真核生物DNA复制的特点

合集下载

dna复制的特点

dna复制的特点

dna复制的特点学习总结一:dna复制的特点1。

半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都内含一股亲代DNA链,这种现象称为DNA的半保留复制(semiconservativereplication)。

DNA以半保留方式进行复制,是在1958年由M。

Meselson和F。

Stahl所完成的实验所证明。

2。

有必须的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。

在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。

3。

需要引物(primer):DNA聚合酶务必以一段具有3’端自由羟基(3’-OH)的RNA作为引物,才能开始聚合子代DNA链。

RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。

4。

双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。

但在低等生物中,也可进行单向复制。

好的空间留言学习总结二:【DNA复制基础知识】1、DNA复制的概念:以亲代DNA分子为模板合成子代DNA分子的过程。

qq个性签名伤感男生2、发生的场所和时期:(1)场所:主要发生在细胞核中,也可发生在线粒体和叶绿体中;(2)发生的时期:细胞分裂中有丝分裂的间期和减数分裂第一次分裂前的间期。

3、DNA复制的条件:(1)模板:以DNA两条链为模板;(2)原料:四种脱氧核苷酸;(3)能量:细胞呼吸构成的ATP;(4)酶:DNA聚合酶和解旋酶等。

【DNA复制的特点】1、半保留复制(1)概念:DNA复制时,以亲代DNA的两条链为模板,合成两个完全相同的子代双链DNA分子,每个子代DNA分子中均内含一条亲代DNA分子链。

(2)由DNA半保留复制总结出的规律:①亲代DNA复制n次后,共有2n个DNA,其中含亲代母链的有2个;②亲代DNA分子中有某种碱基a个,进行n次复制需该种碱基a(2n-1)个。

原核生物与真核生物DNA复制转录和翻译的特征比较

原核生物与真核生物DNA复制转录和翻译的特征比较
原料都是氨基酸,tRNA,都需要消耗能量,都 需要氨基酰—tRNA聚合酶,都是从5’到3’端 翻译,氨基酸翻译完成后都需要进行加工。
蛋白质翻译是一个循环进行的过称,每一个循 环包括大、小亚基之间及其与mRNA的结合, 翻译mRNA,然后各自分离。
肽链的延伸:没有区别。
2、翻译的不同点
①氨基酸的活化: 原核起始氨基酸是甲酰甲硫氨酸, 真核是从生成甲硫氨酰-tRNAi开始的。
4)原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ、 Ⅳ、Ⅴ五种聚合酶,DNA聚合酶Ⅲ起最主要 作用。
真核生物中有α、β、γ、ε、δ五种聚合酶。聚 合酶α、δ是DNA合成的主要酶,分别控制不 连续的后随链以及前导链的生成。聚合酶β可 能与DNA修复有关,聚合酶γ则是线粒体中发 现的唯一一种DNA聚合酶。
5)染色体端体的复制不同。原核生物的染色相同点 2、DNA复制的不同点
PPT模板下载: 节日PPT模板: PPT背景图片: 优秀PPT下载: Word教程: 资料下载:
范文下载:
教案下载:
行业PPT模板: PPT素材下载:
PPT图表下载: PPT教程: Excel教程: PPT课件下载: 试卷下载:
1、DNA复制的相同点
④蛋白质前体的加工,蛋白质的折叠,蛋 白质的合成抑制这三步过程过于复杂,因 具体物种而异
谢谢 观看
RNA合成方向都是从5’到3’,以DNA双链中 的反义链为模版,在RNA聚合酶催化下,以4 种三磷酸腺苷为原料,根据碱基互补配对原则 ,各核苷酸之间通过形成磷酸二酯键,不需要 引物的参与,合成的RNA带有与DNA编码链相 同的序列。转录的基本过程包括模版识别、转 录起始、通过启动子及转录的延伸和终止。
都是半保留复制、半不连续复制 、双向复制,在复制中需要的原 料、模板、引物都相同,都有前 导链和后随链,都分为起始、延 伸、终止三个过程。

原核生物和真核生物的比较

原核生物和真核生物的比较

原核生物和真核生物基因组的比较(我好想比较过了,是不是?)原核生物和真核生物DNA复制的特点:原核:一般只有一个复制起点,即一个复制子,复制子较长,复制起始点oriC含有3个13bp 的串联重复保守序列,复制起始之后在OriC上形式两个复制叉沿着整个基因组双向等速移动,并且形成θ形中间产物,两个复制叉在距离起点180°处汇合,在快速生长时,一个复制起点上可以形成多个复制叉,可以连续开始新的DNA复制;真核:有多处复制起点,复制子相对较小,复制叉的移动速度较慢,由于有多个复制起点,所以后随链是以半不连续的方式复制的,在染色体全部完成复制之前,各个起始点上的DNA 的复制不能再开始。

原核生物和真核生物DNA转录的特点:相同点:都是以DNA双链中的反义链为模板,在RNA聚合酶催化下,以4种核糖核苷酸为原料,根据碱基互补配对原则,各核苷酸间以磷酸二酯键相连,不需要引物的参与,按5’- 3’方向合成不同点:真核生物RNA聚合酶必须借助辅助蛋白才能与启动子结合;原核生物中一种RNA 聚合酶几乎负责所有mRNA、rRNA、tRNA的合成,真核生物有3类RNA聚合酶:I负责rRNA 合成,II负责hnRNA(前体mRNA)合成,III负责tRNA合成;原核生物基因启动区范围较小,而真核生物的启动区范围较大。

真核生物和原核生物mRNA的特征比较(这个也总结过了吧)真核生物和原核生物在基因结构、转录和翻译方面的总体差异:(1)真核细胞中,一条mRNA链只能翻译出一条多肽链,原核生物则以多基因操纵子形式存在;(2)真核细胞DNA与组蛋白和大量非组蛋白结合,只有一小部分DNA是裸露的;(3)高等真核细胞DNA中很大一部分不转录,存在很多重复序列,而且基因内部还存在不被翻译的内含子;(4)真核生物能够有序根据生长发育阶段的需要进行DNA片段重排,还能根据需要改变基因的拷贝数,原核生物中则非常少见;(5)原核生物转录的调节区很小,而真核生物基因转录的调节区则大得多;(6)真核生物RNA在细胞核中合成,需要通过核膜进入细胞质才能被翻译,原核生物中不存在这样严格的空间间隔;(7)真核生物的基因只用经过复杂的成熟和剪接过程才能被顺利翻译为蛋白质。

简述dna复制的特点及过程

简述dna复制的特点及过程

简述dna复制的特点及过程I. 引言DNA复制是生命中最基本的过程之一,也是细胞分裂和生殖的必要步骤。

在这个过程中,DNA双链分离并被复制成两条完全相同的新链。

本文将详细介绍DNA复制的特点及过程。

II. DNA复制的特点1. 半保留性复制:在DNA复制过程中,每个新合成的双链都包含一个旧链和一个新链,因此它们被称为半保留性。

2. 顺向复制:DNA双链从5'端到3'端依次进行复制,这种方式称为顺向复制。

3. 半连续性复制:在DNA合成中,一个新链被连续地合成,而另一个新链则是不连续地合成,并以小片段(Okazaki片段)的形式出现。

III. DNA复制的过程1. 起始点识别:起始点是开始DNA复制的位置。

在真核生物中,起始点通常由序列AT-rich组成。

起始点识别因子将结合到该区域并启动DNA解旋酶。

2. DNA解旋:解旋酶结合到起始点附近并开始分离双链。

这个过程需要能量,并且会产生张力。

3. 建立原始链:在解旋的DNA链上,一个RNA引物被合成,作为DNA聚合酶的起始点。

DNA聚合酶可以开始在RNA引物上合成新链。

4. DNA聚合:DNA聚合酶沿着模板链向3'端移动,并在新链上依次添加互补碱基对。

这个过程需要能量,并且会产生新的张力。

5. 拼接:Okazaki片段被DNA连接酶粘接在一起,形成一个完整的新链。

6. 终止:当复制到某个特定序列时,复制过程停止,并且酶和其他蛋白质离开DNA。

IV. DNA复制的调控1. 起始点控制:起始点识别因子和其他蛋白质可以通过结合到特定序列来控制起始点位置和频率。

2. 复制泡大小控制:每个起始点会形成一个复制泡,其中包含两个双链。

细胞可以调整复制泡大小来控制复制速率和效率。

3. DNA损伤检测和修复:如果在DNA复制期间发生损伤或错误,细胞可以通过检测和修复损伤来保持基因组稳定性。

V. 结论DNA复制是生命中最基本的过程之一,它确保了每个新生命体的遗传信息得以传递。

第三章 DNA的复制

第三章 DNA的复制

(1)端粒和端粒酶的发现
1978 年 , Blackburn 发现四膜虫大核中 rDNA 小分 子 末 端 的 端 粒 结 构 为 370520bp 的 (GGGGTT)n 重复片段。
加尾实验 1984
加尾实验 1985
四膜虫抽提液
酵母 末端重复序列
端 粒 酶 的 鉴 定
1985
端粒酶的分离纯化
TA
母代DNA 子代DNA
半保留复制的意义
按半保留复制方式,亲代DNA所含的信 息以极高的准确度传递给子代DNA分子,子 代保留了亲代的全部遗传信息 ,体现了遗 传的保守性。
遗传的保守性,是物种稳定性的分子基 础,但不是绝对的。
3.1.2 复制叉和复制体
复制叉:发生复制的 位点,或者称为生 长点。
后随链:背向复制叉,一段亲本DNA链先暴露 出来才能以相反方向合成DNA小片段,然后 这些小片段DNA连接形成完整的后随链。
冈崎的实验—脉冲标记实验
lig-突变体
冈崎的实验—脉冲追踪实验
3.1.5复制的起点、方向
复制起点(origin of replication,ori)
原核生物复制起始位点区特点
Dolly 1996-2003
端粒酶和永生
3.3 DNA复制的终止
ColE I
3.4 DNA复制的调控
质 粒 的 复 制 调 控
真核生物的DNA复制的调控
GLN1 GLN2 GLN3
cyclin
p34
MPF
cdc6,cdc8, cdc9,cdc21
3.2.2 多复制子复制的非一致性
每个复制子发动复制的先后时序有很大区别: 同一染色体上不同复制子之间 不同类型细胞之间
复制子的多少与DNA复制的速度有关 基因组的复制完成与细胞、组织及发育状态有 关。

原核生物与真核生物DNA复制的特点

原核生物与真核生物DNA复制的特点

原核生物与真核生物DNA复制的特点首先,从DNA复制起始点的角度来看,原核生物和真核生物之间存在巨大的差异。

在原核生物中,DNA复制起初由一个单一的起始点开始,称为复制起始点。

这个点只包含一个起始复制点的序列,因此原核生物的DNA复制过程是单点发起的。

相反,在真核生物中,复制起始点通常以复制起始区(origin of replication)的形式存在,这是由多个起始复制点组成的序列区域。

这意味着真核生物的DNA复制可以同时在多个起始点开始,并同时在整个染色体上进行。

其次,在DNA复制速度方面,原核生物和真核生物也有明显的区别。

原核生物的DNA复制速度相对较快,这是因为它们的基因组较小,通常只有一个环状染色体。

因此,原核生物可以在短时间内完成整个DNA复制过程。

相比之下,真核生物的基因组较大,DNA复制速度相对较慢。

此外,真核生物的DNA复制还受到染色质结构的限制,这需要复制酶能够对DNA 进行谨慎的解缠和拷贝,以确保复制的准确性。

第三,关于DNA复制过程的调控机制,原核生物和真核生物之间也有明显的差异。

在原核生物中,DNA复制是严格依赖于细胞周期的,往往发生在细胞分裂前的特定时间段内。

这是通过细胞表达特定的复制蛋白来实现的,这些复制蛋白会在适当的时间被合成并参与到复制过程中。

相反,真核生物的DNA复制是依赖于一系列复杂的调控步骤,这些步骤包括染色质结构的调整、复制酶的装配和活性调控等。

此外,真核生物的DNA复制还受到细胞周期调控系统的影响,这可确保复制过程能够与其他细胞过程协调进行。

最后,关于DNA复制的准确性和修复机制,原核生物和真核生物也有一些差异。

原核生物在DNA复制过程中存在一些自我校正机制,如核苷酸配对错误的修复和错配鉴别,以确保复制的准确性。

但原核生物的DNA修复机制较为简单,主要依靠限制内切酶和核酸酶来修复损坏的DNA链。

相比之下,真核生物的DNA复制和修复涉及复杂的修复系统和调控机制,包括核修复酶、错配修复酶和DNA损伤应答途径等。

原核生物及真核生物DNA复制

原核生物及真核生物DNA复制

真核生物DNA聚合酶及有关蛋白
表 真核生物五种DNA聚合酶
DNA聚合 酶
位置
功能α核 引发 Nhomakorabeaδ
核 合成
ε
核 修复
βγ
核 线粒体 修复 复制
相对活性 80% 分子量 300K
170-230K
250K
亚基
3’→5’ 外切
催化核心(180K) 催化核心
催化核
两个引物酶(60,50K) (125K)

一个未知
原核生物及真核生物DNA复制
9、单链结合蛋白(SSBP-single-strand binding protein):稳定已被解开的DNA 单链,阻止复性和保护单链不被核酸酶 降解。
原核生物及真核生物DNA复制
(三)DNA的复制过程(大肠杆菌为例)
双链的解开
RNA引物的合成
DNA链的延伸
切除RNA引物,填补缺口,连接相邻的
5、 DNA聚合酶:以DNA为模板的DNA合成酶 ●以四种脱氧核苷酸三磷酸为底物 ●反应需要有模板的指导 ●反应需要有3-OH存在 ●DNA链的合成方向为5 3
原核生物及真核生物DNA复制
原核生物中的DNA聚合酶(大肠杆菌)
性质
聚合酶Ⅰ 聚合酶Ⅱ 聚合酶 Ⅲ
3' 5 '外切活性 +
+
+
5' 3 '外切活性 +
在DNA复制时,合成方向与复制叉移动的方向一致并 连续合成的链为前导链;合成方向与复制叉移动的 方向相反,形成许多不连续的片段,最后再连成一 条完整的DNA链为原滞核生后物及链真核。生物DNA复制
在DNA复制过程中,前导链能连续合成, 而滞后链只能是断续的合成53 的多 个短片段,这些不连续的小片段称为冈 崎片段。

原核生物与真核生物DNA复制的特点

原核生物与真核生物DNA复制的特点
◆接着,由引发酶组成的引发体迅速作用于两条单链 DNA 上。不论是前导链还是滞后链,都需要一 段 RNA 引物以开始子链 DNA 的合成 。
2、冈崎片段与半不连续复制
• DNA 的复制过程中,前导链是连续复制的,而 滞后链是通过冈崎片段的连接来合成的,是不连 续的,称之为 DNA 的半不连续复制。所有DNA 聚合酶的方向都是 5 '→ 3 ',而不是 3 '→ 5 '。 为了解释 3 '→ 5 '是如何合成滞后链的,冈崎提 出了 DNA 的半不连续复制。
5、DNA连接酶
连接各冈崎片段,最终形成后随链。
二、真核生物DNA的复制特点
1、原核生物是单复制子,真核生物是多复制 子(每条染色体上有多个复制起点)
2、DNA全部复制完毕后才进入第二轮复制, 原核生物在第一轮复制末完就进行第二轮 复制。
3、真核生物DNA的复制起点被称为自主复 制 序列,含有几个复制起始必需的保护区。
从复制原点到终点组成一个复制单位叫复制子复制子复制时解链酶等先将dna的一段双链解开形成复制点这个复制点的形状象一个叉子故称为复制时解链酶等先将dna的一段双链解开形成复制点这个复制点的形状象一个叉子故称为复制叉基本概念
第四节 原核生物与真核生物 DNA的复制特点
一、原核生物DNA的复制特 点
二、真核生物DNA的复制特 点
决定复制的起始与否。这种调控从单细胞生物 到高等生物是高度保守的。
此外,真核生物复制的起始还包括转录 活化、复制起始复合物的合成和引物合成 等阶段,许多参与复制起始蛋白的功能与 原核生物中类似。
DNA聚合酶II的活性很低,若以每分钟 酶促核苷酸掺入DNA的转化率计算,只有 DNA聚合酶I的5%,所以也不是复制中主 要的酶。目前认为DNA聚合酶II的生理功 能主要是起修复DNA的作用。

dna复制的一般特点

dna复制的一般特点

dna复制的一般特点DNA复制是指在细胞分裂过程中,细胞将自身的DNA复制一份,使得两个新产生的细胞都能够获得完整的遗传信息。

DNA复制是细胞生物学中的一个基本过程,其具有以下一般特点:1. 半保留复制:DNA复制是半保留复制的过程。

在DNA复制过程中,DNA双链被解开后,每条单链作为模板,依据碱基配对规则,合成一个新的DNA链。

这样,原有的DNA双链被分为一个旧链和一个新链,保留了原有DNA的信息。

2. 半连续复制:DNA复制是半连续复制的过程。

在DNA复制过程中,DNA双链被解开后,由于DNA链的方向性,只有一个方向的合成能够连续进行,这条链被称为连续链;而另一条链则需要以间断的方式进行合成,形成不连续的小片段,这些小片段被称为不连续片段。

3. 水平复制:DNA复制是水平复制的过程。

在DNA复制过程中,原有的DNA双链被解开后,每条单链作为模板合成一个新的DNA链,这样,两条新生的DNA链与原有的DNA链是平行排列的。

4. 复制起点:DNA复制需要有一个起点。

DNA复制起点是一个特殊的DNA序列,复制过程从这个起点开始。

在真核生物中,DNA复制起点通常是一个富含腺嘌呤(A)和胸腺嘧啶(T)碱基的序列,被称为起始子。

5. 复制酶:DNA复制需要依赖多种复制酶。

其中,DNA聚合酶是最重要的复制酶之一,它能够以模板依赖的方式合成新的DNA链。

此外,还有其他复制酶负责解旋DNA双链、识别起点、连接DNA片段等重要功能。

6. 协调复制:DNA复制需要协调多个复制点同时进行。

在真核生物中,每条染色体上有多个复制起点,这些复制起点同时启动并进行复制,以确保整个基因组的复制能够在有限的时间内完成。

7. 精确复制:DNA复制需要具有高精确性。

在DNA复制过程中,复制酶能够识别并配对正确的碱基,从而保证新合成的DNA链与模板DNA链的一致性。

此外,还有DNA修复系统能够纠正复制过程中的错误,进一步提高复制的精确性。

原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物DNA复制过程及异同点

1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等;2过程:分为起始、延伸、终止三个过程;3聚合方向:5'→3';4化学键: 3',5'磷酸二酯键;5遵从碱基互补配对规律;6一般为双向复制、半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA 聚合酶的移动速度较原核生物慢。

原核生物为一般为环形DNA,具有单一复制起始位点。

2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

3真核生物复制子大小不一且并不同步。

4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。

5真核生物有五种DNA聚合酶,需要Mg+。

主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。

原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。

7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。

8真核生物DNA聚合酶γ负责线粒体DNA合成。

9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。

原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。

10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。

11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。

原核生物与真核生物基因信息传递过程中的差异。

原核生物与真核生物DNA复制的特点课件

原核生物与真核生物DNA复制的特点课件

05
DNA复制的调控
启动子的调控
启动子是DNA复制的起始位点,对DNA复制的速度和方向起着关键作用。
原核生物的启动子通常包含一个或多个RNA聚合酶识别、结合和转录起 始的位点,而真核生物的启动子则包含一个主要和多个次要的RNA聚合
酶结合位点。
启动子的调控可以通过改变其序列、甲基化修饰或结合其他调控蛋白来 实现,从而影响DNA复制的起始。
04
DNA复制的生物学意义
遗传信息的传递
01
遗传信息是生命延续和物种繁衍 的基础,DNA复制确保遗传信息 从一代传递到下一代,保持物种 的遗传连续性。
02
DNA复制过程中,遗传信息从亲 代传递给子代,确保后代具备与 亲代相似的遗传特征。
保证遗传信息的稳定性
DNA复制是高度精确的过程,通过 一系列复杂的酶促反应和调控机制, 确保遗传信息在复制过程中不被篡改 或出错。
DNA复制过程中存在多种修复机制, 能够纠正复制过程中出现的错误,从 而保证遗传信息的稳定性。
细胞分裂与增殖的基础
DNA复制是细胞分裂与增殖的必要条 件,只有完成DNA复制,细胞才能进 行分裂和增殖,形成新的个体或组织。
DNA复制的精确性和稳定性对于维持 细胞正常的生长、发育和功能至关重 要,任何复制错误都可能导致细胞异 常或疾病的发生。
此外,原核生物的DNA复制过 程中没有真核生物的复杂调控 机制,因此复制速度较快。
不需要引物
原核生物的DNA复制不需要引物。
在复制过程中,DNA聚合酶可以直接以母链为模板,从头开始合成子链,避免了 引物合成和去除的步骤,提高了复制速度和效率。
02
真核生物DNA复制的特点
全保留复制
全保留复制是指真核生物在DNA复制过程中,新链的合成从DNA 链的末端开始,逐步向复制起始位点方向进行,最终保留原有的 DNA序列。这种复制方式可以确保遗传信息的完整性和稳定性。

原核生物与真核生物DNA复制过程及异同点新编

原核生物与真核生物DNA复制过程及异同点新编

原核生物与真核生物D N A复制共同的特点:1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、DNA聚合酶、RNA酶以及DNA连接酶等;2过程:分为起始、延伸、终止三个过程;3聚合方向:5'→3';4化学键: 3',5'磷酸二酯键;5遵从碱基互补配对规律;6一般为双向复制、半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA 聚合酶的移动速度较原核生物慢。

原核生物为一般为环形DNA,具有单一复制起始位点。

2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

3真核生物复制子大小不一且并不同步。

4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。

5真核生物有五种DNA聚合酶,需要Mg+。

主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。

原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。

7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。

8真核生物DNA聚合酶γ负责线粒体DNA合成。

9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。

原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。

10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。

11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。

原核生物与真核生物基因信息传递过程中的差异。

生物选考 关于DNA复制的几个问题

生物选考 关于DNA复制的几个问题

关于DNA复制的几个问题DNA复制是指从一个亲代DNA分子产生两个相同子代DNA分子的生物学过程。

DNA 的复制是传递遗传信息所必需的。

DNA复制主要包括引发、延伸、终止三个阶段。

一.DNA复制特点--半保留复制关于DNA复制的特点,在沃森和克里克构建DNA双螺旋结构模型时就提出:DNA新链的合成遵循A-T、G-C碱基配对原则,分开的两条亲本链各自作为模板合成一条与之互补的新链,即半保留复制。

但是半保留复制并不是唯一可能的方式,另外一种可能是全保留复制,即两条亲本链结合一起,两条新链互补形成双螺旋。

还有一种可能是随机散布式复制,即亲代双链切割成不同片段,复制完成后,新链和亲本链片段同时存在于同一条链中,此种复制方式可以避免两条DNA链解旋时产生的缠绕问题,上述三种方式如图1所示。

1958年,Matthew Meselson和Franklin Stahl通过一个经典实验对DNA复制的方式进行了鉴别和验证。

他们在生长大肠杆菌的培养基中添加氮同位素让其DNA带上15N标记,其密度比14N的普通DNA大。

然后将含15N的大肠杆菌转接到14N培养基中培养不同时间,最后通过CsCl密度梯度超速离心来判断DNA密度。

按照上述三种不同的复制机制,DNA复制一轮、二轮后的预期结果及经过密度梯度离心后在离心管的位置预期如图2。

(H表示含15N的重链,L表示含14N的轻链)经过一代复制后,全保留复制预期会产生数量相同的两种不同密度的DNA,而半保留复制及散布式复制模式预期会出现一种密度DNA分子,密度在H/H和L/L之间。

因此一代复制的离心结果可以排除全保留复制的可能性。

经过二代复制后,按照半保留复制会产生数量相同的两种不同DNA分子(L/L和L/H),按照散布式复制则应产生单一密度条带(25%H 和75%L),由此通过两代复制的DNA密度梯度离心可以证实DNA复制的方式。

Matthew Meselson和Franklin Stahl通过CsCl密度梯度超速离心,然后在离心机旋转的情况下通过转子上的窗口观察离心管在紫外光照射下的图像,结果如图3(a),根据1.0代和1.9代的离心结果确定为半保留复制。

关于原核生物与真核生物dna复制过程及异同点新编

关于原核生物与真核生物dna复制过程及异同点新编

原核生物与真核生物D N A复制共同的特点:1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、DNA聚合酶、RNA酶以及DNA连接酶等;2过程:分为起始、延伸、终止三个过程;3聚合方向:5'→3';4化学键: 3',5'磷酸二酯键;5遵从碱基互补配对规律;6一般为双向复制、半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA 聚合酶的移动速度较原核生物慢。

原核生物为一般为环形DNA,具有单一复制起始位点。

2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

3真核生物复制子大小不一且并不同步。

4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。

5真核生物有五种DNA聚合酶,需要Mg+。

主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。

原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。

7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。

8真核生物DNA聚合酶γ负责线粒体DNA合成。

9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。

原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。

10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。

11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。

原核生物与真核生物基因信息传递过程中的差异。

原核生物与真核生物复制过程及异同点

原核生物与真核生物复制过程及异同点

原核生物与真核生物DNA复制共同的特点:1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA 酶以及DNA连接酶等;2过程:分为起始、延伸、终止三个过程;3聚合方向:5'→3';4化学键: 3',5'磷酸二酯键;5遵从碱基互补配对规律;6一般为双向复制、半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。

原核生物为一般为环形DNA,具有单一复制起始位点。

2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

3真核生物复制子大小不一且并不同步。

4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。

5真核生物有五种DNA聚合酶,需要Mg+。

主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。

原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。

7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。

8真核生物DNA聚合酶γ负责线粒体DNA合成。

9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。

原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。

10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。

11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。

原核生物与真核生物基因信息传递过程中的差异1. DNA的复制。

DNA复制

DNA复制

DNA复制,即DNA生物合成,是以碱基互补为基础的一个严格的脱氧核苷酸分子逻辑组合的过程,对真核细胞来说,它发生在细胞周期的S期。

揭示DNA复制的奥秘,起初是从原核细胞开始的,从中积累了丰富的实验依据,发现DNA复制的规律。

随后的研究进一步证明,真核生物DNA复制的过程与原核生物基本相似。

因此,本节主要叙述的是原核生物DNA复制过程。

DNA复制基本上可分为解链、引发、延长及终止四个阶段。

一、DNA复制的一般特点1.DNA的双螺旋的两条链在局部需要解开,以利于每条链作模板。

2. DNA的局部解旋引起周围区域过度缠绕, 拓朴异构酶使超螺张力释放.3.DNA聚合酶以5`到3`方向合成。

DNA的两条链方向相反,因此,,一条链的合成是连续的,而另一条链的合成则是不连续的。

不连续链每个片段的合成都是独立进行的,然后各片段再连接起来。

4. DNA复制必须高度精确, DNA复制错误率大约是1/1010,校正机制保证新合成的NA的正确性。

5. DNA的合成必须非常迅速, 其合成速度与基因组的大小及细胞分裂速度有关。

6. 复制器本身不能复制线性DNA的末端,一种特殊的端粒酶参与端粒的复制。

二、复制的起始DNA复制的起始阶段,由下列两步构成。

(一)预引发:1.解旋解链,形成复制叉由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋结构解开,碱基间氢键断裂,形成两条单链DNA。

单链DNA结合蛋白(SSB)结合在两条单链DNA上,形成复制叉。

图10-21 复制叉的三维作用结构(二)引发体组装:由蛋白因子(如dnaB等)识别复制起始点,并与其他蛋白因子以及引物酶一起组装形成引发体。

图10-22 引发体形成1.dnaA结合于复制起始点(oric)2.dnaA与DNA形成复合物引起DNA的解链3.dnaA在dnaC的辅助下推动DNA双链解开三、复制的延长(一)聚合子代DNA:1. 需要引物参与DNA复制的DNA聚合酶,必须以一段具有3’端自由羟基(3’-OH)的RNA 作为引物(primer) ,才能开始聚合子代DNA链。

第一节 原核生物与真核生物DNA的复制

第一节 原核生物与真核生物DNA的复制

生物快速生长时,往往采用更多的复制起点。
3、真核生物有多种DNA聚合酶。
(五)真核生物中DNA的复制
1 复制概况
a、多个复制子,双向复制
b、复制子相对较小(13-900kb),
复制速度较慢,大 约 500~5000bp/min (3000bp/min) 冈崎片段100~200bp c、复制终止通过复制叉的相遇而终止
DNA 复制的主要 聚合酶,还具有3’5‘ 外切酶的校对功能, 提高DNA复制的保真性
6、DNA连接酶(1967年发现):若双链DNA中一条链有切 口,一端是3’-OH,另一端是5‘-磷酸基,连接酶可催化 这两端形成磷酸二酯键,而使切口连接。
3‘ 5‘ 5‘ 3‘
OH
P
但是它不能将两条游离的DNA单链连接起来 DNA连接酶在DNA复制、损伤修复、重组等过程中起重
“多莉”的衰老
• 科学家们对多莉的染色体做了仔细的研究,发 现其染色体末端,即端粒,比同龄的普通绵羊 短。 • 科学家认为,端粒是决定细胞老化的主要因素, 端粒越短的细胞越接近死亡。
• 研究端粒丢失的速率,预测人类的寿命。
• 研究端粒酶与肿瘤的关系。
列,在酵母染色体复制和质粒复制中均
发挥复制起点的功能。
ABF1
ARS1分为A,B,C三个功能区:

A、B起主要作用, C区作用微弱。
• A区:15bp,其中11个保守,称ACS : 5′ATTTAT(T/C)TTTA 3′
• 有复制起始子的功能。
• B区:约80bp,含B1,B2,B3三个区。
• B3:ABF1(ARS-binding factor 1)结合区
5' 3'dGTP TTGGGGTTGGGGTTGGGGTTG AACCCCAACCCC AACCCCAAC 3' 5' 3'

原核生物与真核生物DNA复制的特点课件

原核生物与真核生物DNA复制的特点课件

05 DNA复制的研究进展与 展望
DNA复制的分子机制研究
揭示DNA复制起始、延伸和终止 的分子机制,以及参与DNA复制 的酶和蛋白复合物的结构和功能。
深入研究DNA聚合酶和其他复制 相关蛋白的相互作用,以及它们
在复制过程中的动态变化。
探索DNA复制过程中DNA损伤 修复和细胞周期调控的分子机制, 以揭示DNA复制与细胞生长和发
真核生物的细胞分裂需要更多的准备和调节过程,这也增加了复制周期的时间。
需要引物
真核生物的DNA复制需要引物 来启动复制过程。
引物是在DNA聚合酶的作用下 合成的小段RNA或DNA,它与 DNA模板链结合并作为复制的 起始点。
引物为DNA聚合酶提供了结合 位点,并确保复制的准确性。
半不连续复制
真核生物的DNA复制是半不连续的, 即DNA链的合成方向是不对称的。
02
原核生物多为单细胞生物,细胞 分裂周期短,因此DNA复制周期 也相对较短。
不需要引物
原核生物的DNA聚合酶具有引物酶 活性,能够自我提供引物,因此不需 要额外提供引物。
不需要引物可以缩短复制时间,提高 复制效率。
半保留复制
原核生物的DNA复制采用半保留复制方式,即母链和子链各保留一条。
半保留复制能够保证遗传信息的稳定传递。
探索DNA复制的时空调控机制,以及 DNA复制与细胞分裂、分化、凋亡等
生物学过程的相互影响。
研究DNA复制与表观遗传学的关系, 以及表观遗传修饰如何影响DNA复制
和基因表达。
深入探究DNA复制过程中突变和重组 的机制,以及这些机制在生物进化中的
作用。
THANKS FOR WATCHING
感谢您的观看
领头链的合成速度较快,但错误率较 高;随从链的合成速度较慢,但错误 率较低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.3
真核生物DNA复制的特点
董慧 2012115004
• 1.原核生物和真核生物DNA复制的相同点 • 2.原核生物和真核生物DNA复制的差别 • 3.DNA复制与核小体组装 • 4.原核生物和真核生物DNA复制调控的比较 • 5.端粒DNA的复制
1.原核生物和真核生物DNA复 制的相同点
• 半保留复制 • 半不连续复制 • 解旋酶打开双螺旋,由SSB同单链区结合 • 拓扑异构酶消除解螺旋形成的扭曲张力 • 需要RNA引物
• (1)对于原核生物:环境是主要因素 • (2)对于真核生物:
a.细胞周期水平的调控 b.染色体水平的调控 c.复制子水平的调控
5.端粒DNA复制
• 5.1端粒 • 5.2端粒随复制缩短的机制 • 5.3端粒酶简介
5.1端粒
5.2端粒随复制缩短机制
5.3端粒酶
2.原核生物和真核生物DNA复制 不同点
原核制子大而少 多起点,复制子小而多
复制叉移动速度
900nt/s
50nt/s
冈崎片段
1000-2000nt
100-200nt
参与的酶数量


复制周期
可重叠
不可重叠
端粒问题
不会缩短
端粒复制
3.DNA复制与核小体组装
4.原核生物和真核生物DNA复制 调控的比较
相关文档
最新文档