五年级奥数(分数的巧算)

合集下载

五年级奥数基础教程巧算24小学

五年级奥数基础教程巧算24小学

五年级奥数基础教程巧算24小学同学们可能都玩过“数学24”的游戏,它把枯燥的基本数字计算变得趣味盎然,能大大提高计算能力和速度,使得思维灵活敏捷,是一种寓教于乐的智力竞赛游戏。

游戏规则:给定四个自然数,通过+,-,×,÷四则运算,可以交换数的位置,可以随意地添括号,但规定每个数恰好使用一次,连起来组成一个混合运算的算式,使最后得数是24。

“数学24”游戏通常是用扑克牌进行的,此时,给定的四个自然数就被限定在1~13范围内了。

“数学24”游戏可以1个人玩,也可以多个人玩,比如四个人玩,把扑克牌中的大、小王拿掉,剩下的52张牌洗好后,每人分13张,然后每人出一张牌,每张牌的点数代表一个自然数,其中J,Q,K分别代表11,12和13,四张牌表示四个自然数。

谁最先按游戏规则算出24,就把这四张牌赢走。

然后继续进行。

最后谁的牌最多谁获胜。

要想算得又快又准,这就要靠平时的基本功了。

最重要的有两条:一是熟悉加法口诀和乘法口诀,二是利用括号。

括号既能改变运算顺序,也可以改变运算符号。

请用下面例题中给出的四个数,按规则算出24。

例1 3,3,5,6。

解一:根据3×8=24,3已有,将另三个数凑成8,得3×(5+6-3)=24。

解二:根据6×4=24,6已有,将另三个数凑成4,得6×(5-3÷3)=24或6×(3×3-5)=24。

解三:还是根据3×8=24,把3和8各分成两数,得(6-3)×(3+5)=24。

解四:先把其中两数相乘,积不足24的用另两数补足,得3×5+3+6=24。

解五:先把其中两数相乘,积超过24的用另两数割去,得5×6-3-3=24。

例2 2,2,4,8。

解一:根据8×3=24,得8×[(2+4)÷2]=24或8×(4-2÷2)=24。

五年级奥数题:分数的巧算

五年级奥数题:分数的巧算

五年级奥数题:分数的巧算一、引言本文将介绍一些在五年级奥数中常见的关于分数的巧算方法,帮助学生们更好地理解和运用分数知识。

二、分数的概念分数是数学中的一种表示方法,由一个整数和一个分母构成。

分数可以表示一个数与一个单位的比值,通常用分子除以分母的形式表示,如$\frac{1}{2}$。

三、分数的基本运算1. 分数的加法分数的加法可以通过找到它们的公共分母进行计算。

例如,计算$\frac{1}{3} + \frac{2}{3}$,我们可以将两个分数的分母统一为3,然后将分子相加,得到$\frac{3}{3}$,再简化为$1$。

2. 分数的减法分数的减法也可以通过找到它们的公共分母进行计算。

例如,计算$\frac{4}{5} - \frac{2}{5}$,我们可以将两个分数的分母统一为5,然后将分子相减,得到$\frac{2}{5}$。

3. 分数的乘法分数的乘法可以直接将它们的分子相乘,分母相乘。

例如,计算$\frac{2}{3} \times \frac{4}{5}$,我们可以得到$\frac{8}{15}$。

4. 分数的除法分数的除法可以通过将被除数乘以倒数的方式进行计算。

例如,计算$\frac{2}{3} \div \frac{4}{5}$,我们可以将它转化为$\frac{2}{3} \times \frac{5}{4}$,然后得到$\frac{10}{12}$,再简化为$\frac{5}{6}$。

四、分数的化简有时候,我们可以将分数化简为最简形式,即分子与分母没有公因子。

例如,对于$\frac{4}{6}$,我们可以将分子和分母都除以2,得到$\frac{2}{3}$,这就是它的最简形式。

五、分数的比较当需要比较两个分数的大小时,我们可以将它们的分母统一,然后比较分子的大小。

例如,比较$\frac{1}{2}$和$\frac{2}{3}$,我们可以将它们的分母统一为6,然后比较$\frac{3}{6}$和$\frac{4}{6}$,可以得出$\frac{3}{6} < \frac{4}{6}$,即$\frac{1}{2} < \frac{2}{3}$。

五年级《速算与巧算》奥数教案

五年级《速算与巧算》奥数教案
可以先约分再计算,就像这道题一样,会发现简算的方法。
板书:
原式= + + +
=2
练习2:(5分)
计算: + + + -
分析:
将算式中的分数先化成最简分数,然后会发现化简后每个分数都是 。
板书:
原式= + + + -
=1
三、小结:(5分)
整数的加法交换律、结合律对分数的加减计算同样适用。
第二课时(50分)
师:那么我们可不可以将式子写成这种形式。
板书:
原式=(1- )+( - )+( - )+……+( - )
=1- + - + - +……+ -
=1-
=
师:从式子中我们发现中间的分数都是一加一减刚好抵消的。将数列中的每一
项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,我们
把这种解题方法叫做裂项相消法。
生: ,老师,我知道了,给式子加上一个 ,再在最后减去一个 ,
+ = , + = , + = ,最后式子变成1+2+3+4+5+ + - 。
师:恩恩,同学的反应能力很快,那么请你将过程板书到黑板上。
板书:
原式=1+2+3+4+5+ + + + +( + )-
=15+ + + +( + )-
=15+ + +( + )-
练习1:(5分)
计算: - + +
分析:

五年级奥数小数的巧算和分数的分拆

五年级奥数小数的巧算和分数的分拆

计算式时,利用整数四则运算中简便计算的技巧,还可以利用小数本身的特点,对算式适当变形,将其中的数转化成整数,或者使计算中的一些数易于口算,从而达到速算与巧算。

1、3.9+0.39+0.039+0.0039+0.000392、20.36-7.98-5.02-4.363、42.1+(27.9-12.5)4、3.28-(1.98-1.72)5、42.7×4×0.256、0.125×0.25×0.5×647、4.92÷0.25÷4 8、66.66÷12.5÷0.4÷0.8÷0.39、222×4.4+8.9×888 10、9.56×4.18-7.3×4.18-0.26×4.18单位分数:分子为2、分母是自然数的分数叫单位分数。

分数的分拆:把一个分数分拆成几个分数相加的和,叫做分数的分拆。

一、将下列各分数写成两个单位分数:()()11114=+、()()11125=+、 二、将下列各分数写成三个单位分数之和。

()()()111115=++、()()()1111216=++、 三、将下列等式中的括号里填上适当的各不相同的自然数,使等式成立。

()()()()11111112=+++、 ()()()()11111221=+++、 四、将下列各分数写成两个单位分数之差。

()()11116=-、 ()()11121995=-、 3、已知A 、B 、C 是三个自然数,且C B A 1113851--= ,试求A 、B 、C 三个数之和。

五、计算 :10043211432113211211+⋅⋅⋅++++⋅⋅⋅+++++++++。

奥数5_简便运算2

奥数5_简便运算2

第五周 简便运算(四)专题简析:前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简便运算。

运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。

一般地,形如1a ×(a+1) 的分数可以拆成1a -1a+1 ;形如1a ×(a+n )的分数可以拆成1n ×(1a -1a+n ),形如a+b a ×b 的分数可以拆成1a +1b 等等。

同学们可以结合例题思考其中的规律。

例题1。

计算:11×2 +12×3 +13×4 +…..+ 199×100原式=(1-12 )+(12 -13 )+(13-14 )+…..+ (199 -1100 )=1-12 +12 -13 +13 -14 +…..+ 199 -1100=1-1100=99100练习1计算下面各题: 1. 14×5 +15×6 +16×7 +…..+ 139×402.110×11 +111×12 +112×13 + 113×14 +114×153. 12 +16 +112 +120 + 130 +1424. 1-16 +142 +156 +172例题2。

计算:12×4 +14×6 +16×8 +…..+ 148×50原式=(22×4 +24×6+26×8 +…..+ 248×50 )×12=【(12 -14 )+(14 -16 )+(16 -18)…..+ (148 -150 )】×12=【12 -150 】×12=625练习2计算下面各题:1. 13×5 +15×7 +17×9 +…..+ 197×99 2. 11×4 +14×7 +17×10 +…..+ 197×100 3.11×5 +15×9 +19×13 +…..+ 133×374. 14 +128 +170 +1130 +1208例题3。

五年级奥数——巧算与速算(含解析)

五年级奥数——巧算与速算(含解析)

速算与巧算教学目标1.掌握常用的运算律并能熟练运用;2.掌握周期性数字的特征;3.掌握从简单情况找规律的思想方法。

巧用运算律在计算的过程中,运算律的应用是最常用的技巧。

经常用到的运算律有:⑴加法交换律:a b b a+=+⑵加法结合律:()()++=++a b c a b c⑶乘法交换律:a b b a⨯=⨯⑷乘法结合律:()()⨯⨯=⨯⨯a b c a b c⑸乘法分配律:()⨯+=⨯+⨯(反过来就是提取公因数)a b c a b a c⑹减法的性质:()--=-+a b c a b c⑺除法的性质:()÷⨯=÷÷a b c a b c+÷=÷+÷a b c a c b c()-÷=÷-÷()a b c a c b c上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用。

要注意添括号或者去括号对运算符号的影响:⑴在“+”号后面添括号或者去括号,括号内的“+”、“-”号都不变;⑵在“-”号后面添括号或者去括号,括号内的“+”、“-”号都改变,其中“+”号变成“-”号,“-”号变成“+”号;⑶在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都不变,但此时括号内不能有加减运算,只能有乘除运算;⑷在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号,但此时括号内不能有加减运算,只能有乘除运算。

此外,下面的三个结论也是很有用的:商不变性质:如果除数和被除数同时扩大或缩小相同的倍数,它们的商不变。

【例1】(“走进美妙的数学花园”初赛)计算:11353715⨯-⨯【分析】根据“一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变”的道理,进行适当变换,再提取公因数,进而凑整求和。

原式11353735=⨯-⨯⨯=⨯-⨯11351115=-⨯(113111)5=10【例2】(武汉明心奥数挑战赛)计算:1234567981⨯【分析】原式123456799912345679(101)9(12345679012345679)9=⨯⨯=⨯-⨯=-⨯=⨯=1111111119999999999[巩固] 计算:123456789876543219⨯[分析] 原式12345678987654321(101)=⨯-=-12345678987654321012345678987654321=111111110888888889【例3】(“走进美妙的数学花园”决赛)计算:⨯+⨯+÷-⨯+2237.522.312.523040.7 2.51【分析】原式2233 2.522.35 2.523 2.50.7 2.50.4 2.5=⨯⨯+⨯⨯+⨯-⨯+⨯=⨯⨯+⨯+-+2.5(223322.35230.70.4)2.5(669111.5230.70.4)=⨯++-+=⨯2.5803.2=⨯÷803.2104=÷80324=2008[巩固] 计算:199.919.98199.819.97⨯-⨯[分析] (法1)原式199.919.9819.98199.7=⨯-⨯=⨯-19.98(199.9199.7)=⨯19.980.2(法2)也可以用凑整法来解决。

奥数题分数的巧算

奥数题分数的巧算

华夏教育(渝北校区)内部资料 未经允许 不得使用 咨询电话:86008666小学六年级奥数训练一. 分数的巧算复习。

41994197454341+++++ 1009811081861641⨯++⨯+⨯+⨯2000199919991999÷ 900230001111⨯二. 分数和比。

例1:小明和小强的图书本数比是12:7,如果分别加上6本,他们的本数比为3:2。

原来他们各有多少本?巩固练习:1. A 、B 两种商品的价格比是7:3。

如果分别上涨70元,它们的价格比是7:4。

这两种商品原来的价格各是多少元?2. 甲书架上的书与乙书架上的书本数比是5:6,后来都借走了15本,则甲乙书架上本数比为4:7。

则甲乙两书架上原有书多少本?例2:菜市场运来的萝卜比白菜多1.52吨,卖出0.2吨萝卜和0.4吨白菜后,白菜和萝卜的重量比是7:9,原来白菜、萝卜各原来多少吨?1. 粮店原有大米比面粉多3.4吨,卖出大米1.6吨,面粉0.6吨后,大米与面粉的重量比为8:5。

原有大米面粉各多少吨?2. 声乐组人数比舞蹈组人数多14人,后来从声乐组调4人到舞蹈组后,声乐组与舞蹈组人数的比为13:10,声乐组和舞蹈组共有多少人?3. 甲乙两个生产小组每天加工零件指标一样,有一天甲组超额725个,乙组超额175个,已知这一天甲乙两组加工的总数比是7:5。

每天生产指标是多少个?例3:一、二两队人数的比是4:5,一队调72到二队后,二队比一队多46人。

原来两队各多少人?巩固练习:1. 甲乙两队的人数比是8:5,甲队调41到乙队后,甲队人数比乙队少12人,原来甲队比乙队多多少人?2. 甲乙两堆煤重量比是5:4,各运走51后,剩下的甲堆比乙堆多44吨,甲乙各运走了多少吨?例4:一项工程,甲乙合做20天完成。

已知甲乙两队的工作效率之比是4:5,甲乙两队单独完成这项工程各需多少天?1.甲乙两车同时从A、B两地相向而行,5小时相遇。

五年级奥数教案

五年级奥数教案

五年级奥数教课设计第 2 单元巧算乞降(二)教课目的:奇妙的运用分数的拆分来进行简易运算。

教课内容:教科书第 10 页例 1、例 2 和自主检测。

教课重难点:能够灵巧运用此方法进行这一种类的简易计算。

教课方法:讲解法、练习法教课过程:步骤新课教课教师行为学生行为出示例 1计算 1/2+1/6+1/12+1/20惯例剖析:依据旧规方法,这是一题一般的异分母分数加法,我们一般采纳通分的方法。

1/2+1/6+1/12+1/20=60/120+20/120+10/120+6/120=96/120=4/5创新点拨:认真察看每个分数有什么特别的地方,不难看出,分子都是1,而分母能够写成1×2, 2 × 3, 3× 4, 4 × 5 ,即每个分母都能够写成两个连续自然数的积,于是每个分数都能够拆成两个分数的差:1/2 = 1/1 × 2= 1-1/2 ,1/6= 1/2× 3 = 1/2 - 1/3 , 1/12= 1/3 × 4 =1/3-1/4, 1/20 = 1/4 × 5 = 1/4-1/5。

所以能够指引学生作以下解答:1/2+1/6+1/12+1/20=1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5=1 - 1/5=4/5出示例 2计算 2/3 × 5 + 2/5 × 7 + 2/7 × 9+ 2/9 × 11惯例剖析:异分母分数相加,先通分,再相加,比较麻烦。

创新点拨:认真察看不难发现,每个分数的分子都是 2,而分母都是两个自然数的积,而分子恰巧等于分母的两个自然数的差。

5- 3= 2, 7- 5= 2 , 9 - 7= 2, 11 - 9 = 2,于是有解答:2/3 × 5 + 2/5 × 7+ 2/7 × 9+ 2/9 × 11=1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 -1/11=1/3 - 1/11=8/33在做分数加法运算时,将此中一些分数适小当打开后的一些分数能够互相抵消,以达到简结:化运算的目的。

小学奥数知识: 分数、小数的巧算

小学奥数知识:  分数、小数的巧算

小学奥数知识: 分数、小数的巧算知识概要1、几个常用公式① 2a -2b =()()a b a b +-② 1+2+3+4+…+ n =(1)2n n ⨯+ ③ 111(1)1n n n n =-++ ④1111()...(1)()k n n k k n n k=->++ 2、常用的几个分数的拆分:111623=-,1111234=-,1113056=-,1114267=-… 511623=+,7111234=+,11113056=+,13114267=+… 3、特殊算式 1+2+3+…+(n-1)+n+(n-1)+…+ 3+2+1=2n1111n ⋅⋅⋅⨯ 个1111n ⋅⋅⋅个=12345n 54321⋅⋅⋅⋅⋅⋅ 100171113abcabc abc abc =⨯=⨯⨯⨯4、循环小数化分数 0.9a a ∙=; 0.090a a ∙= ; ___0.99ab a b ∙∙=; 0.90ab a a b ∙-= ; 0.99abc abc ∙∙= ; 0.990abc a abc ∙∙-=.经典例题讲解例 计算:111111357911612203042+++++例 计算:5119141171112345678916122030425672902-++-+-+-例 求下列所有分母不超过40的真分数的和。

112123123839()()...(...)23344440404040+++++++++++例 计算:11111...121231234123 (99100)++++++++++++++++例 计算:11111 (1447710101320052008)+++++⨯⨯⨯⨯⨯例 计算:111111111111(1...)(...)(1...)(...)231999232000232000231999++++⨯+++-++++⨯+++例 计算 1234543211655555555554⨯⨯例 计算:16199573730153.3225⨯+⨯+例 把0.120.230.340.45...0.89∙∙∙∙∙+++++化成分数形式真题解析(2005年小学数学奥林匹克)计算:22222222(246...100)(135...99)123...109 (21)++++-++++++++++++=_____(2006“希望杯” 五年级)0.30.80.2∙∙÷+=_____.(结果写成分数形式)(2008年我爱数学少年夏令营数学竞赛)11111111120091...111...1..._____232008223232008⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯++++-+++++++++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(2010华杯赛)算式2120.3711.30.40.2534-⨯+-+⨯的值为n m ,m 与n 互质,则m+n 的值是多少?(2009华杯赛决赛C 卷) 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+=_____.家庭作业1、计算:(1)1111126122030++++(2)1511109 (2612110)++++(3)4444499999999999999955555++++(4)3333332558811111414171720+++++⨯⨯⨯⨯⨯⨯2、按一定规律排列着一串数:11212312399100,,,,,,...,,,,...,,,122333100100100100100求这些数的和。

五年级奥数专题 速算与巧算二(学生版)

五年级奥数专题 速算与巧算二(学生版)

学科培优数学速算与巧算二学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算板块的部分,难度并不大。

要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。

重点难点:找出题目中可以进行“凑整”的数。

利用运算律或者公式调整运算顺序。

考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。

适当调整运算顺序。

知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。

2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。

其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

小学奥数全解 之 分数加减法速算与巧算

小学奥数全解 之 分数加减法速算与巧算

分数加减法速算与巧算知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例 1】 如果111207265009A +=,则A =________(4级) 【考点】分数约分 【难度】2星 【题型】计算 【关键词】希望杯,六年级,一试 【解析】 111112591207265009873773725125920082008+=+=⨯=⨯⨯⨯⨯,所以A =2008. 【答案】2008【例 2】 11410410042282082008+++=_____ 【考点】分数约分 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 原式=1111=22222+++ 【答案】2模块一:分组凑整思想【例 3】 1111222233318181923420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是2分子和为1分母是3分子和为12+;分母是4分子和为123++;……依次类推;分母是20子和为12319++++. 原式()1111(12)(123)1231923420=+⨯++⨯++++⨯++++ ()1111(12)22(13)3211919223420=+⨯+⨯÷+⨯+⨯÷++⨯+⨯÷ 12319952222=++++=【例 4】 11211232112199511222333331995199519951995+++++++++++++++ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是1的和为1;分母是2的和为2;分母是3的和为3;……依次类推;分母是1995的和为1995.这样,此题简化成求1231995++++的和.11211232112199511222333331995199519951995+++++++++++++++ 12341995119951995299819951991010=+++++=+⨯÷=⨯=() 【答案】1991010例题精讲【考点】分组凑整 【难度】2星 【题型】计算【解析】 因为1996=2×2×499。

五年级奥数(分数的巧算)

五年级奥数(分数的巧算)

分数的计算技巧一、知识要点五年级所学习的简便计算主要是有关分数的巧算,除与整数、小数简便计算相同外,还有其独特的巧算方法。

1. 运算定律规律:加法的交换律、结合律,乘法的交换律、结合律和分配律,还有加、减法的运算性质、商不变的规律等。

2. ()a b c d a c b ÷±÷=±÷3. (1)111(1)1n n n n =-⨯++ (2)11()d n n d n n d=-⨯++ (3)1111()()n n d d n n d =⨯-⨯++ (4)1(1)(2)n n n ⨯+⨯+1112(1)(1)(2)n n n n ⎡⎤=⨯-⎢⎥⨯++⨯+⎣⎦(5)将1A 分拆成两个分数单位和的方法:先找出A 的两个约数a 和b ,然后分子、分母分别乘()a b +,再拆分,最后进行约分。

11()()()()a b a b A A a b A a b A a b ⨯+==+⨯+⨯+⨯+ 4. 等差数列求和法:(首项+末项)×项数2÷=和。

5. 约分法简章:将写成分数形式的算式中的分子部分与分母部分同时除以它们的公有因数或公有因式,从而简化计算过程。

例1. 计算 172928⨯拓展一 计算 :443745⨯ 2255(97)()7979+÷+ 1998199819981999÷例2. 计算 362548361362548186+⨯⨯-拓展一 计算:198819891987198819891+⨯⨯- 1.2 2.3 3.4 4.5 5.6 6.7122334455667++++++++++例3. 计算 11111223344950++++⨯⨯⨯⨯ 357911132612203042-+-+-拓展一 计算:11111198619871987198819881989198919901990++++⨯⨯⨯⨯11111144771010131316++++⨯⨯⨯⨯⨯ 179111315131220304256-+-+-11111232343459899100++++⨯⨯⨯⨯⨯⨯⨯⨯112123125859()()()23344460606060+++++++++++例4. 计算 5211111111125(3)()()3()()9369126912691239+-⨯++--+⨯+++⨯-拓展一 计算 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1998减去它的12,再减去余下的13,再减去又余下的14,依此类推,一直减到最后余下的11998,最后得多少?。

小学奥数思维训练分数计算与比较大小_通用版

小学奥数思维训练分数计算与比较大小_通用版

2019年五年级数学思维训练:分数计算与比较大小1.计算:(1)++;(2)1﹣﹣﹣.2.计算:13﹣(3+2)﹣.3.计算:(﹣÷4)×+1÷1.4.计算:×54﹣16×+27×+×3.5.计算:9+99+999+9999.6.计算:(1)403×;(2)155×.7.计算:.8.将下列分数由小到大排列起来:,,,,.9.比较下列分数的大小:(1)与;(2)与.10.比较下列分数的大小:(1)与;(2)与.11.计算:(3+6+1+8)×(2﹣).12..13.要使算式2﹣(0.7﹣□)×=2成立,方框内应填入的数是多少?14.计算:124×+18×.15.计算:(1﹣×3)+(3﹣×5)+(5﹣×7)+(7﹣×9)+(9﹣×11)+(11﹣×13).17.比较2019×与2019×的大小,并计算它们的差.18.计算:(1)238÷238;(2)(9+7)÷(+).19.比较下列分数的大小:(1)与;(2)与;(3)与;(4)与.20.比较大小:(1)把3个数,,由小到大排列起来;(2)把5个数,,,,由小到大排列起来.21.比较下列分数的大小:(1)与;(2)与.22.比较下列分数的大小:(1)与;(2)与;(3)与.23.计算:8×+19×13.24.计算:×.25.计算:[(+++)﹣(+++)]÷[(+++)﹣(+++)].26..27.已知A=+,B=+.试比较A、B的大小.28.A=(+)×1001,B=(+)×1003,C=(+)×1005,请将A、B、C按从大到小的顺序排列起来.﹣+…+﹣).30.计算:(1×2+2×3)×(+)+(2×3+3×4)×(+)+…+(19×20+20×21)×(+).参考答案1.6;.【解析】试题分析:(1)同分母的分数相加减,分母不变,分子相加减.(2)通过观察,此题通分计算比较简便.因此,把每个分数化为分母为200的分数,然后再计算.解:(1)++=6(2)1﹣﹣﹣点评:对于此类问题,注意分析,采取灵活的方法解答.2.7【解析】试题分析:通过观察,运用减法的运算性质以及加法交换律和结合律简算.解:13﹣(3+2)﹣=13﹣3﹣2﹣=(13﹣2)﹣(3+)=11﹣4=7点评:仔细观察数据,选择合适的方法简算.3.1.【解析】试题分析:先算括号内的除法,再算括号内的减法,再算括号外的乘法和除法,最后算加法.解:(﹣÷4)×+1÷1=(﹣)×+1÷=1点评:此题主要考查分数的四则混合运算的运算顺序和运算法则.4.45.【解析】试题分析:通过数字转化,运用加法交换律与结合律以及乘法分配律简算.解:×54﹣16×+27×+×3=×4+×3﹣(16×﹣)=×(4+3)﹣×(16﹣1)=×7﹣×15=54﹣9=45点评:此题主要考查分数四则混合运算,注意数字转化,应用运算定律进行简便计算.5.11109【解析】试题分析:通过观察,可把每个分数拆成“整数+分数”的形式,然后整部与分数分别相加,进而解决问题.解:9+99+999+9999=(9+99+999+9999)+(+++)=(10﹣1+100﹣1+1000﹣1+10000﹣1)+(++)=11110﹣4+×4=11110﹣4×(1﹣)=11110﹣4×=11110﹣=11109点评:此题通过数字拆分,使计算变得简单化.6.399;112.【解析】试题分析:(1)把123看作124﹣1,运用乘法分配律简算.(2)把155看作156﹣1,运用乘法分配律简算.,解:(1)403×=403×=403×(1﹣)=403﹣=403﹣3=399(2)155×=(156﹣1)×=156×﹣=113﹣=112点评:仔细观察数据,根据数据特点,运用运算定律进行简算.7.【解析】试题分析:通过观察,可把原式分为两部分,即﹣,约分计算.解:=1﹣点评:仔细分析数据,采取灵活的方法,进行简算.8.>【解析】试题分析:按照分母相同的,分子大的就大,分子相同的分母大的就小去比较,不用去通分.解:因为:而>答:>点评:本题考查分数的大小比较:同分母分子大的就大,同分子的,分母大的就小.9.(1)>;(2).【解析】试题分析:(1)因为,所以>;(2)因为,,所以.解:(1)因为,所以>;(2)因为,,所以.点评:此题主要考查了分数比较大小的方法,注意观察各个数的特点,找出期中的规律.10.(1)<;(2)<.【解析】试题分析:(1)分子分母相乘1,所以=1﹣,=1﹣,而分子相同时,分母越大的分数就越小,那么比较大小时用减法即可;(2)先把两个分数都扩大2倍变为(1)中的同类题型,比较出大小后,再利用等式的性质,两边同时除以2即可.解:(1)﹣=1﹣﹣(1﹣)=1﹣1+﹣因为分子相同时,分母大的分数就小,所以:<所以:﹣<0故<;(2)由(1)可知:两边同时除以2,即为:<点评:本题考查分数的大小比较,最终得到结论为:<11.33.【解析】试题分析:利用加法交换律、结合律计算即可.解:(3+6+1+8)×(2﹣)=[(3+1)+(6+8)]×(2﹣)=20×=33.点评:此题考查了运用简便方法简算的能力.12..【解析】试题分析:先算括号内的乘法,再算括号内的加法,然后算括号外的除法,最后算减法.解:(2+1×5)÷3﹣1,=(2+6)÷3﹣1,=×﹣1,=2﹣1,点评:此题考查了分数的四则混合运算,注意运算顺序和运算法则.13..【解析】试题分析:把括号里的式子看作一个整体,根据被减数﹣差=减数,求出(0.7﹣□)×的积,进而根据:积÷一个因数=另一个数因数,求出(0.7﹣□)的差,进而根据:减数=被减数﹣差,即可求出减数.解:0.7﹣(2﹣2)÷=0.7﹣×=0.7﹣答:方框内应填入的数是.点评:此题应根据被减数、减数、差之间的关系及因数、因数和积之间的关系进行解答.14.52.【解析】试题分析:可将124变为125﹣1、变为1﹣后,再根据乘法分配律计算.解:124×+18×=(125﹣1)×+18×(1﹣)=125×﹣1×+18×1﹣18×=35+18﹣(+)=53﹣1=52.点评:完成本题要注意分析式中数据的特点及内在联系,然后运用合适的方法计算.15.21【解析】试题分析:先把括号去掉,把整数和整数分在一组计算,分数和分数分在一组且利用乘法分配律即可.解:(1﹣×3)+(3﹣×5)+(5﹣×7)+(7﹣×9)+(9﹣×11)+(11﹣×13)=1+3+5+7+9+11﹣×(3+5+7+9+11+13)=36﹣×48=36﹣=21点评:本题考查巧算,注意把整数和整数分在一组计算,分数和分数分在一组计算即可.16.1.【解析】试题分析:本题先用乘法分配律展开,再重新用加法结合律重新组合,同分母的分数放在一起,再用乘法分配律简算.解:=76×﹣76×+23×+23×﹣53×+53×=76×﹣53×﹣76×+23×+23×+53×═1﹣1+1=1.故答案为:1.点评:本题是对乘法分配律和加法加法交换律与结合律的应用.17.2019×>2019×,差是1.【解析】试题分析:把2019拆成2019+1,2019拆成2019+1,利用乘法分配律即可计算,根据差与0的关系即可判断大小.解:2019×﹣2019×=(2019+1)×﹣(2019+1)×=2019+﹣2019﹣=1+=1+1﹣﹣1+=1=1=1所以,2019×>2019×,差是1.点评:本题考查大小比较及其计算:巧妙的计算,并且得出:<.18.(1);(2)13.【解析】试题分析:(1)先把带分数化成假分数,分子不必算出来,因为在计算过程中能够月份.(2)原式变为[16+(+)]÷(+),运用除法的运算性质计算.解:(1)238÷238=238÷=238×(2)(9+7)÷(+)=(9++7+)÷(+)=[16+(+)]÷(+)=16÷(+)+(+)÷(+)=16÷+=13点评:仔细分析数据,根据数据特点,运用合适的简便方法计算.19.(1)>;(2)>;(3)>;(4)<.【解析】试题分析:通过观察,这几道题都是异分母分数的大小比较,先通分化成同分母分数,然后比较即可.第 7 页解:(1)与因为>所以>(2)与因为>所以>(3)与因为>所以>(4)与因为<所以<点评:完成此题,主要掌握异分母分数大小比较的方法.20.(1);(2).【解析】试题分析:(1)首先把3个数同时减去,然后比较差的大小,差越大,则原来的分数就越大;(2)首先把5个数,,,,化成分子相同的分数,然后比较大小即可.解:(1)﹣==,﹣=,﹣=,因为,所以;(2)因为=,=,=,=,=,所以.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.21.(1)<;(2)>.【解析】试题分析:(1)用减去,根据值的正、负情况,判断出它们的大小关系即可;(2)=,=,然后比较出的大小,进而比较出与的大小即可.解:(1)因为﹣=﹣<0,所以<;(2)=,因为=﹣<0,所以,1﹣,即>.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.22.(1)=;(2)>;(3)>.【解析】试题分析:(1)第一个分数的分子、分母同时除以11111,第二个分数的分子、分母同时除以111,然后比较大小即可;(2)两个分数,分母相同时,分子越大,分数越大,据此判断即可;(3)因为22222×99999=22222×(100000﹣1)=2222202019,2222×999999=2222×(1000000﹣1)=2222020199,2222202019>2222020199,所以22222×99999>2222×999999,因此>.解:(1)因为=,=,所以=;(2)因为与的分母相同,222222>22222,所以>;(3)因为22222×99999=22222×(100000﹣1)=2222202019,2222×999999=2222×(1000000﹣1)=2222020199,第 9 页2222202019>2222020199,所以22222×99999>2222×999999,因此>.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.23.【解析】试题分析:先把带分数化为假分数,通过数字变形,运用乘法分配律简算.解:8×+19×13=×2×+×=4768×点评:此题主要考查学生能否根据数字特点,通过转化的数学思想,进行简算.24.【解析】试题分析:此题数字很接近,用有关定律与性质进行恒等变形,使分子分母部分相同,据此解答.解:×点评:仔细观察数字特点,通过数字拆分,运用运算定律,使计算简便.25.【解析】试题分析:因为每个括号内分数的分母都较小,可以用通分的方法计算出每个括号内各算式的结果,然后写成分数的形式,便于约分.解:[(+++)﹣(+++)]÷[(+++)﹣(+++)]点评:对于算式较长的题目,应采取灵活的方法进行简算.26.22.5.【解析】试题分析:此题算式较长,若按常规来做,会很麻烦.通过观察,此题采取“金蝉脱壳”的办法,从前往后逐步脱去算式,缩小范围,最终得出结果.解:(++…+)+(++…+)+…+(+)+,=(++…+)+2×(++…+)+…+(+)+,=+3×(++…+)+(++…+)+…+(+)+,=+3×+3×(+…+)+3×(+…+)+…+(+)+,=+1+6×(+…+)+(++…+)+…+(+)+,=+1+6×+6×(+…+)+4×(+…+)+…+(+)+,=+1++10×(+…+)+(++…+)+…+(+)+,=3+10×+10×(+…+)+5×(+…+)+…+(+)+,=5+15×(+…+)+(+++)+…+(+)+,=5+15×+15×(+…+)+6×(+…+)+…+(+)+,=5++21×(+…+)+(++)+(+)+,=5++21×+21×(++)+7×(++)+(+)+,=8++28×(++)+8×(+)+,=8++28×+36×(+)+,=14+36×+36×+9×,=14+4+45×,=18+4.5,=22.5.点评:此题计算量较大,应认真仔细,一步步进行,逐步向结果靠拢.27.A<B.【解析】试题分析:两个分数分母进行通分数字太大,不利于比较;那么通过观察发现,A=+可以变形为2+,B=+可以变形为2+,所以只要比较和的大小即可,分子相同时分母越大,这个分数越小,显然2019×2019大于2019×2019,所以小于,所以A小于B,据此可解.解:因为A=+=1++1﹣=2+(﹣)第 11 页B=+=1++1﹣=2+(﹣)=2+,因为<,所以2+<2+,即A<B.答:A<B.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.28.A>B>C;【解析】试题分析:将A、B、C按从大到小的顺序排列起来,实际上就是比较A、B、C的大小;本题既有分数,又有乘法,可将他们转化成具有一定规律的一组数,这样便于比较大小;通过观察发现A可转划为1+,B可转化为1+,C可转化为1+,据此比较大小即可.解:A=(+)×1001=(+)×2019÷2=(+)÷2=(1++1﹣)÷2=(2+﹣)÷2=(2+)÷2=(2+)÷2=1+,同理,B=1+,因为>>(分子相同,分母越大,分数越小.),所以A>B>C;答:A、B、C按从大到小的顺序排列为:A>B>C.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.29.6.【解析】试题分析:把原式进行变形,然后根据乘法分配律提取公因数3和2,然后根据乘一个数,再除以一个相同的数(0除外),相互抵消,即可得出结论.解:(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=3×(﹣+…+)÷(1﹣+﹣+…+﹣)=3×[(1+2)﹣(1+)+(1+)﹣(1+)+…+(1+)﹣(1+)]÷(1﹣+﹣+…+﹣)=3×(2﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=3×2×(1﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=6点评:灵活掌握分数乘法中的运算定律,并结合数字特点,进行解答即可.30.77【解析】试题分析:根据数字特点,运用乘法分配律变为[2×(1+3)×]+[3×(2+4)×]+…+[20×(19+21)×]=4×+6×+…+40×,进一步计算即可.解:(1×2+2×3)×(+)+(2×3+3×4)×(+)+…+(19×20+20×21)×(+)=[2×(1+3)×]+[3×(2+4)×]+…+[20×(19+21)×]第 13 页=4×+6×+ (40)=22×+22×+22×+ (22)=4×(+++…+)=4×(1++1++1++…+1+)=4×(19++++…+)=4×[19+×(1﹣+﹣+﹣+…+﹣)]=4×[19+×(1﹣)]=4×[19+×]=4×[19+]=4×19+4×=76+1=77点评:此题属于较难的分数计算,仔细观察数据,运用运算定律或运算技巧,灵活拆分,进行简便计算.。

分数除法奥数训练

分数除法奥数训练

分数除法1、分数除法的巧算例1:())=()=2=8举一反三())())6.5拓展提高(++)++)=++)++)=4奥赛训练(+)(+)(+)(+)(+)(+)例2:11=(22+)=22=2举一反三131715拓展提高9.8==63奥赛训练2.5 2.84(+0.75)例3:==(=举一反三+5.255+2+3拓展提高=)==21奥赛训练-12.5-9.5)(2+例4:(1==举一反三(3(5(1拓展提高===奥赛训练(++)1例5:++=+=32+61+45=138举一反三++++++拓展提高2、分数除法的拆分公式:=-,变形:,例:+=+=+举一反三1、+2、=+3、++=1,A、B、C分别代表不同的自然数,这三个数的和是多少?拓展提高把拆分成几个不同的分数单位的和。

=++=++奥赛训练1、把拆分成三个不同分数单位的和。

2、把拆分成四个不同分数单位的和。

3、=+3、分数的应用例1:公司有一批货物准备运往广州,第一天运走,第二天运走,还有12吨。

这批货物一共有多少吨?举一反三1、小花看一本书,她周一看了这本书的,周二看了这本书的,周三看完最后的41页,这本书共多少页?2、古埃及草卷有一个数学问题,翻译过来是这样的:“啊哈,它的全部,它的,其和等于19.”如果把“它”看作○,下列符合题意的是()。

A、○+○B、○+C、1+○3、有人问毕达哥拉斯:“尊敬的毕达哥拉斯,你的弟子有多少?”“我的一半弟子在探索数的奥秘;的弟子在追求着自然界的哲理;深入思考;除此之外,还有三个是女弟子,这就是我全部的弟子。

”毕达哥拉斯到底有几个弟子?拓展提高同学们做了一些绸花,第一组做了,第二组做了多10朵,第三组做了30朵。

同学们一共准备做多少朵绸花?奥赛训练1、陈师傅加工一批零件,第一天做了,第二天做了还多20个,这时还剩360个没有完成。

这批零件多少个?2、晶晶有一些邮票,她把其中的多6张送给小芳,把其中的少8张送给小青,自己还有40张。

五年级下册同步奥数

五年级下册同步奥数

目录第一讲分数加减(裂项相消) (2)第二讲分数乘法(乘法中的简算) (5)第三讲长方体和正方体(巧算表面积) (9)第四讲分数除法应用题 (15)第五讲长方体和正方体(巧算体积) (20)第六讲较复杂的分数应用题(寻找不变量) (25)第七讲等高模型 (30)第八讲综合演习(1) (34)第九讲综合演习(2) (36)第十讲填空专项训练(1) (38)第十一讲填空专项训练(2) (40)第十二讲量率对应 (43)第十三讲双单位1 (45)第十四讲方程法解题 (46)第十五讲应用题专训(1-3) (50)第十六讲期末测试 (60)第一讲 分数的加法和减法模块一 同分母分数加、减法【例题1】计算:12320152016201620162016+++⋅⋅⋅+【练习1】计算:10099100310021001+⋅⋅⋅+++【例题2】计算:154999954999549954954+++++【练习2】计算:9598999998999989998998+++++【例题3】计算:(1)201820171431321211⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(2)201820162862642422⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯【练习3】322931183853523⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯【例题4】201820161861641421⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯【练习4】211911191971751⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯模块二 分数加减混合运算【例题1】乐乐喝了一杯牛奶的15,之后加满水,又喝了这杯的13。

再加满水,又喝了半杯。

又加满水,最后把这杯都喝了。

乐乐喝的牛奶多,还是水多?【练习1】聪聪喝一杯牛奶,喝了这杯牛奶的16,然后用水把杯子加满,又喝了一杯的13,然后又用水把杯子加满,第三次聪聪又喝了一半,又用水加满,最后他把一杯全喝完了,聪聪喝的牛奶多还是水多?【例题2】一杯纯牛奶,乐乐喝了半杯后,觉得有些凉,就兑满了热水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的计算技巧
一、知识要点
五年级所学习的简便计算主要是有关分数的巧算,除与整数、小数简便计算相同外,还有其独特的巧算方法。

1. 运算定律规律:加法的交换律、结合律,乘法的交换律、结合律和分配律,还有加、减法的运算性质、商不变的规律等。

2. ()a b c d a c b ÷±÷=±÷
3. (1)111(1)1
n n n n =-⨯++ (2)11()d n n d n n d
=-⨯++ (3)
1111()()n n d d n n d =⨯-⨯++ (4)1(1)(2)n n n ⨯+⨯+1112(1)(1)(2)n n n n ⎡⎤=⨯-⎢⎥⨯++⨯+⎣⎦
(5)将
1A 分拆成两个分数单位和的方法:先找出A 的两个约数a 和b ,然后分子、分母分别乘()a b +,再拆分,最后进行约分。

11()()()()
a b a b A A a b A a b A a b ⨯+==+⨯+⨯+⨯+ 4. 等差数列求和法:(首项+末项)×项数2÷=和。

5. 约分法简章:将写成分数形式的算式中的分子部分与分母部分同时除以它们的公有因数或公有因式,从而简化计算过程。

例1. 计算 172928

拓展一 计算 :443745⨯ 2255(97)()7979+÷+ 1998199819981999÷
例2. 计算 362548361362548186
+⨯⨯-
拓展一 计算:
198819891987198819891+⨯⨯- 1.2 2.3 3.4 4.5 5.6 6.7122334455667++++++++++
例3. 计算 11111223344950++++⨯⨯⨯⨯ 357911132612203042-+-+-
拓展一 计算:
11111198619871987198819881989198919901990++++⨯⨯⨯⨯
11111144771010131316++++⨯⨯⨯⨯⨯ 179111315131220304256-+-+-
1111123234345
9899100++++⨯⨯⨯⨯⨯⨯⨯⨯
112123125859()()()233444
60606060+++++++++++
例4. 计算 5211111111125(3)()()3()()9369126912691239+-⨯++--+⨯+++⨯-
拓展一 计算 11111111111111(1)()(1)()23423452345234
+
++⨯+++-++++⨯++
11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1998减去它的12,再减去余下的13,再减去又余下的14,依此类推,一直减到最后余下的11998
,最后得多少?。

相关文档
最新文档