2y)(x﹣2y).14.(﹣3,3).15.0或8.16.解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.17.3﹣2.18.≤m≤6.三.解答题19.(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.20.解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.21.解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.22.(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.23.解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣+,∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R ().25.解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴=,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴==,∴HN=OM=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.。

2019年四川省绵阳市中考数学模拟试卷及答案

2019年四川省绵阳市中考数学模拟试卷及答案

2019年四川省绵阳市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36分)1.(−2018)0的值是()A. −2018B. 2018C. −1D. 12.吉林省交警总队公布的数据显示,截止到2015年9月1日,全省机动车保有量超过4530000辆,4530000这个数用科学记数法表示为()A. 0.453×107B. 4.53×106C. 4.53×107D. 45.3×1053.如图,把一块三角板的直角顶点放在直尺的一边上,如果∠2=58∘,那么∠1的大小是()A. 58∘B. 48∘C. 42∘D. 32∘4.下列运算正确的是()A. −22=4B. 2−2=−4C. a⋅a2=a2D. a+2a=3a5.下列图形是中心对称图形的是()A. B. C. D.6.如果√x−1x−2=√x−1√x−2,那么x的取值范围是()A. 1≤x≤2B. 1<x≤2C. x≥2D. x>27.平面直角坐标系中,将点A(1,2)绕点P(−1,1)顺时针旋转90∘到点A′处,则点的坐标为()A. (−2,3)B. (0,−1)C. (1,0)D. (−3,0)8.今年国庆节思贤中学2018届毕业班同学聚会,每两个人都握一次手,所有人共握手820次,则参加聚会的人数是()A. 37B. 38C. 40D. 419.如图,已知圆锥的底面圆的直径BC=6,高OA=4,则这个圆锥的侧面展开图的面积为()A. 30πB. 12√13πC. 15πD. 452π10.小亮为测量如图所示的水湖湖面的宽度BC,他在与水湖处在同一水平面上取一点A,测得湖的一端C在A处的正北方向,另一端B在A处的北偏东60∘的方向,并测得A、C间的距离AC=10m,则湖的宽度BC为()A. 10√33m B. 10√3m C. 20m D. 20√3m11.△ABC中,∠ACB=90∘,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D,BD=2cm,则△ABE的面积为()A. 2cm2B. 4cm2C. 6cm2D. 8cm212.将正偶数按后面表格排成5列若干行后,根据图中的排列规律,2016应为()第1列第2列第3列第4列第5列第1行2468第2行16141210第3行18202224第4行32302826……………A. 第251行,第1列B. 第251行,第2列C. 第252行,第1列D. 第252行,第2列二、填空题(本大题共6小题,共18分)13.因式分解:2x2−32x4=______ .14.如图,小强告诉小华图中A,B两点的坐标分别为(−3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标______.15.现有4条线段,长度分别为3cm,5cm,6cm,8cm,从中任取3条,能构成三角形的概率是______ .16.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为______米.17.计算2x2x−y +yy−2x,结果是______.18.如图,△ABC的两条中线AD、BE相交于点G,如果AD=6,那么GD=______.三、解答题(本大题共7小题,共86.0分)19.(1)√8+(12)−1−2sin45∘−|1−√2|20.(2)解分式方程:1−xx−3=13−x−2.21.空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是______ 天,众数是______ 天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).22.国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次.16/10/运往地车型甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.23.如图,一次函数y=kx+b与反比例函数y=m的图象交于A(2,3),B(−3,n)两点.x(1)求反比例函数的解析式;(2)过B点作BC⊥x轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当△PCB的面积等于5时点P的坐标.24.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.(1)求证:∠ABC=∠F;(2)若sinC=3,DF=6,求⊙O的半径.525.如图,正方形OABC的顶点O的坐标原点,点A的坐标为(4,3),点B的横坐标为1.(1)求直线OA和AB的解析式;(2)现有动点P、O分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点O沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.问当k为可值时,将△CPQ 沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?26.已知抛物线y=ax2+bx+3(a≠0)交x轴于A(1,0)和B(−3,0),交y轴于C.(1)求抛物线的解析式;(2)D是抛物线的顶点,P为抛物线上的一点(不与D重合),当S△PAB=S△ABD时,求P的坐标;(3)若F是x轴上一动点,Q是抛物线上一动点,是否存在F、Q,使以B、C、F、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标.2019年四川省绵阳市中考数学模拟试卷参考答案1. D2. B3. D4. D5. A6. D7. B8. D 9. C 10. B 11. B 12. C13. 2x 2(1+4x)(1−4x) 14. (−1,7) 15. 34 16. 2√6 17. 1 18. 219. 解:(1)原式=2√2+2−2×√22−(√2−1), =2√2+2−√2−√2+1, =3;(2)去分母得:1−x =−1−2(x −3), 1−x =−1−2x +6, −x +2x =−1+6−1, x =4,检验:把x =4代入x −3得:x −3=4−3=1≠0, ∴x =4是原分式方程的解. 20. 14;1321. 解:(1)解法一、设大货车用x 辆,小货车用y 辆,根据题意得{x +y =1816x +10y =228 解得{x =8y =10答:大货车用8辆,小货车用10辆.解法二、设大货车用x 辆,则小货车用(18−x)辆,根据题意得 16x +10(18−x)=228 解得x =8∴18−x =18−8=10(辆)答:大货车用8辆,小货车用10辆;(2)w =720a +800(8−a)+500(9−a)+650[10−(9−a)]=70a +11550,∴w =70a +11550(0≤a ≤8且a 为整数)(3)16a +10(9−a)≥120, 解得a ≥5,又∵0≤a≤8,∴5≤a≤8且为整数,∵w=70a+11550,k=70>0,w随a的增大而增大,∴当a=5时,w最小,最小值为W=70×5+11550=11900(元)答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.22. 解:(1)∵反比例函数y=m的图象经过点A(2,3),x∴m=6.∴反比例函数的解析式是y=6;x(2)∵B点(−3,n)在反比例函数y=6的图象上,x∴n=−2,∴B(−3,−2),∴BC=2,设△PBC在BC边上的高为h,BC⋅ℎ=5,则12∴ℎ=5,∵P是反比例函数图象上的一点,∴点P的横坐标为:−8或2,),(2,3).∴点P的坐标为(−8,−3423. (1)证明:∵BF为⊙O的切线,∴AB⊥BF于点B.∵CD⊥AB,∴∠ABF=∠AHD=90∘.∴CD//BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F.(2)解:连接BD.∵AB为⊙O的直径,∴∠ADB=90∘,由(1)∠ABF=90∘,∴∠A=∠DBF.又∵∠A=∠C.∴∠C=∠DBF.在Rt△DBF中,sinC=sin∠DBF=35,DF=6,∴BD=8.在Rt△ABD中,sinC=sinA=35,∴AB=403.∴⊙O的半径为203.24. 解;(1)∵A(4,3),∴OA=√32+42=5,设直线OA的解析式为y=kx,∴3=4k,解得k=34,∴直线OA的解析式y=34x,∵AB=OA=5,B点的横坐标为1,设B(1,n),∴AB2=(4−1)2+(n−3)2,即52=(4−1)2+(n−3)2,解得:n=7,n=−1(舍去),∴B(1,7),∵四边形OABC是正方形,∴设直线AB的解析式为y=−43x+b,∴7═−43×1+b,解得b=253,∴直线AB的解析式为y=−43x+253;(2)有两种情况:①Q在OA上,则CQ=PQ时能构成菱形,∵PC=2,∴AQ=4时才能构成CQ=PQ的等腰三角形,∴2k=4,解得k=2,②Q点在OC上,∵∠PCQ是直角,∴只有沿这PQ边对折才能构成菱形,且PC=QC,∵PC=2,∴QC=2,∴2k=OA+OC−QC=5+5−2=8,∴k=4,∴当k=2或k=4时将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形.25. 解:(1)把点A(1,0)和点B(−3,0)代入抛物线解析式得:{a+b+3=0①9a−3b+3=0②,①×3+②得:12a+12=0,解得:a=−1,把a=−1代入①得:−1+b+3=0,解得:b=−2,∴方程组的解集为{a=−1b=−2,则所求抛物线解析式为:y=−x2−2x+3;(2)由(1)知,抛物线解析式为:y=−x2−2x+3,即y=−(x+1)2+4,则D(−1,4),∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为−4.令y=−4,则−x2−2x+3=−4,解得x1=−1+2√2,x2=−1−2√2.∴点P的坐标为(−1+2√2,−4)或(−1−2√2,−4).(3)存在,理由如下:如图:由抛物线解析式为y=−x2−2x+3得到:C(0,3)由BFCQ是平行四边形,得BF//CQ,BF=CQ.由C(0,3)得Q的纵坐标为3,即−x2−2x+3=3,解得x=0或x=−2,即Q(−2,3).。

2019年绵阳市数学中考试卷(附答案)

2019年绵阳市数学中考试卷(附答案)

2019年绵阳市数学中考试卷(附答案)一、选择题1.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.22.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1063.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.4.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数5.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A .14cmB .4cmC .15cmD .3cm7.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C .1x =- D .无解 8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q9.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .410.下面的几何体中,主视图为圆的是( ) A . B . C . D .11.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.512.若0xy <2x y )A .x y -B .x yC .x y -D .x y -- 二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.15.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .16.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.17.使分式的值为0,这时x=_____. 18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)19.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____. 20.3x +x 的取值范围是_____.三、解答题21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 24.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车2015年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A 型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A 型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车 进货价格(元/辆)1100 1400 销售价格(元/辆) 今年的销售价格 240025.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .△≌△;(1)证明:ADP CDP△的形状,并说明理由.(2)判断CEP(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接..写出线段AP与线段CE的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.2.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.3.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.4.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 5.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.6.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222+++=,14x(65)(5)10=(负值已舍),故选Ax cm7.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.8.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.9.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.10.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.11.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】y>0,∵xy<0,∴x<0,∴原式=故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x )=ax2-3x-1如图∵实数根都在-1 解析:94-<a<-2 【解析】【分析】【详解】 解:∵关于x 的一元二次方程ax 2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a >−94设f (x )=ax 2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a -<0, ∴a <−32, 且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 14.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D(x,2)则E(x+2,1),∵反比例函数kyx=在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴2222,OD OA OD=+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.15.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换16.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a 次、a 次能运完”甲的效率应该为12a ,乙的效率应该为1a ,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T 吨,甲车每次运t 甲吨,乙车每次运t 乙吨,∵2a ⋅t 甲=T ,a ⋅t 乙=T ,∴t 甲:t 乙=1:2, 由题意列方程:180270180270T T t t --=甲乙, t 乙=2t 甲, ∴180270180135T T --=, 解得T =540. ∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍, ∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 19.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15 xy=⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:1.502 1.554 1.605 1.656 1.70324563x⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数 22.20元/束.【解析】【分析】设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程. 【详解】设第一批花每束的进价是x 元/束, 依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)2000;(2)A 型车17辆,B 型车33辆【解析】试题分析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,先求出m 的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元, 根据题意得, 解之得x=1600, 经检验,x=1600是方程的解. 答:今年A 型车每辆2000元.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥, ∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m )=﹣100m+50000, ∴y 随m 的增大而减小, ∴当m=17时,可以获得最大利润.答:进货方案是A 型车17辆,B 型车33辆.考点:(1)一次函数的应用;(2)分式方程25.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)2CE =. 【解析】【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴()ADP CDP SAS ∆≅∆.(2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,∵PA PE =,∴DAP DEP ∠=∠,∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,即60CPF EDF ∠=∠=︒,又∵PA PE =,AP CP =;∴PE PC =,∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,,∴△PDA ≌△PDC ,∴PA=PC ,∠3=∠1,∵PA=PE ,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC ,∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形.∴2PC 2AP .【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

(完整版)2019年四川省绵阳市中考数学试卷(后附答案)

(完整版)2019年四川省绵阳市中考数学试卷(后附答案)

2019 年四川省绵阳市中考数学试卷题号一二三总分得分一、选择题(本大题共12 小题,共36.0 分)1.若a=2,则a 的值为()A.−4B. 4C. −2D.2.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002 米.将数0.0002 用科学记数法表示为()A. 0.2 × 10−3B. 0.2 × 10−4C. 2 × 10−3D. 2 × 10−43.对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E 的坐标为()A. (2, 3)B. ( 3,2)C. ( 3,3)D. (3, 3)6.已知x 是整数,当|x- 30|取最小值时,x 的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6 月1 日至6 月5 日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n 为正整数,则22m+6n=()2A. ab2B. a + b2C. a2b3D. a2 + b39.红星商店计划用不超过4200 元的资金,购进甲、乙两种单价分别为60 元、100元的商品共50 件,据市场行情,销售甲、乙商品各一件分别可获利10 元、20 元,两种商品均售完.若所获利润大于750 元,则该店进货方案有()A.3 种B. 4 种C. 5 种D. 6 种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()1 A.55B.53 5C.59D.511.如图,二次函数y=ax2+bx+c(a>0)的图象与x 轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:4a b①abc<0;②2a-c>0;③a+2b+4c>0;④b+a<-4,正确的个数是()A.1B.2C.3D.412.如图,在四边形ABCD 中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E 是线段CD 的三等分点,且靠近点C,∠FEG 的两边与线段AB 分别交于点F、G,连接3AC 分别交EF、EG 于点H、K.若BG=2,∠FEG=45°,则HK=()2 2A.35 2B.63 2C.213 2D.6二、填空题(本大题共 6 小题,共18.0 分)13. 因式分解:m2n+2mn2+n3= .14.如图,AB∥CD,∠ABD 的平分线与∠BDC 的平分线交于点E,则∠1+∠2= .15.单项式x-|a-1|y 与2x b−1y 是同类项,则a b= .16.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为km/h.17. 在△ABC 中,若∠B=45°,AB=10 2,AC=5 5,则△ABC 的面积是.18. 如图,△ABC、△BDE 都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2 2.将△BDE 绕点B 逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′= .三、解答题(本大题共7 小题,共86.0 分)2 119. (1)计算:2 3+|(-2)-1|-2 2tan30°-(π-2019)0;a 1 b2,b=2- 2.(2)先化简,再求值:(a2−b2-a + b)÷b−a,其中a=20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15 间,乙种风格客房20 间.按现有定价:若全部入住,一天营业额为8500 元;若甲、乙两种风格客房均有10 间入住,一天营业额为5000 元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20 元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80 元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m 最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函m2−3m数y= x(m≠0 且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y 轴正半轴交于点C,过A、B 分别作y 轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m 的值和反比例函数的解析式;(2)若点M 为一次函数图象上的动点,求OM 长度的最小值.⏜23.如图,AB 是⊙O 的直径,点C 为BD的中点,CF 为⊙O 的弦,且CF⊥AB,垂足为E,连接BD 交CF 于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF 的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1 个单位,再向下平移2 个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A、B(点A 在点B 的左侧),OA=1,经过点A 的一次函数y=kx+b(k≠0)的图象与y 轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD 的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标;3(3)若点P 为x 轴上任意一点,在(2)的结论下,求PE+5PA 的最小值.25.如图,在以点O 为中心的正方形ABCD 中,AD=4,连接AC,动点E 从点O 出发沿O→C 以每秒1 个单位长度的速度匀速运动,到达点C 停止.在运动过程中,△ADE 的外接圆交AB 于点F,连接DF 交AC 于点G,连接EF,将△EFG 沿EF 翻折,得到△EFH.(1)求证:△DEF 是等腰直角三角形;(2)当点H 恰好落在线段BC 上时,求EH 的长;(3)设点E 运动的时间为t 秒,△EFG 的面积为S,求S 关于时间t 的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002 用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E 作EF⊥x 轴于点F,∵四边形OABC 为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF= = = ,∴OF=AO-AF=4-1=3,∴.故选:D.过点E 作EF⊥x 轴于点F,由直角三角形的性质求出EF 长和OF 长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x- |取最小值时,x 的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6 月1 日至6 月5 日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A 不符合题意;B.众数为5,7,11,3,9,结论错误,故B 不符合题意;C.这5 个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2= [(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D 符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2 可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x 件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x 为整数,∴x=20、21、22、23、24,∴该店进货方案有5 种,故选:C.设该店购进甲种商品x 件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200 元的资金、两种商品均售完所获利润大于750 元”列出关于x 的不等式组,解之求得整数x 的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5 ,小正方形的边长为5,∴5 cosθ-5 sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5 ,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y 轴的右侧,∴b<0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x 轴交于两点(x1,0),(2,0),其中0<x1<1,∴<- <,∴1<- <,当- <时,b>-3a,∵当x=2 时,y=4a+2b+c=0,∴b=-2a- c,∴-2a- c>-3a,∴2a-c>0,故②正确;③∵- ,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵- ,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a 决定抛物线的开口方向和大小.当a>0 时,抛物线向上开口;当a<0 时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab>0),对称轴在y 轴左;当a 与b 异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3 ,∵AB=5,BG= ,∴AG= ,∵AB∥DC,∴△CEK∽△AGK,∴ = = ,∴= = ,∴ = = ,∵CK+AK=3 ,∴CK= ,过E 作EM⊥AB 于M,则四边形ADEM 是矩形,∴EM=AD=3,AM=DE=2,∴MG= ,∴EG= = ,∵ = ,∴EK= ,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴= = ,∴设HE=3x,HK= x,∵△HEK∽△HCE,∴ = ,∴ = ,解得:x= ,∴HK= ,故选:B.根据等腰直角三角形的性质得到AC=3 ,根据相似三角形的性质得到= = ,求得CK= ,过E 作EM⊥AB 于M,则四边形ADEM 是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG= = ,求得EK= ,根据相似三角形的性质得到= = ,设HE=3x,HK= x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE 是∠ABD 的平分线,∴∠1= ∠ABD,∵BE 是∠BDC 的平分线,∴∠2= ∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2= ∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|= ≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b 的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:= ,解得:x=10,经检验得:x=10 是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75 或25【解析】解:过点A 作AD⊥BC,垂足为D,如图所示.在Rt△ABD 中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD 中,AD=10,AC=5,∴CD= =5,∴BC=BD+CD=15 或BC=BD-CD=5,∴S△ABC= BC•AD=75 或25.故答案为:75 或25.过点A 作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD 的长,进而可得出BC 的长,再利用三角形的面积公式可求出△ ABC 的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC 的长度是解题的关键.2 2 618.【答案】 + 【解析】解:如图,连接 CE′,∵△ABC 、△BDE 都是等腰直角三角形, BA=BC ,BD=BE ,AC=4,DE=2 , ∴AB=BC=2,BD=BE=2,∵将△BDE 绕点 B 逆时针方向旋转后得△BD′E′, ∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′, ∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS ), ∴∠D′=∠CE′B=45°, 过 B 作 BH ⊥CE′于 H ,在 Rt △BHE′中,BH=E′H= 在 Rt △BCH 中,CH= BE′==, ,∴CE′=+ ,故答案为:.如图,连接 CE′,根据等腰三角形的性质得到 AB=BC=2 ,BD=BE=2,根据性质的性质得到 D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过 B 作 BH ⊥CE′于 H ,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.2119.【答案】解:(1)2 33+|(-2)-1|-2 2tan30°-(π-2019)0 = 3 +2-2 2× 3 -1= 3 +2- 3 -1 =1;ab−a 1b−a(2)原式=(a + b )(a−b )× b -a + b × bab−a=-b (a + b )-b (a + b )2 6 2 66b=-b(a + b)1=-a + b,1 1当a= 2,b=2- 2时,原式=- 2 + 2− 2=-2.【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键.20.【答案】解:(1)80~90 的频数为36×50%=18,则80~85 的频数为18-11=7,95~100 的频数为36-(4+18+9)=5,补全图形如下:5扇形统计图中扇形D 对应的圆心角度数为360°×36=50°;(2)画树状图为:共有20 种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,12 3所以抽取的学生恰好是一名男生和一名女生的概率为20=5.【解析】{ {(1) 由 B 组百分比求得其人数,据此可得 80~85 的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用 360°乘以对应比例可得答案;(2) 画树状图展示所有 20 种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果 求出 n ,再从中选出符合事件 A 或 B 的结果数目 m ,然后根据概率公式计算事件 A 或事件 B 的概率.21. 【答案】解:设甲、乙两种客房每间现有定价分别是 x 元、y 元,15x + 20y = 8500根据题意,得: 10x + 10y = 5000, x = 300解得 y = 200, 答:甲、乙两种客房每间现有定价分别是 300 元、200 元; (2)设当每间房间定价为 x 元, x−200 × 2− 1 (x−200)2 + 2400m =x (20- 20)-80×20= 10 ,∴当 x =200 时,m 取得最大值,此时 m =2400,答:当每间房间定价为 200 元时,乙种风格客房每天的利润 m 最大,最大利润是 2400 元. 【解析】(1) 根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2) 根据题意可以得到 m 关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.m 2−3m22. 【答案】解:(1)将点 A (4,1)代入 y =得,m 2-3m =4,解得,m 1=4,m 2=-1,x,4∴m 的值为 4 或-1;反比例函数解析式为:y =x ;(2)∵BD ⊥y 轴,AE ⊥y 轴, ∴∠CDB =∠CEA =90°,{∴△CDB ∽△CEA ,CD=BD ∴C EA E ,∵CE =4CD , ∴AE =4BD , ∵A (4,1), ∴AE =4, ∴BD =1, ∴x B =1,4∴y B =x =4,∴B (1,4),将 A (4,1),B (1,4)代入 y =kx +b , 4k + b = 1得, k + b = 4, 解得,k =-1,b =5, ∴y AB =-x +5,设直线 AB 与 x 轴交点为 F , 当 x =0 时,y =5;当 y =0 时 x =5, ∴C (0,5),F (5,0), 则 OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF = 2OC =5 2,则当 OM 垂直 CF 于 M 时,由垂线段最知可知,OM 有最小值,1即 OM =2CF = 2 . 【解析】(1) 将点 A (4,1)代入 y= ,即可求出 m 的值,进一步可求出反比例函数解析式;(2) 先证△CDB ∽△CEA ,由 CE=4CD 可求出 BD 的长度,可进一步求出点 B的坐标,以及直线 AC 的解析式,直线 AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.⏜23. 【答案】证明:(1)∵C 是BC 的中点,⏜ = ⏜∴CD BC ,∵AB 是⊙O 的直径,且 CF ⊥AB ,5 2{⏜= ⏜∴BC BF,⏜= ⏜∴CD BF,∴CD=BF,在△BFG 和△CDG 中,∠F = ∠CDG∠FGB = ∠DGC∵BF = CD,∴△BFG≌△CDG(AAS);(2)如图,过C 作CH⊥AD 于H,连接AC、BC,⏜= ⏜∵CD BC,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,BC= B E∴AB BC,∴BC2=AB•BE=6×2=12,∴BF=BC=2 3.【解析】(1)根据AAS 证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△ AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计2{5算 AE 和 AB 的长,证明△BEC ∽△BCA ,列比例式可得 BC 的长,就是 BF 的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24. 【答案】解:(1)将二次函数 y =ax 2(a >0)的图象向右平移 1 个单位,再向下平移 2 个单位,得到的抛物线解析式为 y =a (x -1)2-2, ∵OA =1,∴点 A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0, a = 1∴2,1(x−1)2−2 1x 2−x−3∴抛物线的解析式为 y =2令 y =0,解得 x 1=-1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为 5, ,即 y =22.S = 1AB ⋅ y∴ △ ABD 25D =5,5 = 1x 2−x−3∴y D =2,代入抛物线解析式得,2 22,解得 x 1=-2,x 2=4,5∴D (4,2),设直线 AD 的解析式为 y =kx +b , {4k + b = 2k = 1 b = 1 ∴ −k + b = 0,解得:2, 1x +1 ∴直线 AD 的解析式为 y =22.1a 2−a−31a +1(2) 过点 E 作 EM ∥y 轴交 AD 于 M ,如图,设 E (a ,22),则 M (a ,22),EM = 1a + 1−1a2 + a + 3−1a2 + 3a + 2∴ 2 2 2 2= 2 2 ,1× EM ⋅ 1 1(−1a2 + 3a + 2) × 1 −1(a2−3a−4) ∴S△ACE=S△AME-S△CME=2−1(a−3)2 + 25=2 2 2 = 4 ,= 4 2316,25 3−15∴当a=2时,△ACE 的面积有最大值,最大值是16,此时E 点坐标为(2,8 ).(3)作E 关于x 轴的对称点F,连接EF 交x 轴于点G,过点F 作FH⊥AE 于点H,交轴于点P,3 −15∵E(2,8 ),OA=1,3 5 15∴AG=1+2=2,EG= 8 ,5AG= 2 = 4∴E G15 38 ,∵∠AGE=∠AHP=90°∠EAG = PH = E G = 3∴sin A P PH = 3A P A E 5,∴ 5 ,∵E、F 关于x 轴对称,∴PE=PF,3∴PE+5AP=FP+HP=FH,此时FH 最小,15 × 2 = 15∵EF= 8 4 ,∠AEG=∠HEF,sin∠A E G = sin∠HEF = A G F H = 4∴F H = 4 × 15 = 3A E=E F5,∴ 5 4 .3∴PE+5PA 的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A(-1,0),可求得a 的值,由△ABD 的面积为5 可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A、D 的坐标可求出一次函数解析式;(2)作EM∥y 轴交AD 于M,如图,利用三角形面积公式,由S△ACE=S△AME- S△CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E 关于x 轴的对称点F,过点F 作FH⊥AE 于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+ AP=FP+HP,此时FH 最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD 是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF 是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,O E = OD= 2∴AF AD 2 ,∴AF = 2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,( 10− 2)2 + 8 2 2 + 10− 2 2A E=AF∴AD AG ,∴AG ⋅ A E = AD ⋅ AF = 4 2t , 又∵AE =OA +OE =2 AG = ∴2+t ,t 2 + 8∴EG =AE -AG =2 2 + t ,当点 H 恰好落在线段 BC 上∠DFH =∠DFE +∠HFE =45°+45°=90°,∴△ADF ∽△BFH , F H = FB =∴FD AD4 , ∵AF ∥CD ,FG = AF =∴DG CD 4 ,FG=2t ∴DF4 + 2t ,=∴ 4解得:t 1= 10− 2,t 2= t 2 + 8 = + 2(舍去),= 3 10−5∴EG =EH =2 2 + t ;(3) 过点 F 作 FK ⊥AC 于点 K ,t 2 + 8由(2)得 EG =2 2 + t , ∵DE =EF ,∠DEF =90°, ∴∠DEO =∠EFK ,∴△DOE ≌△EKF (AAS ), ∴FK =OE =t ,= 1E G ⋅ FK t 3+ 8t∴S △ E FG 2 【解析】(1) 由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2) 设 OE=t ,连接 OD ,证明△DOE ∽△DAF 可得 AF=,证明△AEF ∽△ADG 可得 AG=,可表示 EG 的长,由 AF ∥CD 得比例线段,求出 t 的值,代入 EG 的表达式可求 EH 的值;(3) 由(2)知 EG=,过点 F 作 FK ⊥AC 于点 K ,根据4 2t2 2 + t , 4− 2t2t4− 2t2t4 + 2t ,10 =2 2 + t .即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

2019年四川省绵阳市中考数学试卷和答案(含解析)

2019年四川省绵阳市中考数学试卷和答案(含解析)

2019年四川省绵阳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若=2,则a的值为()A.﹣4B.4C.﹣2D.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4 3.(3分)不考虑颜色,对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)6.(3分)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.87.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8 8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3 9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc <0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.412.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.15.(3分)单项式x﹣|a﹣1|y与2x y是同类项,则a b=.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O 的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA =1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA 的最小值.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF 翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.2019年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若=2,则a的值为()A.﹣4B.4C.﹣2D.【分析】根据算术平方根的概念可得.【解答】解:若=2,则a=4,故选:B.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数0.0002用科学记数法表示为2×10﹣4,故选:D.3.(3分)不考虑颜色,对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:是中心对称图形.故选:B.4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.【分析】主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【分析】过点E作EF⊥x轴于点F,由直角三角形的性质求出EF 长和OF长即可.【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.6.(3分)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.8【分析】根据绝对值的意义,由与最接近的整数是5,可得结论.【解答】解:∵,∴5<,且与最接近的整数是5,∴当|x﹣|取最小值时,x的值是5,故选:A.7.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11﹣3=8,结论错误,故A不符合题意;B.数据5,7,11,3,9没有重复出现的数字时,这组数据没有众数,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5﹣7)2+(7﹣7)2+(11﹣7)2+(3﹣7)2+(9﹣7)2]=8.结论正确,故D符合题意.故选:D.8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【分析】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ=,∴(sinθ﹣cosθ)2=.故选:A.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc <0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.4【分析】二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<﹣<,∴1<﹣<,当﹣<时,b>﹣3a,∵当x=2时,y=4a+2b+c=0,∴b=﹣2a﹣c,∴﹣2a﹣c>﹣3a,∴2a﹣c>0,故②正确;③当x=时,y的值为a+b+c,给a+b+c乘以4,即可化为a+2b+4c,∵抛物线的对称轴在1<﹣<,∴x=关于对称轴对称点的横坐标在和之间,由图象可知在和2之间y为负值,2和之间y为正值,∴a+2b+4c与0的关系不能确定,故③错误;④∵﹣,∴2a+b<0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>﹣4ab,∵a>0,b<0,∴ab<0,∴,即,故④正确.故选:C.12.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB 于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【分析】根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵DE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.15.(3分)单项式x﹣|a﹣1|y与2x y是同类项,则a b=1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【分析】直接利用顺水速=静水速+水速,逆水速=静水速﹣水速,进而得出等式求出答案.【解答】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【分析】过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【分析】如图,连接CE′,根据等腰三角形的性质得到AB=BC =2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.【分析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:(1)2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0=+2﹣2×﹣1=+2﹣﹣1=1;(2)原式=×﹣×=﹣﹣=﹣=﹣,当a=,b=2﹣时,原式=﹣=﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【分析】(1)由B组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18﹣11=7,95~100的频数为36﹣(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°×=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为=.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设每天的定价增加了a个20元,则有2a个房间空闲,根据题意有:m=(20﹣2a)(200+20a﹣80)=﹣40a2+160a+2400=﹣40(a﹣2)2+2560,∵﹣40<0,∴当a=2时,m取得最大值,最大值为2560,此时房间的定价为200+2×20=240元.答:当每间房间定价为240元时,乙种风格客房每天的利润m最大,最大利润是2560元.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【分析】(1)将点A(4,1)代入y=,即可求出m的值,进一步可求出反比例函数解析式;(2)先证△CDB∽△CEA,由CE=4CD可求出BD的长度,可进一步求出点B的坐标,以及直线AC的解析式,直线AC与坐标轴交点的坐标,可证直线AC与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM长度的最小值.【解答】解:(1)将点A(4,1)代入y=,得,m2﹣3m=4,解得,m1=4,m2=﹣1,∴m的值为4或﹣1;反比例函数解析式为:y=;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B==4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=﹣1,b=5,∴y AB=﹣x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CF=OC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OM=CF=.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O 的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt △AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt △CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC ∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH =1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA =1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA 的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解△ACE决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x 轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F 作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF 翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【分析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG可得AG=,可表示EG的长,由AF ∥CD得比例线段,求出t的值,代入EG的表达式可求EH 的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2+t,∴,∴EG=AE﹣AG=,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t 1=,t2=﹣(舍去),∴EG=EH=;(3)过点F作FK⊥AC于点K,由(2)得EG=,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S=.。

2019年四川省绵阳市中考数学试卷(含答案与解析)

2019年四川省绵阳市中考数学试卷(含答案与解析)

绝密★启用前四川省绵阳市2019年高中阶段学校招生暨初中学业水平考试数学本试卷满分140分,考试时间120分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若2a=,则A的值为()A.4-B.4C.2-D.22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为()A.30.210-⨯B.40.210-⨯C.3210-⨯D.4210-⨯3.对右图的对称性表述,正确的是 ()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A B C D5.如图,在平面直角坐标系中,四边形OABC为菱形,(0,0)O,(4,0)A,60AOC∠=︒,则对角线交点E的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(3,3)6.已知x是整数,当|0|3x-取最小值时,x的值是()A.5B.6C.7D.87.帅帅收集了南街米粉店2019年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是88.已知4m a=,8n b=,其中m,n为正整数,则262m n+=()A.2ab B.2a b+C.23a b D.23a b+9.红星商店计划用不超过4 200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件.据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则2(sin cos)θθ-=()A.15B.5C.35D.9511.如图,二次函数2(0)y ax bx c a=++>的图象与x轴交于两点1(,0)x,(2,0),其中101x<<.下列四个结论:①0abc<;②20a c->;③240a b c++>;④44a bb a+-<,正确的个数是()A.1B.2C.3D.4毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共28页)数学试卷第2页(共28页)数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.如图,在四边形ABCD 中,AB DC ∥,90ADC ∠=︒,5AB =,3CD AD ==,点E 是线段CD 的三等分点,且靠近点C ,FEG ∠的两边与线段AB 分别交于点F ,G ,连接AC分别交EF ,EG 于点H ,K .若32BG =,45FEG ∠=︒,则HK =( )A .22B .52C .322D .132第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.因式分解:2232m n mn n ++= .14.如图,AB CD ∥,ABD ∠的平分线与BDC ∠的平分线交于点E ,则12∠+∠= .15.单项式1||a xy --与12b xy -是同类项,则ba = .16.一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为 km /h . 17.在ABC △中,若45B ∠=︒,102AB =,55AC =,则ABC △的面积是 . 18.如图,ABC △,BDE △都是等腰直角三角形,BA BC =,BD BE =,4AC =,22DE =.将BDE △绕点B 逆时针方向旋转后得BD E ''△,当点E ′恰好落在线段AD ′上时,则CE '= .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分) (1)计算:212|1|22tan30(π2019)32⎛⎫+---︒-- ⎪⎝⎭;(2)先化简,再求值:221ab a ba b b a ⎛⎫-÷ ⎪-+-⎝⎭,其中2a =,22b =-.20.(本小题满分11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛.现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图.部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.(本小题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8 500元;若甲、乙两种风格客房均有10间入住,一天营业额为5 000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润w 最大,最大利润是多少元?数学试卷 第5页(共28页) 数学试卷 第6页(共28页)22.(本小题满分11分)如图,一次函数(0)y kx b k =+≠的图象与反比例函数23m my x-=(0m ≠且3m ≠)的图象在第一象限交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为E ,D .已知(4,1)A ,4CE CD =. (1)求m 的值和反比例函数的解析式;(2)若点M 为一次函数图象上的动点,求OM 长度的最小值.23.(本小题满分11分)如图,AB 是O e 的直径,点C 为»BD的中点,CF 为O e 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF . (1)求证:BFG CDG △≌△; (2)若2AD BE ==,求BF 的长.24.(本小题满分12分)在平面直角坐标系中,将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD △的面积为5. (1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE △面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.备用图25.(本小题满分14分)如图,在以点O 为中心的正方形ABCD 中,4AD =,连接AC ,动点E 从点O 出发沿O C →以每秒1个单位长度的速度匀速运动,到达点C 停止.在运动过程中,ADE△的外接圆交AB 于点F ,连接DF 交AC 于点G ,连接EF ,将EFG △沿EF 翻折,得到EFH △.(1)求证:DEF △是等腰直角三角形;(2)如图2,当点H 恰好落在线段BC 上时,求EH 的长;(3)设点E 运动的时间为t 秒,EFG △的面积为S ,求S 关于时间t 的关系式.图1图2图3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷第7页(共28页)数学试卷第8页(共28页)数学试卷 第9页(共28页) 数学试卷 第10页(共28页)四川省绵阳市2019年高中阶段学校招生暨初中学业水平考试数学答案解析第Ⅰ卷一、选择题2.【答案】D【解析】解:将数0.000 2用科学记数法表示为4210-⨯,故选:D . 【考点】科学记数法表示数. 3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B . 【考点】轴对称图形的概念,中心对称图形的概念. 4.【答案】C【解析】解:A 、正方体的主视图是正方形,故此选项错误;B 、圆柱的主视图是长方形,故此选项错误;C 、圆锥的主视图是三角形,故此选项正确;D 、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C . 【考点】简单几何体的三视图. 5.【答案】D【解析】解:过点E 作EF x ⊥轴于点F , ∵四边形OABC 为菱形,60AOC ∠=︒,∴1302AOE AOC ∠=∠=︒,60FAE ∠=︒,∵()4,0A , ∴4OA =,∴114222AEAO ==⨯=,∴112AF AE ==,EF ===∴413OF AO AF =-=-=,∴E .故选:D .【考点】菱形的性质,特殊角的锐角三角函数. 6.【答案】A∴55,∴当|x 取最小值时,x 的值是5,故选:A .【考点】绝对值的概念,估算无理数.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9. A .极差1138=-=,结论错误,故A 不符合题意; B .众数为5,7,11,3,9,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D .平均数是571139()57++++÷=,方差2222221577711[()()()()7379785()]S =-+-+-+-+-=. 结论正确,故D 符合题意; 故选:D .【考点】计算统计量. 8.【答案】A数学试卷 第11页(共28页) 数学试卷 第12页(共28页)【解析】解:∵4,8m a n b ==, ∴2626222m n m n +=⨯232()2()2m n =g 248m n =g 2(48)m n =g2ab =,故选:A .【考点】同底数的幂的乘法. 9.【答案】C【解析】解:设该店购进甲种商品x 件,则购进乙种商品(50)x -件,根据题意,得:60+100(50)42001020(50)750x x x x -⎧⎨+-⎩≤>,解得:2025x ≤<, ∵x 为整数,∴2021222324x =,,,,, ∴该店进货方案有5种, 故选:C .【考点】列不等式组解应用题,不等式组的整数解. 10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为小正方形的边长为5,∴5θθ-=,∴cos sin 5θθ-=,∴21sin co (s 5)θθ-=.故选:A .【考点】正方形的性质,勾股定理,解方程组,求锐角三角函数值. 11.【答案】C【解析】解:①∵抛物线开口向上, ∴0a >,∵抛物线对称轴在y 轴的右侧, ∴0b <,∵抛物线与y 轴的交点在x 轴上方, ∴0c >,∴0abc <,所以①正确;②∵图象与x 轴交于两点1,0,()()2,0x ,其中101x <<, ∴2021222b a ++-<<, ∴3122b a -<<,当322b a -<时,3b a ->,∵当2x =时,420y a b c =++=, ∴122b ac =--, ∴1232a c a --->, ∴20a c ->,故②正确; ③∵12ba-<, ∴20a b +>, ∵0c >,40c >,∴240a b c ++>, 故③正确; ④∵12ba-<, ∴20a b +>, ∴22)0(a b +>,22440a b ab ++>,数学试卷 第13页(共28页) 数学试卷 第14页(共28页)2244a b ab +->,∵0a >,0b <, ∴0ab <, ∴2244a b ab +-<,即44a bb a+-<, 故④正确. 故选:D .【考点】二次函数的图象性质. 12.【答案】B【解析】解:∵90ADC ∠=︒,3CD AD ==,∴AC = ∵5AB =,32BG =, ∴72AG =, ∵AB DC ∥, ∴CEK AGK △∽△,∴CE CK EKAG AK KG ==, ∴172CK EKAK KG ==,∴27CK EK AK KG ==,∵CK AK +=∴CK =, 过E 作EM AB ⊥于M , 则四边形ADEM 是矩形, ∴3EM AD ==,2AM DE ==,∴32MG =,∴EG ==∵2EK KG =, ∴EK =∵45HEK KCE ∠=∠=︒,EHK CHE ∠=∠, ∴HEKHCE △∽△,∴HE HK ==, ∴设3HE x =,HK =, ∵HEK HCE :△△,∴EH HKHC EH=,=,解得:6x =,∴HK =故选:B .【考点】等腰直角三角形的性质,全等三角形的判定及性质,三角形的中位线定理,平行线分线段成比例.第Ⅱ卷二.填空题13.【答案】2()n m n + 【解析】解:2232m n mn n ++222()n m mn n =++2()n m n =+.故答案为:2()n m n +.数学试卷 第15页(共28页) 数学试卷 第16页(共28页)【考点】因式分解. 14.【答案】90︒【解析】解:∵AB CD ∥, ∴180ABD CDB ∠+∠=︒, ∵BE 是ABD ∠的平分线, ∴112ABD ∠=∠, ∵BE 是BDC ∠的平分线,∴122CDB ∠=∠, ∴1290∠+∠=︒, 故答案为:90︒.【考点】平行线的性质,角平分线的性质. 15.【答案】1【解析】解:由题意知1||10a b --=-≥, ∴1a =,1b =, 则1(11)ab ==, 故答案为:1.【考点】同类项的概念,非负数的和. 16.【答案】10【解析】解:设江水的流速为x km /h ,根据题意可得:120603030x x=+-, 解得:10x =,经检验得:10x =是原方程的根, 答:江水的流速为10 km /h . 故答案为:10.【考点】列分式方程解应用题. 17.【答案】75或25【解析】解:过点A 作AD BC ⊥,垂足为D ,如图所示. 在Rt ABD △中,sin 10AD AB B ==g ,cos 10BD AB B ==g ;在Rt ACD △中,10AD =,55AC =, ∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=, ∴1752ABC S BC AD ==g △或25. 故答案为:75或25.【考点】锐角三角函数,勾股定理,求三角形的面积. 18.【答案】26+ 【解析】解:如图,连接CE ′,∵ABC △、BDE △都是等腰直角三角形,BA BC =,BD BE =,4AC =,22DE =, ∴22AB BC ==,2BD BE ==,∵将BDE △绕点B 逆时针方向旋转后得BD E ''△, ∴2D B BE BD '='==,90D BE ∠''=',D BD ABE ∠'=∠', ∴ABD CBE ∠'=∠', ∴()SAS ABD CBE ''△≌△, ∴45D CE B ∠'=∠'=︒, 过B 作BH CE ⊥'于H , 在Rt BHE '△中,22BH E H BE ''===, 在Rt BCH △中,226CH BC BH =-=, ∴26CE '=+, 故答案为:26+.【考点】旋转的性质,全等三角形的判定及性质,勾股定理. 三、解答题19.【答案】解:(1)1021222tan30(π2019)32-︒⎛⎫+---- ⎪⎝⎭21=+--21=+-= 1(2)原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b ab a b b a b-=--++()bb a b=-+1a b=-+当a2b=,原式12==-.【解析】解:(1)11(π2019)2-︒⎛⎫----⎪⎝⎭21=+--2133=+--= 1(2)原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b ab a b b a b-=--++()bb a b=-+1a b=-+当a2b=,原式12==-.【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键.【考点】实数的综合运算,分式的化简求值.20.【答案】解:(1)80~90的频数为3650%18⨯=,则80~85的频数为18117-=,95~100的频数为36415)89(-++=,补全图形如下:扇形统计图中扇形D对应的圆心角度数为53605036⨯=︒︒;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为123205=.【解析】(1)由B组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360︒乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.【考点】统计知识的综合运用,概率的求解.21.【答案】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得1520850010105000x yx y+=⎧⎨+=⎩,数学试卷第17页(共28页)数学试卷第18页(共28页)数学试卷 第19页(共28页) 数学试卷 第20页(共28页)解得300200x y =⎧⎨=⎩,答:甲、乙两种客房每间现有定价分别是300元、200元; (2)设当每间房间定价为x 元,220012028020(200)24002010x w x x -⎛⎫=-⨯-⨯=--+ ⎪⎝⎭,∴当200x =时,w 取得最大值,此时2400w =,答:当每间房间定价为200元时,乙种风格客房每天的利润w 最大,最大利润是2 400元. 【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到w 关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.【考点】列方程组解应用题,二次函数的应用.22.【答案】解:(1)将点()4,1A 代入23m my x -=,得,234m m -=, 解得,14m =,21m =-,∴m 的值为4或1-;反比例函数解析式为:4y x=; (2)∵BD y ⊥轴,AE y ⊥轴, ∴90CDB CEA ∠=∠=︒, ∴CDB CEA △∽△, ∴CD BDCE AE=, ∵4CE CD =, ∴4AE BD =, ∵()4,1A , ∴4AE =, ∴1BD =, ∴1B x =, ∴44B y x==, ∴()1,4B ,将()4,1A ,()1,4B 代入y kx b =+, 得,y kx b =+, 解得,1k =-,5b =, ∴5AB y x =-+,设直线AB 与x 轴交点为F , 当0x =时,5y =;当0y =时5x =, ∴()0,5C ,()5,0F , 则5OC OF ==,∴OCF △为等腰直角三角形,∴252CF OC ==,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即1522OM CF ==.【解析】(1)将点()4,1A 代入23m my x-=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证CDB CEA △∽△,由4CE CD =可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值. 【考点】一次函数和反比例函数的性质,相似三角形的判定和性质,勾股定理.23.【答案】证明:(1)∵C 是»BC 的中点, ∴»»CDBC =, ∵AB 是O e 的直径,且CF AB ⊥,∴»»BC BF =, ∴»»CDBF =, ∴CD BF =,在BFG △和CDG △中,∵F CDG FGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS BFG CDG △≌△;(2)如图,过C 作CH AD ⊥于H ,连接AC 、BC ,∵»»CDBC =, ∴HAC BAC ∠=∠, ∵CE AB ⊥, ∴CH CE =, ∵AC AC =,∴Rt Rt (H )L AHC AEC △≌△, ∴AE AH =,∵CH CE =,CD CB =, ∴Rt Rt (H )L CDH CBE △≌△,∴2DH BE ==, ∴224AE AH ==+=, ∴426AB =+=, ∵AB 是O e 的直径, ∴90ACB ∠=︒, ∴90ACB BEC ∠=∠=︒, ∵EBC ABC ∠=∠, ∴BEC BCA △∽△, ∴BC BEAB BC=, ∴26212BC AB BE ==⨯=g ,∴BF BC ==【解析】(1)根据AAS 证明:BFG CDG △≌△;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt Rt (H )L AHC AEC △≌△,得AE AH =,再证明Rt Rt (H )L CDH CBE △≌△,得2DH BE ==,计算AE 和AB 的长,证明BEC BCA △∽△,列比例式可得BC 的长,就是BF 的长.【考点】圆的相关性质,垂直平分线的性质,角平分线的性质,全等三角形的判定及性质,勾股定理.24.【答案】解:(1)将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为2)1(2y a x =--, ∵1OA =,∴点A 的坐标为()1,0-,代入抛物线的解析式得,420a -=, ∴12a =, ∴抛物线的解析式为21(1)22y x =--,即21322y x x =--. 令0y =,解得11x =-,23x =, ∴()3,0B ,∴4AB OA OB =+=, ∵ABD △的面积为5, ∴152D ABD S AB y ==g △, ∴52D y =,代入抛物线解析式得,2513222x x =--,解得12x =-,24x =,∴54,2D ⎛⎫⎪⎝⎭,设直线AD 的解析式为y kx b =+,∴5420k b k b ⎧+=⎪⎨⎪-+=⎩,解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为1122y x =+. (2)过点E 作EM y ∥轴交AD 于M ,如图,设213,22E a a a ⎛⎫-- ⎪⎝⎭,则11,22M a a ⎛⎫+ ⎪⎝⎭,∴221113132222222EM a a a a a =+-++=-++, ∴()22111311213422224ACEAME CME S S S EM a a a a ⎛⎫=-=⨯=-++⨯=--- ⎪⎝⎭g △△△,213254216a ⎛⎫=--+ ⎪⎝⎭,∴当32a =时,ACE △的面积有最大值,最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭. (3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵315,28E ⎛⎫- ⎪⎝⎭,1OA =,∴35122AG =+=,∴5421538AG EG ==, ∵90AGE AHP ∠=∠=︒ ∴3sin 5PH EG EAG AP AE ∠===, ∴35PH AP =, ∵E 、F 关于x 轴对称,∴PE PF =,∴35PE AP FP HP FH +=+=,此时FH 最小, ∵1515284EF =⨯=,AEG HEF ∠=∠,∴4sin sin 5AG FH AEG HEF AE EF ∠=∠===,∴415354FH =⨯=.∴35PE PA +的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点0()1,A -,可求得A 的值,由ABD △的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM y ∥轴交AD 于M ,如图,利用三角形面积公式,由ACE AME CME S S S =-△△△构建二次函数,利用二次函数的性质即可解决问题;(3)作E 关于x 轴的对称点F ,过点F 作FH AE ⊥于点H ,交轴于点P ,则BAE HAP HFE ∠=∠=∠,利用锐角三角函数的定义可得出35EP AP FP HP +=+,此时FH 最小,求出最小值即可.【考点】二次函数的图象及其性质,图象的平移变换,勾股定理,锐角三角函数的运用,数形结合思想.25.【答案】(1)证明:∵四边形ABCD 是正方形,∴45DAC CAB ∠=∠=︒,∴FDE CAB ∠=∠,DFE DAC ∠=∠,∴45FDE DFE ∠=∠=︒, ∴90DEF ∠=︒,∴DEF △是等腰直角三角形; (2)设OE t =,连接OD , ∴90DOE DAF ∠=∠=︒, ∵OED DFA ∠=∠, ∴DOE DAF △∽△,∴2OE OD AF AD ==,∴AF =,又∵AEF ADG ∠=∠,EAF DAG ∠=∠,∴AEF ADG △∽△, ∴AE AFAD AG=,∴AG AE AD AF ==g g ,又∵AE OA OE t =+=,∴AG =,∴2EG AE AG =-=,当点H 恰好落在线段BC 上454590DFH DFE HFE ∠=∠+∠=︒+︒=︒, ∴ADF BFH △∽△,∴FH FB FD AD ==∵AF CD ∥,∴4FG AF DG CD ==,∴FG DF =,∴44=,解得:1t =2t 舍去),∴2EG EH ===; (3)过点F 作FK AC ⊥于点K ,由(2)得2EG , ∵DE EF =,90DEF ∠=︒, ∴DEO EFK ∠=∠, ∴()AAS DOE EKF △≌△, ∴FK OE t ==,∴312EFG S EG FK =g △.【解析】(1)由正方形的性质可得45DAC CAB ∠=∠=︒,根据圆周角定理得45FDE DFE ∠=∠=︒,则结论得证;(2)设OE t =,连接OD ,证明DOE DAF △∽△可得AF =,证明AEF ADG △∽△可得AG =,可表示EG 的长,由AF CD ∥得比例线段FG AFDG CD =,求出t 的值,代入EG 的表达式可求EH 的值;(3)由(2)知2EG =,过点F 作FK AC ⊥于点K ,根据12EFG S EG FK =g △即可求解.【考点】正方形的性质,等腰直角三角形的性质,圆周角定理,全等三角形的判定及性质,相似三角形的判断及性质,勾股定理,方程思想.。

2019年四川省绵阳中考数学模拟试题(含答案)

2019年四川省绵阳中考数学模拟试题(含答案)

.2019 年绵阳中考数学模拟试题(本试卷共有三大题25 小题,考试时间120 分钟,满分140 分)第Ⅰ卷(选择题36分)一、选择题(本大题共12 个小题,每题 3 分,共 36 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求)1的倒数是()1.201911A. 2019B.﹣ 2019C.D.20192019【答案】 A2. 下边四个标记图是中心对称图形的是()A.B.C.D.【答案】 B3.绵阳 2018 年实现地域生产总值 2304 亿元 . 此中 2304 亿这个数用科学记数法表示为()A. 2.304 ×103 B . 2.304 ×1010 C . 2.304 ×1011D.23.04 ×1010【答案】 C4.某汽车厂改良生产工艺后,每日生产的汽车比本来每日生产的汽车多 6 辆,那么此刻15天的产量就超出了本来20 天的产量.若设本来每日最多能生产x 辆,则对于x 的不等式为()A. 15x > 20( x+6) B. 15( x+6)≥ 20x C. 15x > 20( x﹣ 6) D. 15(x+6)> 20x【答案】 D5.如图是一个正方体的平面睁开图,把睁开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.绵C.阳D.城【答案】 D6.在Rt△ABC中,∠ ACB=90°,∠ A=60°,AC=3cm,则AB边上的中线为()A. 1cm B.2cm C.1.5cm D. 3 cm.【答案】 D7. 如图, DE ∥ BC ,∠ D=2∠ DBC ,∠ 1=∠ 2,则∠ DEB 的度数为( )A .30°B .45°C .60°D .没法计算【答案】 A8. 若将点 P (1,﹣ m )向右平移2 个单位后,再向上平移 1 个单位获取点 Q( n ,3),则点(m , n )的坐标为( )A .( 3,﹣ 2)B .( 2,﹣ 3)C .( 3, 2)D.(﹣ 2,3)【答案】 D9. 从三个方向看到一几何体的图形以下图,则这个几何体中小正方体的个数有( )A .4 个B .5个C .6个D. 7 个【答案】 B10. 一个质地平均的正方形骰子的六个面上分别有 1 到 6 的点数,将骰子投掷两次, 抛第一次将向上一面的点数记为 x .抛第二次,将向上一面的点数记为y ,则点( x , y )落在直线y=﹣ 2x+8 上的概率为()A .1B .1C .1D.11812 94【答案】 B11. 如图,小明要丈量河内小岛 B 到河畔公路 l 的距离, 在 A 点测得∠ BAD=30°, 在 C 点测 得∠ BCD=60°,又测得 AC=60米,则小岛 B 到公路 l 的距离为()A .30米B.30 3米C .403米D .(30+303)米【答案】 B12. 将正奇数按下表排成 5 列:第一列第二列 第三列 第四列 第五列 第 1 行 1 3 5 7 第2行15 13 11 9.第4行31292725依据上边规律,2019 应在()A.第 252 行第 2 列B.第 253 行第 1 列C.第 253 行第 2 列D.第 253 行第 3 列【答案】 D第Ⅱ卷(非选择题共 104 分)二、填空题(本大题共 6 个小题,每题 3 分,共 18 分 . 把答案填写在题中横线上)13.计算:364=.【答案】 -414.函数y=3x2,此中x的取值范围是.2x6【答案】 x≠ 315.以下图,在菱形 ABCD中, AB=2,∠ BAD=120°, M为 BC上一点, N 为 CD上一点,∠MAN=60°,则四边形AMCN的面积为.【答案】316.如图,AB是⊙ 0的直径,C、D是AB上的三平分点,假如⊙O的半径为l , P 是线段AB上的随意一点,则图中暗影部分的面积为.【答案】317.已知 a、 b 为不等的两个实数,且 a2﹣ 3a﹣ 2020=0, b2﹣3b﹣ 2020=0,则 a2﹣2a+b=.【答案】 202318.如图,D为正三角形ABC内一点, BD=5, CD=3,∠ ADC=150°,则AD的长为..【答案】 4三、 解答题 (本大题共 7 个小题,共 86 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年绵阳中考数学模拟试题(本试卷共有三大题25小题,考试时间120分钟,满分140分)第Ⅰ卷(选择题 36分)一、选择题(本大题共12 个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求) 1.20191的倒数是( ) A .2019 B .﹣2019 C .20191 D .20191 【答案】A2.下面四个标志图是中心对称图形的是( )A .B .C .D .【答案】B3.绵阳2018年实现地区生产总值2304亿元 .其中2304亿这个数用科学记数法表示为( )A .2.304×103B .2.304×1010C .2.304×1011D .23.04×1010【答案】C4. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天最多能生产x 辆,则关于x 的不等式为( )A .15x >20(x+6)B .15(x+6)≥20xC .15x >20(x ﹣6)D .15(x+6)>20x 【答案】 D5. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )A .丽B .绵C .阳D .城【答案】D6. 在Rt △ABC 中,∠ACB=90°,∠A=60°,AC=3cm ,则AB 边上的中线为( ) A .1cm B .2cm C .1.5cm D .3cm【答案】D7. 如图,DE ∥BC ,∠D=2∠DBC ,∠1=∠2,则∠DEB 的度数为( )A .30°B .45°C .60°D .无法计算 【答案】A8. 若将点P (1,﹣m )向右平移2个单位后,再向上平移1个单位得到点Q (n ,3),则点(m ,n )的坐标为( )A .(3,﹣2)B .(2,﹣3)C .(3,2)D .(﹣2,3) 【答案】D9. 从三个方向看到一几何体的图形如图所示,则这个几何体中小正方体的个数有( )A .4个B .5个C .6个D .7个【答案】B10. 一个质地均匀的正方形骰子的六个面上分别有1到6的点数,将骰子抛掷两次,抛第一次将朝上一面的点数记为x .抛第二次,将朝上一面的点数记为y ,则点(x ,y )落在直线y=﹣2x+8上的概率为( ) A .181 B .121 C .91 D .41 【答案】B11. 如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=60米,则小岛B 到公路l 的距离为( )A .30米B .303米C .403米D .(30+303)米【答案】B12. 将正奇数按下表排成5列: 第一列 第二列 第三列第四列 第五列 第1行 1 3 5 7 第2行 15 13 11 9 第3行 1719 21 23第4行 31 29 27 25 … 根据上面规律,2019应在( )A .第252行第2列B .第253行第1列C .第253行第2列D .第253行第3列 【答案】D第Ⅱ卷(非选择题 共104分)二、 填空题(本大题共6个小题,每小题3分,共18分.把答案填写在题中横线上) 13.计算:364-= . 【答案】-4 14. 函数y=6223--x x ,其中x 的取值范围是 . 【答案】x ≠315. 如图所示,在菱形ABCD 中,AB=2,∠BAD=120°,M 为BC 上一点,N 为CD 上一点,∠MAN=60°,则四边形AMCN 的面积为 .【答案】316. 如图,AB 是⊙0的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为l ,P 是线段AB 上的任意一点,则图中阴影部分的面积为 .【答案】3π 17. 已知a 、b 为不等的两个实数,且a 2﹣3a ﹣2020=0,b 2﹣3b ﹣2020=0,则a 2﹣2a+b= . 【答案】202318. 如图,D 为正三角形ABC 内一点,BD=5,CD=3,∠ADC=150°,则AD 的长为 .【答案】4三、 解答题(本大题共7个小题,共86分。

解答题应写出文字说明、证明过程或演算步骤)19.(每小题8分,共16分) (1)计算:(41)﹣1+|1﹣3|﹣27tan30°. 【解答】解:原式=4+3﹣1﹣33×33……………………6分 =4+3﹣1﹣3=3.……………………………………8分(2)化简:xx x x x x x x x 416)44122(2222+-÷+----+【解答】解:原式=)4)(4()4()2()1()2)(2(2-++⨯----+x x x x x x x x x x ……………………6分==2)2(1-x …………………………8分20.(11分)随着城市化进程的发展,农村留守儿童问题已引起全社会的广泛关注,为了了解某农村初中800名学生监护人的情况,我们从中抽取一部分学生作为样本进行数据处理,得到如下的分布表和条形统计图: 监护人 频数 频率 祖辈照顾 0.30 亲朋好友 13 0.13 母亲一人在家 34 父亲一人在家 父母都在家130.13(1)此次参加调查共有人.(2)根据上述数据,补全统计表和条形统计图;(3)若全市共有40000名农村初中学生,试估计该市初中生的监护人不是自己父亲或母亲的共有多少名?【解答】解:(1)总人数=13÷0.13=100人;……………………2分监护人频数频率祖辈照顾30 0.30亲朋好友13 0.1334 0.34母亲一人在家10 0.10父亲一人在家父母都在家13 0.136分……………………………………8分(2)∵不是父亲或母亲监护的频率分别为0.3和0.13,∴监护人不是自己父亲或母亲的共有40000×(0.3+0.13)=17200人………………11分21.(11分)已知,如图,AB 是⊙O 的直径,点E 是弧AD 的中点,连接BE 交AC 于点G ,BG 的垂直平分线CF 交BG 于H 交AB 于F 点. (1)求证:BC 是⊙O 的切线; (2)若AB=8,BC=6,求BE 的长.【解题过程】(1)证明:连接AE ,∵C 在BG 的垂直平分线CF 上,∴CB=CG ,∴∠1=∠2,…………………………1分 ∵AB 是⊙O 的直径,∴∠E=90°,∴∠3+∠4=90°,…………………………2分 ∵∠3=∠1=∠2,∴∠2+∠4=90°,…………………………3分 ∵点E 是弧AD 的中点,∴∠ABE=∠4,∴∠2+∠ABE=90°,即∠ABC=90°,…………………………4分 ∵OB 是半径,∴BC 是⊙O 的切线;…………………………5分(2)解:∵BC 是⊙O 的切线,∴∠ABC=90°,由勾股定理,可得 AC=2268+=10,…………………………………………6分 ∵CG=CB=6,∴AG=10﹣6=4, ∵∠E=∠E ,∠4=∠ABE ,∴△AEG ∽△BEA ,………………………………………………………………8分 ∴21==AB AG EB AE , 设AE=x ,BE=2x .在Rt △AEB 中,由勾股定理,可得 x 2+(2x )2=82.解得:x=558, ∴BE=2x=5516.……………………………………………………………………11分22.(11分)如图,在平面直角坐标系中,直线y=﹣43x+6与x 轴、y 轴的正半轴分别相交于点A ,B 两点,点D 在反比例函数y=xk (k >0)的图象上,DA ⊥OA ,点P 在y 轴负半轴上,OP=14.(1)求线段PB 的长;(2)当∠PDB=90°时,求反比例函数的解析式.【解题过程】解:(1)直线y=﹣43x+6与x 轴的交点A 的坐标为(8,0),与y 轴的交点坐标为(0,6),……………………………………………………………………2分 ∴OA=8,OB=6,∴PB=OP+OB=20;………………………………………………4分 (2)作DE ⊥OB 于E ,∵点A 的坐标为(8,0),点D 在反比例函数y=xk(k >0)的图象上,DA ⊥OA , ∴DE=OA=8,OE=AD=8k,……………………………………………………6分 ∵∠PDB=90°,DE ⊥OB ,∴△DBE ∽△PDE , ∴PE DE DE BE ,即82=(6﹣8k )×(14+8k ),……………………………………8分 整理得,k 2+64k ﹣1280=0,解得,k 1=16,k 2=﹣80(舍去), ∴反比例函数的解析式为y=x16.…………………………………………………11分23.(11分)绵阳市某汽车经销商根据市场需求,计划购进某品牌A 、B 两种型号的汽车共50辆,且A 、B 两种型号的汽车的进价分别为12万元和15万元,如果A 型号的汽车加价15%,B 型号的汽车加价16%出售.(1)求出该经销商所购汽车均全部售出的利润y (万元)与购进A 种型号的汽车x (辆)之间的函数关系;(2)如果该经销商计划购进A 、B 两种型号的汽车所用资金不超过650万元,且A 种型号的汽车不多于36辆,那么有几种购买方案?该经销商使用哪种方案可获得最大利润?最大利润是多少?【解题过程】解:(1)y=x ×12×15%+(50-x )×15×16%=-0.6x+120…………3分 (2)⎩⎨⎧≤<≤-+360650)50(1512x x x ,解得363100≤≤x ,………………………………6分x 的整数解有:34,35,36,因此,有三种购买方案:第一种方案:购买A 型号的汽车34辆,B 型号的汽车16辆; 第二种方案:购买A 型号的汽车35辆,B 型号的汽车15辆;第三种方案:购买A 型号的汽车36辆,B 型号的汽车14辆.………………………9分 ∵y=-0.6x+120,k<0,∴y 随着x 的增加而减小, ∴x=34时,y 最大,最大值是99.6∴经销商使用方案一可获得最大利润,最大利润是99.6万元.………………………11分24.(12分)如图,已知在矩形ABCD 中,BC=2CD=2a ,点E 在边CD 上,在矩形ABCD 的左侧作矩形ECGF ,使CG=2GF=2b ,连接BD ,CF ,连结AF 交BD 于点H .(1)求证:BD ∥CF ;(2)求证:H 是AF 的中点;(3)连结CH ,若HC ⊥BD ,求a :b 的值.【解题过程】解:(1)∵四边形ABCD 、四边形ECGF 均为矩形, ∴∠G=∠DCB=90°,∵BC=2CD=2a ,CG=2GF=2b , ∴baCB GC DC FG ==, ∴△FGC ∽△DCB ,……………………………………………………………………3分 ∴∠FCG=∠DBC ,∴BD ∥CF .………………………………………………………………………………4分 (2)如图1所示:连接AC ,交BD 于点O .∵四边形ABCD 为矩形,∴OC=OA .……………………………………………………5分 又∵FC ∥BD ,∴HF :AH=OC :OA ,∴HF=AH ,∴点H 是AF 的中点.……………………………………………………………………7分 (3)如图2所示:连接CH ,CA ,AC 与BD 交于点O .由勾股定理可知:FC=b GC GF 522=+,AC=a AB BC 522=+.……………8分 ∵四边形ABCD 为矩形, ∴DB=AC=a 5,CO=21AC=a 25.……………………………………………………9分 ∵HO 是△AFC 的中位线, ∴HO=21FC=b 25. ∵S △DCB =21DC ×BC=21DB ×CH , ∴CH=a DB BC DC 552=⋅.………………………………………………………………10分 在△COH 中,由勾股定理可知:HO 2+CH 2=OC 2,即(b 25)2+(a 552)2=(a 25)2. 整理得:a 2=236100b . ∴a :b=35.………………………………………………………………………………12分25.(14分)如图,抛物线y=﹣x 2+bx+c 与x 轴交于点A 、C ,与y 轴交于点B ,它的顶点是D ,对称轴是直线x=﹣2,且OB=OC . (1)求抛物线的解析式;(2)点P 在上述抛物线上的对称轴上,且△ABP 周长最小,求点P 的坐标;(3)点E 在直角坐标平面内,点B 、C 、D 、E 是一个平行四边形的四个顶点,求点E 的坐标.【解题过程】解:(1)∵抛物线y=﹣x 2+bx+c ,对称轴是直线x=﹣2, ∴2)1(2-=-⨯-b,得b=﹣4,………………………………………………1分∵抛物线y=﹣x 2+bx+c 与x 轴交于点A 、C ,与y 轴交于点B ,它的顶点是D ,且OB=OC , ∴点B 的坐标为(0,c ),点C 的坐标为(﹣c ,0),∴0=﹣(﹣c )2﹣4×(﹣c )+c ,……………………………………………………3分 解得c=0(舍去)或c=5,∴抛物线的解析式是y=﹣x 2﹣4x+5.………………………………………………4分(2)∵抛物线的解析式是y=﹣x 2﹣4x+5=﹣(x+2)2+9,∴点D 的坐标为(﹣2,9).对称轴为x=-2…………………………………………5分 令x=0,y=5,即点B (0,5);令y=0,﹣x 2﹣4x+5=0,解得x=﹣5,或x=1,即点C (﹣5,0),点A (1,0).……………………………………………………6分 设直线BC 的解析式为y=kx+5. ∵点C (﹣5,0)在直线BC 上, ∴0=﹣5k+5,解得:k=1,即直线BC 的解析式为y=x+5.…………………………………………………………7分 当x=-2时,y=-2+5=3,故BC 与对称轴的交点为(-2,3)由点A 、点C 关于抛物线的对称轴对称,则BC 与对称轴的交点为P 时,PA+PB 最小,而AB 不变,故△ABP 周长最小;∴△ABP 周长最小时,点P 的坐标为(-2,3)…………………………………………8分 (3)点E 在直角坐标平面内,点B 、C 、D 、E 是一个平行四边形的四个顶点分三种情况: ①以CD 为对角线时,如图1所示.令线段CD 的中点为F ,由平行四边形的性质可知:点F 为CD 的中点,点F 还是BE 的中点.∵点C (﹣5,0),点D (﹣2,9),∴x F =272)2(5-=-+-,y F =29290=+, ∴点F 坐标为(﹣27,29), ∵点B (0,5),∴x E =2×(﹣27)﹣0=﹣7,y E =2×29﹣5=4, 即此时点E 的坐标为(﹣7,4);…………………………………………………………10分 ②以BC 为对角线,如图2所示.令线段BC 的中点为F ,由平行四边形的性质可知:点F 为BC 的中点,点F 还是DE 的中点.∵点B (0,5),点C (﹣5,0),∴x F =25205-=+-,y F =25205=+, ∴点F 的坐标为(﹣25,25), ∵点D (﹣2,9),∴x E =2×(﹣25)﹣(﹣2)=﹣3,y E =2×25﹣9=﹣4, 即此时点E 的坐标为(﹣3,﹣4);……………………………………………………12分 ③以BD 为对角线,如图3所示.令线段BD 的中点为F ,由平行四边形的性质可知:点F 为BD 的中点,点F 还是CE 的中点.∵点B (0,5),点D (﹣2,9),∴x F =1202-=+-,y F =7295=+, ∴点F 的坐标为(﹣1,7),∵点C (﹣5,0),∴x E =2×(﹣1)﹣(﹣5)=3,y E =2×7﹣0=14,即此时点E 的坐标为(3,14).……………………………………………………14分 综上可知:满足条件的点E 的坐标为:(﹣7,4)、(﹣3,﹣4)和(3,14).。

相关文档
最新文档