集合间的基本关系练习题第二课时

合集下载

高考数学专项: 集合间的基本关系(习题作业)解析版

高考数学专项: 集合间的基本关系(习题作业)解析版

1.2集合间的基本关系一、单选题1.已知集合 |21,Z ,|21,Z A x x k k B x x k k ,则()A .A B B .B AC .A BD .AB【答案】C【分析】由 |21,Z ,|21,Z A x x k k B x x k k ,知集合A 与集合B 都是奇数集,利用集合与集合间的关系,即可求出结果.【详解】因为集合 |21,Z A x x k k ,集合 |21,Z B x x k k ,所以集合A 与集合B 都是奇数集,所以A B ,故选:C.2.下列与集合 2023,1表示同一集合的是()A .2023,1B . ,2023,1x y x y ∣C .2202420230xx x ∣D .2023,1x y 【答案】C.【详解】由2202420230x x 解得2023x 或1x ,所以22024202302023,1x x x ∣,C 正确;选项A 不是集合,选项D 是两条直线构成的集合,选项B 表示点集,故选:C3.下列各式:① 10,1,2 ,② 10,1,2 ,③ 0,1,20,1,2 ,④ 0,1,2 ,⑤ 2,1,00,1,2 ,其中错误的个数是()A .1B .2C .3D .4【答案】B【分析】由元素与集合的关系,集合与集合的关系考查所给式子是否正确即可.【详解】由元素与集合的关系可知 10,1,2 ,故①错误;由集合与集合的关系可知 10,1,2 ,故②错误;任何集合都是自身的子集,故③正确;空集是任何非空集合的子集,故④正确;集合中的元素具有互异性和无序性,故⑤正确;综上可得,只有①②错误.故选B .4.给出下列关系式:① 10,1,2 ;② ⊆ 1,2,3;③ 11,2,3 ;④ 0,1,21,2,0 ,其中错误的个数是()A .1B .2C .3D .4【答案】A【分析】根据元素与集合的关系的定义,可知①正确;根据空集是任何集合的子集,空集是任何非空集合的真子集,可判断②正确;集合与集合间的关系: 与 ,而不是 与 ,可判断③错误;根据集合中元素满足:互异性,无序性,确定性,可判断④正确.【详解】对于①,根据元素与集合的关系知, 10,1,2 ,所以①正确;对于②,因为空集是任何集合的子集,所以②正确;对于③,集合与集合间的关系是包含与不包含的关系,所以 11,2,3 是错误的,故③错误;对于④,根据集合中元素的无序性和集合相等的定义知, 0,1,21,2,0 ,所以④正确.故选:A.5.有下列四个命题:① 0 ;② ③若N a ,则N a ;④2R210A x x x ∣集合有两个元素;⑤集合6N N B x x∣是有限集.;其中正确命题的个数是()A .1B .2C .3D .4【答案】C【分析】根据空集的概念和性质得到①正确,根据元素和集合的关系得到②正确;举出反例得到③错误;求出 1A ,得到④错误;求出 1,2,3,6B ,判断⑤正确.【详解】①因为 是任何集合的子集,所以 0 ,①正确;② 是 的一个元素,故 ,②正确;③若0a ,满足N a ,N a ,故③错误;④ 1A ,集合有1个元素,故④错误;⑤集合 1,2,3,6B ,故是有限集,⑤正确.故选:C6.若集合 N ,P x x a 则()A .a PB . a PC . a PD .a P【答案】D【分析】根据集合P ,判断元素a 是否在集合P 内即可选出结果.【详解】解:因为 N ,N P x x a ,所以a P .故选:D7.已知非空集合M满足:对任意x M ,总有2x M ,M .若{0,1,2,3,4,5}M ,则满足条件的M 的个数是()A .11B .12C .15D .16【答案】A【分析】由题意得,集合M 是集合 2,3,4,5的非空子集,且去掉元素2,4同时出现的集合,即可求解.【详解】当M 中有元素0时,200M M ,当M 中有元素1时,2111M M ,所以0,1M M ,所以集合M 是集合 2,3,4,5的非空子集,且去掉元素2,4同时出现的集合,故满足题意的集合M 有 2352,32,53,43,52,3,5,,4,,,,,,4,5,, 3,4,5共11个.故选:A.8.若一个集合含有n 个元素,则称该集合为“n 元集合”.已知集合12,,3,42A,则其“2元子集”的个数为()A .6B .8C .9D .10【答案】A【分析】根据子集的定义即可求解.【详解】集合12,,3,42A的所有“2元子集”为12,2 ,{2,3} ,{2,4} ,1,32 ,1,42,3,4共6个.故选:A.9.设集合 |M x x A ,且}x B ,若{1,3,5,6,7}A ,{2,3,5}B ,则集合M 的非空真子集的个数为()A .4B .6C .7D .15【答案】B【分析】求得集合M ,即可求得结果.【详解】根据题意知,集合{M xx A ∣且}{1,6,7}x B ,其非空真子集的个数为3226 .故选:B10.已知非空集合M ⊆{1,2,3,4,5},若a ∈M ,则6-a ∈M ,那么集合M 的个数为()A .5B .6C .7D .8【答案】C【分析】由条件知集合M 的元素性质,分类讨论验证即可.【详解】∵a ∈M ,6-a ∈M ,M ⊆{1,2,3,4,5},∴3在M 中可单独出现,1和5,2和4M 元素个数:一个元素时,为{3};两个元素时,为{1,5},{2,4};三个元素时,为{3,1,5},{3,2,4};四个元素时,为{1,5,2,4};五个元素时,为{1,5,3,2,4},共7个.故选:C11.已知集合 0,4,M x ,20,N x ,若N M ,则实数x 组成的集合为()A . 0B . 2,2C . 2,1,2D .2,0,1,2【答案】C【分析】根据集合的包含关系得集合之间元素的关系,列方程求解即可.【详解】N M ∵, 0,4,M x ,20,N x ,2404x x x 或204x x x x,解得2x 或2x 或1x ,故实数x 组成的集合为 2,1,2 .故选:C.12.集合70,N A x x x,则*6{|N ,}B y y A y的子集的个数为()A .4B .8C .15D .16【答案】D【分析】先求出A ,再找出A 中6的正约数,可确定集合B ,进而得到答案.【详解】集合{|70A x x ,**N }|7,N {1,2,3,4,5,6x x x x ,*6{|N ,}1,2,3,6B y y A y,故B 有4216 个子集.故选:D .13.已知集合260A xx x ∣, 10B x mx ∣,且B A ,则实数m 的取值构成的集合为()A .110,,23B .11,23C .11,23D .110,,23【答案】D【分析】先解出集合A ,根据B A ,分类讨论求出实数m .【详解】2603,2A xx x ∣.因为B A ,所以B , 3B , 2B .当B 时,关于x 的方程10mx 无解,所以0m ;当 3B 时,3x 是关于x 的方程10mx 的根,所以13m;当 2B 时,=2x 是关于x 的方程10mx 的根,所以12m .故实数m 的取值构成的集合为110,,23.故选:D14.设集合 21|10P x x ax , 22|20P x x ax ,21|0Q x x x b ,22|20Q x x x b ,其中a ,b R ,下列说法正确的是()A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的真子集,对任意的b ,1Q 是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】结合参数取值情况,根据集合间元素的关系确定子集关系是否成立,即可判断.【详解】解:对于集合21|10P x x ax ,22|20P x x ax 可得当1m P ,即210m am ,可得220m am ,即有2m P ,可得对任意a ,1P 是2P 的子集;当5b 时,2150R Q x x x ,22250R Q x x x ,可得1Q 是2Q 的子集;当1b 时,2110R Q x x x ,22210{|1Q x x x x x 且R}x ,可得1Q 不是2Q 的子集;综上有,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.15.已知集合{1,2,3,4,5,6,7,8}S ,对于它的任一非空子集A ,可以将A 中的每一个元素k 都乘以(1)k 再求和,例如{2,3,8}A ,则可求得和为238(1)2(1)3(1)87 ,对S A .508B .512C .1020D .1024【答案】B【分析】由集合的子集个数的运算及简单的合情推理可得;这些总和是72(12345678)512 .【详解】因为元素1,2,3,4,5,6,7,8在集合S 的所有非空子集中分别出现72次,则对S 的所有非空子集中元素k 执行乘以(1)k 再求和操作,则这些和的总和是7123456782[(1)1(1)2(1)3(1)4(1)5(1)6(1)7(1)8] 72(12345678)512 .故选B【点睛】本题主要考查了集合的子集及子集个数,简单的合情推理,属于中档题.二、多选题16.下列关系式正确的为()A . 00B . 0C . ,,a b b aD .0 【答案】CD【分析】根据元素与集合、集合与集合间的关系判断.【详解】对于A.元素与集合间是属于与不属于的关系,故A 错误;对于B.{0}含有一个元素0,不是空集,故B 错误;对于C.集合的元素具有无序性,以及任何集合都是它本身的子集,故C 正确;对于D.空集是任何集合的子集,故D 正确.故选:CD .17.已知集合*{|2}N M x x ,则以下关系正确的是()A .0MB .2MC . 0,1,2MD .0,1,2M 【答案】AD【分析】根据元素与集合,集合与集合的关系逐项判断即可.【详解】因为*{|2}N {1,2}M x x ,所以,0M ,故A 正确;2M ,故B 错误;M {0,1,2},故C 错误,D 正确.故选:AD.18.下列说法正确的有()A .集合 1,2,4,5有16个真子集B .对于任意集合A ,AC .任何集合都有子集,但不一定有真子集D .若A ,则A【答案】BCD【分析】根据集合的真子集个数公式判断A ;利用空集是任何集合的子集,是任何非空集合的真子集判断B 、C 、D.【详解】集合 1,2,4,5有4个元素,故其有42115 个真子集,故A 错误;空集是任何集合的子集,则A ,故B 正确;空集是任何集合的子集,是任何非空集合的真子集,故C 正确;空集是任何非空集合的真子集,若 A ,则A,故D 正确.故选:BCD.19.下列各组中,M P 表示相同集合的是()A .3,1,1,3M P B . 2,Z ,21,Z M xx n n P x x n n ∣∣C .221,R ,1,R M yy x x P x x t t ∣∣D .221,R ,,1,R M yy x x P x y y xx ∣∣【答案】ABC【分析】根据相同集合的意义,逐项分析判断作答.【详解】对于A ,集合M ,P 含有的元素相同,只是顺序不同,由于集合的元素具有无序性,因此它们是相同集合,A 是;对于B ,因为Z n ,则1Z n ,因此集合M ,P 都表示所有偶数组成的集合,B 是;对于C ,221,R 1,,1,R 1,M y y x x P x x t t ∣∣,即M P ,C 是;对于D ,因为集合M 的元素是实数,集合P 中元素是有序实数对,因此集合M ,P 是不同集合,D 不是.故选:ABC20.已知集合 1,3,0A ,23,B m ,若B A ,则实数m 的值为()A .0B .1C .1 D【答案】ABC【分析】由集合B 与集合A 的关系,对选项依次辨析即可.【详解】对于A ,0m 时, 3,0B ,有B A ,故选项A 正确;对于B ,1m 时, 3,1B ,有B A ,故选项B 正确;对于C ,1m 时, 3,1B ,有B A ,故选项C 正确;对于D ,m 时,23m ,集合B 不满足集合元素的互异性,故选项D 不正确.故选:ABC.21.给出下列四个结论,其中正确的结论有()A . 0B .若a Z ,则a ZC .集合 2,y y x x Q 是无限集D .集合 12,x x x N 的子集共有4个【答案】BCD【分析】根据已知条件,结合空集、子集的定义,以及Z ,Q 的含义,即可求解.【详解】对于A : 是指不含任何元素的集合,故A 错误;对于B :若Z a ,则Z a ,故B 正确;对于C :有理数有无数个,则集合 2,y y x x Q 是无限集,故C 正确;对于D :集合 12,0,1x x x N 元素个数为2个,故集合 12,x x x N 的子集共有224 个,故D 正确.故选:BCD .22.已知集合 1,1A ,非空集合320B x x ax bx c ,下列条件能够使得B A 的是()A .3,3,1a b cB .3,3,1a b c C .1,1,1a b c D .10a b c 且2(1)40a c 【答案】ACD【分析】把三次方程因式分解求根,即可化简集合B ,然后利用集合关系即可判断.【详解】对于选项A ,方程323310x x x ,因式分解得3(1)0x ,解得1x ,所以 1B ,满足B A ,所以选项A 正确;对于选项B ,方程323310x x x ,因式分解得2(1)(41)0x x x ,解得=1x 或2 x 所以 1,22B ,不满足B A ,所以选项B 错误;对于选项C ,方程3210x x x ,因式分解得2(1)(1)0x x ,解得1x ,所以 1,1B ,满足B A ,所以选项C 正确;对于选项D ,因为10a b c ,所以1x 是方程320x ax bx c 的解,所以方程320x ax bx c 变形为2(1)[(1)]0x x a x c ,因为2(1)40a c ,所以方程2(1)0x a x c 无解,所以方程2(1)[(1)]0x x a x c 有唯一解1x ,所以 1B ,满足B A ,所以选项D 正确;故选:ACD.23.设集合{}22|,,M a a x y x y ==-ÎZ ,则对任意的整数n ,形如4,41,42,43n n n n +++的数中,是集合M 中的元素的有A .4nB .41nC .42nD .43n 【答案】ABD【分析】将4,41,43n n n 分别表示成两个数的平方差,故都是集合M 中的元素,再用反证法证明42n M +Ï.【详解】∵224(1)(1)n n n =+--,∴4n M Î.∵2241(21)(2)n n n +=+-,∴41n M +Î.∵2243(22)(21)n n n +=+-+,∴43n M +Î.若42n M +Î,则存在,Z x y Î使得2242x y n -=+,则42()(),n x y x y x y +=+-+和x y 的奇偶性相同.若x y 和x y 都是奇数,则()()x y x y 为奇数,而42n 是偶数,不成立;若x y 和x y 都是偶数,则()()x y x y 能被4整除,而42n 不能被4整除,不成立,∴42n M +Ï.故选ABD.【点睛】本题考查集合描述法的特点、代表元元素特征具有的性质P ,考查平方差公式及反证法的灵活运用,对逻辑思维能力要求较高.三、填空题24.满足 ,,,a M a b c d Ü的集合M 共有___________个.【答案】7【分析】根据集合的基本关系,可得集合M 包含 a ,且集合M 是 ,,,a b c d 的真子集,即可得出集合M 的个数.【详解】由题意可得, ,,,a M a b c d Ü,所以集合M 包含 a ,且集合M 是 ,,,a b c d 的真子集,所以 M a 或 ,M a b 或 ,M a c 或 ,M a d 或 ,,M a b c 或 ,,M a b d 或,,M a c d ,即集合M 共有7个.故答案为:725.已知集合21,20,R A B x x x a x ,且A B ,则实数a 的值是_________.【答案】-3【分析】根据A B 得出1x 是方程220x x a 的解,将1x 代入方程220x x a 中进行计算,即可得出结果.【详解】因为 1A ,220B x x x a ,A B ,所以1x 是方程220x x a 的解,即21210a ,解得3a .经检验,3a 符合题意,所以3a .故答案为:3 .26.设,a b R , 1,P a , 23,Q a b ,若P Q ,则a b ______.【答案】0或4【分析】由集合相等,建立方程组求解即可.【详解】当231a a b时,1,1a b ,满足P Q ,则0a b ;当231a a b时,3,1a b ,满足P Q ,则4a b ;故答案为:0或427.已知 2230M x x x , 210,R N x x ax a ,且N M ,则a 的取值范围为_________.【答案】{|22}a a 【分析】求得集合 1,3M ,根据NM ,分N 和N 两种情况讨论,即可求解.【详解】由题意,集合 22301,3M xx x ∣,当N 时,即240a ,解得22a ,此时满足NM ,当N 时,要使得N M ,则1N 或3N ,当1N 时,可得2(1)10a ,即2a ,此时{1}N ,满足NM ;当3N 时,可得23310a ,即103a ,此时1{3,}3N ,不满足N M ,综上可知,实数a 的取值范围为{|22}a a .故答案为:{|22}a a .28.给定集合 1,2,3,4,5,6,7,8S ,对于x S ,如果11x S x S ,,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有_________个.【答案】6【分析】根据题意,要使S 的三个元素构成的集合中不含好元素,只要这三个元素相连即可,所以找出相连的三个数构成的集合即可.【详解】若不含好元素,则集合S 中的3个元素必须为连续的三个数,故不含好元素的集合共有 1,2,3,2,3,43,4,545,6,5,6,7,6,7,8{},{},,,共有6个.故答案为:6.四、解答题29.设集合{|16}A x x ,{|121}B x m x m ,且B A .(1)求实数m 的取值范围;(2)当x N 时,求集合A 的子集的个数.【答案】(1){|2m m 或502m}(2)128【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m 即2m 时,B ,符合题意;当B 时,有12111216m m m m ,解得502m .综上实数m 的取值范围是{|2m m 或50}2m ;(2)当x N 时,{0,1,2,3,4,5,6}A ,所以集合A 的子集个数为72128 个.30.已知{|15},{|1},RA x xB x a x a a (1)当N x 时,写出集合A 的所有子集,共有多少个?(2)若B A ,求实数a 的取值范围.【答案】(1)答案见解析;(2)25a .【分析】(1)由集合和子集的概念求解即可;(2)由集合间的关系列出关于a 的不等式,求解即可.(1)当N x 时,{2,3,4}A =,所以集合A 的子集有,{2},{3},{4},{2,3},{2,4},{3,4},{3,4,5} ,所以共有8个子集.(2)因为B A ,所以115a a,解得25a ,所以实数a 的取值范围为25a .31.设集合 |25A x x , |121B x m x m .(1)若B A ,求实数m 的取值范围;(2)当x Z 时,求A 的非空真子集个数;(3)当x R 时,不存在元素x 使x A 与x B 同时成立,求实数m 的取值范围.【答案】(1) 3|m m (2)254(3)|24m m m 或【分析】(1)对集合B 分空集和非空集两种情况讨论得解;(2)当x Z 时, 2,1,0,1,2,3,4,5A ,再求A 的非空真子集个数;(3)分B 和B 两种情况讨论得解.【详解】(1)当121m m ,即2m 时,B ,满足B A .当121m m ,即2m 时,要使B A 成立,只需12,215,m m即23m .综上,当B A 时,m 的取值范围是 3|m m .(2)当x Z 时, 2,1,0,1,2,3,4,5A ,∴集合A 的非空真子集个数为822254 .(3)∵x R ,且 |25A x x , |121B x m x m ,又不存在元素x 使x A 与x B 同时成立,∴当B ,即121m m ,得2m 时,符合题意;当B ,即121m m ,得2m 时,2,15,m m 或2,212,m m解得4m .综上,所求m 的取值范围是 |24m m m 或.【点睛】本题主要考查集合的关系和真子集的个数的计算,考查集合的元素和集合的关系,意在考查学生对这些知识的理解掌握水平.32.已知2|3100A x x x ,{|121}B x m x m ,B A ,求m 的取值范围.【答案】,3 【解析】先求解出集合A ,然后根据B A 分别考虑B 和B 的情况,由此求解出m 的取值范围.【详解】因为23100x x ,所以25x ,所以 25A x x ,当B 时,B A 满足,此时211m m ,所以2m ;当B 时,若B A ,则有21112215m m m m,所以23m ,综上可知:3m ,即 ,3m .【点睛】本题考查根据集合的包含关系求解参数范围,其中涉及分类讨论的思想,难度一般.根据集合的包含关系求解参数范围时,一定要注意分析集合为空集的情况.33.(1)已知集合 222,133A a a a a ,,当1A ,求2020a 的值;(2)已知集合2202020190A x x x , B x x a ,若A B ,求实数a 的取值范围.【答案】(1)1;(2) 2019, .【解析】(1)分21a , 211a ,2331a a 三种情况,分别求得a 的值,再代入验证集合中的元素是否满足互异性可得答案;(2)先求得集合A ,借助数轴可得a 的取值范围.【详解】(1)若21a ,则1a , 1,0,1A ,不合题意;若 211a ,则0a 或-2,当0a 时, 2,1,3A ,当2a 时, 0,1,1A ,不合题意;若2331a a ,则1a 或-2,都不合题意;因此0a ,所以020201 .(2) 12019A x x ,A B ∵,∴借助数轴可得2019a,a 的取值范围为 2019, .【点睛】易错点点睛:由已知集合间的关系,元素与集合间的关系求参数的值时,注意将求得的参数的值代入集合中验证:集合中的元素是否满足互异性.34.已知集合 2|8120A x x x , 21,23B a a ,2|60C x ax x (1)若集合=A B ,求实数a 的值;(2)若集合C A ,求实数a 的取值范围.【答案】(1)=5a (2)124a 或=0a 【分析】(1)先化简集合2|8120A x x x ,然后根据条件=A B 即可确定实数a 的值;(2)由条件集合C A 知,集合中至多有2个元素,对集合2|60C x ax x 中的元素个数进行分类讨论即可.(1)易知集合2|8120A x x x 2,6, 由=A B 得:212236a a 或216232a a ,解得:=5a .(2)(1)当=0a 时 6C 满足C A ;(2)当0a 时①当Δ1240a 即124a时,C 满足C A ,124a .②当Δ1240a 即124a 时, 21601224C x x x∣,不满足C A .③当Δ1240a 即124a 时,满足C A ,只能=C A ,18612a a无解.综上所述:124a 或=0a .35.已知集合A 为非空数集,定义: ,,,,,S xx a b a b A T x x a b a b A ∣∣(1)若集合 1,3A ,请直接写出集合,S T :(2)若集合 12341234,,,,A x x x x x x x x ,且T A ,求证:1423x x x x ;【答案】(1)2,4,6,0,2S T (2)见解析【分析】(1)根据题目中的定义直接写出两个集合即可;(2)由 12341234,,,,A x x x x x x x x ,可得4131210x x x x x x ,写出a b 的所有可能取值,再根据集合相等的定义即可得证.(1)解:因为 1,3A ,,,,,,S x x a b a b A T x x a b a b A ∣∣,所以 2,4,6,0,2S T ;(2)证明:由 12341234,,,,,A x x x x x x x x ,,T x x a b a b A ∣,得4131210x x x x x x ,则a b 可取2132433141420,,,,,,x x x x x x x x x x x x ,又因为T A ,所以 2131410,,,T x x x x x x ,剩下的元素满足3243214231x x x x x x x x x x ,所以1423x x x x .36.已知集合22,,Z A x x m n m n .(1)判断8,9,10是否属于集合A ;(2)集合 |21,Z B x x k k ,证明:B 是A 的真子集.【答案】(1)8A ,9A ,10A .(2)证明见解析【分析】(1)根据集合A 的定义即可判断;(2)由 22211k k k 即可证明.【详解】(1)∵22831 ,22954 ,∴8A ,9A ,假设2210m n ,m ,Z n ,则 10m n m n ,且0m n m n ,∵1011025 ,||+||=10||||=1m n m n 或||+||=5||||=2m n m n ,显然均无整数解,∴10A ,∴8A ,9A ,10A .(2)∵集合 |21,Z B x x k k ,则恒有 22211k k k ,∴21k A ,∴即一切奇数都属于A ,故B 是A 的子集.又∵8A ,8B ,所以B 是A 的真子集.37.已知222|280,|120A x x x B x x ax a .(1)若A B ,求a 的值;(2)若B A ,求实数a 的取值范围.【答案】(1)2(2)4a 或4a <-或2a .【分析】(1)先求出集合A ,再利用条件A B ,根据集合与集合间的包含关系,即可求出a 值;(2)对集合B 进行分类讨论:B 和B ,再利用集合与集合间的包含关系,即可求出a 的范围;【详解】(1)由方程228=0x x ,解得2x 或4x 所以 2,4A ,又A B ,22|120B x x ax a ,所以 2,4B ,即方程22120x ax a 的两根为12x 或24x ,利用韦达定理得到:24a ,即2a ;(2)由已知得 2,4A ,又B A ,所以B 时,则224(12)0a a ,即2160a ,解得4a 或4a <-;当B 时,若B 中仅有一个元素,则224(12)0a a ,即2160a ,解得4a ,当4a 时, 2B ,满足条件;当4a 时, 2B ,不满足条件;若B 中有两个元素,则B A ,利用韦达定理得到,224(2)412a a,解得2a ,满足条件.综上,实数a 的取值范围是4a 或4a <-或2a .38.已知集合 2,6A .(1)若集合 2+123B a a ,,且A B ,求a 的值;(2)若集合260C x ax x ,且A 与C 有包含关系,求a 的取值范围.【答案】(1)5(2)1024a a a或【分析】(1)利用集合相等的条件求a 的值;(2)由A 与C 有包含关系得C A ,再利用集合子集的元素关系分类讨论求解即可.【详解】(1)因为 2,6A ,且A B ,所以212236a a 或223216a a ,解得1a a或55a a ,故5a .(2)因为A 与C 有包含关系, 2,6A ,260C x ax x 至多只有两个元素,所以C A .当0a 时, 6C ,满足题意;当0a 时,当C 时,1460a ,解得124a ,满足题意;当 2C 时,1460a 且22260a ,此时无解;当 6C 时,1460a 且26660a ,此时无解;当 2,6C 时,1460a 且2266602260a a,此时无解;综上,a 的取值范围为1024a a a或.。

课时作业18:1.1.2 集合间的基本关系

课时作业18:1.1.2 集合间的基本关系

1.1.2 集合间的基本关系一、选择题1.下列关系中错误的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1};⑤{0,1}⊆{(0,1)}.A.1B.2C.3D.4考点 集合的包含关系题点 集合包含关系的判定答案 B解析 ①正确;因为集合{1}是集合{0,1,2}的真子集,而不能用∈来表示,所以②错误;③正确,因为任何集合都是它本身的子集;④正确,因为集合元素具有无序性;因为集合{0,1}表示数集,它有两个元素,而集合{(0,1)}表示点集,它只有一个元素,所以⑤错误,所以错误的个数是2.故选B.2.若集合P ={x |x ≥5},Q ={x |5≤x ≤7},则P 与Q 的关系是( )A.P =QB.P QC.P QD.P ∈Q考点 集合的包含关系题点 集合包含关系的判定答案 C3.已知集合A ={-1,0,1},B ={1,m }.若B ⊆A ,则实数m 的值是( )A.0B.-1C.0或-1或1D.-1或0考点 子集及其运算题点 根据子集关系求参数答案 D4.若{}1,2={}x |x 2+bx +c =0,则( )A.b =-3,c =2B.b =3,c =-2C.b =-2,c =3D.b =2,c =-3考点 集合相等的概念题点 由集合相等求参数的值答案 A解析 依题意知,1,2是方程x 2+bx +c =0的两根,由根与系数的关系得,b =-(x 1+x 2)=-3,c =x 1x 2=2.5.已知集合U ,S ,T ,F 的关系如图所示,则下列关系正确的是( )①S ∈U ;②F ⊆T ;③S ⊆T ;④S ⊆F ;⑤S ∈F ;⑥F ⊆U .A.①③B.②③C.③④D.③⑥考点 集合的包含关系题点 集合包含关系的判定答案 D解析 元素与集合之间的关系才用∈,故①⑤错;子集的区域要被全部涵盖,故②④错.6.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A.6B.5C.4D.3考点 子集及其运算题点 求集合的子集答案 A解析 方法一 集合{}0,1,2的子集为∅,{}0,{}1,{}2,{}0,1,{}0,2,{}1,2,{}0,1,2,其中含有偶数的集合有6个.方法二 {}0,1,2共有23=8(个)子集,其中不含偶数的有∅,{}1.故符合题意的A 共有8-2=6(个). 7.已知∅{x |x 2-x +a =0},则实数a 的取值范围是( ) A.a <14 B.a ≤14 C.a ≥14 D.a >14考点 空集的定义、性质及运算题点 与空集有关的参数问题答案 B解析 ∵∅{}x |x 2-x +a =0,∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,故a ≤14. 8.若M ⊆P ,M ⊆Q ,P ={0,1,2},Q ={0,2,4},则满足上述条件的集合M 的个数是( )A.1B.2C.4D.8考点 子集个数题点 附加条件的子集个数答案 C解析 P ,Q 中的公共元素组成集合C ={0,2},M ⊆C ,这样的集合M 共有22=4个.二、填空题9.已知{0,1}A ⊆{-1,0,1},则集合A =________.考点 子集及其运算题点 求集合的子集答案 {-1,0,1}解析 由题意知集合A 中一定含有元素0,1,并且A 中至少含三个元素,又因为A ⊆{-1,0,1}, 所以A ={-1,0,1}.10.若集合A ={x |2≤x ≤3},集合B ={x |ax -2=0,a ∈Z },且B ⊆A ,则实数a =________. 考点 子集及其运算题点 根据子集关系求参数的值答案 0或1解析 当B =∅时,a =0,满足B ⊆A ;当B ≠∅时,a ≠0,B =⎩⎨⎧⎭⎬⎫2a ,又B ⊆A ,∴2≤2a ≤3, 即23≤a ≤1,又a ∈Z , ∴a =1.综上知a 的值为0或1.11.定义集合A *B ={x |x ∈A ,且x ∉B }.若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集个数为________.考点 子集及其运算题点 求集合的子集答案 4解析 A *B ={1,3},故A *B 的子集为∅,{1},{3},{1,3}.三、解答题12.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },试列举满足条件A ⊆C ⊆B 的集合C .考点 子集及其运算题点 求集合的子集解 先用列举法表示集合A ,B .由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.13.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围. 考点 子集及其运算题点 根据子集关系求参数解 当B =∅时,B ⊆A ,显然成立,此时有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤7,m +1<2m -1,即⎩⎪⎨⎪⎧ m ≥-3,m ≤4,m >2,解得2<m ≤4.综上,m 的取值范围为{m |m ≤4}.14.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A.A ⊆BB.B ⊆AC.B ∈AD.A =B考点 集合的包含关系题点 集合包含关系的判定答案 C解析 ∵A ={x |x ⊆B },∴A ={∅,{1},{2},{1,2}},∴B ∈A .15.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若A ⊆B ,求实数m 的取值范围. 考点 子集及其运算题点 根据子集关系求参数的取值范围解 ∵A ⊆B ,∴当A =∅时,即方程x 2-4mx +2m +6=0无实根,故Δ=16m 2-8(m +3)<0,解得-1<m <32. 当A ≠∅时,方程x 2-4mx +2m +6=0的根为负, 则⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧ m ≥32或m ≤-1,4m <0,2m +6>0,所以⎩⎪⎨⎪⎧ m ≥32或m ≤-1,m <0,m >-3, 解得-3<m ≤-1.综上,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪ -3<m <32.。

1.3 集合的基本运算(第二课时)(同步训练)(附答案)—高一上学期数学必修第一册

1.3  集合的基本运算(第二课时)(同步训练)(附答案)—高一上学期数学必修第一册

1.3 集合的基本运算(第二课时)(同步训练)一、选择题1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩∁N B等于()A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}2.(多选)设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1} B.∁U B={4}C.A∪B={0,1,3,4} D.集合A的真子集个数为83.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤2 B.a<1C.a≥2 D.a>24.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)5.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为()A.3 B.4 C.5 D.66.(多选)已知集合A={x|-1<x≤3},集合B={x||x|≤2},则下列关系式正确的是()A.A∩B=∅B.A∪B={x|-2≤x≤3}C.A∪∁R B={x|x≤-1或x>2} D.A∩∁R B={x|2<x≤3}7.M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于()A.M B.NC.I D.∅二、填空题8.已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________9.已知集合A={1,2,m},集合B={1,2},若∁A B={5},则实数m=________10.已知全集U=A∪B={1,2,3,4},A={1,2,4},A∩B={1},则集合∁U B为________,集合B 共有________个子集.11.设全集U=R,已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为________12.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________三、解答题13.已知全集U=R,集合A={x|x<1或x>2},集合B={x|x<-3或x≥1},求∁R A,∁R B,A∩B,A∪B.14.已知全集U=R,集合A={x|-1≤x≤2},B={x|4x+p<0},且B⊆∁U A,求实数p的取值范围.15.已知集合A={x|x2+4ax-4a+3=0},B={x|x2+(a-1)x+a2=0},C={x|x2+2ax-2a=0},其中至少有一个集合不为空集,求实数a的取值范围.参考答案:一、选择题1.A2.AC3.C4.B5.B6.BD7.A二、填空题8.答案:{2,3,5,7}9.答案:510.答案:{2,4},411.答案:{a|a>3}12.答案:{a|a≥2}解析:因为B={x|1<x<2},所以∁R B={x|x≤1或x≥2}.又因为A∪(∁R B)=R,A={x|x<a},观察∁R B与A在数轴上表示的区间,如图所示.可得当a ≥2时,A ∪(∁R B)=R.三、解答题13.解:如图,可知∁R A ={x|1≤x ≤2},∁R B ={x|-3≤x<1}.所以A ∩B ={x|x<-3或x>2},A ∪B =R.14.解:∁U A ={x|x<-1或x>2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x<-p 4. 因为B ⊆∁U A ,所以-p 4≤-1.所以p ≥4. 所以p 的取值范围是{p|p ≥4}.15.解:假设集合A 、B 、C 都是空集,当A =∅时,表示不存在x 使得x 2+4ax -4a +3=0成立,所以Δ=16a 2-4(-4a +3)<0,解得-32<a <12; 当B =∅时,同理Δ=(a -1)2-4a 2<0,解得a >13或a <-1; 当C =∅时,同理Δ=(2a)2+8a <0,解得-2<a <0.三者交集为-32<a <-1,取反面即可得A ,B ,C 三个集合至少有一个集合不为空集, 所以a 的取值范围是a ≥-1或a ≤-32.。

【同步测试】课后习题——集合间的基本关系

【同步测试】课后习题——集合间的基本关系

《集合间的基本关系》课后习题复习巩固1.(1)若集合A ={x |2x -3<3x },B ={x |x ≥2},则-4______B ,-3______A ,{2}______B ,B ______A ;(2)若集合A ={x |x 2-1=0},则1______A ,{-1}______A ,∅______A ,{1,-1}______A ;(3){x |x 是菱形}______{x |x 是平行四边形};{x |x 是等腰三角形}______{x |x 是等边三角形}.2.指出下列各集合之间的关系,并用Venn 图表示:A ={x |x 是四边形},B ={x |x 是平行四边形},C ={x |x 是矩形},D ={x |x 是正方形}.综合运用3.举出下列各集合的一个子集:(1)A ={x |x 是立德中学的学生}; (2)B ={x |x 是三角形};(3)C ={0}; (4)D ={x ∈Z |3<x <30}.4.在平面直角坐标系中,集合C ={(x ,y )|y =x }表示直线y =x ,从这个角度看,集合D =()⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧=+=-5412y x y x y x ,表示什么?集合C ,D 之间有什么关系? 拓广探索5.(1)设a ,b ∈R ,P ={1,a },Q ={-1,-b },若P =Q ,求a -b 的值;(2)已知集合A ={x |0<x <a },B ={x |1<x <2},若B ⊆A ,求实数a 的取值范围. 答案1.(1)∉,∉,≠⊂,≠⊂. (2)∈,≠⊂,≠⊂,=. (3)≠⊂,≠⊃.2.A ≠⊃B ≠⊃C ≠⊃D .3.答案不唯一,举出符合题意的一个子集即可.4.集合D表示直线2x-y=1和直线x+4y=5交点的集合.这两条直线的交点(1,1)在直线y=x上,即D≠⊂C.5.(1)0.(2)a≥2.。

人教A版必修一第一章1.1.3 第2课时集合间的基本运算同步练习

人教A版必修一第一章1.1.3 第2课时集合间的基本运算同步练习

第一章 1.1 1.1.3第2课时A级基础巩固一、选择题1.(2019·山东烟台高一期中测试)设全集U={x|x是小于5的非负整数},A={2,4},则∁U A=(C)A.{1,3}B.{1,3,5}C.{0,1,3} D.{0,1,3,5}[解析]∵U={0,1,2,3,4},A={2,4},∴∁A={0,1,3}.U2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为(C)A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}[解析]因为U={0,1,2,3,4},A={1,2,3},所以∁A={0,4},故(∁U A)∪B={0,2,4}.U3.已知集合U={x|x>0},∁U A={x|0<x<2},那么集合A=(C)A.{x|x≤0或x≥2} B.{x|x<0或x>2}C.{x|x≥2} D.{x|x>2}[解析]利用数轴分析,可知A={x|x≥2}.4.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(D)A.{x|x≥0} B{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析]∵A∪B={x|x≤0或x≥1},∴∁(A∪B)={x|0<x<1}.故选D.U5.(2019·南阳市高一期末测试)如图,集合U为全集,则图中阴影部分表示的集合是(C)A.∁U(A∩B)∩C B.∁U(B∩C)∩AC.A∩∁U(B∪C) D.∁U(A∪B)∩C[解析]由图可知图中阴影部分表示的集合是A∩∁(B∪C).U6.已知集合A ={x |x <a },B ={x |x <2},且A ∪(∁R B )=R ,则a 满足( A ) A .a ≥2 B .a >2 C .a <2D .a ≤2[解析] ∁R B ={x |x ≥2},则由A ∪(∁R B )=R 得a ≥2,故选A . 二、填空题7.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =__-3__. [解析] ∵∁U A =={1,2},∴A ={0,3}. ∴0,3是方程x 2+mx =0的两根. ∴0+3=-m .∴m =-3.8.已知全集U =R ,M ={x |-1<x <1},∁U N ={x |0<x <2},那么集合M ∪N =__{x <1或x ≥2}__.[解析] ∵U =R ,∁U N ={x |0<x <2}, ∴N ={x |x ≤0或x ≥2},∴M ∪N ={x |-1<x <1}∪{x |x ≤0或x ≥2} ={x |x <1或x ≥2}. 三、解答题9.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).[解析] 将集合A ,B ,P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3}, ∴(∁U B )∪P ={x |x ≤0或x ≥52},∴(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.B 级 素养提升一、选择题1.(2019·山东莒县一中高一期末测试)如图,I是全集,M,P,S是I的子集,则阴影部分所表示的集合是(C)A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)[解析]由图可知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁S,故阴影部分所I表示的集合是(M∩P)∩(∁I S).2.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于(D)A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)[解析]根据已知可知,M∪N={1,2,3,4},M∩N=∅,(∁M)∪(∁U N)={1,4,5,6}∪{2,3,5,6}U={1,2,3,4,5,6},(∁U M)∩(∁U N)={1,4,5,6}∩{2,3,5,6}={5,6},因此选D.3.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为(B)A.4 B.3C.2 D.1[解析]∵∁A={2,4},∴非空子集有22-1=3个,故选B.U4.设P={x|x>4},Q={x|-2<x<2},则(D)A.P⊆Q B.Q⊆PC.P⊇∁R Q D.Q⊆∁R P[解析]∵Q={x|-2<x<2},而∁R P={x|x≤4},∴Q⊆∁R P.二、填空题5.已知全集U={1,2,3,4,5,6},集合A={1,3},集合B={3,4,6},集合U,A,B的关系如图所示,则图中阴影部分所表示的集合用列举法表示为__{4,6}__.[解析] 由题意可知,阴影部分所表示的集合为B ∩(∁U A ). ∵U ={1,2,3,4,5,6},A ={1,3}, ∴∁U A ={2,4,5,6}. ∵B ={3,4,6}, ∴B ∩(∁U A )={4,6}.6.已知全集为R ,集合M ={x ∈R |-2<x <2},P ={x |x ≥a },并且M ⊆∁R P ,则a 的取值范围是__a ≥2__.[解析] M ={x |-2<x <2},∁R P ={x |x <a }.∵M ⊆∁R P ,∴由数轴知a ≥2. 三、解答题7.设全集I ={2,3,x 2+2x -3},A ={5},∁I A ={2,y },求实数x 、y 的值. [解析] 因为A ={5},∁I A ={2,y }. 所以I ={2,5,y }, 又I ={2,3,x 2+2x -3},所以⎩⎪⎨⎪⎧x 2+2x -3=5y =3,所以⎩⎪⎨⎪⎧ x =-4y =3或⎩⎪⎨⎪⎧x =2y =3.故x =2,y =3或x =-4,y =3.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3.综上可得a ≥-12.9.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[解析] ∵(∁U A )∩B ={2},∴2∈B , ∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A , ∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧4-2a +b =016+4a +12b =0,解得⎩⎨⎧a =87b =-127.经检验,符合题意:∴a =87,b =-127.。

集合之间的关系例题习题解答(二)

集合之间的关系例题习题解答(二)

例题3讲解
例题3:已知集合P={x/x<-1或x>4} , Q={x/a+1≤x≤2a-1},若Q⊊P,求a的取值。 解: ①当Q=Ø 时,显然有Q⊊P, 此时有a+1>2a-1 解得:a <2. a+1≤ 2a-1 a+1 ≤2a-1 ②当Q≠Ø 时,需 或 2a-1 <-1
a+1 >4
解得:a >3
所以,若Q⊊P,则a的取值是: a <2或a >3
例题4、含三个实数的集合可表示为{a,b/a, 1},也可以表示为{a2,a+b,0},则 a2010+b2010的值是? 解:因为b/a成立,则a不为0,则b/a为0,则b 为0。 若a的平方=a则a=1或a=0(舍) 若a的平方=1 则a=-1或a=1 所以a的集合为{-1 ,1} 所以原式为1
例题5、含有三个实数的集合可表示为{a,ba, 1},也可表示为{a2,a+b,0},则a2009+b2009 的值为( )A.0;B.-1;C.1; D.±1 解:根据题意,对于{a,ba,1},有a≠1,a≠0; 又有{a,ba,1}={a2,a+b,0}, 则有a=0或ba=0; 又由a≠0;故b=0; 代入集合中.可得{a,1,0}={a2,a,0}, 必有a2=1,又由a≠1,则a=-1; 则a2009+b2009=-1,选B.
例题6、已知集合A={x/x<-1或x>2},B={x+k< 0},若B⊆A,则实数k的取值范围是( )。 解:A={x/x<-1, 或 x>2}, A为两个区间 B={x/ x<-k}, B为一个区间 B⊆A, 则只能是x<-k位于区间x<-1内, 即- k≤-1, 得k≥1

课时作业1:1.2 集合间的基本关系

课时作业1:1.2 集合间的基本关系

1.2 集合间的基本关系一、选择题1.设M ={菱形},N ={平行四边形},P ={四边形},Q ={正方形},则这些集合之间的关系为( )2.已知集合M 满足{1,2}⊆M ⊆{1,2,3,4,5},那么这样的集合M 的个数为( ) A .5 B .6C .7D .83.已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =( )A .0B .0或1C .2D .0或1或24.已知集合2{|}A x x x ==,{1,,2}B m =,若A B ⊆,则实数m 的值为( ) A .2 B .0 C .0或2 D .15.已知集合{0,},{|12}A a B x x ==-<<,且A B ⊆,则a 可以是( )A .1-B .0C .1D .26.已知集合A ={x|x 2−1=0},则下列式子表示正确的有( )①{1}∈A ②−1⊆A ③ϕ⊆A ④{1,−1}⊆AA .1个B .2个C .3个D .4个二、填空题7.集合{x |1<x <6,x ∈N *}的非空真子集的个数为_____8.集合A ={x|x 2+x −6=0},B ={x|ax +1=0},若B ⊆A ,则a =______.9.设集合A ={x,y},B ={0,x 2},若A =B ,则2x +y =______10.设集合A ={x |1<x <2},B ={x |x <a },满足A ⊆B ,则实数a 的取值范围是______.三、解答题11.已知集合{}1A a a =-,, {}2B y =,, {|114}C x x =<-<.(1)若A B =,求y 的值;(2)若A C ⊆,求a 的取值范围.12.已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求a的取值范围.参考答案一、选择题1.【答案】B【解析】∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,∴正方形应是M 的一部分,M 是N 的一部分,∵矩形形、正方形、菱形都属于平行四边形,∴它们之间的关系是:故选B .2.【答案】C【解析】根据题意,M 集合一定含有元素1,2,且为集合{1,2,3,4,5}的真子集,所以集合M 的个数为23-1=7个,故选C.3.【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =,所以0a =或1.故选B4.【答案】B【解析】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,故选B.5.【答案】C【解析】解:因为A B ⊆,且集合{}0,,{|12}A a B x x ==-<<,所以12a -<<且0a ≠,根据选项情况,由此可以判定只能选择C.6.【答案】B【解析】∵A ={x|x 2−1=0}={−1,1},则{1}∈A ,集合与集合之间不能与属于符号,所以①不正确;−1⊆A ,元素与集合之间不能用包含于符号,所以②不正确;∅⊆A ,符合子集的定义,所以③正确:{−1,1}⊆A 符合子集的定义,所以④正确,因此,正确的式子有2个,故选B.二、填空题7.【答案】14【解析】因为{x |1<x <6,x ∈N *}={2,3,4,5}所以非空真子集为{2},{3},{4},{5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5} {2,3,4},{2,3,5},{2,4,5},{3,4,5},共14个,故填14.8.【答案】−12或13或0 【解析】解:集合A ={x|x 2+x −6=0}={−3,2}∵B ⊆A ,∴(1)B =⌀时,a =0(2)当B ={−3}时,a =13 (3))当B ={2}时,a =−12故答案为:−12或13或0. 9.【答案】2【解析】因为A ={x,y },B ={0,x 2},若A =B ,则{x =0y =x 2 或{x =x 2y =0,解得{x =0y =0 或{x =1y =0 , 当x =0时,B ={0,0}不成立,当x =1,y =0时,A ={1,0},B ={0,1},满足条件,所以2x +y =2,故选C.10.【答案】{a |a ≥2}【解析】∵集合A ={x|1<x <2},B ={x|x <a},且A ⊆B ,∴a ≥2,故选答案为{a |a ≥2 }.三、解答题11.【答案】(1) 1或3;(2) 35a <<.【解析】(1)若2a =,则{}12A =,,∴1y =.若12a -=,则3a =, {}23A =,,∴3y =.综上, y 的值为1或3.(2)∵{|25}C x x =<<,∴25{ 215a a <<<-<,∴35a <<.12. 【答案】a =1或a ≤-1.【解析】集合A ={0,-4},由于B ⊆A ,则:(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1.(2)当B≠A时:①当B=∅时,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1;②当B={0}或B={-4}时,方程x2+2(a+1)x+a2-1=0应有两个相等的实数根0或-4,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足条件.综上可知a=1或a≤-1.。

(人教版)数学必修一课时训练《集合间的基本关系》(含答案).doc

(人教版)数学必修一课时训练《集合间的基本关系》(含答案).doc

课时提升卷(三)集合间的基本关系(45分钟100分)一、选择题(每小题6分,共30分)1.下列四个结论中,正确的是()A. 0={0}B. 0£ {0}C. Oc {0}D. 0=02.(2013 -宝鸡高一检测)如果M={x|x+l〉O},则()A. 0 eMB. O^MC. {0} eMD. {0}CM3.(2013 •长沙高一检测)已知集合A={x|3WxM5, xeZ},则集合A的真子集个数为()A. 1个B. 2个C. 3个D. 4个4.设 A={a, b}, B={x|x6A},则()A.BeAB. B生 AC. AeBD. A=B5.(2013 -潍坊高一检测)设A={x|Kx<2),B={x|x<a),若AW B,则a的取值范围是()A. aW2B. aWlC. aNlD. a^2二、填空题(每小题8分,共24分)6.(2013 •汕头高一检测)已知集合A={-1, 3, 集合B={3,m2},若BU A,则实数m=.7.已知集合A= {x| x<3),集合B= {x | x<m},且B,则实数m满足的条件是.8.设集合 M=((x, y) | x+y<0, xy>0}和 P=((x, y) |x<0, y〈0},那么 M 与 P 的关系为.三、解答题(9题,10题14分,11题18分)9.设集合 A= (-1, 1},集合 B= {x] x2-2ax+b=0),若 BN 0 , Bl A,求 a, b 的值.10.已知集合 A={x 11 WxW2}, B={x 11 WxWa, aNl}.(1)若A呈B,求a的取值范围.(2)若Be A,求a的取值范围.11.(能力挑战题)已知 A={x| |x-a|=4), B=(1, 2, b),是否存在实数a,使得对于任意实数b(b#l,且b/2),都有Ac B?若存在,求出对应的a的值; 若不存在,说明理由.答案解析1.【解析】选B. {0}是含有1个元素0的集合,故0e {0}.2.【解析】选 D. M= {x | x+1 >0} = (x | x>-1}, /. {0} £M.3.【解析】选C.由题意知,x=-2或2,即A={-2,2},故其真子集有3个.【误区警示】本题易忽视真子集这一条件而误选D.4.【解析】选D,因为集合B中的元素xGA,所以x=a或x=b,所以B={a, b},因此A=B.5.【解析】选D. VA^B, .•.a》26.【解析]VB^A, .\mMm-1, .-.111=1. 答案:17.【解析】将数集A标在数轴上,如图所示,要满足A^B,表示数m的点必须在表示3的点的右边,故m>3.答案:m>38.【解析】Vxy>0, ...x, y同号,又x+y<0, .\x<0, y<0,即集合M表示第三象限内的点.而集合P 表示第三象限内的点,故M=P. 答案:M=P9.【解析】由BJA知,B中的所有元素都属于集合A,又B主0,故集合B有三种情形:B= {-1} 或8={1}或 B={-1,1}.当 B= {T}时,B= {x | X2+2X+1 =0},故 a=-1, b=1;当 B= {1}时,B= {x | X2-2X+1 =0},故 a=b=1;当 B={-1,1}时,B= {x | x2-1 =0},故 a=0, b=-1.综上所述,a, b的值哩二L或10.【解题指南】利用数轴分析法求解.【解析】(1)若A^B,由图可知,a>2.⑵若BWA,由图可知,1WaW2.0 112 x11.【解析】不存在.要使对任意的实数b都有AJB,所以1,2是A中的元素,又VA={a-4, a+4}, f = +或尸+ ? = +这两个方程组均无解,故这样的实数a不存在.3 +4 = 2 〔a - 4 = 2,课时和I 珠§>基础达标 答案: 沙场点兵45体力行提离考能 集合间的基本关系1. 下列关系:① 1£{0,1,2}; (2){1}£{0,1,2); (3)0 {0,1,2};④{0,1,2}匚{0,1,2};@(0,1,2}={2,0,1).其中错误的个数为()A. 1B. 2C. 3D. 4解析:只有②不正确.故选A.答案:A 2. 集合M ={2,4,6}的真子集的个数为()A. 6个B. 7个C. 8个D. 9个答案:B3. 用Venn 图画出下列两个集合的关系:(l)A = {0,l,2}, B = {1,2,4}:4. 已知集合A={1,2, x}, B = {1,2, x2}且A=B,求实数x 的值. 解析:因为A=B,所以x = x2,当x=l 时入={1,2,1}不符合元素互异性,舍去;当 x = 0 时 A=B = {l,2,0).故 x = 0.5. 写出满足{a, b} AC (a, b, c, d, e}的所有集合A.解析:满足{a, b} Ac (a, b. c, d, e}的集合分别为:{a, b, c}: (a, b, d}: (a, b, e}:(a,b. c, d}: (a, b. c, e}: (a, b. d, e}: (a, b, c, d, e}.6. ⑴写出集合{1,2,3}的所有真子集.答案:集合{1,2,3}的所有真子集分别是:°; {1};⑵;⑶;(1,2}; (1,3}; {2,3}(2)A={0,l,2,3}, B= {1,2,3}.解析:x + r<0,•.v[xr>0,答案:x<0,M = PM = P.⑵集合{1,2,3}的子集有:个,真子集有个,非空真子集有个.答案:(2)8 7 6»巩固提I W J7.已知集合A=«x|x=§ kGzj, B=X|X=E,kez 贝ij( )A. A BB. B AC. A=BD. A与B关系不确定人 t k , , m , , m 1 解析:对 B 集合中,x=£, kCZ,当 k=2m 时,x==, m^Z;当 k=2m —1 时,x=v—mO D 5 bez,故按子集的定义,必有A二B.答案:A8.已知集合 M={(x, y)|x+y<0, xy>0}, P = ((x, y)|x<0, y<0),则 M, P 的关系是9.集合A = {1,3, a}, B = {a2},且B A,求实数a的取值的集合.解析:由于 B = (a2} A={1,3, a},.•.①a2 = l,得a = l(不合题意,舍去)或a = —1,[2 = 3,得3"2 =",得1 = 1(舍去)或“=0, 3综上所述,实数“的取值集合为{-1, 0, -^3, 0}.10.已知集合:A={x|—1V X W5}, B = {x|m — 5WxW2m + 3}且ACB,求实数m的取值范围.Im + 一5, 解析:m + 3K☆课堂小结i.元素与集合之间是属于与不属于的关系,集合与集合之间是包含与不包含的关系.2.集合相等必须元素全部相同,但顺序和表达方式可以不同.3.空集是任何集合的子集,任何集合是它自己的子集.4.Venn图是表达非确定集合关系的直观方法.5.无限集大多可用数轴表示.一般n个元素的集合有2n个子集,其中2n~l个真子集.非空子集:2n-l个非空真子集为:2n —2个.。

课时作业2:1.1.2 集合间的基本关系

课时作业2:1.1.2 集合间的基本关系

1.1.2集合间的基本关系一、基础达标1.下列命题中,正确的有()①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④答案 C解析①空集只是空集的子集而非真子集,故①错;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确.2.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为() A.6 B.5C.4 D.3答案 A解析集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.3.设集合P={x|y=x2},Q={(x,y)|y=x2},则P与Q的关系是() A.P⊆Q B.P⊇QC.P=Q D.以上都不对答案 D解析集合P是指函数y=x2的自变量x的取值范围,集合Q是指所有二次函数y=x2图象上的点,故P,Q不存在谁包含谁的关系.4.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4C.a>4 D.a≥4答案 D解析由A B,结合数轴,得a≥4.5.(2013·江苏高考)集合{-1,0,1}共有________个子集.答案8解析根据计算集合子集个数的公式求出或直接写出.由于集合中有3个元素,故该集合有23=8(个)子集.6.设集合M={x|2x2-5x-3=0},N={x|mx=1},若N⊆M,则实数m的取值集合为________.答案{-2,0,1 3}.解析集合M={3,-12}.若N⊆M,则N={3}或{-12}或∅.于是当N={3}时,m=13;当N={-12}时,m=-2;当N=∅时,m=0.所以m的取值集合为{-2,0,1 3}.7.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.解∵A={(x,y)|x+y=2,x,y∈N},∴A={(0,2),(1,1),(2,0)}.∴A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.二、能力提升8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则实数a的取值是() A.1 B.-1C.0,1 D.-1,0,1答案 D解析因为集合A有且仅有2个子集,所以A仅有一个元素,即方程ax2+2x+a=0(a∈R)仅有一个根.(1)当a =0时,方程化为2x =0,此时A ={0},符合题意.(2)当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1,∴a =±1.此时A ={-1},或A ={1},符合题意.∴a =0或a =±1.9.已知集合A =⎩⎨⎧⎭⎬⎫x |x =k 3,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 6,k ∈Z ,则 ( )A .A BB .B AC .A =BD .A 与B 关系不确定答案 A 解析 对B 集合中,x =k 6,k ∈Z ,当k =2m 时,x =m 3,m ∈Z ;当k =2m -1时,x =m 3-16,m ∈Z ,故按子集的定义,必有A B .10.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则实数a 的值为________. 答案 -1或2解析 A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.11.已有集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的集合.解 由x 2-4x +3=0,得x =1或x =3.∴集合A ={1,3}.(1)当B =∅时,此时m =0,满足B ⊆A .(2)当B ≠∅时,则m ≠0,B ={x |mx -3=0}=⎩⎨⎧⎭⎬⎫3m .∵B ⊆A ,∴3m =1或3m =3,解之得m =3或m =1.综上可知,所求实数m 的集合为{0,1,3}.三、探究与创新12.已知集合A ={x |x <-1,或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.解 当B =∅时,只需2a >a +3, 即a >3.当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎨⎧ a +3≥2a ,a +3<-1或⎩⎨⎧ a +3≥2a ,2a >4.解得a <-4或2<a ≤3. 综上,实数a 的取值范围为{a |a <-4或a >2}.13.若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.解 A ={-3,2}.对于x 2+x +a =0,①当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;②当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;③当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2},∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6.。

1.1.2 集合间的基本关系练习题及答案解析

1.1.2 集合间的基本关系练习题及答案解析

1.下列六个关系式,其中正确的有()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A.6个B.5个C.4个D.3个及3个以下解析:选C.①②⑤⑥正确.2.已知集合A,B,若A不是B的子集,则下列命题中正确的是()A.对任意的a∈A,都有a∉BB.对任意的b∈B,都有b∈AC.存在a0,满足a0∈A,a0∉BD.存在a0,满足a0∈A,a0∈B解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅,∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|y x=1},则A 、B 间的关系为________. 解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故B A .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧ a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同,∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0, 即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12. 11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且BA ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∵B A ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13; 当mx +1=0的解为2时,由m ·2+1=0,得m =-12; 当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.。

【优质文档】【2020届新人教A版】1.2集合间的基本关系练习(2)-人教A版高中数学必修第一册(解析版)

【优质文档】【2020届新人教A版】1.2集合间的基本关系练习(2)-人教A版高中数学必修第一册(解析版)

故 B=C,而 A 的周期为 6, 很明显真包含于 B,C, 所以 A B=C.故选 B. 10. 集合 A={x|(a-1)x2+3x-2=0} 有且仅有两个子集 , 则 a 的取值为 ________.
【答案】 1 或
【解析】由集合有两个子集可知
, 该集合是单元素集 , 当 a=1 时 , 满足题意 . 当 a ≠ 1 时 , 由 Δ
则( )
A. A? B
B . C? B
C. D? C
D . A? D
【答案】 B
【解析】由已知 x 是正方形,则 x 必是矩形,所以 C? B,故选 B.
3. 满足 {1} ? A? {1,2,3} 的集合 A 的个数是 (
)
A.2
B.3
C.4
D.8
【答案】 C
【解析】满足 {1} ? A? {1,2,3} 的集合 A 为 :{1},{1,2},{1,3},{1,2,3},
共 3 个值 ; 当 a=2 时,b=3 或 4 或 5, 则 c=5 或 6 或 7 共 3 个值 , 所以 A⊕ B={3,4,5,6,7}, 则集合 A⊕ B
的真子集个数为 -1=31( 个 ). 故选 B.
5. 设 A={x|2<x<3},B={x|x<m}, 若 A? B, 则 m的取值范围是 ( )
素养达成
12. 已知集合 A={x|-2 ≤ x≤ 5}. (1) 若 B? A,B={x|m+1 ≤ x≤ 2m-1}, 求实数 m的取值范围 ; (2) 若 A? B,B={x|m-6 ≤ x≤ 2m-1}, 求实数 m的取值范围 ; (3) 若 A=B,B={x|m-6 ≤ x≤ 2m-1}, 求实数 m的取值范围 . 【答案】见解析 【解析】 (1) ①若 B= , 则 m+1>2m-1,即 m<2,此时满足 B? A;

专题02 集合间的基本关系(测)(原卷版)

专题02 集合间的基本关系(测)(原卷版)

专题02集合间的基本关系(测)1.【重难点知识清单】设a ,b ∈R ,集合{1,a +b ,a }=0,,b b a ⎧⎫⎨⎬⎩⎭,则b -a 等于( ) A .1 B .-1 C .2D .-22.【辽宁省盘锦市第二高级中学2019-2020学年高二下学期第一阶段月考】已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m 等于( ) A .±1B .-1C .1D .03.【2020届河南广东省联考】设集合{}2230,A x x x x N =--<∈,则集合A 的真子集有( ) A .5个B .6个C .7个D .8个4.【四川省泸县第五中学2019-2020学年高一下学期第一次在线月考】已知集合A ={x |x >l },则下列关系中正确的是( ) A .0A ⊆B .{}0A ⊆C .A φ⊆D .{}0A ∈5.【重庆市合川区2018-2019学年高一上学期期中】设集合{|14},M x x a π=<<=,则下列关系正确的是( ) A .a M ⊆B .a M ∉C .{}a M ∈D .{}a M ⊆6.【必修第一册 逆袭之路】已知集合1,6A x x a a Z ⎧⎫==+∈⎨⎬⎩⎭,1,23b B x x b Z ⎧⎫==-∈⎨⎬⎩⎭,1,26c C x x c Z ⎧⎫==+∈⎨⎬⎩⎭,则,,A B C 满足的关系为( )A .ABC =⊆B .A BC ⊆=C .A B C ⊆⊆D .B C A ⊆⊆7.【河北省张家口市尚义县第一中学2019-2020学年高一上学期期中】已知集合A={2,3},B={x|mx ﹣6=0},若B ⊆A ,则实数m=( ) A .3 B .2C .2或3D .0或2或38.【江苏省苏州市常熟市2019-2020学年高一上学期期中】已知集合{}2A x ax x==,{}0,1,2B =,若A B ⊆,则实数a 的取值个数为( )A .3B .2C .1D .09.【山西省山西大学附中2019-2020学年高一上学期10月月考】集合{}0与∅的关系是( ) A .{}0∅B .{}0∈∅C .{}0=∅D .{}0⊆∅10.【必修第一册 突围者】已知集合()()(){}22,310M x y x y =++-=,{}3,1N =-,则M 与N 的关系是( ). A .MNB .M N ⊆C .M N ⊇D .M ,N 无公共元素11.【必修第一册 必杀技】设集合 }{}{11,0.A x B x x a =-<<=-> 若,A B ⊆ 则a 的取值范围( ) A .[1,)+∞B .(1,)+∞C .(,1)-∞-D .(,1]-∞-12.【智能测评与辅导】已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是( ) A .(-∞,2]B .(2,4]C .[2,4]D .(-∞,4]13.【上海市浦东新区2019-2020学年高一上学期期末】已知集合{}{}2,1,2,1,A B a =-=,且B A ⊆,则实数a 的值为_________.14.【北京市首都师范大学附属中学2019-2020学年高一上学期数学期中】已知集合{|1}A x x =>,{|}B x x a =>,若A B ⊆,则实数a 的取值范围是______.15.【上海市上海中学2015-2016学年高一上学期期中】设集合{}0,A a =,集合{}232,,1B a a a =--且,A B ⊆则a 的值是_________.16.【必修第一册 逆袭之路】若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____.17.【上海市复旦中学2017-2018学年高一上学期10月月考】已知{}2340A x x x =+-=,{}10B x ax a =-+=且B A ⊆,则实数a 的值为______.18.【新疆实验中学2019-2020学年高一上学期期中】集合{}24,A x x x R ==∈,集合{}4,B x kx x R ==∈,若B A ⊆,则实数k =_________.19.【辽宁省朝阳市朝阳县柳城高中2019-2020学年高一上学期期中】已知集合()(){}350A x x x =+-≤,{}223B x m x m =-<<-,且B A ⊆,求实数m 的取值范围.20.【浙江省宁波市镇海中学2019-2020学年高一上学期期中】已知集合{}2|21A x a x a =≤≤+,()(){}2|312310B x x a x a =-+++≤,其中a R ∈.(1)若4A ∈,3A ∉,求实数a 的取值范围; (2)若A B ⊆,求实数a 的取值范围.21.【必修第一册 过关斩将】设集合{|40}A x x p =+<,{|1B x x =<-或2}x >,若A B ⊆,求实数p 的取值范围.22.【高一年级第一学期 领航者】已知集合{}(){}22|320,=|10A x x x B x x a x a =-+≤-++≤(1)当A B =时,求实数a 的值; (2)当A B ⊆时,求实数a 的取值范围.。

集合间的基本关系练习题及答案

集合间的基本关系练习题及答案

1.集合{a,b}的子集有( )之马矢奏春创作A.1个B.2个C.3个 D.4个【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.【答案】D2.下列各式中,正确的是( )A.23∈{x|x≤3} B.23∉{x|x≤3}C.23⊆{x|x≤3} D.{23}{x|x≤3}【解析】23暗示一个元素,{x|x≤3}暗示一个集合,但23不在集合中,故23∉{x|x≤3},A、C不正确,又集合{23}⃘{x|x≤3},故D不正确.【答案】B3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.【答案】44.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A暗示在数轴上(如图所示),要满足A⊆B,暗示数a 的点必须在暗示4的点处或在暗示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5 B.6C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】C2.在下列各式中错误的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2C.3 D.4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】A3.已知集合A={x|-1<x<2},B={x|0<x<1},则( )A.A>B B.A BC.B A D.A⊆B【解析】如图所示,,由图可知,B A.故选C.【答案】C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA ,则A≠Ø. 其中正确的有( )A .0个B .1个C .2个D .3个【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知Ø{x|x 2-x +a =0},则实数a 的取值范围是________.【解析】 ∵Ø{x|x 2-x +a =0}, ∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a≥0,a≤14. 【答案】 a≤146.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.【解析】 ∵B ⊆A ,∴m 2=2m -1,即(m -1)2=0∴m=1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.【答案】 1三、解答题(每小题10分,共20分)7.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1,y =0.8.若集合M ={x|x 2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.【解析】 由x 2+x -6=0,得x =2或x =-3.因此,M ={2,-3}.若a =2,则N ={2},此时N M ;若a =-3,则N ={2,-3},此时N =M ;若a≠2且a≠-3,则N ={2,a},此时N 不是M 的子集,故所求实数a 的值为2或-3.9.(10分)已知集合M ={x|x =m +16,m∈Z },N ={x|x =n 2-13,n∈Z },P ={x|x =p 2+16,p∈Z },请探求集合M 、N 、P 之间的关系.【解析】 M ={x|x =m +16,m∈Z } ={x|x =6m +16,m∈Z }.N ={x|x =n 2-13,n∈Z } =⎩⎨⎧⎭⎬⎫x|x =3n -26,n∈Z P ={x|x =p 2+16,p∈Z } ={x|x =3p +16,p∈Z }. ∵3n-2=3(n -1)+1,n∈Z .∴3n-2,3p +1都是3的整数倍加1, 从而N =P.而6m +1=3×2m+1是3的偶数倍加1, ∴M N =P.。

课时训练1.2集合间的基本关系 (原卷版)

课时训练1.2集合间的基本关系 (原卷版)

第一章 集合与常用逻辑用语【1.2 集合间的基本关系】基础闯关 务实基础 达标检测题型一 子集、真子集和空集1、下列六个关系式:①{a,b}⊆{b,a};②{a,b}={b,a};③0=⌀;④0∈{0};⑤⌀∈{0};⑥⌀⊆{0},其中正确的个数为( ) A .6B .5C .4D .少于42、已知集合{}R x x x x A ∈=+-=,0232,{}N x x x B ∈<<=,50,则满足条件A C B⊆⊆的集合C 的个数为( )A .1B .2C .3D .4 3、已知集合{}2|,20A x x Z x x =∈-++>,则集合A 的子集个数为( )A .4B .5C .6D .8 4、已知集合{}2|20,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( ) A .1 B .1- C .0,1D .1-,0,15、{}223|0 A x x x =--=,{}|1B x ax ==,若B A ⊆,则实数a 的值构成的集合M =___________题型二 集合相等6、下列选项中的两个集合,表示同一集合的是( ) A .A={0,1},B={(0,1)} B .A={2,3},B={3,2}C .A={x|-1<x ≤1,x ∈N},B={1}D .A=⌀,B={x|x ≤0}7、已知集合{⎭⎬⎫==x y x A 1,{⎭⎬⎫==y x y B 1,⎩⎨⎧⎭⎬⎫==x y y x C 1),(,则下列结论正确的是( )A .A=B B .A=C C .B=CD .A=B=C题型三 由集合的关系求参数8、已知集合A ={0,1,2},B ={1,m }.若B ⊆A ,则实数m 的值是( ) A .0 B .2 C .0或2 D .0或1或29、设(){}210A x x a x a =-++<,{}23100B x x x =--<,若A B ⊆,求实数a 的取值范围.10、设集合A={x |x 2-8x +15=0},B={x |ax -1=0}. (1)若a =51,试判断集合A 与B 之间的关系; (2)若B ⊆A ,求实数a 的取值集合.能力提升 思维拓展 探究重点1、设m ,n R ∈,集合{1,m ,}{0m n +=,n ,}nm,则m n -=_______.2、已知集合{}12A x ax =<<,{}11B x x =-<<,求满足A B ⊆的实数a 的取值范围.3、已知集合A={x |2a +1≤x ≤3a -5},B={x |x <-1或x >16}. (1)若A 为非空集合,求实数a 的取值范围; (2)若A ⊆B,求实数a 的取值范围.4、已知集合A={x |ax 2-3x +2=0}. (1)若⌀⫋A,求实数a 的取值范围;(2)若B={x |x 2-x =0},且A ⊆B,求实数a 的取值范围.。

《集合间的基本关系》习题

《集合间的基本关系》习题

For personal use only in study and research; not forcommercial use《集合间的基本关系》习题一、选择题1.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅⊂≠A ,则A≠∅,其中正确的个数是( )A .0B .1C .2D .32.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值 是( )A .1B .-1C .0,1D .-1,0,13.设B ={1,2},A ={x|x ⊆B},则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A4.下列五个写法:①{0}∈{0,1};②∅⊂≠{0};③{0,-1,1}{-1,0,1};④0∈∅;⑤ {(0,0)}={0},其中写法错误的个数是( )A .2B .3C .4D .55.}0352|{2=--=x x x M ,}1|{==mx x N ,若M N ≠⊂,则m 的取值集合为( )A.{2}-B.13⎧⎫⎨⎬⎩⎭C.12,3⎧⎫-⎨⎬⎩⎭D.12,0,3⎧⎫-⎨⎬⎩⎭6. 满足{1,2,3}{1,2,3,4,5,6}M ⊂⊂≠≠的集合的个数为( )A.5B.6C.7D.8二、填空题7.满足{1}ÜA{1,2,3}的集合A的个数是________.8.已知集合A={x|x=a+16,a∈Z},B={x|x=b2-13,b∈Z},C={x|x=c2+16,c∈Z},则A、B、C之间的关系是________.9.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.三、解答题10.下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,分别是哪种图形的集合?11.已知集合A={x|x2-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.12设集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求a的值答案一、选择题1.B 解析:空集只有一个子集,就是它本身,空集是任何非空集合的真子集,故仅④是正确的.2.D 解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈)仅有一个根或两个相等的根.(1)当a =0时,方程为2x =0,此时A ={0},符合题意.(2)当a≠0时,由Δ=22-4·a·a =0,即a 2=1,∴a =±1.此时A ={-1}或A ={1},符合题意.∴a =0或a =±1.3. D 解析:∵B 的子集为{1},{2},{1,2},,∴A ={x|x ⊆B}={{1},{2},{1,2},},∴B ∈A.4. B 解析:只有②③正确.5. D 解析: 1{,3},2M =- (1)0,N m =∅⇒=(2)1{}2,2N m =-⇒=-(3)1{3},3N m =⇒= ∴ 的取值集合为12,0,.3⎧⎫-⎨⎬⎩⎭ 6. B 解析:集合M 真包含集合}3,2,1{,M 中一定有元素1,2,3且除此之外至少还有一个元素. 又集合M 真包含于集合}6,5,4,3,2,1{,所以M 中最少有4个元素,最多有5个元素,集合M 的个数等于集合}6,5,4{非空真子集的个数,即6223=-.二、填空题7. 3 解析:A 中一定有元素1,所以A 可以为{1,2},{1,3},{1,2,3}.8. A ÜB =C 解析:用列举法寻找规律.9. 1 解析:∵BA ,∴m 2=2m -1,即(m -1)2=0,∴ m =1.当m =1时,A ={-1,3,1},B ={3,1},满足BA.三、解答题10.解:观察Venn 图,得B 、C 、D 、E 均是A 的子集,且有E ÜD ,D ÜC.梯形、平行四边形、菱形、正方形都是四边形,故A ={四边形};梯形不是平行四边形,而菱形、正方形是平行四边形,故B ={梯形},C ={平行四边形};正方形是菱形,故D ={菱形},E ={正方形}.11.解:由A ={x|x 2-3x -10≤0},得A ={x|-2≤x≤5},(1)∵B ⊆A ,∴①若B =,则m +1>2m -1,即m<2,此时满足B ⊆A.②若B≠,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m>-5,m≤4,m≥3.故3≤m≤4, ∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈,即不存在m 值使得A =B.12.解:(方法一) A ={x|x 2-5x +6=0}={2,3},由B ⊆A ,得B =,或B ={2},或B ={3},或B ={2,3}.因为Δ=(2a +1)2-4a 2-4a =1>0,所以B 必有两个元素.则B ={2,3},需2a +1=5和a 2+a =6同时成立,所以a =2.综上所述:a =2.(方法二) A ={x|x 2-5x +6=0}={2,3},B ={x|x 2-(2a +1)x +a 2+a =0}={x|(x -a)(x -a -1)=0}={a ,a +1},因为a≠a +1,所以当B ⊆A 时,只有a =2且a +1=3.所以a =2仅供个人用于学习、研究;不得用于商业用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2集合间的基本关系
一、选择题
1.对于集合A,B,“A⊆B”不成立的含义是()
A.B是A的子集
B.A中的元素都不是B的元素
C.A中至少有一个元素不属于B
D.B中至少有一个元素不属于A
2.集合M={(x,y)|x+y<0,xy>0},P={(x,y)|x<0,y<0}那么()
A.P M B.M P
C.M=P D.M P
3.设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C中元素最少有()
A.2个B.4个
C.5个D.6个
4.若集合A={1,3,x},B={x2,1}且B⊆A,则满足条件的实数x的个数是()
A.1 B.2
C.3 D.4
5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()
A.M P B.P M
C.M=P D.M、P互不包含
6.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A 的个数是()
A.8 B.2
C.4 D.1
7.设集合M={x|x=k
2+
1
4,k∈Z},N={x|x=
k
4+
1
2,k∈Z},则()
A.M=N B.M N
C.M N D.M与N的关系不确定
8.集合A={x|0≤x<3且x∈N}的真子集的个数是()
A.16 B.8
C.7 D.4
9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()
10.如果集合A 满足{0,2}
A ⊆{-1,0,1,2},则这样的集合A 个数为( ) A .5
B .4
C .3
D .2
二、填空题
11.设A ={正方形},B ={平行四边形},C ={四边形},D ={矩形},E ={多边形},则A 、B 、C 、D 、E 之间的关系是________.
12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.
13.用适当的符号填空.(∈,∉,⊆,⊇, , ,=)
a ________{
b ,a };a ________{(a ,b )};
{a ,b ,c }________{a ,b };{2,4}________{2,3,4};
∅________{a }.
*14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13
,b ∈Z }, C ={x |x =c 2+16
,c ∈Z }. 则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,
中的符号连接A ,B ,
C ).
15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.
三、解答题
16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若A B ,求实数a 的取值范围.
17.已知A={x|x<-1或x>2},B={x|4x+a<0},当B⊆A时,求实数a的取值范围.
18.A={2,4,x2-5x+9},B={3,x2+ax+a},C={x2+(a+1)x-3,1},a、x∈R,求:
(1)使A={2,3,4}的x的值;
(2)使2∈B,B A成立的a、x的值;
(3)使B=C成立的a、x的值.
1.[答案] C
[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.
[答案] C
2.[解析] 由xy >0知x 与y 同号,又x +y <0
∴x 与y 同为负数
∴⎩⎪⎨⎪⎧ x +y <0xy >0等价于⎩⎨⎧
x <0y <0∴M =P . 3. [答案] C
[解析] A ={-1,1},B ={0,1,2,3},
∵A ⊆C ,B ⊆C ,
∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.
4. [答案] C
[解析] ∵B ⊆A ,∴x 2∈A ,又x 2≠1
∴x 2=3或x 2=x ,∴x =±3或x =0.故选C.
5. [答案] D
[解析] 由于两集合代表元素不同,因此M 与P 互不包含,故选D.
6. [答案] C
[解析] ∵A ⊆B ,A ⊆C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个.
即:A =∅,或A ={a },或A ={b }或A ={a ,b }.
7. [答案] B
[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得
M ={…-34,-14,14,34,54
…}, N ={…0,14,12,34
,1…}, ∴M N ,故选B.
解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24
(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.
[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.
8. [答案] C
[解析] 因为0≤x <3,x ∈N ,∴x =0,1,2,即A ={0,1,2},所以A 的真子集个数为23-1
=7.
9. [答案] B
[解析] 由N ={x |x 2+x =0}={-1,0}得,N M ,选B.
[答案] C
10.[解析] 集合A 里必含有元素0和2,且至少含有-1和1中的一个元素,故A ={0,2,1},{0,2,-1}或{0,2,1,-1}.
11.[答案] A D B C E
[解析] 由各种图形的定义可得.
12. [答案] M P
[解析] P ={x |x =a 2-4a +5,a ∈N *}
={x |x =(a -2)2+1,a ∈N *}
∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .
13. [答案] ∈,∉,
14. [答案] A B =C
[解析] 由b 2-13=c 2+16
得b =c +1, ∴对任意c ∈Z 有b =c +1∈Z .
对任意b ∈Z ,有c =b -1∈Z ,
∴B =C ,又当c =2a 时,有c 2+16=a +16
,a ∈Z . ∴A C .也可以用列举法观察它们之间的关系.
15. [答案] 6
[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.
k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合
16. [解析] 如图
∵A B ,∴a +4≤-1或者a >5.
即a ≤-5或a >5.
17. [解析] ∵A ={x |x <-1或x >2},
B ={x |4x +a <0}={x |x <-a 4
}, ∵A ⊇B ,∴-a 4
≤-1,即a ≥4,
所以a 的取值范围是a ≥4.
18. [解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3
解得x =2或3
(2)若2∈B ,则x 2+ax +a =2
又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a =2中得a =-23或-74
(3)若B =C ,则⎩⎪⎨⎪⎧
x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6
此时x =3或-1.
19. [解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。

相关文档
最新文档