数学建模:投资问题
数学建模在投资风险管理中的应用
数学建模在投资风险管理中的应用一、引言在现代金融市场中,投资风险是不可避免的。
因此,如何有效地管理风险,达到更好的投资效果,一直是金融工作者们需要解决的核心问题。
数学建模作为一种工具,可以通过对金融数据进行分析、预测和优化,从而帮助投资者更好地管理风险。
二、基础数学知识在投资分析中的应用在投资分析中,基础数学知识如统计学、概率论、线性方程组、微积分等都有着重要的应用。
例如,在股票价格的分析中,投资者可以利用概率分布函数和统计方法来预测股票价格的走势。
同时,利用线性代数和微积分等数学方法,可以对多个股票进行组合投资的裸跑分析。
此外,在金融衍生品的定价分析中,利用微积分和概率论可以推导出定价公式,帮助投资者更好地进行衍生品的买卖和对冲。
三、数据分析在投资管理中的应用随着现代技术的不断发展,大量的投资数据也得到了收集和分析。
在投资管理中,数据分析可以帮助投资者更好地理解市场的趋势和动向,从而做出更为准确的投资决策。
例如,通过对历史股票价格的分析,可以发现股市的波动是有一定规律的,因此投资者可以利用这一规律制定相应的投资策略。
同时,在量化投资中,数据分析技术也被广泛应用,例如通过构建多因子模型来挖掘市场的潜在机会,从而达到更好的投资效果。
四、金融风险管理中的数学模型金融风险是投资过程中需要面对的一个重要挑战,而数学建模可以帮助我们更好地管理这些风险。
例如,在对冲基金风险管理中,利用随机过程和蒙特卡罗模拟等数学方法,可以帮助投资者更好地估计风险值。
同时,利用协方差矩阵和极值理论等数学工具,可以对股票组合进行风险分析和优化配置。
此外,金融市场中还存在着利率风险和信用风险等多种风险,针对不同类型的风险,数学模型也可以提供相应的解决方案。
五、结论综上所述,数学建模在投资风险管理中有着广泛的应用,基础数学知识可以帮助投资者更深入地理解市场的运作机制,数据分析技术可以帮助投资者更好地把握市场的趋势和动向,而金融风险管理中的数学模型则可以帮助投资者更好地管理和控制风险,从而达到更好的投资效果。
数学建模13道题
数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。
该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。
2.用长8米的角钢切割钢窗用料。
每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。
公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。
制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。
数学建模—投资的收益和风险问题
学建模二号:名:级:投资的收益和风险问题摘要:某投资公司现有一大笔资金(8000 万),可用作今后一段时间的市场投资,假设可供选择的四种资产在这一段时间的平均收益率分别为 r i ,风险损失率分别为 q i 。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的资产中最大的一个风险来度量。
另外,假定同期银行存款利率是 r0 =5%。
具体数据如下表:对于第一问,我建立了一个优化的线性规划模型,得到了不错的结果。
假设 5 年的投资时间,我认为五年末所得利润最大可为:37.94 亿。
具体如何安排未来一段时间内的投资,请看下面的详细解答。
如果可供选择的资产有如下15 种,可任意选定投资组合方式,就一般情况对以上问题进行讨论,结果又如何?对于第二问,考虑独立投资各个项目的到期利润率,通过分析,发现数据中存在着相互的联系。
由此,我建立了一个统计回归模型x5=a0+a1*x4+a2*x3+a3*x2+a4*x1+a5*x1^2+a6*x2^2+a7*x3^2+a8*x4^2通过这个模型,我预测了今后5年各个项目的到期利润率。
如第一个项目今后五年的到期利润率为:第一年:0.1431 第二年:0.1601 第三年:0.0605 第四年:0.1816 第五年:0.1572 。
(其他几个项目的预测祥见下面的解答)考虑风险损失率时,定义计算式为:f=d*p;d 为该项目 5 年内的到期利润率的标准差,p 为到期利润率;考虑相互影响各个项目的到期利润率时,我们在第一个模型的基础上建立一新的模型:x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5 y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*x5 (两个项目互相影响的模型) x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5+a16*z5y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*z5+a26*x5z5=a30+a31*z4+a32*z3+a33*z2+a34*z1+a35*x5+a37*y5(三个项目互相影响的模型)通过解方程组,我们可以预测出今后五年的到期利润率。
2023年数学建模c题目
2023年数学建模c题目
2023年数学建模竞赛C题是“多阶段投资组合优化问题”。
问题描述:
假设你是一位投资者,在多阶段投资环境中,需要确定在每个阶段应该如何分配你的投资金额。
为了简化问题,我们假设你只有一个投资目标,即在每个阶段最大化预期收益,并且你的投资金额为100万元。
具体来说,你需要确定在每个阶段应该投资多少金额,以及应该选择哪些资产进行投资。
投资环境包括股票、债券和现金等三种资产,每种资产的预期收益率和风险水平不同。
在每个阶段,你都需要考虑过去的历史数据和当前的市场情况来制定投资策略。
例如,在第一阶段,你需要基于过去10年的数据来确定股票、债券和现金的权重。
在第二阶段,你需要根据第一阶段的结果和市场情况来调整你的投资策略。
目标是最大化预期收益,同时考虑风险水平。
你需要确定一个多阶段投资组合优化模型,并使用历史数据和数学方法来解决这个问题。
问题要求:
1. 建立多阶段投资组合优化模型,并使用历史数据来求解该模型。
2. 确定投资策略,包括在每个阶段的投资金额和资产选择。
3. 分析投资结果,包括预期收益和风险水平。
4. 讨论如何根据市场变化调整投资策略。
5. 编写一个Python程序来实现你的模型和算法,并输出结果。
这是一个非常具有挑战性的问题,需要你掌握多阶段投资组合优化、统计分析和Python编程等方面的知识。
希望你能通过解决这个问题,提高自己的数学建模能力和实际应用能力。
1998年数学建模a题
1998年数学建模a题
1998年A题数学建模题目为:研究与投资有关的经济发展问题。
该题要求研究者对影响投资环境的各种因素进行分析,并进行投
资经济学的建模。
研究的内容包括:投资回报、投资项目的净现值、
投资风险、投资成本、投资价值、投资结构、投资综合评价等。
首先,研究者应该对影响投资环境的各种因素进行全面分析,包
括民族国家的政治环境、经济环境、金融环境、法律环境以及社会文
化环境等,以确定背景和方向。
其次,研究者应采用投资回报模型,分析投资市场的现状,如投
资回报率、投资成本、投资风险等,进而判断投资环境的优劣。
此外,研究还可以运用净现值模型,根据投资价值的不同,以及
价格水平的变化,来判断投资项目的合理性。
最后,研究者还可以使用投资结构分析技术来进行投资综合评价,以了解投资环境中的优势和劣势,并给出相应的经济发展建议。
综上所述,1998年A题数学建模题目主要是要求研究者对影响投
资环境的各种因素进行全面分析,并运用投资回报模型、净现值模型
以及投资结构分析技术等,对投资市场进行分析,以便给出相应的经
济发展建议。
数学建模投资风险与收益
数学建模投资风险与收益
投资风险和收益是投资领域中的两个最重要的概念。
投资者在做出最终的决策之前,
必须仔细衡量这两者之间的关系。
投资风险是指可能发生的一系列不确定的事件,这些事件可能会导致投资者在投资过
程中遭受损失。
投资风险包括市场风险、信用风险、流动性风险和操作风险等。
投资收益是指投资者在投资中获得的收益,包括股息、利息、资本利得和其他收益等。
投资者的收益与投资风险密切相关,通常来说,风险越高,收益也就越高,反之亦然。
在数学建模中,我们可以使用各种数学工具和技巧来分析投资风险和收益之间的关系。
例如,我们可以使用统计方法来评估一个投资组合的风险和收益。
通过分析投资组合中每
个资产的历史数据,我们可以得出该组合的风险和收益情况,并通过优化投资组合的资产
配置,实现最大化收益和最小化风险的目标。
另外,我们还可以使用金融工程学中的定价模型来评估投资的风险和收益。
例如,利
用风险价格和风险杠杆来评估投资组合的风险和收益,并通过调整投资组合的配置,使风
险和收益达到最优化。
除了数学建模,我们还可以使用许多其他工具和技巧来帮助我们评估投资风险和收益
之间的关系。
例如,我们可以使用基本面分析来评估股票的价值,使用技术分析来预测股
票价格的变化,使用公司财务分析来评估企业的财务状况等。
总之,投资风险和收益是投资领域中的两个最重要的概念。
通过使用数学建模和其他
工具和技巧,我们可以更加准确地分析投资组合的风险和收益,并实现最优化的投资决
策。
投资的收益和风险问题—数学建模论文
投资的收益和风险问题摘要本论文主要讨论解决了在组合投资问题中的投资收益与风险的相关问题。
分别在不考虑风险和考虑风险的情况下建立相应的数学模型,来使得投资所获得的总利润达到最大。
问题一是一个典型的线性规划问题,我们首先建立单目标的优化模型,也即模型1,用Lingo软件求解,得到在不考虑投资风险的情况下,20亿的可用投资金额所获得的最大利润为153254.4万元。
然后分别分析预计到期利润率、可用投资总资金和各投资项目的投资上限对总利润的影响。
发现利润与利润率成正比的关系;可用投资总额有一个上限,当投资额小于这个上限时,总利润与可用投资额成正比的关系,当大于这个上限时,可用投资额与总的利润没有关系,总利润率保持不变;各项目的投资上限均与目标值呈正相关,项目预计到期利润率越大,该项目投资上限的变动对目标值的影响越大。
问题二是一个时间序列预测问题。
分别在独立投资与考虑项目间的相互影响投资的情况下来对到期利润率和风险损失率的预测。
两种情况下的预测思路与方法大致相同。
首先根据数据计算出到期利润率,将每一个项目的利润率看成一个时间序列,对该序列的数据进行处理,可以得到一个具有平稳性、正态性和零均值的新时间序列。
再计算该序列的自相关函数和偏相关函数,发现该时间序列具有自相关函数截尾,偏自相关函数拖尾的特点,所以可认为该序列为一次滑动平均模型(简称MA(1))。
接着,用DPS数据处理系统软件中的一次滑动平均模型依次预测出各项目未来五年的投资利润率。
对于风险损失率,我们用每组数据的标准差来衡量风险损失的大小,将预测出来的投资利润率加入到样本数据序列中,算出该组数据的标准差,用该值来衡量未来五年的风险损失率。
具体答案见4.2.2.1问题的分析与求解。
同样在考虑相互影响的情况下,我们运用ARMA(3,1)模型进行预测,结果见4.2.2.2 问题三与问题一类似,也是优化的问题,其目标仍是第五年末的利润最大,而且也没有考虑风险问题,只是约束条件改变了。
数学建模论文组合投资问题1
科院7组:蔡光达、王奇、鲁成组合投资问题摘要本文讨论了投资的风险和收益问题,建立了投资的单目标和多目标决策模型,并将多目标决策问题转化为单目标的决策模型,采用线性规划问题求解以解决公司的投资组合问题。
利用线性规划和灰色预测模型对公司五年投资过程中的投资的收益和风险分别进行了评估预测,求出了在不同的投资环境下第五年末的最大利润数值。
针对问题一:本文以第五年所得总金额为目标函数,应用线性规划理论建立了单目标优化模型,并运用Lingo软件求得第五年所得总金额的最大值:374140.5万,则第五年的最大利润:174140.5万。
针对问题二:本文分别对独立投资和同时投资这两种情况进行分析,对题中表2和表3进行了处理,算出来各项目每一年的到期利润率,分别以到期利润率的时间响应函数和标准差为目标函数建立了模型,运用灰色系统理论对上述两种投资方式近五年的各项目到期利润率进行预测,通过Matlab软件求得了两种不同投资方式的近五年各项目到期利润率预测结果(具体数据见表7.2和表7.3)和各项目标准差(具体数据见表7.5和7.6),并对预测结果进行了级比偏差检验,检验结果显示此时预测结果精度较高。
针对问题三:本文综合考虑了独立投资和同时投资这两种情况,同样以第五年的所得总金额为目标函数,并建立了单目标优化模型,通过Lingo软件求得第五年所得总金额的最优值:558422.0万,则第五年的最大利润358422.0万。
针对问题四:以题三中标准差最大值表示投资最大风险损失率,为此分别以第五年最大总金额和最小风险损失费为目标函数建立了多目标线性优化目标函数,比运用Lingo软件求得:当8.0s时,可得第五年总金额最大值:569975万,=则第五年的最大利润369975万。
针对问题五:假设一部分资金存入银行获取利息,并向银行贷款进行其他项目投资,然后根据题四方法和思想,运用Lingo软件求得:当3.0s时,可得第=五年总金额最大值:79582.4万,则第五年的最大利润59582.4万。
投资问题数学建模(Word最新版)
投资问题数学建模通过整理的投资问题数学建模相关文档,渴望对大家有所扶植,感谢观看!数学模型第一次探讨作业问题:某部门现有资金10万元,五年内有以下投资项目供选择:项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元;项目C:其次年初投资,第五年末收回本金且获利40%,最大投资额为3万元;项目D:每年初投资,年末收回本金且获利6%;问如何确定投资策略使第五年末本息总额最大?问题分析:用表示第i年对第j个项目的投资金额要使第五年年末本息总额最大,应当在每年将全部可用资金都用于投资,以确保资金的充分利用,由于项目投资均发生在年初,故以下只探讨年初的投资状况:第一年:其次年:手上资金(即第一年年末收回资金)为,全部用来对可投资项目投资,则有= 第三年:同理,有= 第四年:= 第五年:= 第五年年末本息和为(即第五年所能收回的全部资金)建立模型:= = = = ,求解模型:Lingo解法:可编写lingo程序如下:model: max=1.06*x54+1.15*x41+1.25*x32+1.4*x23;!目标函数; x11+x14=10;!以下约束条件表示每年资金全部用于投资;1.06*x14=x21+x23+x24; 1.15*x11+1.06*x24=x31+x32+x34;1.15*x21+1.06*x34=x41+x44; 1.15*x31+1.06*x44=x54; x23<=3;!限制B,C项目的最大投资额; x32<=4; end 运行结果如下:Global optimal solution found. Objective value: 14.37500 Infeasibilities:0.000000 Total solver iterations:1 Variable Value Reduced Cost X54 0.000000 0.000000 X41 4.500000 0.000000 X32 4.000000 0.000000 X23 3.000000 0.000000 X11 7.169811 0.000000 X14 2.830189 0.000000 X21 0.000000 0.000000 X24 0.000000 0.3036000E-01 X31 0.000000 0.000000 X34 4.245283 0.000000 X44 0.000000 0.2640000E-01 Row Slack or Surplus Dual Price1 14.37500 1.0000002 0.000000 1.4018503 0.000000 -1.3225004 0.000000 -1.2190005 0.000000 -1.1500006 0.000000 -1.0600007 0.000000 0.7750000E-018 0.000000 0.3100000E-01 所得最优值为14.375万元,对应的最优解为: x11=7.169811,x14=2.830189,x23=3,x32=4,x34=4.245283,x41=4.5,其余值为0 即第一年对A项目投资7.169811万元,对D项目投资2.830189万元;其次年对C项目投资3万元;第三年对B项目投资4万元,对D项目投资4.245283万元;第四年对A项目投资4.5万元。
(新)大学生建模报告汇总-数学建模论文《投资(风险)模型问题》_
数学建模论文《投资(风险)模型问题》建模小组成员:王雪峰(20031090029)李学敏(20031090039)董祥桥(20031090037)投资风险模型(数学规划模型)一、问题提出:某公司有开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择。
每个项目重复投资,根据专家经验,对于每个项目投资总额不能太高,且有个上限这些项目所需要的投资额已经知道,在一般情况下,投资一年后各项目的利润也可估算出来。
表一:投资各项目所需要资金及预计一年后所得利润(单位:万元)该公司现在需要解决以下问题:1、就表一所提供的数据,试问应该如何投资使第一年的利润最大;2、在具体对这些项目进行投资时,实际还会出现项目之间相互影响的情况,公司在咨询了有关专家之后,得到以下可靠信息:①如果同时对第1、3项目投资,它们的利润分别为1005万元和1018.5万元;②如果同时对第4、5项目投资,它们的利润分别为1045万元和1276万元;③如果同时对2、6、7、8项目投资,它们的预计利润为1353万元、840万元、1610万元、1350万元;④如果考虑投资风险,则应该如何使收益尽可能大,而风险尽可能小。
投资项目总风险可用投资项目中最大一个风险来衡量,专家预测出投资项目Ai 的风险率为Qi , 数据见表二:表二:投资项目风险损失率:(%)由于专家具有较高的可信度,公司决策层需要知道以下问题的结果(1)如果只考虑专家的前三条信息,该资金该如何投资?(2)如果将专家的前四条信息考虑进来,该资金该如何投资?(3)如果不考虑专家的前三条意见而将八个项目一起投资并且考虑投资风险该如何投资使利润最大化?二、问题分析:我们实际所需要解决的问题:1、不考虑专家的意见我们将项目A1~A8全部投资,问如何投资使第一年利润最大?2、只针对专家所提供的前三条信息该如何投资以使利润最大化?3、针对专家所提出的四条信息该如何投资以使利润最大化?4、只考虑投资的风险损失率而不考虑各项目之间的影响该如何投资使利润最大化?在解决上述问题时需要注意到:1、每个项目都有投资上限:拿项目A1来说,每投资一次需要6700万元,我们有150000万元,那么理论上我们可以投资次,但是事实上由于我们有投资上限我们只能将项目A1投资34000/6700次;2、专家的前三条信息是在考虑了各项目之间的互相影响之后所提出来的,也就是说在解决问题1时无须考虑项目之间的相互影响;3、在解决问题2时需要注意投资上限以及我们所拥有的可活动资金的总额(为15亿元);4、考虑问题3和4时我们必须把专家所提出的风险损失率考虑在内,但是问题是:①什么是风险损失率②投资项目的总风险损失率该如何表示经过查找图书及网络资料我们得到了风险损失率的精确定义:所谓风险损失率是指:在一个投资周期内资产发生风险时可能的损失在总投资中所占的百分比;在此我们认为投资周期为一年。
基金公司投资问题(数学建模)
二、问题分析
对于投资股票的问题,我们以高收益,低风险为标准对 50 种股票进行合理地 选择,从而得到我们要投资的 10 种符合标准的股票,并分别计算它们的平均收益 和风险及上涨幅度,给出组合投资的最佳方案,再根据相应的约束条件,确定 10 支股票各自的投资份额,合理地分配现有资金,从而实现公司收益最大化。 1、在问题一中,由于 50 种股票的数据量非常庞大,在对 50 种股票数据的处 理中,我们采用了对离散数据处理的方法。为了减少数据的处理,我们将每种股票的 6 个数据按季度求出其平均值,这样处理后数据也不算繁杂,同时也具有充分的代 表与说明性,并分别求出每种股票的收益率和风险系数,这两个值之间满足
三、模型假设
1、设定每种股票按季度求出其收益与风险的波动和日收益与风险切近度最大, 不考虑不在一季度内的单个月份的影响; 2、假设最优解为最大利益时风险最小,即最优收益=收益-风险; 3、假设以每季度的第一天的开盘价作为数据合并后的开盘价,以每一季度最 后一天的收盘价作为数据合并后的收盘价,不考虑资金面和主力的关照程度因素的 影响; 4、买卖基金时不考虑基金的申购费、赎回费、基金转换费等一系列费用。
在 50 种股票中取最大值;
SM
ax
S1 , , S k ;
从 S Max 中我们可再依次选出 9 个最大收益率的股票。 由于在建立模型时需要考虑我国经济形势与行业变化情况,并与实际状况相结 合,我们参考了网络上的经济分析,发现在传统行业不景气的情况下,相比于汽车 和工业股票,购买能源及电信业股票更加安全,因此我们预测了优势股应该为能源 之类。 此外,如果在选择 10 种最优股票进行投资时,只考虑最大收益率,而不考虑 股票的涨跌幅变化,就会增加投资股票的风险。因此我们还要考虑涨跌幅的变化情 况,并绘制出涨跌图,结合最大收益率共同抉择 10 种最优投资股票。 按季度求出其涨跌幅:
投资建模
投资效益与风险问题建模一、问题分析(—)问题的性质本问题是一个投资“关于效益与风险的双目标”最优化决策问题。
必须在“总体收益尽可能大,总体风险尽可能小”的原则下确定投资方向,即确定每个投资方向的投资资金。
(二)问题的主要因素(1)每个投资方向i S 的投资资金i X ;(2)每个投资方向i S 投资的收益率i r 与收益i R ;(3)每个投资方向i S 投资的风险率i q 与风险i Q ; (4)投资总收益R ; (5)投资总体风险Q 。
关键因素为投资总收益与投资总体风险。
(三)解决问题的难点从本实际问题出发,投资的收益与风险是一对矛盾。
一般来说,投资的收益越大,风险就会越大。
因此,根本不存在投资的收益最大,同时风险又最小的投资方案。
怎样协调收益与风险之间的矛盾?这是解决该问题的难点。
(四)目标函数的确定 根据“总体收益尽可能大,总体风险尽可能小”的原则,建立数学模型时,我们的目标函数必须以总体收益和总体风险为基础。
(1)总体收益函数∑∑====ni i i ni i X r R R 11(2)总体风险函数∑∑====ni i i ni i X q Q Q 11(五)数学建模的思路(1)思路1——建立双目标优化模型以“总体收益函数最大,总体风险函数最小”为目标函数,建立双目标最优化模型。
由于题目所给数据反应的“收益最大和风险最小”是矛盾的,因此,此模型无最优解。
但模型反应了投资的追求,是建立其他模型的基础。
(2)思路2——建立单目标优化模型引入新的函数,从一定程度上反应“收益最大和风险最小”的目标,将此函数做为目标函数,建立单目标优化模型。
新的目标函数应该满足:收益越大,函数值越大;风险越小,函数值越大。
(3)思路3——建立多重优化模型对于投资者来说,有的重视的是收益,而将风险做为第二考虑;有的则重视的是风险,而将收益做为第二考虑。
根据这种投资者的两种特点,我们可以分别建立两种模型。
数学建模:投资问题
投资的收益与风险问题摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。
本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。
然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。
关键词:组合投资,两目标优化模型,风险偏好2.问题重述与分析3.市场上有种资产(如股票、债券、…)()供投资者选择,某公司有数额为的一笔相当大的资金可用作一个时期的投资。
公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。
购买要付交易费,费率为,并且当购买额不超过给定值时,交易费按购买计算(不买当然无须付费)。
另外,假定同期银行存款利率是, 且既无交易费又无风险。
()1、已知时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。
2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。
本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。
并给出对应的盈亏数据,以及一般情况的讨论。
这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。
数学建模典型例题
数学建模典型例题暂无明显问题的段落。
一、人体重变化假设某人每天的食量为焦耳,其中基本新陈代谢消耗了5038焦耳,体育运动消耗的热量为69焦耳/(千克•天)乘以他的体重(千克)。
假设以脂肪形式贮存的热量100%有效,1千克脂肪含热量焦耳。
我们需要研究此人体重随时间变化的规律。
一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的。
假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、模型假设1.以脂肪形式贮存的热量100%有效;2.当补充能量多于消耗能量时,多余能量以脂肪形式贮存;3.假设体重的变化是一个连续函数;4.初始体重为W。
三、模型建立假设在△XXX时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(-5038-69*W(t));将其乘以△XXX即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(-5038-69*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/;W(0)=W;解得:69t/)5429-69W=(5429-69W)e;即:69t/)W(t)=5429/69-(5429-69W)/5429e;当t趋于无穷时,w=81.二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。
5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。
在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本aij(购入价减去折旧加上运营和维修成本)。
以千元计数aij的由下面的表给出:年2 | 年3 | 年4 | 年5 | 年6 |年1 | 46 | 5 | 9 | 7 | 6 |年2 | 12 | 11 | 8 | 8 | 20 |年3 | 16 | 13 | 11 | 10 |。
|请寻找什么时间买进和卖出汽车的最便宜的策略。
数学建模股票的选择和最有价值投资方案
基金公司投资问题模型摘要:针对投资公司提出的问题,首先求出每支股票过去假设干年的时间加权年收益率,对其求均值和方差,利用变异系数从各种投资股票中选出最有投资价值的股票和投资价值较高的10支股票。
接下来根据2021年最后两个月股票每日价格的上涨〔下跌〕计算一步转移概率矩阵,利用马尔柯夫随机过程理论预测2021年每支股票的上涨概率。
其次参照层次分析法的求解模型,权衡收益率和风险,对这10支股计算合理的投资权重,做出10种股票的最正确投资策略,合理分配投资金额,降低投资风险,获得更大的效益。
最后在预期收益率的前提下,根据马克维兹的均值——方差模型,问题可转化为二次规划求解,利用LINGO软件求出最终结果。
关键字:时间加权收益率变异系数马尔柯夫随机过程理论层次分析法马克维兹的均值——方差模型二次规划基金公司投资问题模型一、问题重述某基金管理公司现有50000万元于2021年1月1日投资附表1中列出的50种股票,于2021年12月31日之前全部卖出所持有的股票。
请你为该基金公司提出投资方案。
公司经理要求答复以下问题:1. 以我国经济形势与行业变化的分析为背景,从附表所罗列的50种股票寻中 寻找一个你认为最有投资价值的股票做一估值报告。
2. 从附表所罗列的50种股票选出10种股票进行投资,请你预估这10种股票2021年的上涨幅度或者通过其他途径获取这10种股票的上涨幅度。
3. 通过建立数学模型确定最优投资组合的决策,也就是确定在选出的10种股票的分别投资多少万元?投资组合的总风险是多少?4. 基金公司经理要求至少获得25%预期收益,最小风险是多少?5. 请你为基金公司经理撰写一份投资报告。
二、模型假设与符号说明2.1 模型假设1. 投资期间社会政策无较大变化经济开展形势较稳定;2. 投资期间的交易费用不计;3. 基金公司在年初投资股票,年末获得收益,期间不的撤资或追加投资;4. 基金投资公司期望收益率〔亦称收益率均值〕来衡量未来实际收益率的 总体水平,以收益率的方差〔或标准差〕来衡量收益率的不确定性〔风险〕,因而投资公司在决策中只关心投资的期望收益率和方差。
数学建模优化类问题例子
数学建模优化类问题例子
1.最佳生产计划:有一家汽车零部件制造公司,需要决定该如何安排生产计划以最大化利润。
该公司需要考虑每个零部件的生产成本、供应链的延迟和运输成本等因素,以确定最佳的生产数量和交付时间。
2.最优投资组合:一位投资者有一定资金,希望通过合理的资产配置来最大化投资回报。
该投资者需要考虑不同资产类别的风险和回报率,并使用数学建模优化方法来确定最佳的资产配置比例。
3.旅行销售员问题:一位旅行销售员需要在多个城市之间进行访问,并希望以最小的总行驶距离完成所有访问任务。
通过使用数学建模和优化算法,销售员可以确定最佳的访问顺序,从而减少总行驶距离和时间。
4.最佳路径规划:在一个迷宫中,有一只小老鼠需要找到从起点到终点的最短路径。
通过将迷宫与数学模型相关联,可以使用图论和最短路径算法来确定小老鼠应该采取的最佳行动策略。
以上只是一些例子中的几个,实际上数学建模和优化方法可以应用于各种不同的问题领域,包括金融、物流、能源管理、医疗决策等。
通过数学建模和优化,可以帮助人们做出更明智的决策,提高效率和效果。
1998年大学生数学建模优秀论文投资收益和风险问题
基本假设
一, 投资行为只能发生在开始阶段,中途不得撤资或追加投资。 二, 任一资产可购买量足够多,足以吸纳全部投资资金。 三,几种资产相互之间不会产生影响,例如股市的涨跌不会影响到债券的 涨跌。 四,财务分析人员对平均收益率和风险的预测值是可信的。 五,M 值足够大,大至可忽略 ui 的影响。(因为一般情况下企业的投资动辄 成百上千万元,而 ui 仅为数百元,故可忽略其影响) 六,公司总会选择满意度高的方案。
? , 模型假设:由问题分析可知,在问题 1 的情况下,风险值只能是 2.5%, 1.5%,5.5%,2.6%,0%中的某一个。
? , 模型的建立与求解: 当风险为 2.5%时,此时购买 S1 的资金超过了 M 的一半。剩余的资金为了追 求最大收益,都将会购买净收益率最大的资产。最后发现所有的资金全部购买 了 S1。净收益率为 27%。 当风险为 1.5%时,可得购买 S1 和 S2 的资金大约各占一半,S2 所耗资金略多 一点。净收益率约为 23%。 当风险为 5.5%时,可得购买 S1 和 S3 的资金大约各占一半,S3 所耗资金略多 一点。净收益率约为 22.5%。 当风险为 2.6%时,可得购买 S1 和 S4 的资金大约各占一半,S4 所耗资金略多 一点。净收益率约为 22.5%。 当风险为 0%时,可得购买 S1 和 S0 的资金大约各占一半,S0 所耗资金略多一 点。净收益率约为 16%。 通过对以上结果的分析,我们发现模型中未体现出总风险随投资的分散而减 小,另外当有某种投资所耗资金超过 M 的一半时,无论其余的资金作何种投资, 总风险都不会发生变化。这些显然都是不符合实际情况的,因此我们需要对条 件进行完善。
当各资产投资份额不同时,即给 S1,S2,S3,S4,S0(银行)投资各不相同时, 将会得到市场总收益与市场总风险的对应关系,在二维坐标(Rj-Q)中其表示 为二维图形。
数学建模投资的风险和效益word精品文档11页
多目标优化摘要:对市场上的多种风险投资和一种无风险资产(存银行)进行组合投资策略的的设计需要考虑连个目标,总体收益尽可能大和总体风险尽可能小,然而,这两目标并不是相辅相成的,在一定意义上是对立的。
模型一应用多目标决策方法建立模型,以投资效益没目标,对投资问题建立个一个优化模型,不同的投资方式具有不同的风险和效益,该模型根据优化模型的原理,提出了两个准则,并从众多的投资方案中选出若干个,使在投资额一定的条件下,经济效益尽可能大,风险尽可能小。
模型二给出了组合投资方案设计的一个线性规划模型,主要思想是通过线性加权综合两个设计目标:假设在投资规模相当大的基础上,将交易费函数近似线性化,通过决策变量化解风险函数的非线性。
【关键字】:经济效益 线性规划模型 有效投资方案 线性加权1. 问题重述投资的效益和风险(2019年全国大学生数学建模竞赛A 题)市场上有n 种资产(如股票、债券、…)S i ( i=1,…n) 供投资者选择,某公司有数 额为M 的一笔相当大的资金可用作一个时期的投资。
公司财务分析人员对这n 种 资产进行了评估,估算出在这一时期内购买Si 的平均收益率为i r 并预测出购买Si 的风险损失率为i q 。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金 购买若干种资产时,总体风险用所投资的S i 中最大的一个风险来度量。
购买S i 要付交易费,费率为i p ,并且当购买额不超过给定值i u 时,交易费按购买i u 计算(不买当然无须付费)。
另外,假定同期银行存款利率是0r , 且既无交易费又无风险。
(0r =5%) 已知n = 4时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金M ,有选择地购买若干种资 产或存银行生息,使净收益尽可能大,而总体风险尽可能小。
2模型的假设与符号说明2.1模型的假设:(1)在短时期内所给出的平均收益率,损失率和交易的费率不变。
(2)在短时期内所购买的各种资产(如股票,证券等)不进行买卖交易。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投资的收益与风险问题摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。
本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略” ,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。
然后分别使用Matlab 的内部函数linprog ,fminmax ,fmincon 对不同的风险水平,收益水平,以及偏好系数求解三个模型。
关键词:组合投资,两目标优化模型,风险偏好2•问题重述与分析3.市场上有”种资产(如股票、债券、,).:0 丨.小供投资者选择,某公司有数额为匸的一笔相当大的资金可用作一个时期的投资。
公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买•「的平均收益率为c,并预测出购买T的风险损失率为%。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的:中最大的一个风险来度量。
购买」要付交易费,费率为;■.,并且当购买额不超过给定值•;..时,交易费按购买■;.计算(不买当然无须付费)。
另外,假定同期银行存款利率是:,且既无交易费又无风险。
(•1、已知" ;时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。
2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。
本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。
并给出对应的盈亏数据,以及一般情况的讨论。
这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。
设购买S i (i=0,1…….n;S o表示存入银行,)的金额为X i;所支付的交易费为C i(X i),则:0 x = oC j(X j)二〒P i U i 0 .. X i ::: Ui i -1, 2,…,n, c°(x°) =0IP i X i X - a对S i投资的净收益为:R匕)=* X i- q (xj (i = 0, 1, , , n)对S i投资的风险为:QdXjnq j X i (i = 0, 1, , , n), q°=0对S投资所需资金(即购买金额X i与所需的手续费C i(X i)之和)是f i(X i) =X i C i(X i) (i = 0, 1, , , n)投资方案用x = ( X0, X1, , , X n)表示,那么,净收益总额为:nR(x)八R(X)i =0总风险为:Q(X)=rmiin Q i (xJ所需资金为:nF(x)八f i(x i)i =0所以,总收益最大,总风险最小的双目标优化模型表示为:Y Q(X))min」F(x) = M , x 兰0 >x R(x)丿J但是像这样的双目标模型用一般的方法很难求解出来的,所以经过分析把次模型转化为三种较简单的单目标模型。
3.假设与模型假设该公司在这一时期内是一次性投资;除交易费和投资费用外再无其他的费用开支;在这一时期市场发展基本上是稳定的;外界因素对投资的资产无较大影响;无其他的人为干预;社会政策无较大变化;公司的经济发展对投资无较大影响资产投资是在市场中进行的,市场是复杂多变的,是无法用数量或函数进行准确描述的,因此以上的假设是必要的,一般说来物价变化具有一定的周期性,社会政策也并非天天改变,公司自身的发展在稳定的情况下才会用额外的资金进行较大的风险的投资,市场与社会的系统发展在一个时期内是良性的、稳定的,以上假设也是合理的。
3.1模型a假设投资的风险水平是k,即要求总风险Q (x)限制在k内,Q (x)乞k,则模型可转化为:max R xs.t Q x 乞k, F (x)二M ,x _ 03.2模型b假设投资的收益水平是h,即净收益总额R(x)不少于h:R(x)>h,则模型可转化为:min Q(x)s.t R(x) _ h, F (x) = M , x _ 03.3模型c假设投资者对风险和收益的相对偏好参数为p(> 0),则模型可转化为:min g(x) -(1 - ?)R(x)s.t. F (x) = M , x _ 03.4模型求解及分析由于交易费C i(x i)是分段函数,使得上述模型中的目标函数或约束条件相对比较复杂,是一个非线性规划问题,难于求解.但注意到总投资额M相当大,一旦投资资产S i,其投资额X i —般都会超过U i, 于是交易费Cig)可简化为线性函数C i(X i)二P i X i从而,资金约束简化为n nF(x)=迟f i(x)=迟(1 + pJX j =Mi=0 i =0净收益总额简化为n n nR( x) = »R (X i) = »[ n x - G (X i)] = = (n - P i) xi=0 i =0 i =0在实际进行计算时,可设M=1,此时y i = ( 1 P i) X i (i = 0, 1, , , n)可视作投资S i的比例•以下的模型求解都是在上述两个简化条件下进行讨论的1) 模型a的求解模型a的约束条件Q(x)< k即Q(x) = maxQ i(X j) = max(q i x i) < k,0丈翅0弍疋所以此约束条件可转化为q iK 乞k (i = 0, 1, , , n).这时模型a可化简为如下的线性规划问题:nmax'(斤 _ P i)X ii国s.t. qX j 乞k, i=1,2,…,nn'、(1 P i)A ", X 一0i =Q具体到n=4的情形,按投资的收益和风险问题中题中给定的数据,模型为:max0.05x00.27X! 0.19x20.185x30.185x4s.t 0.025x^ k,0.015x2込k,0.055x3三k,0.026x4込kX。
1.01x1 1.02x2 1.045x3 1.065x4 = 1,X i _ 0 (i = 0, 1, , , 4)利用matlab7.1求解模型a输出结果是{0.177638, {x0 -> 0.158192, x1 -> 0.2, x2 -> 0.333333, x3 -> 0.0909091,x4 -> 0.192308}}这说明投资方案为(0.158192, 0.2 , 0.333333, 0.0909091 , 0.192308)时,可以获得总体风险不超过0.005的最大收益是0.177638M.当k取不同的值(0~0.025),风险与收益的关系见图 1.输出结果列表如下:风险a图1模型1中风险k与收益的关系结合图1,对于风险和收益没有特殊偏好的投资者来说,应该选择图中曲线的拐点(0.006 , 0.2019 ), 这时对:的投资比例见表1的黑体所示。
从表1中的计算结果可以看出,对低风险水平,除了存入银行外,投资首选风险率最低的然后是S1和S4,总收益较低;对高风险水平,总收益较高,投资方向是选择净收益率(r i - pj较大的S1和& •这些与人们的经验是一致的,这里给出了定量的结果.2)模型b的求解模型b本来是极小极大规划:min maX(q i X i)n ns.t. ' (r —pJX j》h ' ( 1 p i x) = 1 x》0i =0 i =0但是,可以引进变量X n+1=max(q i x i),将它改写为如下的线性规划:mi门(人1)n ns.t q i X i 乞X n 1 ,i=0,1,2,, ,n, \ (A-pJx》h,(1 pjx—l, x>0i-0 i」具体到n=4的情形,按投资的收益和风险问题中题中给定的数据,模型为:min X5s.t 0.025x i _ X5,0.015x2 - X s ,0.055x3 _ X5Q.O26X4 _ X50.05x00.27x10.19X20.185X30.185X4 _ h,x01.01x11.02x21.045x31.065x4=1必-0, (i = 0, 1, , , 5)利用matlab7.1求解模型b,当h取不同的值(0.1~0.25),我们计算最小风险和最优决策,收益水平h取-U.2-;,结果如表2所示,风险和收益的关系见图 2.从表2看出,对低收益水平,除了存入银行外,投资首选风险率最低的资产然后是二和二,总收益当然较低。
对高收益水平,总风险自然也高,应首选净收益率( - )最大的:■[和二。
这些与人们的经验是一致的。
结合图2,对于风险和收益没有特殊偏好的投资者来说,应该选择图中曲线的拐点(0.059 ,这时对,的投资比例见表2的黑体所示。
3)模型c的求解nmin p x+i -(1 -P)Z (斤一pJX ii=0ns.t q i X i/n i,i=0, 1, 2, , , n x ( 1 P i x) = 1 x>0i=0具体到n=4的情形,按投资的收益和风险问题题中给定的数据,模型为:min 'x5 -(1 - ;?)(0.05x0 0.27x1 0.19x2 0.185x3 0.185x4)s.t 0.025为兰x5,0.015x2兰x5,0.055x3兰x5,0.026x4兰x5x01.01x11.02x21.045x31.065x4= 1, x^ 0 (i = 0, 1, , , 5)利用matlab7.1求解模型c,当p取不同的值(0.75~0.95),我们计算最小风险和最优决策输出结果列表如下:风险水平最大收益率$&屍&0.760.02480.267300.99010000.770.02480.267300.99010000.780.00920.216500.36930.6147000.790.00920.216500.36920.6148000.2 ),类似模型b的求解,我们同样引进变量将它改写为如下的线性规划:图2模型2中风险与收益h的关系从图5可以看出,模型3的风险与收益关系与模型1和模型2的结果几乎完全一致。