初三圆中常见的辅助线的

合集下载

数学人教版九年级上册圆中常见辅助线的做法

数学人教版九年级上册圆中常见辅助线的做法

第1题图
第2题图
小试牛刀 3.如图所示,已知:AB是⊙O的直径,点C,
D在⊙O上,∠ABC=50°,则∠D为(
A.50° B.45° C.40° D.30°
)
小试牛刀
4、如图 在平面直角坐标系中,一个圆经 过坐标原点O,OE=8、OF=6,则圆的直径 长为( ) A、12 B、10 C 、4 D、15
常常作直径所对的圆周角
归纳提炼
3、遇到90度的圆周角时
常常连结两条弦没有公共点的另 一端点
归纳提炼
4、遇到有切线时
常常作过切点的半径(连结圆心和 切点)
归纳提炼
5、遇到证切线时
若直线和圆的公共点还未确定, 则“作垂直,证半径” 若直线过圆上的某一点,则“连 半径,证垂直”
归纳提炼
6、遇到三角形内切圆时
九年级数学上册(人教版)
第二十四章

专题训练 圆中常见辅助线的画法
辽河油田实验中学
薛利
学习目标
1、归纳点灵活运用各种辅助线 完成圆的证明和计算。
归纳提炼
1、遇到弦时(解决有关弦的问题时)
常常作垂直于弦的半径(或直径), 再连结过弦的端点的半径
归纳提炼
2、遇到直径时
小试牛刀
5.如图所示,已知 MN 是⊙O 的直径,直线 PQ 与⊙O 相切于 P 点, NP 平分∠MNQ. 求证:NQ⊥PQ;
小试牛刀 6、如图点D在⊙O的直径AB的延长线上, 点C在⊙O上,AC=CD,∠D=30° ① 求证:CD是⊙O的切线 ② 若⊙O的半径为3,求弧BC的长。
小试牛刀 7、如图, △ABC中,E是内心,AE延长 线交△ABC的外接圆于点D。 求证:DE = DB
常常连结内心与三角形的顶点, 或过内心作三角形各边的垂线段

初中数学圆的辅助线八种作法

初中数学圆的辅助线八种作法

中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。

百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。

添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。

下面以几道题目为例加以说明。

1. 有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。

例1 如图1, O O的弦AB、CD相交于点P,且AC=BD。

求证:PO平分/ APD。

=> OE=OF ]/ OEP= / OFP=90 °=> △OPE^A OPF0OP=OP=> / OPE= / OPF => PO 平分/ APD分析2:如图1-1,欲证PO平分/ APD,即证分析1:由等弦AC=BD可得出等弧AC BD,进一步得出A B = C D,从而可证等弦AB=CD,由同圆中等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线丄CD,易证△ OPE^A OPF,得出PO平分/ APD。

证法1 :作OE丄AB于E, OF丄CD于F(=>(=AB CDAC=BD A C B D=> AB=CDOE丄AB, OF/ OPA= / OPD,可把/ OPA与/ OPD构造在两个三角形中,证三角形全等,于是不妨作辅助线即半径OA,OD,因此易证△ ACP^A DBP,得AP=DP,从而易证△ OPAOPDODP B图1-1证法2:连结OA, OD。

/ CAP= / BDP/ APC= / DPB => △ACP^A DBPAC=BD=>AP=DP、OA=O D => △ OPAOPD => / OPA= / OPD =>PO 平分/ APD OP=OP J2. 有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。

圆中常见的辅助线

圆中常见的辅助线
的底角等。
计算弧长
利用半径和直径,可以计算圆中的 弧长,如半圆、四分之一圆等。
证明定理
半径和直径在证明圆的定理中起到 关键作用,如垂径定理、切线长定 理等。
半径和直径的作法
作半径
从圆心出发,用直尺或圆规画出到圆上任意一点的线段。
作直径
通过圆心,用直尺或圆规画出穿过圆上任意两点的线段。
02 弦
定义与性质
弦的作法
01
02
03
04
通过作弦的中垂线来找到弦的 中点;
通过连接圆心和弦的一个端点 来找到弦;
通过作经过圆上两点的切线来 找到弦;
通过作经过圆心的直线来找到 弦。
03 切线
定义与性质
定义
切线是指与圆只有一个公共点的直线。
性质
切线与半径垂直,切线长度与半径相等,切线到圆心的距离为0。
切线在解题中的作用
定义
连接圆上任意两点的线段被称为圆的 弦。
性质
弦与直径垂直时,弦平分直径;同弦 所对的圆周角相等;弦长与半径成正 比。
弦在解题中的作用
利用弦的性质求角度
利用弦的性质证明定理
通过利用弦所对的圆周角相等,可以 求出某些角度。
通过利用弦的性质,可以证明一些与 圆有关的定理。
利用弦的性质求长度
利用弦长与半径的比例关系,可以求 出某些长度。
圆中常见的辅助线
目 录
• 半径和直径 •弦 • 切线 • 割线
01 半径和直径
定义与性质
定义
半径是连接圆心和圆上任意一点 的线段,直径是穿过圆心且两端 点在圆上的线段。
性质
半径长度等于圆的半径,直径长 度等于圆的直径。
半径和直径在解题中的作用

初中数学圆的辅助线八种作法

初中数学圆的辅助线八种作法

中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。

百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。

添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。

下面以几道题目为例加以说明。

1.有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。

例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。

求证:PO 平分∠APD 。

分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。

证法1:作OE ⊥AB 于E ,OF ⊥CD 于FAC=BD => = => ==> AB=CD => OE=OF∠OEP=∠OFP=90° => △OPE ≌△OPF0OP=OP=>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证AB(BD , (CD (D 图 1AC(AC (BD (AB (CD(∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。

证法2:连结OA ,OD 。

∠CAP=∠BDP∠APC=∠DPB =>△ACP ≌△DBP AC=BD=>AP=DPOA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP2.有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。

例谈圆中常见作辅助线的方法

例谈圆中常见作辅助线的方法

例谈圆中常见作辅助线的方法圆是初中几何部分的重要内容之一,与圆有关的大部分几何题型都需要添加辅助线来解决。

只要添上合适的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。

通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距(在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距)例1:如图1,ab为⊙o的直径,pq切⊙o于t,ac⊥pq于c,交⊙o于d,ad=2,tc=.求⊙o的半径。

解:过点o作om⊥ac于m,∴am=md=ad/2=1.∵pq切⊙o于t,∴ot⊥pq.又∵ac⊥pq,om⊥ac,∴∠otc=∠act=∠omc=90°,∴四边形otcm为矩形.∴om=tc=,∴在rt△aom中,.即⊙o的半径为2.例2:如图2,已知在以o为圆心的两个同心圆中,大圆的弦ab 交小圆于c、d两点.求证:ac=bd.证明:过点o作oe⊥ab于e,则ae=be,ce=de,∴ae-ce=be-de.∵ac=ae-ce,bd=be-de.∴ac=bd.二、连半径(与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径)例3:如图3,⊙o的直径cd=20cm,直线l⊥co,垂足为h,交⊙o于a、b两点,ab=16 cm,直线l平移多少厘米时能于⊙o相切?解:连接oa,∵l⊥co,∴oc平分ab∴ah=8cm.在rt△aho中,oh=6cm.∴ch=4cm,dh=16 cm.答:直线l向左平移4cm,或向右平移16cm时能于⊙o相切。

例4:如图4,pa是⊙o的切线,切点是a,过点a作ah⊥op于点h,交⊙o于点b.求证:pb是⊙o的切线.证明:连接oa、ob.∵pa是⊙o的切线,∴∠oap=90°.∵oa=ob,ab⊥op,∴∠aop=∠bop.又∵oa=ob,op=op,∴△aop≌△bop.∴∠opb=∠oap=90°.∴pb是⊙o的切线.三、既作弦心距又连半径(与半径和弦都有关的计算时,常作辅助线的方法是既作弦心距又连半径,利用勾股定理来解决)例5:直径为52厘米的圆柱形油槽内装入一些油后,截面如图5,若油最大深度为16厘米.那么油面宽度ab的长是多少厘米?解:连接oa,作oc⊥ab于c,则ac=bc=ab.在rt△oac中,oa=×52=26厘米,oc=26-16=10厘米,∴ac=24厘米.∴ab=2ac=48厘米.四、连弦构造相似三角形或直角三角形(在圆中与弦或其他有关的计算或证明时,常作辅助线的方法是连弦,利用同弧所对的圆周角相等连弦构造相似三角形或利用直径所对的圆周角为直角这个性质连弦构造出直角三角形,从而将问题转化到相似三角形或直角三角形中去计算或证明)例6:已知,如图6,在半径为4的⊙o中,ab,cd是两条直径,m为ob的中点,cm的延长线交⊙o于点e,且em>mc.连结de,de=. (1)求证:am·mb=em·mc;(2)求em的长;(3)求sin∠eob的值.解:(1)连接ac,eb,则∠cam=∠bem.又∠amc=∠emb,∴△amc∽△emb.∴,即am·mb=em·mc.(2)∵dc为⊙o的直径,∴∠dec=90°,ec=∵oa=ob=4,m为ob的中点,∴am=6,bm=2.设em=x,则cm=7-x. 代入(1),得6×2=x(7-x).解得x1=3,x2=4.但em>mc,∴em=4. (3)由(2)知,oe=em=4,作ef⊥ob于f,则of=mf=ob=1. 在rt△eof中,∴sin∠eob=.例7:如图7所示,△abc是直角三角形,∠abc=90°,以ab为直径的⊙o交ac于点e,点d是bc边的中点,连结de.(1)求证:de与⊙o相切;(2)若⊙o的半径为,de=3,求ae.(1)证明:连结oe,be,∵ab是直径,∴be⊥ac.∵d是bc的中点,∴de=db,∴∠dbe=∠deb.又oe=ob,∴∠obe=∠oeb,∴∠dbe+∠obe=∠dbe+∠oeb.即∠abd=∠oed.又∵∠abc=90°,∴∠oed=90°,∴de是⊙o的切线.(2)解:∵,∴,∴.五、作直径构造直角三角形(在圆中牵涉到三角函数的运算或与直径的计算与证明时,常作辅助线的方法是作直径,利用直径所对的圆周角是直角构造直角三角形,从而将问题转化到直角三角形中去解决)例8:如图8,点a、b、c在⊙o上(ac不过o点),若∠acb=60°,ab=6,求⊙o半径的长。

圆中常用的作辅助线的八种方法

圆中常用的作辅助线的八种方法
CD与⊙O相切,理由如下: 如图,作直径CE,连接AE. ∵CE是直径,∴∠EAC=90°. ∴∠E+∠ACE=90°. ∵CA=CB,∴∠B=∠CAB. ∵AB∥CD, ∴∠ACD=∠CAB. ∴∠B=∠ACD. 又∵∠B=∠E,∴∠ACD=∠E. ∴∠ACE+∠ACD=90°,即OC⊥DC. 又OC为⊙O的半径,∴CD与⊙O相切
习题课
阶段方法技巧训练(一)
202X
专训2 圆中常用的作辅助 线的八种方法
在解决有关圆的计算或证明题时,往往需要
添加辅助线,根据题目特点选择恰当的辅助线至
关重要.圆中常用的辅助线作法有:作半径,巧
用同圆的半径相等;连接圆上两点,巧用同弧所
对的圆周角相等;作直径,巧用直径所对的圆周
角是直角;证切线时“连半径,证垂直”以及
解:
又∵∠CDB=∠DBO,DE=BE,
02
∠CED=∠OEB,
03
∴△CDE≌△OBE.
∴S△CDE=S△OBE.
∴S阴影=S扇形OCB= π·62=6π(cm2).
证明:
求DE的长. 如图,连接BE. ∵AB是直径, ∴∠AEB=90°,∴BE⊥AC. ∵△ABC是等边三角形, ∴AE=EC,即E为AC的中点. ∵D是BC的中点,故DE为△ABC的中位线. ∴DE= AB= ×2=1. 解:
7 遇切线巧作过切点的半径 方法 8.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°, 点P是圆外一点,PA切⊙O于点A,且PA=PB.
解:
5
遇弦加弦心距或半径
方法
5.如图所示,在半径为5的⊙O中,AB,CD是互相 垂直的两条弦,垂足为P,且AB=CD=8,则OP 的长为( ) A.3 B.4 C.3 D.4

初三圆中常见的辅助线的相关定理有哪些?

初三圆中常见的辅助线的相关定理有哪些?

初三圆中常见的辅助线的相关定理有哪些?
圆是初中数学中常见的几何图形之一。

在圆的研究中,我们会
遇到一些辅助线。

辅助线可以帮助我们理解圆的性质和解决相关问题。

下面是初三圆中常见的辅助线的相关定理:
1. 中垂线定理
如果两条线段的中点连线垂直于这两条线段,则这两条线段的
中点连线是它们的中垂线,并且中垂线会经过圆心。

2. 弦的垂直定理
如果一条弦上的两个弧所对应的圆心角相等(或为180度),
则此弦为这两个弧的弦的垂直平分线。

3. 弦长定理
如果两条弦在圆上的弦长相等,则它们所对应的圆心角相等。

4. 切线垂直弦定理
切线和半径的垂直性定理:切线与过切点的半径垂直。

5. 切割弦定理
切线和弦的切割定理:当一条切线和一条弦相交时,它们所夹的弧所对应的圆心角相等。

这些定理在解决圆相关问题时具有重要的作用。

通过应用这些辅助线的相关定理,我们可以更好地理解圆的性质,推导出其他定理,并解决一些与圆相关的几何问题。

以上是初三圆中常见的辅助线的相关定理。

希望对你有帮助!。

初三圆中常见的辅助线的用途是什么?

初三圆中常见的辅助线的用途是什么?

初三圆中常见的辅助线的用途是什么?
辅助线在初三圆中起到了多种重要的作用。

1. 判断位置:辅助线可以帮助我们准确地确定圆的中心位置。

通过连接圆上不同点与圆心的辅助线,我们可以找到准确的圆心位置,并据此绘制图形或计算圆的相关属性。

2. 测量长度:辅助线可以用来测量圆上的弧长或弧度。

通过将
辅助线沿着圆周延伸,我们可以得到弧长或弧度的值,从而进行进
一步计算和比较。

3. 作为参考线:辅助线可以作为绘制其他几何图形时的参考线。

例如,在初三圆中,我们可以使用辅助线来绘制直径、半径、切线
等其他图形,在绘制过程中能够更加精确地确定位置和尺寸。

4. 视觉辅助:辅助线可以帮助我们获得更直观的视觉效果。


初三圆中,我们可以使用辅助线来描绘圆的形状、方向和对称性,
使图形更加清晰易懂。

总的来说,初三圆中常见的辅助线具有判断位置、测量长度、作为参考线和提供视觉辅助等多种用途。

理解和应用这些辅助线将有助于我们更好地理解和利用圆的性质和特点。

初三圆中常见的辅助线的

初三圆中常见的辅助线的

OCBAOCBAOCBA圆中常见的辅助线的作法1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。

【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点,那么OP 的长的取值范围是_________.2. 遇到有直径时常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。

【例3】如图,AB 是⊙O 的直径,AB=4,弦BC=2,∠B=3. 遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。

【例4】如图,AB 、AC 是⊙O 的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O 的半径是4.遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。

【例5】如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________.5.遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。

【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.(2)常常添加连结圆上一点和切点作用:可构成弦切角,从而利用弦切角定理。

6.遇到证明某一直线是圆的切线时(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

【例7】如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。

圆中常作哪些辅助线

圆中常作哪些辅助线

CM O N 圆中常作哪些辅助线?通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下:弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间.一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连.”.例 1.如图,AB是⊙O 的直径,PO⊥AB 交⊙O 于 P 点,弦 PN 与 AB 相交于点 M,求P证:PM•PN=2PO2.1分析:要证明PM•P N=2PO²,即证明PM•PN =POA B2²,1过 O 点作 OC⊥PN 于 C,根据垂经定理PN =PC,只需证明2。

⨯。

∆PMOPM•PC=PO²,由PO = P M,“三点定型”法可判断需证明 Rt△POC∽Rt△PMO.。

⨯ ∆POCPC PO1证明: 过圆心 O 作 OC⊥PN 于 C,∴PC= PN2∵PO⊥AB, OC⊥PN,∴∠MOP=∠OCP=900.又∵∠OPC=∠MPO,∴Rt△POC∽Rt△PMO.∴ PO = PC PM,即∴PO2= PM•PC. PO1∴PO2= PM•PN,∴PM•PN=2PO2.2二、连结半径圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径与切线相互垂直”都与圆的半径有关.连结半径是常用的方法之一.例 2.已知:△ABC 中,∠B=900,O 是 AB 上一点,以 O 为圆心,以 OB 为半径的圆切 AC 与 D 点,交 AB 与 E 点,AD=2,AE=1.求证:CD 的长. CD 分析:D 为切点,连结 DO,∠ODA=900.根据切线长定理AE O BCD=CB.DO=EO= 半径r,在Rt△ADO 中根据勾股定理或Rt△ADO~ Rt△ABC,求出CD.证明: 连结DO∴OD⊥AC 于 D, ∴∠OCP=900.∵AB 过 O 点, ∠B=900.∴BC 为⊙O 的切线, ∴CD=CB设 CD=CB=x,DO=EO=y在Rt△ADO 中,AO2 =AD2+ DO2,AD=2,AE=13∴(1+y)2=22+y2, ∴ y=23 3在Rt△ABC 中,AC2 =AB2+ BC2,即(2+x)2=(1+ + )2+x2, ∴x=32 2∴CD=3.三、连结公共弦D 在处理有关两圆相交的问题时,公共弦像一把AEBPAE“钥匙”,常常可以打开相应的“锁”,因此“遇到相交圆,连接公共弦.”。

中考复习讲义:圆的7种辅助线做法(方法总结+例题+巩固练习)(无答案)

中考复习讲义:圆的7种辅助线做法(方法总结+例题+巩固练习)(无答案)

9. (2018•德州)如图,AB 是⊙O 的直径,直线 CD 与⊙O 相切于点 C,且与 AB 的延长线交于点 E,点 C 是 的中点.
(1)求证:AD⊥CD; (2) 若∠CAD=30°, ⊙O 的半径为 3, 一只蚂蚁从点 B 出发, 沿着 BE﹣EC﹣ 回至点 B,求蚂蚁爬过的路程(π≈3.14, ≈1.73,结果保留一位小数) . 爬
10. 如图 AB 是⊙O 的直径,PA 与⊙O 相切于点 A,BP 与⊙O 相较于点 D,C 为 ⊙O 上的一点,分别连接 CB、CD,∠BCD=60°. (1)求∠ABD 的度数; (2)若 AB=6,求 PD 的长度.
方法详解: 一、连半径,构造等腰三角形 .
二、连弦心距
三、构造圆周角
四、连接圆心和切点得切线
五、连半径证垂直
六、内切圆,连内角平分线
七、构造三角形与扇形
真题反馈: 1. (2018•聊城)如图,⊙O 中,弦 BC 与半径 OA 相交于点 D,连接 AB,OC.若 ∠A=60°,∠ADC=85°,则∠C 的度数是( )
A.25° B.27.5°
C.30° D.35°
AB 是⊙O 的直径, OC=5cm, CD=8cm, 2. (2018•张家界) 如图, 弦 CD⊥AB 于点 E, 则 AE=( )
A.8cm B.5cm C.3cm D.2cm 3. (2018•通辽)已知⊙O 的半径为 10,圆心 O 到弦 AB 的距离为 5,则弦 AB 所对的圆周角的度数是( )
坏了花草,走出了一条小路 AB.通过计算可知,这些市民其实仅仅少 B 走了 步 (假设 1 步为 0.5 米, 结果保留整数) . (参考数据: ≈1.732,
π 取 3.142)

圆中常见的辅助线的作法

圆中常见的辅助线的作法
圆中常见的辅助线作法主要包括几种。首先是连半径构造等腰三角形,通过连接半径和弦,可以构造出等腰三角形,便于利用等腰三角形的性质解题。其次是创造90°或构造关的三种情况,通过连接相关线段,可以构造出直角三角形,从而利用直角三角形的性质解题。最后是证切线时常做的辅助线,无交点时作垂线,证明垂线段等于半径是关键;有交点时连接圆心和交点,关键是要证明直角三角形中的直角。这些辅助线作法在解题中非常实用,能够帮助我们更好地理解和应用圆的性质。通过掌握这些作法,我们可以更加灵活地解决与圆相关的各种问题。

初中数学圆的常用辅助线知识点

初中数学圆的常用辅助线知识点

初中数学圆的常用辅助线知识点圆的常用辅助线是指在解决与圆相关的问题时,通过引入一些特殊的辅助线,可以简化问题的步骤和求解的过程。

在初中数学中,常用的辅助线有弦、弧、切线、垂径等。

下面我将详细介绍一些常用的辅助线知识点,以及它们的引入和应用。

一、弦:1.定义:在圆上任取两点A、B,将其连接的线段AB称为圆的弦。

2.性质:(1)等幅弦:从圆的圆心引一条互相垂直于弦AB的直径CD,可以得出两条等幅弦AC和BD。

(2)等分弦:若弦AB平分弦CD的位置,且AN=NB,即AN=NB=ND,则可得出弦AB平分弦CD。

(3)垂直弦:若直径AD垂直于弦BC,即AD⊥BC,则可得出弦BC是直径AD上的线段。

(4)垂直弦截弦:若直径AD垂直于弦BC,即AD⊥BC,在圆上任取一点E,则可得出由DE与弦BC所构成的一对相交直线的乘积等于DE的平方,即DE²=EB×EC。

二、弧:1.定义:圆上相邻两点的连线所代表的弧叫做圆的弧。

2.弧长:圆的弧长度等于弧所对圆心角的大小。

3.弧所对的圆心角:圆心角是以圆心为顶点,两条弧所在直线为两腿的角。

4.弧所对的面积:圆上起始点和终止点之间的弧所对的扇形面积等于扇形的面积减去由对应弦所截取圆的面积。

三、切线:1.定义:切线是指与圆只有一个交点的直线。

2.性质:(1)切点所在半径垂直于切线。

(2)半径在切点上的长度等于切线与圆心的距离。

(3)由同一点引的切线相等。

(4)切线和半径之间的夹角等于切线所在弧所对的圆心角的一半。

四、垂径:1.定义:从圆心引一条垂直于弦的直径,叫做弦的垂径。

2.性质:(1)垂径恒垂直于弦,即垂径和弦互相垂直。

(2)垂径平分弦,即垂径把弦平分为两个等份。

(3)垂径间的距离始终保持不变。

五、割圆:1.定义:用直线割圆叫做割圆。

2.性质:(1)割圆的两个切线段相等。

(2)割圆的两个切线乘积等于割圆所截圆的弦乘积,即AB×CD=BC×DE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆中常见的辅助线的作法1.遇到弦时(解决有关弦的问题时)
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;
③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

【例1】如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。

【例2】如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,
那么OP的长的取值范围是_________.
2.遇到有直径时
常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。

【例3】如图,AB是⊙O的直径,AB=4,弦BC=2,
∠B=
3.遇到90°的圆周角时
常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。

【例4】如图,AB、AC是⊙O的的两条弦,∠BAC=90°,
AB=6,AC=8,⊙O的半径是
4.遇到弦时
常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;
②据圆周角的性质可得相等的圆周角。

【例5】如图,弦AB的长等于⊙O的半径,点C在弧AMB上,
则∠C的度数是________.
5.遇到有切线时
(1)常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。

【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.
(2)常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。

6.遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

【例7】如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。

求证:直线L与⊙O相切。

(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

【例8】如图,△ABO中,OA= OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F.求证:AB是⊙O切线;
7. 遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。

作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③全等、相似三角形。

【例9】如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是弧AB 上
任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周
长为12,则PA 长为______________
8. 遇到三角形的内切圆时
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。

作用:利用内心的性质,可得:

内心到三角形三个顶点的连线是三角形的角平分线;
② 内心到三角形三条边的距离相等。

【例10】如图,△ABC 中,∠A=45°,I 是内心,则∠BIC=
【例11】如图,Rt △ABC 中,AC=8,BC=6,∠C=90°,⊙I 分别切AC ,BC ,AB 于D ,E ,F ,求Rt △ABC 的内心I 与
外心O 之间的距离.
9. 遇到三角形的外接圆时,连结外心和各顶点
作用:外心到三角形各顶点的距离相等。

[课后冲浪]
一、证明解答题
16.已知:P 是⊙O 外一点,PB ,PD 分别交⊙O 于A 、B 和C 、D ,且AB=CD.求证:PO 平分∠BPD .
17.如图,ΔABC 中,∠C=90°,圆O 分别与AC 、BC 相切于M 、N ,点O 在AB 上,如果AO=15㎝,BO=10㎝,求圆O 的半径.
. .
N
18.已知:□ABCD的对角线AC、BD交于O点,BC切⊙O于E点.求证:AD也和⊙O相切.
.
19.如图,学校A附近有一公路MN,一拖拉机从P点出发向PN方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A周围100米以内受到噪音影响,问:当拖拉机向PN方向行驶时,学校是否会受到噪音影响请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒
21.如图,已知AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F.求证:DE=CF.
23.已知:如图,AB是⊙O的直径,BC是⊙O的切线,连AC交⊙O于D,过D作⊙O的切线EF,交BC于E点.求证:OE
三、探索题
24.已知:图a,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:(1)DC是⊙O的切线,(2)过D点作DE⊥AB,图b所示,交AC于P点,请考察P点在DE的什么位置并说明理由.。

相关文档
最新文档