数学物理方程题库

合集下载

数学物理方程习题

数学物理方程习题
1 定理的叙述: 若u(Q)在A点附近调和, u(Q) = o(1) r(A,Q , 则可补充u(Q)在A之 )
值使得u(Q)在A点得邻域中调和. 16.设P 为常系数线性偏微分算子,且有基本解E (x), 满足singsuppE = {0}则P 为亚椭圆的。 (Thm6.3.2) 第七章热传导方程 1.求解热传导算子的基本解 2.求解热传导方程的Cauchy问题 { ∂u − a2 ∆u = f (x, t) t > 0 ∂t u(x, t)|t=0 = φ(x) 3.求解热传导方程的初边值问题. {
∑ 1 ξ α ∂ α uP α (x, η ) α ! α
是一个重要的公式,称为推广的莱布尼茨公式.又以后对任一函数F (x, ξ )恒
β α 记F(β ) (x, ξ ) = ∂x ∂ξ F (x, ξ ),即下标表示对x求导,上标表示对ξ 求导. (α)
8.设有C ∞ (R)函数列{fn (x)}满足 1
d2 dx2 d + dx
α, α ∈ R .
2 + ∂r , 其中r =
第六章Laplace方程
n −1 ∂r r 3
√ 2 x2 1 + ... + xn
2.设开集Ω ⊂ R 有界,边界∂ Ω光滑,u(x) ∈ C 2 (Ω) ∩ C 1 (Ω), Q ∈ Ω 证明 ∫ 1 ∂u ∫ ∫ ∆u u ∂ ( 1 )ds − 41 u(Q) = 41 ds − 41 dx π ∂ Ω r ∂n π ∂ Ω ∂n r π Ω r 3.证明球面平均值公式,球体平均值公式 4.证明调和函数的极值原理 5.利用极值原理证明以下Dirichlet问题的唯一性和稳定性 ∆u = 0 u|∂ Ω = f 6.利用Green函数求解上半平面的Dirichlet问题 ∆u(x, y ) = 0 y > 0 u|y=0 = f (x) 7.利用Green函数求解圆Ω上的Dirichlet问题 ∆u = 0 u|∂ Ω = f (x) ¯ ∩ C 2 (Ω), 证明: 8.设Ω = BR (Q)(以Q为心、 R为半径的开圆域), u ∈ C (Ω) ∫∫ ∫∫∫ 1 (1).u(Q) = 4πR )∆udx. u(P )dSp + 41 (1 − 1 2 π r ∂BR (Q) BR (Q) R ∫ ∫ 1 (2).若∆u ≥ 0, 则u(Ω) ≤ 4πR2 u(P )dSp . ∂BR (Q) 9.证明第一格林公式 ∫ ∫ u

数学物理方程练习题

数学物理方程练习题

σf 4dSdt.
根据热量平衡有 故所求边界条件为
−k
∂u ∂n
dSdt
=
σu4dSdt

σf
4dSdt.
−k
∂u ∂n
=
σ(u4
− f 4).
齐海涛 (SDU)
数学物理方程
2012-10-3 12 / 49
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
dQ = −βQ, dt Q(0) = Q0,
⇒ Q(t) = Q0e−βt.
易知 t1 到 t2 时刻, 砼内任一区域 Ω 中的热量的增加等于从 Ω 外部流入 Ω 的热量及砼中的水化热之和, 即
齐海涛 (SDU)
数学物理方程
2012-10-3 7 / 49
热传导方程及其定解问题的导出
∫ t2 cρ ∂u dtdxdydz =
.
热传导方程
.
Heat Equations
齐海涛
山东大学(威海)数学与统计学院
htqisdu@
齐海涛 (SDU)
数学物理方程
2012-10-3 1 / 49
目录
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
热传导方程及其定解问题的导出
.E.xample 1.2
.试直接推导扩散过程所满足的微分方程.
解: 设 N(x, y, z, t) 表示在时刻 t, (x, y, z) 点处扩散物质的浓度, D(x, y, z) 为 扩散系数, 在无穷小时间段 dt 内, 通过无穷小曲面块 dS 的质量为

数学物理方法习题集

数学物理方法习题集

数学物理方法习题集第一章 复数与复变函数习题1,计算:(1),1)(1i ---。

(2),iii i 524321-+-+。

(3),5(1)(2)(3)i i i ---。

(4),4(1)i -。

(5),bi a +。

2,求下列复数的实部u 与虚部v ,模r 与幅角θ:(1),ii i i 524321----。

(2),1(2n+, 4,3,2=n 。

(3),i +1。

(4),3)i -。

(5),231i -。

3,设211i z +=,i z -=32,试用三角形表示21z z 及21z z 。

4,若21=+Z z θcos ,证明21=+m m zz θm cos 。

5,求下列复数z 的主幅角z arg :(1),iz 312+-=。

(2),6)z i =-。

6,用指数形式证明:(1),(1)2i i -+=+。

(2),i ii2125+=+。

(3),7(1)8(1)i i -+=-+。

(4),1011(12(1)--=-。

7,试解方程44(0)z a a +=>。

8,证明:(1),1212Re()Re()Re()z z z z +=+ ;一般1212Re()Re()Re()z z z z ≠。

(2),1212Im()Im()Im()z z z z +=+ ;一般1212Im()Im()Im()z z z z ≠。

(3),2121z z z z = ;一般2121z z z z +≠+。

9,证明:(1),2121z z z z +=±。

(2),2121z z z z ⋅=。

(3),1122(z zz z = (02≠z )。

(4),121212122Re()2Re()z z z z z z z z +==。

(5),()z z ≤Re ,()z z ≤Im 。

(6),2121212z z z z z z ≤+。

(7),222121212()()z z z z z z -≤+≤+。

数学物理方程作业

数学物理方程作业

习题2.12. 长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆做自由振动。

试写出方程的定解条件。

解:边界条件:u(x,t)|0=x =0自由端x=L ,u x |L x ==0初始条件:u(x,t)|0=t =x Lbu t |0=t =0 习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。

试导出杆上温度u 满足的方程。

解:热传导的热量=温度升高吸收的热量+侧面热交换的热量rdxdtu u k t x u dt t x u dx r c dt t x u t dx x u r k x x πρππ2)()],(),([)],(),([1122-+-+=-+即为:rdxdt u u k dt dxu r c dxdt u r k t xx πρππ2)(1122-+=)(211u u k ru c kru t xx -+=ρ所以温度u 满足的方程为r c u u k u c ku xx t ρρ)(211--=-习题2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=∙VdV dS E ρε1,求证:ερ=∙∇E ,并由此导出静电势u 所满足的Poisson 方程。

证明:⎰⎰∙S dS E =⎰⎰⎰⎰⎰⎰=∙∇VVdV EdV ρε 1所以ερ=∙∇E 又因为ερϕϕϕ=-∇=-∇∙∇=∙∇⇒∙-∇=2)(E E 习题2.4 2.(2)032=-+yy xy xx u u u 解: 特征方程:032)(2=--dx dy dx dy ,则有1-3或=dxdy即为 13c x y += 2c x y +-= 令x y +=η x y 3-=ξ 则由:ηηξηξξu u u u xx +-=69 ηηξηξξu u u u xy +--=23 ηηξηξξu u u u yy ++=2 推得 0=ξηu则解得 )()3()()(x y g x y f g f u ++-=+=ηξ (5)031616=++yy xy xx u u u 解:由特征方程:0316)(162=+-dxdydxdy解得4143或=dx dy 则可令 x y -=4ξ x y 34-=η所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=4431y x y x Q ηηξξ 因此=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T Q a a a a Q a a a a 2212121122121211⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡03232022121211a a a a 即032=-ξηu所以)34()4(x y g x y f u -+-= 习题2.6 1.(3).证明)0(||)()(≠=a a x ax δδ证明:当0>a 时a dx x a ax d ax a dx ax 1)(1)()(1)(===⎰⎰⎰+∞∞-+∞∞-+∞∞-δδδ所以)0()()(≠=a ax ax δδ 当0<a 时adx x a ax d ax adx ax dx ax 1)(1)()(1)()(-=-=---=-=⎰⎰⎰⎰∞+∞-+∞∞-+∞∞-+∞∞-δδδδ所以)0()()(≠-=a ax ax δδ 综上:)0(||)()(≠=a a x ax δδ习题3.13.(4)求解边值问题的固有值和固有函数⎩⎨⎧=+'==+''==0][,0|002L x x hX X X X X β解:当0=β时,B Ax x X +=)(代入边值条件得:B X x ===0|00100)(][=+=⇒=+=+'=hL A AL h A hX X L x 或 所以当010=+≠hL A 且时Ax x X =)(当010≠+=hL A 且时0)(=x X 当0>β时,)sin()cos()(x B x A x X ββ+= 代入边值条件得:A X x ===0|00)sin()cos(][=+=+'=L hB L B hX X L x βββ 解得:L hn βββtan -=为的正根所以)sin()(x x X n n β= 当0<β时,无解。

数学物理方程第三章练习题

数学物理方程第三章练习题

2012-10-3 3 / 69
建立方程、定解条件
∂2u ∂x2i
=
x2i r2
f
′′(r)
+
( 1 r

x2i r3
)
f
′(r),
(i = 1, 2, . . . , n)
将上式代入调和方程得
f
′′(r)
+
n

1 f
′(r)
=
0,
r

f ′′(r) f ′(r)
=
−n
− r
1.
对上式两边积分即得结论.
πx a
,
u(x, b)
=
0.
齐海涛 (SDU)
数学物理方程
2012-10-3 17 / 69
建立方程、定解条件
.E.xample 1.6
用分离变量法求解由下述调和方程的第一边值问题所描述的矩形平板 (0 ≤ x ≤ a, 0 ≤ y ≤ b) 上的稳定温度分布:
.
uxx + uyy = 0,
u(0, y) = u(a, y) = 0,
,
∂r ∂R
=
sin θ,
∂θ ∂R
=
cos θ . r
由 (1.2) 及 (1.3) 知
(1.3)
∂2u ∂z2
=
cos2
θ
∂2u ∂r2
+
sin2 r2
θ
∂2u ∂θ2
+
sin2 r
θ
∂u ∂r
+
sin 2θ r2
∂u ∂θ

sin 2θ r
∂2u ∂r∂θ
,

数学物理方程第三章练习题

数学物理方程第三章练习题

∂u ∂r

sin θ r
∂u ∂θ
,
∂u ∂R
=
sin
θ
∂u ∂r
+
cos θ r
∂u ∂θ
.
R2 + z2 = r2,
tan θ
=
R z
,
(1.1) (1.2)
齐海涛 (SDU)
数学物理方程
2012-10-3 6 / 69
建立方程、定解条件
故有
∂r ∂z
=
cos θ,
∂θ ∂z
=

sin r
θ
H1
=
√( ∂x )2 ∂q1
( ∂y )2 + ∂q1
+
(
∂z ∂q1
)2 ,
H2
=
√( ∂x )2 ∂q2
( ∂y )2 + ∂q2
+
(
∂z ∂q2
)2 ,
H3
=
√( ∂x )2 ∂q3
( ∂y )2 + ∂q3
+
(
∂z ∂q3
)2 ,
齐海涛 (SDU)
数学物理方程
2012-10-3
8 / 69
数学物理方程
2012-10-3 2 / 69
1. 建立方程、定解条件 2. 格林公式及其应用 3. 格林函数 4. 强极值原理、第二边值问题解的唯一性
齐海涛 (SDU)
数学物理方程
2012-10-3 3 / 69
建立方程、定解条件
.E.xample 1.1

设 u(x1, . . . , xn) = f(r) (其中 r = x21 + · · · + x2n ) 是 n 维调和函数, 试证明

数学物理方程考试试题及解答

数学物理方程考试试题及解答

数学物理方程试题(一)一、填空题(每小题5分, 共20分)1.长为 的两端固定的弦的自由振动, 如果初始位移为 , 初始速度为x 2cos 。

则其定解条件是2.方程.的通解................3.已知边值问题 , 则其固有函数 =4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分, 共15分)1. 拉普拉斯方程 的一个解是.. )(A )xy e y x u x sin ),(= (B )22),(y x y x u +=(C )221),(y x y x u += (D )22ln),(y x y x u += 2.一细杆中每点都在发散热量, 其热流密度为 ,热传导系数为 , 侧面绝热,体密度为 ,比热为 , 则热传导方程....)(A )ρc t x F x u a t u),(22222+∂∂=∂∂ (B )ρc t x F x u a t u ),(222+∂∂=∂∂ (C ) ρc t x u x F a t F ),(22222+∂∂=∂∂ (D) ρc t x u x F a t F ),(222+∂∂=∂∂ (其中ρc k a =2) 3.理想传输线上电压问题( 其中CL a 12=)的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(=(C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω1. 三.解下列问题2. ( 本题8分) 求问题 ⎪⎩⎪⎨⎧==∂∂+∂∂x ex u yu x u 38)0,(03的解3. ( 本题8分)⎪⎪⎩⎪⎪⎨⎧=-==∂∂∂222),0(,cos 1)0,(6y y u x x u y x y x u...本题8分.求问. 的解1. 四.用适当的方法解下列问题2. ( 本题8分) 解问题 ⎪⎩⎪⎨⎧+-=∂∂=∂∂2222321)0,(x x x u x u a t u 2.( 本题8分) 解问题 ⎪⎪⎩⎪⎪⎨⎧=∂∂+=∂∂+∂∂+∂∂=∂∂==202202222222226,32)(y t uxz y u z u y u x u a t u t t 五. ( 本题10分)解混合问题:六. ( 本题15分)用分离变量法解下列混合问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂-===∂∂=∂∂=xt u x x x u t u t u x u a t u t 2sin 3,)(2)0,(0),(),0(022222ππ 一.单项选择题(每小题4分, 共20分)1.(D..2.(B..3.(D..4.(D )二.填空题(每空4分, 共24分)1....2...3.. ,4.)(x X n =cos ,(0,1,2,3,)2n n x B n π= 5.通解为223(,)()()2u x t x y f x g y =++ 三.解下列问..本题7分.1. 求问题 的解解: 设 (2分)代入方程,330,1m m +==- (6分)所以解为 3(,)8x y u x t e -= (7分)2. ( 本题7分) 求问题 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂=∂∂=20222223,2sin )0,(x t ux x u x u a t u t 的解 解: 由达朗贝尔公式, 得211(,)[sin 2()sin 2()]322x at x at u x t x at x at d aξξ+-=++-+⎰(3分) 223cos 2sin 23at x x t a t =++ (7分)四.用适当的方法解下列问题1. .本题7分.解问.解: 设代入方程,令 2066A A a x''=⎧⎨=+⎩ 显然成立 解为 22(,)12366u x t x x a t xt =-+++2.( 本题7分) 解问题 ⎪⎪⎩⎪⎪⎨⎧=∂∂++=∂∂+∂∂+∂∂=∂∂==202202222222226,32)(y t u yz y x u z u y u x u a t u t t 解: 设 (2分)代入方程22326[(212)(12)]A Bt a y At t Bt +=++∆++∆ (4分)令 , 显然成立, 解为322222632),(t a t y t a yz y x t x u +++++=五. ( 本题7分)解混合问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧===∂∂=∂∂x x u t u t u x u a t u πsin 2)0,(0),1(),0(222 解1(,){(,)}u x t L U x s -=222sin a t e x ππ-= 六. ( 本题15分)用分离变量法解下列混合问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂-===∂∂=∂∂=xt u x x x u t u t u x u a t u t 2sin 3,)(2)0,(0),(),0(022222ππ 解: 设 代入方程及边界200(0)()0T a T X X X X λλπ''⎧+=⎪''+=⎨⎪==⎩22(),sin n n n n X nx πλπ=== (cos sin )sin n n n u C ant D ant nx =+1(,)(cos sin )sin n n n u x t C ant D ant nx ∞==+∑其中 3028[1(1)]()sin n n C x x nxdx n ππππ--=-=⎰ 00(2)23sin 2sin 3(2)n n D x nxdx n aππ≠⎧⎪==⎨=⎪⎩⎰ 所以解为3138[1(1)](,)sin 2sin 2cos sin n n u x t at x ant nx a n π∞=--=+∑2009-2010学年第一学期数学物理方程试题一、 填空题(每小题4分, 共24分)1.方程.的特征线..........2.长为 的弦做微小的横振动, 、 两端固定, 且在初始时刻处于水平状态, 初始速度为 .则其定解条件.................3.方程 的通解.........4.已知边值问. .. 则其固有函数)(x X n =5.方程 的通解............6...........二. 单项选择题(每小题4分, 共20分)1.微分方程.是..)(A )三阶线性偏微分方程 (B )三阶非线性偏微分方程(C )三阶线性齐次常微分方.....(D )三阶非线性常微分方程2. 拉普拉斯方程 的一个解是.. )(A )xy e y x u x sin ),(= (B )22),(y x y x u +=(C )221),(y x y x u += (D )22ln),(y x y x u += 3.一细杆中每点都在发散热量, 其热流密度为 ,热传导系数为 , 侧面绝热,体密度为 ,比热为 , 则热传导方程....)(A )ρc t x F x u a t u),(22222+∂∂=∂∂ (B )ρc t x F x u a t u ),(222+∂∂=∂∂ (C ) ρc t x u x F a t F ),(22222+∂∂=∂∂ (D) ρc t x u x F a t F ),(222+∂∂=∂∂ (其中ρc k a =2) 4.理想传输线上电压问题(A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(=(C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω5.单位半径的圆板的热传导混合问题⎪⎩⎪⎨⎧=<=<∂∂+∂∂=∂∂)()0,(,),(,0),1()1()1(222ρρρρρρρf u M t u t u u u a t u 有形如( )的级数解。

数学物理方程题库

数学物理方程题库

=
0,
ut
(
x,
0
)
=
0
解:根据齐次化原理,可将问题转化为求解问题
⎧⎪htt = a2hxx (−∞ < x < ∞, t > τ )
⎨ ⎪⎩h
(
x,τ
)
=
0,
ut
(
x,τ
)
=
x
+

由达朗贝尔公式得到
∫ h ( x,t,τ ) =
1
x+a(t −τ )
(ξ + at ) dξ = −aτ 2 + (at − x)τ + +xt.
)
=
f1
(
x
+t)
+
f2
(
x
−t)

⎛ ⎜ ⎝
x−t 2
⎞ ⎟ ⎠

⎛ ⎜ ⎝
x+t 2
⎞ ⎟ ⎠

⎡⎣
f2
(
0)
+
f1
(
0)⎤⎦

⎛ ⎜ ⎝
x −t 2
⎞ ⎟ ⎠

⎛ ⎜ ⎝
x
+t 2
⎞ ⎟ ⎠
−ϕ
(
0)
8
9, 求定解问题
⎧utt = a2uxx (0 < x < ∞, t > 0)

⎪ ⎨ ⎪
+
a22
∂ 2ξ ∂y 2
=0
B1
=
a1 1
∂ 2η ∂x2
+
a12
∂ 2η ∂x∂y

苏教版五年级下册解物理方程练习题

苏教版五年级下册解物理方程练习题

苏教版五年级下册解物理方程练习题题目一一辆汽车在4小时内以60km/h的速度行驶了多远?解答根据速度等于路程除以时间的公式,我们可以计算出汽车行驶的路程。

速度 = 路程 ÷时间将已知信息代入公式:60km/h = 路程 ÷ 4小时解方程,得到:路程 = 60km/h × 4小时 = 240公里因此,这辆汽车在4小时内行驶了240公里。

题目二小明从家到学校骑自行车,整个行程时长为30分钟。

如果小明骑自行车的平均速度为20km/h,那么他骑车的路程是多少?解答根据速度等于路程除以时间的公式,我们可以计算出小明骑车的路程。

速度 = 路程 ÷时间将已知信息代入公式:20km/h = 路程 ÷ 30分钟为了方便计算,将时间转换为小时:30分钟 = 30 ÷ 60 = 0.5小时解方程,得到:路程 = 20km/h × 0.5小时 = 10公里因此,小明骑车的路程为10公里。

题目三甲乙两辆汽车同时从相距200公里的两地出发,甲车以每小时80公里的速度前进,乙车以每小时60公里的速度前进。

请问多少小时后,两辆车相遇?解答我们可以使用距离等于速度乘以时间的公式,来计算甲乙两辆车相遇所需的时间。

甲车前进的路程等于乙车前进的路程,因为两辆车相遇。

甲车的速度 = 80公里/小时乙车的速度 = 60公里/小时将已知信息代入公式:甲车的路程 = 乙车的路程80公里/小时 ×时间 = 60公里/小时 ×时间解方程,得到:80时间 = 60时间20时间 = 200公里时间 = 200公里 ÷ 20 = 10小时因此,甲乙两辆车将会在10小时后相遇。

以上就是苏教版五年级下册解物理方程练习题的解答。

希望能对你有所帮助!。

数学物理方程练习题第九版(学生用)

数学物理方程练习题第九版(学生用)

u(r, π=) 2
0,
0 < r < 1,
u(1,θ )=
θ (π −θ ), 2
0<θ < π . 2
练习六
3
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
2.求解如下定解问题:
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
保持零度,而外圆温度保持 u0 (u0 > 0) 度,试求稳恒状态下该导热版的温度分布
规律 u(r,θ ) . 问题归结为在稳恒状态下,求解拉普拉斯方程 ∆u= uxx + uy问题:
u1r (∂r∂1r,θ= )r
∂u ∂r
0,
+ 1 ∂2=u r 2 ∂θ 2 u(r2 ,θ=)
= u(0, t) s= in t, ux (π ,t) 0,
u(x,0) = 0.
4
3. 求解以下定解问题:
= uu= (t0,tu) xx
+2ux , u= (1, t )

数学物理方程复习题

数学物理方程复习题

2.问初始条件)(x ϕ与)(x ψ满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波组成?解:波动方程的通解为 u=F(x-at)+G(x+at)其中F ,G 由初始条件)(x ϕ与)(x ψ决定。

初值问题的解仅由右传播组成,必须且只须对 于任何t x ,有 G(x+at)≡常数. 即对任何x, G(x)≡C 0又 G (x )=⎰-+xx aC d ax 02)(21)(21ααψϕ所以)(),(x x ψϕ应满足 +)(x ϕ⎰=xx C d a1)(1ααψ(常数)或'ϕ(x)+)(1x aψ=03.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x ua t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)所以 F(x)=)2(x ψ-G(0). G (x )=)2(xϕ-F(0).且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2atx ++)2(at x -ψ-).0(ϕ即为古尔沙问题的解。

1. 用分离变量法求下列问题的解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧==<<-=∂∂=∂∂=∂∂==0),(),0()0()1(,3sin 022222t l u t u l x x x t u l x u x u a t u ot t π解:边界条件齐次的且是第一类的,令)()(),(t T x X t x u =得固有函数x ln x X n πsin)(=,且 t lan B t lan A t T n n n ππsincos)(+=,)2,1( =n于是 ∑∞=+=1sin)sincos(),(n n n x ln t lan B t lan A t x u πππ今由始值确定常数n A 及n B ,由始值得 ∑∞==1s i n3s i nn n x ln A lx ππ∑∞==-1sin)(n n x ln B lan x l x ππ所以 ,13=A ,0=n A 当3≠n ⎰-=ln x d x ln x l x an B 0sin)(2ππ⎩⎨⎧ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-=x l n x n l x l n n lx l n x n l l an πππππππcos sincos 22222)}))1(1(4cos2sin24430333222nlan lxln n lx ln n x l --=--πππππ因此所求解为∑∞=--+=1443s i ns i n)1(143s i n 3c o s ),(n nx ln t lan na lx l t l a t x u πππππ(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂==∂∂==∂∂-∂∂0)0,(,)0,(0),(0),0(022222x tu x l h x u t l tu t u x ua t u 解:边界条件齐次的,令 )()(),(t T x X t x u =得:⎩⎨⎧='==+''0)(,0)0(0l X X X X λ (1)及 )2(02=+''X a T λ。

数学物理方程习题解答案

数学物理方程习题解答案

数学物理方程习题解习题一1, 验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。

证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =-⋅⋅=-+++-⋅-=-=++=-⋅⋅=-+++-⋅-=-=++--+=+=++所以(,)lnu x y =是方程0xx yy u u +=的解。

(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=-⋅所以 s i ns i n 0x xxx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。

2,证明:()()u f x g y =满足方程: 0xy x y uu u u -= ,其中f 和g 都是任意的二次可微函数。

证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''-=⋅-⋅⋅=得证。

3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。

数学物理方程第5章习题及答案

数学物理方程第5章习题及答案

11.设 {(x, y) | x2 y2 R2, y 0}, 考虑半圆域狄利克雷问题
u 0, x
u(x, y) (x, y),(x, y)
应用对称法求区域 上的格林函数。
解:该问题所求格林函数应满足
G (P, P0 ), P
G(P, P0 ) 0, P B(圆周) G(P, P0 ) 0, P L(x轴上的边界)
C1
1
4
解为 u 1
4 r
方法二: 本题中u只与r有关,则
所以
uxx
u yy
+uzz
=
1 r
(2ur
rurr )
2ur rurr 0 2rur r 2urr 0 (r 2ur )r 0 r 2ur C
ur
C r2
u
C1
1 r
C2
随后求解过程与方法一相同。
注:在球面坐标系中
uxx
记 G \ B ,则 G B ,在格林第二公式
(uv vu)d
(u
v n
v
u )ds n
中,令 v (P, P0 ),注意到 0 ,则有
ud
G
(u
G
n
u )ds n

ud (u u )ds (u u )ds
G
n n
B n n
在圆周B 上有
( 1
随后求解过程与方法一相同。
(3)uxx uyy +uzz =0,r 0
解:方法一: 三维拉普拉斯方程的基本解表示通解
1 u C1 r C2
lim u(r)=0
r
C2
0
u n |B(0, )
u n
B(0, )

数学物理方程期末考试题及答案

数学物理方程期末考试题及答案

数学物理方程期末考试题及答案一、选择题(每题2分,共10分)1. 以下哪一项不是数学物理方程的特点?A. 连续性B. 离散性C. 线性D. 非线性答案:B2. 波方程是描述什么的方程?A. 热传导B. 电磁波C. 机械波D. 流体动力学答案:C3. 拉普拉斯方程通常出现在哪种物理现象中?A. 热传导B. 流体流动C. 电磁场D. 弹性力学答案:C4. 以下哪个不是偏微分方程的解的性质?A. 唯一性B. 线性C. 稳定性D. 离散性答案:D5. 波动方程的解通常表示什么?A. 温度分布B. 电荷分布C. 压力分布D. 位移分布答案:D二、填空题(每空2分,共20分)6. 波动方程的基本形式是 _______。

答案:\( \frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \)7. 热传导方程,也称为________方程。

答案:傅里叶8. 拉普拉斯方程 \( \nabla^2 \phi = 0 \) 在静电学中描述的是________。

答案:电势9. 边界条件通常分为________和________。

答案:狄利克雷边界条件;诺伊曼边界条件10. 波动方程的一般解可以表示为________和________的叠加。

答案:基频解;高阶谐波三、简答题(每题10分,共30分)11. 解释什么是边界层的概念,并给出一个实际应用的例子。

答案:边界层是流体力学中的一个概念,指的是流体靠近物体表面处的一层非常薄的流体,其中速度梯度很大。

在边界层内,流体的速度从物体表面的零速度逐渐增加到与外部流体速度相匹配。

一个实际应用的例子是飞机的机翼,边界层的厚度和特性对飞机的升力和阻力有重要影响。

12. 描述什么是格林函数,并解释它在解决偏微分方程中的作用。

答案:格林函数是一种数学工具,用于解决线性偏微分方程。

它是一个特定的函数,当它与方程的算子相乘时,结果是一个狄利克雷问题,其解是原始方程的一个解。

数学物理方程 习题2

数学物理方程 习题2

数学物理方程习题2
1.一长为L的弹性体,固定其一端,而另一端沿其轴线方向拉长h后即放手,
让其作纵振动,试导出定解问题。

2.长为L的均匀细杆,侧面绝缘,一端温度为0,另一端有恒定热源q进入(即
单位时间内通过单位面积流入的热量),杆的初始温度分布为1
2
x(L−x),
试写出相应的定解问题。

3.设有一长为L的均匀柔软的弦作微小横幅振动,其平衡位置是x轴的区
间[0,L],让u表示横位移,弦的线密度为ρ,张力为T.在振动过程中受到一阻力,阻力的大小与位移速度成正比,比例系数为k,设初始位移为Φ(x),初始速度为0.在x=0处固定,在x=L处有一弹性支承,弹性强度为k,试写出弦的位移u(x,t)所满足的定解问题。

1。

数学物理方程 练习题

数学物理方程 练习题

数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2

∂2u ∂y2
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2

∂2u ∂y2
解: 特征方程:
α21 − α22 = 0.
特征方向 l 满足:
2012-10-3 13 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
齐海涛 (SDU)
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
解: 特征方程:
α20 = α21 + α22 + α23.
特征方向 l 满足:
α20 = α21 + α22 + α23,
α20 + α21 + α22 + α23 = 1.
√√


解得:
l
=

2 2
,
2 2
sin
θ
sin
β,
2 2
sin
θ
cos
β,
2 2
cos
θ),
其中
θ,
β
为任意参数.
齐海涛 (SDU)
(1.2)
ξ = α1x + α2y, η = α3x + α4y,

成都理工大学数学物理方程题库

成都理工大学数学物理方程题库

《数学物理方程》模拟试题一、填空题(3分10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) .3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) .4.边界条件 是第 ( )类边界条件,其中为边界.5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) .6.由贝塞尔函数的递推公式有 ( ) .7.根据勒让德多项式的表达式有= ( ).8.计算积分 ( ).9.勒让德多项式的微分表达式为( ) .10.二维拉普拉斯方程的基本解是( ) .⨯f u nuS=+∂∂)(σS ),(t x u ),(t U ω22222x u a t u ∂∂=∂∂=)(0x J dxd)(31)(3202x P x P +=⎰-dx x P 2112)]([)(1x P二、试用分离变量法求以下定解问题(30分):1.2.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂== =><<∂∂=∂∂====30,0,3,0 0,30,2322222,0xtuxxtxxututtxuuu⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===xtxxutuuuutxx2,0,0,40,4223.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x ut u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)四、用积分变换法求解下列定解问题(10分):⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u ⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数,使它在球面上满足,即所提问题归结为以下定解问题(10分):(本题的只与有关,与无关)u θ21cos ==r u .0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r u θ,r ϕ《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. 3.. 4. 三.5..6..7..8..9.. 10..二、试用分离变量法求以下定解问题1.解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为2. 解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到)(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂01)(1222=∂∂+∂∂∂∂θρρρρρu u U a dt U d 2222ω-=)(1x J -2x 52)1(212-x dxd 2020)()(1lny y x x u -+-=)()(),(t T x X t x u =0)()(2''=+t T a t T λ0)()(''=+x X x X λ0)3()0(==X X λ0>λ2βλ=22223πβλn ==3s i n )(πn B x X n n =)(t T 32s i n32c o s )(;;t n D t n C t T n n n ππ+=,3s i n )32s i n 32c o s (),(1xn t n D t n C t x u n n n πππ+=∑∞=0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,3s i n )32c o s )1(18(),(11xn t n n t x u n n πππ+∞=-=∑)()(),(t T x X t x u =0)()('=+t T t T λ0)()(''=+x X x X λ0)4()0(==X X λ0>λ2βλ=为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为 3.解 由于边界条件和自由项均与t 无关,令,代入原方程中,将方程与边界条件同时齐次化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
0,
ut
(
x,
0
)
=
0
解:根据齐次化原理,可将问题转化为求解问题
⎧⎪htt = a2hxx (−∞ < x < ∞, t > τ )
⎨ ⎪⎩h
(
x,τ
)
=
0,
ut
(
x,τ
)
=
x
+

由达朗贝尔公式得到
∫ h ( x,t,τ ) =
1
x+a(t −τ )
(ξ + at ) dξ = −aτ 2 + (at − x)τ + +xt.
∂u ∂x
]x=0
=
h(x)(0

t
<
∞)
⎪⎩u ( x,0) = ux ( x,0) = 0
其中h( x)为已知连续可微函数。
解:通过变换µ
(t)
=
t
−a∫ h (τ
0
) dτ

(at ) +
1 a
at
∫φ
0

)dξ
=
t
−a∫
0
h (τ
) dτ
将ux (0,t )的问题转化成u (0, t)的问题。
4
3求解无界弦的自由振动,设弦的初始位移为ϕ(x), 初始速度为
−aϕ' (x).
解:初值问题为
⎧⎪utt = a2uxx ( −∞ < x < ∞)
⎨ ⎪⎩u
(
x,
0)
=
ϕ
(
x),ut
(
x,
0)
=
−aϕ
'
(
x)
根据题意,令u(x,t) = f1 ( x+ at) + f2 ( x−at)
由初始条件得
∂ξ ∂y
∂η ∂y
32 =−
3
A1
=
a11
∂ 2ξ ∂x 2
+
2 a12
∂ 2ξ ∂x∂y
+
a22
∂ 2ξ ∂y 2
+
b1
∂ξ ∂y
=0
B1
=
a11
∂ 2η ∂x 2
+
2 a12
∂ 2η ∂x∂y
+
a22
∂ 2η ∂y 2
+
b1
∂η ∂y
=0
∂ 2U
所以
=0
∂ξ∂η
3
2确定初值问题
⎧⎪utt = a2uxx (−∞ < x < ∞)

∫ ⎪
于是得到,⎪⎨ ⎪
∫ ⎪

f1 f2
( (
x) x)
= =
cos 2
cos 2
x x
+ −
1 2a
1 2a
x
x0 x
x0
e−1dξ e−1dξ
+ −
c 2a
c 2a
∫∫ ⇒
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
f1 f2
( (
x x
+ −
at ) at )
= =
cos ( cos (
x+ 2
x− 2
at at
) )
+ +
1 2a
1 2a
x+at
e−1dξ +
c
x0
2a
x0 e−1dξ − c
( x−at)
2a
⇒ u(x,t) = f1 ( x + at ) + f2 ( x − at )
∫ =
1 2
⎡⎣cos (
x
+
at
)
+
cos (
x

at
)⎤⎦
+
1 2a
x+at x −at
e−1dξ
= cos x cos at + t e
此 时 原 方 程 可 以 转 化 为 2A 22
∂2u ∂η 2
+
A
1
∂u ∂ξ
+
∂u B1 ∂η
=
0
其 中 , A 22
=
a1 1
⎛ ⎜ ⎝
∂η ∂x
2
⎞ ⎟ ⎠
+ 2a12
∂η ∂x
∂η ∂y
⎛ ∂η
+
a22
⎜ ⎝
∂y
2
⎞ ⎟ ⎠
=
y2
A1
=
a1 1
∂ 2ξ ∂x 2
+
2 a12
∂ 2ξ ∂x∂y
所以16 ∂2U + (y+sinx ) ∂U + (y+sinx ) ∂U = 0
∂ξ∂η
∂ξ
∂η
由于y+sinx= ξ +η ,所以上式可以变为关于ξ,η得标准方程 2
∂2u ξ +η ⎛ ∂u ∂u ⎞
+ ∂ξ∂η
32
⎜ ⎝
∂ξ
+
∂η
⎟ ⎠
=
0
1
2) x 2u xx + 2 xyu xy + y 2u yy = 0
=
1 2
⎡⎣ϕ
(
x
+at)
+ϕ(
x
−at
)⎤⎦
+
1 2a
x+at

x−at
φ
(ξ)

∫ ∫ +
1
t x+a(t−τ)

f
(ξ,τ ) dξ,该非齐次方程的初值问题可以写成如下的的形式:
2a 0 x−a(t−τ)
∫ ∫ ∫ u(
x,t
)
=
1 2
⎡⎣(
x
+at
)
+(
x
−at
)⎤⎦
+
1 2a
x+at x−at
2a
⇒u(x,t) = f1( x+ at) + f2 ( x−at)
∫ =
1 2
⎡⎣ϕ
(
x
+
at
)

(
x

at
)
⎤⎦

1 2
x+at x−at
ϕ
'

)

=ϕ( x −at)
5
4求定解问题
⎧⎪utt = a2uxx + x + at (−∞ < x < ∞, t > 0)
⎨ ⎪⎩u
(
x,
0)
+
∂ξ ∂y
∂η ∂x
⎞ ⎟ + a22 ⎠
∂ξ ∂y
∂η ∂y
= −8
A1
=
a11
∂ 2ξ ∂x2
+ 2a12
∂ 2ξ ∂x∂y
+ a22
∂ 2ξ ∂y 2
+ b1
∂ξ ∂y
= − y − sin x
∂ 2η
∂ 2η
∂2η ∂η
B1 = a11 ∂x2 + 2a12 ∂x∂y + a22 ∂y2 + b1 ∂y = − y − sin x
+
该方程的一组特征微分方程为
⎪ ⎨
dx
⎪ dy
⎪ ⎩
dx
=
a12

a122 − a11a22 = 2 − cos x a11 a122 − a11a22 = −2 − cos x a11
积分得到特征曲线为
⎧ ⎨

y1 y2
= =
2x − sin x −2 x − sin
+ c1 x + c2

⎧c1 ⎨⎩c2
1,指出下列方程的类型并化为标准形式。
( ) 1) uxx − 2 cos xuxy − 3 + sin 2 x uyy − yuy = 0
解:方程的判别式∆ = a122 − a11a22 = ( − cos x)2 + 3 + sin 2 x = 4 > 0.
所以方程为双曲型。
⎧ dy ⎪
=

t
界条件得到,f (−at ) = −a∫ h (τ ) dτ,若令z=-at(z ≤ 0),得到:f ( z ) =
0
z −
a
−a ∫ h(τ ) dτ ,于是得到
0
t− x
u ( x,t ) =
f
( x − at)
=
−a
a

0
h(τ ) dτ
⎛ ⎜
t


x⎞
a
⎟ ⎠
−z a
当z > 0时定义 − a ∫ h(τ ) dτ = 0,于是所求问题的解为
u(x,0)
=
f1
(
x)
+
f2
(
x)

( x),ut
(
x,0)
=
af
' 1
(
x)

af2'
(
x)
=
−aϕ'
(x)
x
对上式积分得,a⎡⎣ f1 ( x) − f2 ( x)⎤⎦ = −∫ aϕ' (x) dξ + c
相关文档
最新文档