数列解题技巧归纳总结

合集下载

数列解题方法大全

数列解题方法大全

数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn qa b =),得:qb q p b n n 11+=+再待定系数法解决。

数列解题方法与技巧

数列解题方法与技巧

数列解题方法与技巧
解题方法和技巧有很多种,以下是一些常见的数列解题方法和技巧:
1. 找规律:观察数列中的数字是否有一定的规律或者模式,例如等差数列、等比数列等。

通过找到规律可以推断出数列中的其他数字。

2. 列方程:将数列中的数字用变量表示,然后列出方程,通过求解方程来确定数列中的其他数字。

3. 递推关系:如果数列中的第n个数字可以通过前面的数字推断出来,可以利用递推关系来求解数列。

4. 数列求和公式:如果要求解数列的和,可以利用数列求和公式来计算。

5. 辅助数列:有些数列可以通过构造辅助数列来求解,例如斐波那契数列可以通过构造一个新的辅助数列来求解。

6. 数学工具:利用一些数学工具和技巧,例如数学归纳法、二项式定理等来求解数列。

7. 模拟计算:有时候可以通过模拟计算来求解数列,即通过计算数列中的前几个数字,找到数列中的规律,然后根据规律来计算其他数字。

8. 看题意:有时候可以根据题目中的提示和要求来判断数列的性质和规律,然后进一步求解。

以上是一些常用的数列解题方法和技巧,但具体的解题方法和技
巧还需要根据具体的数列问题来确定。

在解题过程中,还需注意审题、理清思路、细心计算等问题。

数列运算的一些小技巧

数列运算的一些小技巧

数列运算的一些小技巧1. 等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208, 622,规律为a*3-2=b2.深一点模式,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3、看各数的大小组合规律,做出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=7 4 , 40*40-74=1526 , 74*74-40=5436</B>,这就是规律。

4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。

数学数列解题技巧

数学数列解题技巧

数学数列解题技巧数列问题在数学中是一个很重要的部分,解决这类问题需要的不仅仅是数学知识,还需要一些技巧和策略。

以下是几种能帮助你迅速解决数列问题的技巧。

第一种技巧:观察序列模式数列问题的解法通常有很多种,但最重要的一种解法就是分析数列中的规律。

有时候,数列的规律并不是那么显然,但如果我们能够仔细观察数列的模式,那么就可以发现一些有用的信息。

例如,考虑这样一个数列:1, 2, 4, 7, 11, 16, ...如果你能够看出这个数列的规律,那么你就能迅速解决这个问题。

观察到第二项减去第一项等于1,第三项减去第二项等于2,第四项减去第三项等于3,以此类推。

因此,你可以猜到,第n项和前n-1项的差等于n-1。

如果我们将这个规律用数学语言表示出来,就是:a_n - a_n-1 = n-1其中,a_n 表示数列的第n项。

有些数列中的规律可能没有上面的数列那样显而易见。

但是,如果你有耐心,仔细观察,你就可能发现一些规律。

例如,你可能需要将数列的项数写下来,然后找出每一项之间的相对关系。

第二种技巧:使用标志数标志数是一种非常有用的数列解题技巧。

标志数是一个虚构的数,用于帮助你推导数列的规律。

标志数通常用字母表示,例如a、b、c等。

标志数可以用于表示某个地方的数列值,或是某个数列的差值等。

例如,考虑这个数列:2, 6, 12, 20, 30, ...如果你能够找到这个数列中的规律,则可以使用标志数帮助你推导答案。

因此,让我们设a为这个数列的第一项,然后逐一找出每个项之间的差值:6-2=4, 12-6=6, 20-12=8, 30-20=10这些差值看上去并不那么有规律,但是我们可以将它们再次相减:6-4=2, 8-6=2, 10-8=2这就让我们立刻看出了规律!相邻项的差值相等。

因此我们可以使用这个规律来生成您的解:a_1=2, a_2=a_1+4=6, a_3=a_2+6=12, a_4=a_3+8=20 以此类推。

高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。

这将有助于你选择正确的解题方法。

寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。

通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。

求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。

例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。

利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。

通过已知的前几项,推导出后续项的值。

利用数列性质:数列有许多性质和特点,例如对称性、周期性等。

利用这些性质可以简化问题,找到解题的突破口。

利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。

通过观察图像,可以得到一些有用的信息。

利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。

例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。

利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。

例如,利用等差数列的对称性可以减少计算量。

利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。

通过观察周期内的规律,可以推断出整个数列的性质。

多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。

有时,换一种思路可能会带来新的启示。

数列常用解题方法归纳总结

数列常用解题方法归纳总结

数列常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

高中数学数列方法及技巧

高中数学数列方法及技巧

高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。

针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。

应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

高考数列解题技巧

高考数列解题技巧

高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。

在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。

1. 公式法公式法是解决数列问题的基本方法之一。

对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。

例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。

求和公式为S_n=n/2(a_1+a_n)。

2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。

通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。

例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。

将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。

3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。

通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。

例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。

将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。

4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。

通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。

例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。

将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。

数学中数列题解题技巧与关键知识点

数学中数列题解题技巧与关键知识点

数学中数列题解题技巧与关键知识点数列是数学中一个重要的概念,它在各个数学分支中都有广泛的应用。

解决数列题需要掌握一些关键的技巧和知识点。

本文将介绍数列题的解题技巧,并列举一些数列题的关键知识点。

一、等差数列的解题技巧等差数列是最常见的数列类型之一。

解决等差数列题可以运用以下技巧:1. 找出公差:公差是等差数列中相邻两项的差值,一般表示为d。

通过找出公差,可以帮助我们确定等差数列的规律。

2. 判断首项和通项公式:等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

通过已知条件,可以确定首项和公差的值,并利用通项公式解决问题。

3. 利用等差数列的性质:等差数列具有一些特殊的性质,如任意三项的和等于三倍的中间项、前n项和的计算公式等。

在解题过程中,利用这些性质可以简化计算,提高解题效率。

二、等比数列的解题技巧等比数列是另一类常见的数列类型。

解决等比数列题可以运用以下技巧:1. 找出公比:公比是等比数列中相邻两项的比值,一般表示为q。

通过找出公比,可以帮助我们确定等比数列的规律。

2. 判断首项和通项公式:等比数列的通项公式为an = a1 * q^(n-1),其中an表示第n项,a1表示首项,q表示公比。

通过已知条件,可以确定首项和公比的值,并利用通项公式解决问题。

3. 利用等比数列的性质:等比数列具有一些特殊的性质,如任意相邻三项的乘积相等等。

在解题过程中,利用这些性质可以简化计算,提高解题效率。

三、斐波那契数列的解题技巧斐波那契数列是一种特殊的数列,它的每一项都是前两项的和。

解决斐波那契数列题可以运用以下技巧:1. 理解斐波那契数列的定义:斐波那契数列的前两项分别为0和1,后面的每一项都是前两项的和。

通过理解这个定义,可以找出斐波那契数列的规律。

2. 利用递推关系求解:斐波那契数列可以通过递推关系an = an-1 + an-2求解,其中an表示第n项。

数学必备技巧解决初中数列题的常用方法

数学必备技巧解决初中数列题的常用方法

数学必备技巧解决初中数列题的常用方法数列作为初中数学中的重要内容,经常在考试中出现。

解决数列题需要一些技巧和方法,本文将介绍几种常用的解题方法,帮助初中生们更好地应对数列题。

一、等差数列的解题方法等差数列是最常见的数列类型之一。

解决等差数列的题目,我们可以通过以下几种方法来进行推导和计算。

1. 特定项求解法:对于等差数列an=a1+(n-1)d,已知首项a1和公差d,如果要求第n项an的值,可以直接代入公式进行计算。

2. 公式法:等差数列有一个通用的求和公式Sn=n/2(a1+an),利用这个公式可以快速求解等差数列的前n项和。

3. 差项法:对于等差数列,相邻两项之间的差值始终是一个固定的数字,即公差d。

因此,如果已知相邻两项的差值,可以通过差项来推导出其他项的值。

二、等比数列的解题方法等比数列也是常见的数列类型之一。

解决等比数列的题目,我们可以通过以下几种方法来进行推导和计算。

1. 递推法:对于等比数列,每一项都是前一项乘以相同的比率q。

因此,可以通过递推的方式求得第n项的值:an=a1*q^(n-1),其中a1为首项,q为公比。

2. 公式法:等比数列也有一个通用的求和公式Sn=a1*(q^n-1)/(q-1)。

利用这个公式可以快速求解等比数列的前n项和。

3. 比值法:对于等比数列,相邻两项之间的比值始终是一个固定的数字,即公比q。

如果已知相邻两项的比值,可以通过比值来推导出其他项的值。

三、特殊数列的解题方法除了等差数列和等比数列,还存在一些特殊的数列类型,如等差数列与等比数列的混合、递推式中包含二次项等。

针对这些特殊数列的题目,我们可以采用以下方法来解题。

1. 混合法:对于混合数列,可以将其分解为等差和等比两个部分进行求解,再将结果合并。

2. 矩阵法:对于递推式中包含二次项的数列,可以使用矩阵的方法来求解。

将数列的递推式表示成矩阵形式,然后通过求矩阵的幂得到数列的通项式。

3. 倒推法:有时候,我们可以从题目给出的末项或者求和结果出发,逆向推导数列的各项的值。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。

下面对等差数列的题型及解题方法进行归纳总结。

1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。

可以通过观察数列的特点,列出方程,再解方程求解。

二、等比数列等比数列是指数列中的相邻项之比都相等的数列。

下面对等比数列的题型及解题方法进行归纳总结。

1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。

4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。

可以通过观察数列的特点,列出方程,再解方程求解。

三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。

数列常见题型及解题技巧

数列常见题型及解题技巧

数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。

2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。

3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。

数列解题方法技巧汇总

数列解题方法技巧汇总

数列解题方法技巧汇总
1. 找规律:观察数列的前几项并找出它们之间的规律,以此推断出后面的项。

2. 递推法:通过前面的项推导出后面的项,可以采用递推关系式或递推公式来计算。

3. 通项公式:数列中任意一项可以通过通项公式来计算,这要求我们找出数列中的一些特征,例如等差、等比等等。

4. 数列套路:掌握一些数列的套路,例如等差数列的求和公式、等比数列的求和公式、等比数列求通项公式等等。

5. 折线法:将数列的前几项按照一定的规律连接起来,形成一条折线,然后通过这条折线来推导出数列中的规律。

6. 矩阵法:将数列转化成矩阵形式,然后通过矩阵的乘法来计算数列中的每一项。

7. 生成函数法:将数列中的每一项看成某个函数的系数,然后将整个数列转化成一个生成函数,通过对生成函数的展开来求解数列中的每一项。

8. 等差数列和等比数列的转换:将等比数列通过取对数或对数值相乘改为等差
数列,从而可以采用等差数列的求和公式求解。

9. 反向思维:将给出的数列倒序排列,倒推数列的规律。

10. 郝氏减法:将数列中位置相邻的两项作差,将结果构成一个新的数列,这个新的数列往往具有更为明显的规律,容易推算。

高考数学 数列解题技巧总结

高考数学 数列解题技巧总结

专题三、数列解题技巧总结一、等差数列:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a c b +=,则称b 为a 与c 的等差中项. 3、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.()n m a a n m d =+-4、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 5、等差数列的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;特别地,若2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.(2)n S ,2n n S S -,32n n S S -成等比数列.(3)若项数为()*2n n ∈N ,则S S nd -=偶奇,.(4)若项数为()*21n n -∈N ,则()2121n n S n a -=-,1S n S n =-奇偶 二、等比数列: 1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.n m n m a a q -=4、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩ 5、等比数列的前n 项和的性质:(1)m n p q+=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.(2)n S ,2n n S S -,32n n S S -成等比数列。

数列解题思想技巧总结

数列解题思想技巧总结

数列解题思想技巧总结数列是高中数学中的一个重要内容,解题技巧也是需要掌握的。

以下是数列解题思想技巧的总结:1. 观察法:观察数列中的规律,找出数列的特点和变化规律。

可以通过列出数列的前几项,比较相邻项之间的关系,寻找共同的特征来找出数列的规律。

2. 递推法:对于递推数列,通过从已知的项出发,找出每一项与前一项之间的关系,推导出数列的通项公式。

递推法是数列求和、求项数等问题的主要思路。

3. 代数法:将数列的问题转化为代数方程的问题。

通过列出数列的通项公式,得到数列的某项的表达式,然后利用已知条件列出方程,解方程得到所求的项或者数值。

4. 数学归纳法:数学归纳法是用来证明数列性质和定理的方法,也可以用来找出数列的规律。

通过证明一个条件成立的前提下,推论该条件在下一个值也成立,从而可以推断出通项公式或者数列的变化规律。

5. 等差数列和等比数列的性质:等差数列和等比数列是两种常见的数列类型。

等差数列的性质是首项与末项之和的一半与项数的乘积相等,等比数列的性质是相邻两项的比值恒定。

利用这些性质可以帮助求解数列相关问题。

6. 假设法:对于一些没有明显规律的数列,可以通过假设一些规律来解题。

假设规律之后,再验证是否满足所有已知条件,如果满足,则假设成立,可以继续求解。

7. 倒序法:对于一些复杂的数列问题,可以从最后一项开始倒序思考。

通过倒序思考,可以找到求解数列的规律,然后再用递推法或者代数法求解。

8. 分类讨论法:对于一些复杂的数列,可以根据某个条件对数列进行分类讨论。

通过不同的分类,可以得到不同的解法,从而可以更好地解决问题。

9. 数列的性质和定理:掌握数列的常见性质和定理,比如等差中项、等差数列求和公式、等比数列求和公式等,可以帮助解决数列相关问题。

10. 几何解法:有些数列问题可以通过几何解法来解决。

通过将数列的项表示为几何图形的数量,可以利用几何性质解题。

以上是数列解题思想技巧的总结,通过掌握这些技巧,可以更好地解决各种数列相关的问题。

数列解题技巧归纳总结 好(5份)

数列解题技巧归纳总结 好(5份)

数列解题技巧归纳总结好(5份)一、典型题的技巧解法1、求通项公式(1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、已知{an}满足an+1=an+2,而且a1=1。

求an。

例1、解∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求、解:由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★ 说明只要和f (1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。

(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求、解法一:由已知递推式得an+1=3an+2,an=3an-1+2。

两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(31+2)-1=4∴an+1-an=43n-1 ∵an+1=3an+2∴3an+2-an=43n-1 即 an=23n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,…,an-an-1=43n-2,把n-1个等式累加得:∴an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数)由上题的解法,得:∴ (5)递推式为思路:设,可以变形为:,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。

求。

(6)递推式为Sn与an的关系式关系;(2)试用n表示an。

数学高中数列10种解题技巧

数学高中数列10种解题技巧

数学高中数列10种解题技巧数列是高中数学中一个非常重要且经常被考察的概念。

它在数学和实际应用中都有着广泛的应用。

但是,数列的解题方法非常多,有时候我们可能会感到困惑。

为此,本文总结了数学高中数列10种解题技巧,让我们一起来看看吧。

1. 求和公式有些数列如果求和,使用求和公式可以极大地简化计算。

例如,等差数列和等比数列的求和公式是非常常见和重要的。

2. 递推式递推式是数列的一种描述方法,是一种基于之前项和公式推导下一项的方法。

有些数列通过递推式很容易得到通项公式,进而求解问题。

3. 归纳法归纳法是数列题目解题的常用方法。

通过证明一个命题对于某个特定的数成立,以及每一个下一个数都满足这个性质,我们就可以得到它对于所有数都成立的结论。

4. 图像法有些数列的图像规律比较明显,通过观察它们的图像,我们可以得到一些结论,从而解决一些问题。

5. 交替数列交替数列是一种奇数项和偶数项分别出现不同的项的数列。

有时候,我们可以通过对它进行分割,分别计算奇数项和偶数项的和,然后再将结果相加。

6. 通项公式对于某些数列,如果能够求得它们的通项公式,那么我们就可以很方便地计算出它们的各个项。

常见的数列有等差数列、等比数列、斐波那契数列等等。

7. 变形技巧变形技巧是数列解题过程中常用的一种方法。

它通常用于将原有的数列问题转化为其他已知的数列问题,从而利用已有的知识来解决问题。

8. 逆推法逆推法是一种通过倒向考虑来解决数列问题的方法,通常它可以帮助我们找到某个数列的特定项。

9. 等比数列与等差数列之间的关系等比数列和等差数列是数列中最常见的两种类型,它们之间有着一些重要的关系。

通过研究它们之间的联系,我们可以更加深入的理解它们的性质和规律。

10. 特殊的数列有些数列非常特殊,它们没有通项公式,没有明显的规律,但是它们在实际应用中却有着广泛的应用。

如果我们能够了解这些特殊的数列及其应用,那么在应用数学中会有更多的灵活性和优越性。

(完整)数列题型及解题方法归纳总结,推荐文档

(完整)数列题型及解题方法归纳总结,推荐文档

1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识框架
111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q
a a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪
←⎨⎪⎩-=≥⎧⎪
=+-⎪
⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解
的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)
11(1)()
n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪

⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧
⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎧⎪⎪⎨
⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪
⎪⎪⎪⎪⎩⎩

⎧⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩
等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和
求和倒序相加求和累加累积
归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪


掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握
了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列
∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11
2
n n a a +=,而12a =,求n a =?
(2)递推式为a n+1=a n +f (n )
例3、已知{}n a 中112a =
,12141
n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=
-+n n a a n n )1
21
121(21+--=n n
令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)
2
43
4)1211(211--=
--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,
(n-1)代入,可得n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数)
例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .
解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。

两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4
∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1
-1
解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2

把n-1个等式累加得: ∴an=2·3n-1-1
(4)递推式为a n+1=p a n +q n (p ,q 为常数)
)(3211-+-=
-n n n n b b b b 由上题的解法,得:n n b )32
(23-= ∴n n n
n
n b a )31(2)21(32-==
(5)递推式为21n n n a pa qa ++=+
思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,

于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。

求n a 。

(6)递推式为S n 与a n 的关系式
关系;(2)试用n 表示a n 。

∴)21
21
(
)(1211--++-
+-=-n n n n n n a a S S
∴1
112
1-+++
-=n n n n a a a ∴n n n a a 2
1211
+=+ 上式两边同乘以2n+1
得2n+1
a n+1=2n
a n +2则{2n
a n }是公差为2的等差数列。

∴2n
a n = 2+(n-1)·2=2n
2.数列求和问题的方法 (1)、应用公式法
等差、等比数列可直接利用等差、等比数列的前n 项和公式求和,另外记住以下公式对求和来说是有益的。

1+3+5+……+(2n-1)=n 2
【例8】 求数列1,(3+5),(7+9+10),(13+15+17+19),…前n 项的和。

解 本题实际是求各奇数的和,在数列的前n 项中,共有1+2+…+n=)1(2
1
+n n 个奇数,
∴最后一个奇数为:1+[2
1n(n+1)-1]×2=n 2
+n-1
因此所求数列的前n 项的和为
(2)、分解转化法
对通项进行分解、组合,转化为等差数列或等比数列求和。

【例9】求和S=1·(n 2-1)+ 2·(n 2-22)+3·(n 2-32)+…+n (n 2-n 2

解 S=n 2(1+2+3+…+n )-(13+23+33+…+n 3

(3)、倒序相加法
适用于给定式子中与首末两项之和具有典型的规律的数列,采取把正着写与倒着写的两个和式相加,然后求和。

例10、求和:12
363n
n n n n S C C nC =++
+
例10、解 012
0363n
n n n n n S C C C nC =•+++
+
∴ S n =3n ·2
n-1
(4)、错位相减法
如果一个数列是由一个等差数列与一个等比数列对应项相乘构成的,可把和式的两端同乘以上面的等比数列的公比,然后错位相减求和.
例11、求数列1,3x,5x2,…,(2n-1)x n-1前n项的和.
解设S n=1+3+5x2+…+(2n-1)x n-1.①
(2)x=0时,S n=1.
(3)当x≠0且x≠1时,在式①两边同乘以x得 xS n=x+3x2+5x3+…+(2n-1)x n,②
①-②,得 (1-x)S n=1+2x+2x2+2x3+…+2x n-1-(2n-1)x n.
(5)裂项法:
把通项公式整理成两项(式多项)差的形式,然后前后相消。

常见裂项方法:
例12、求和
1111 153759(21)(23)
n n +++
•••-+
注:在消项时一定注意消去了哪些项,还剩下哪些项,一般地剩下的正项与负项一样多。

在掌握常见题型的解法的同时,也要注重数学思想在解决数列问题时的应用。

二、常用数学思想方法
1.函数思想
运用数列中的通项公式的特点把数列问题转化为函数问题解决。

【例13】等差数列{a n}的首项a1>0,前n项的和为S n,若S l=S k(l≠k)问n为何值时S n最大?
此函数以n为自变量的二次函数。

∵a1>0 S l=S k(l≠k),∴d<0故此二次函数的图像开口向下∵ f(l)=f(k)
2.方程思想
【例14】设等比数列{a n}前n项和为S n,若S3+S6=2S9,求数列的公比q。

分析本题考查等比数列的基础知识及推理能力。

解∵依题意可知q≠1。

∵如果q=1,则S3=3a1,S6=6a1,S9=9a1。

由此应推出a1=0与等比数列不符。

∵q≠1
整理得 q3(2q6-q3-1)=0 ∵q≠0
此题还可以作如下思考:
S6=S3+q3S3=(1+q3)S3。

S9=S3+q3S6=S3(1+q3+q6),
∴由S3+S6=2S9可得2+q3=2(1+q3+q6),2q6+q3=0
3.换元思想
【例15】已知a,b,c是不为1的正数,x,y,z∈R+,且
求证:a,b,c顺次成等比数列。

证明依题意令a x=b y=c z=k
∴x=1og a k,y=log b k,z=log c k
∴b2=ac ∴a,b,c成等比数列(a,b,c均不为0)。

相关文档
最新文档