2014届佛山一模文科数学试题

合集下载

[精美版]2014年广东高考文科数学(逐题详解)

[精美版]2014年广东高考文科数学(逐题详解)

O xyA BCD2014 年广东高考文科数学逐题详解详解提供: 广东佛山市南海中学 钱耀周参考公式:椎体的体积公式 13V Sh = ,其中S 为椎体的底面积,h 为椎体的高.一组数据 12 ,,, nx x x L 的方差 ( ) ( ) ( )2222121 ns x x xxxx n éù =-+-++- êú ëûL ,其中x 表示这组数据的平均数.一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分,在每小题给出的四个选项中,只有一 项是符合题目要求的.1.已知集合 { } 2,3,4 M = , { } 0,2,3,5 N = ,则M N = I ( )A .{ }0,2 B .{ }2,3 C .{ }3,4 D .{ }3,5 【解析】B ;M N = I { } 2,3 ,选 B .2.已知复数z 满足( ) 34i 25 z -= ,则z =( )A . 34i --B . 34i-+ C .34i- D .34i+ 【解析】D ; ( ) ( )( )2534i 2534i 34i 34i 34i z + ===+ --+ ,选 D . 3.已知向量 ( ) 1,2 = a , ( ) 3,1 = b ,则 -= b a ( )A .( )2,1 - B .( )2,1 - C .( )2,0 D .( )4,3 【解析】B ; ( ) ( ) ( ) 3,11,22,1 -=-=- b a ,选 B .4.若变量 , x y 满足约束条件 28 04 03 x y x y +£ ì  í ï ££ î,且 2 z x y =+ 的最大值等于( )A .7B .8C .10D .11【解析】C ;画出可行域如图所示,为一个五边形OABCD 及其内部区域,当直线 2 y x z =-+ 过点 ( )4,2 B 时,z 取得最大值 24210 z =´+= ,选 C . 5.下列函数为奇函数的是( )A . 12 2x x y =-B . 3 sin y x x =C . 2cos 1 y x =+D . 2 2xy x =+ 【解析】A ;设 ( ) 1 2 2 xx f x =-,则 ( ) f x 的定义域为R ,且 ( ) ( ) 11 22 22x xx x f x f x - - -=-=-=- ,所以 ( ) 12 2x x f x =- 为奇函数,选A .6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段间隔为( )A .50B .40C .25D .20【解析】C ;分段间隔为 100025 40= ,选 C .7.在 ABC D 中,角 ,, A B C 所对应的边分别为 ,, a b c ,则“a b £ ”是“sin sin A B £ ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件1l 2l 3l 4 l 4l 【解析】A ;结合正弦定理知sin sin 2sin 2sin A B R A R B a b £Û£Û£ ,选 A .8.若实数k 满足05 k << ,则曲线 22 1 165 x y k -= - 与曲线 221 165x y k -= - 的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等【解析】D ;因为05 k << ,所以两条曲线均为双曲线,且 2c 均为21 k - ,故选 D .9.若空间中四条两两不同的直线 1 l , 2 l , 3 l , 4 l ,满足 12 l l ^ , 23 // l l , 34 l l ^ ,则则下列结论一定正确的是()A . 14l l ^ B . 14// l l C . 1 l 与 4 l 既不垂直也不平行 D . 1 l 与 4 l 的位置关系不确定 【解析】D ;弄个正方体一目了然!10. 对任意复数 1 w , 2 w 定义 1212 w w w w *= ,其中 2 w 是 2 w 的共轭复数,对任意复数 123 ,, z z z ,有如下四个命题:① ( ) ( ) ( ) 1231323 z z z z z z z +*=*+* ; ② ( ) ( ) ( ) 1231213 z z z z z z z *+=*+* ; ③ ( ) ( ) 123123 z z z z z z **=** ; ④ 1221 z z z z *=* ;则真命题的个数是( ) A .1B .2C .3D .4【解析】B ;①( ) ( ) ( ) ( ) 12312313231323 z z z z z z z z z z z z z z +*=+=+=*+* ,故①为真命题;② ( ) ( )( ) ( ) 12312312312131213 z z z z z z z z z z z z z z z z z *+=+=+=+=*+* ,故②为真命题; ③左边 123 z z z = ,右边 ( )( ) ( )123123123 * z z z z z z z z z === ,左边¹ 右边,故③为假命题; ④左边 12 z z = ,右边 21z z = ,左边¹ 右边,故④为假命题.故只有①②为真命题,选B . 二、填空题:本大共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分) (一)必做题(11~13 题)11.曲线 53 xy e =-+ 在点( ) 0,2 - 处的切线方程为.【解析】520 x y ++= ;由 5 xy e ¢=- 得 0 5 x y = ¢ =- ,故切线方程为 25 y x +=- ,即520 x y ++= .12. 从字母 ,,,, a b c d e 中任取两个不同的字母,则取到字母a 的概率为_______.【解析】 2 5 ; 142 5 42 105C P C === .13. 等比数列{ } n a 的各项均为正数,且 15 4 a a = ,则 2122232425log log log log log a a a a a ++++=______. (二)选做题(14~15 题,考生只需从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线 1 C 和 2 C 的方程分别为 22cos sinr q q = 和 cos 1 r q = . 以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线 1 C 和 2 C 交点的直 角坐标为______.【解析】( ) 1,1 ;由 2 2cos sin r q q = ,可得 ( ) 22cos sin r q r q = ,即 2 2 y x = .由 cos 1 r q = ,可得 1 x = .曲线 1 C 和 2 C 交点的直角坐标为() 1,2 . 15.(几何证明选讲选做题)如图 1,在平行四边形ABCD 中,点E 在 AB 上且2 EB AE = , AC 与DE 交于F ,则CDF AEF D =D 的面积的面积.【解析】9;考查相似三角形性质的应用.由题易知 CDF D ∽ AEF D 所以相似比为3:1 CD AE = ,故 CDF AEF D D 的面积的面积为相似比的平方,即为9. 三、解答题:本大题共 6 小题,满分 80 分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分 12分)已知函数 ( ) sin 3 f x A x p æö=+ ç÷ èø ,x ÎR ,且 532122f p æö =ç÷ èø . (1) 求A 的值; (2) 若 ( ) ( ) 3,0, 2 ff p q q q æö --=Î ç÷ èø ,求 6 f p q æö - ç÷ èø.【解析】(1) 依题意 553232 sin sin 12123422 f A A A pp p p æöæö=+=== ç÷ç÷èøèø ,解得 3 A = ; (2) 由(1)知, ( ) 3sin 3 f x x p æö=+ ç÷ èø,又 ( ) ( ) 3 ff q q --=,所以3sin 3sin 3 33 p p q q æöæö +--+= ç÷ç÷ èøèø ,展开化简得 3 sin 3 q = ,又 0, 2 p q æö Î ç÷ èø,所以 26cos 1sin 3q q =-= , 所以 3sin 3sin 3cos 6632 f p p p p q q q q æöæöæö-=-+=-= ç÷ç÷ç÷ èøèøèø6 = .17.(本题满分 13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191 28 3 29 3 30 5 31 4 323 401 合计20(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.【解析】(1) 这20名工人年龄的众数为30,极差为401921 -= ;(2) 作出这20名工人年龄的茎叶图如下:D ABCEF 图 11 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 2 4(3) 这20名工人年龄的平均数 192832933053143234030 20x +´+´+´+´+´+ = = ,方差 222222221 (11)3(2)3(1)50413210 20 s éù -+´-+´-+´+´+ =+´ ëû 1 (121123412100) 20 =+++++ 1 252 20=´ 12.6 = . 18.(本题满分 13分)如图 2 ,四边形 ABCD 为矩形, PD ^ 平面 ABCD , 1 AB = , 2 BC PC == ,作如图3 折叠,折痕// EF DC ,其中点 , E F 分别在线段 , PD PC 上,沿 EF 折叠后点 P 落在线段 AD 上的点记为M ,并且 MF CF ^ .(1) 证明:CF ^ 平面MDF ; (2) 求三棱锥M CDE - 的体积.【解析】(1) 因为PD ^平面 ABCD ,PD Ì 平面PCD ,所以平面PCD ^平面ABCD ,又平面PCD I 平面ABCD CD = ,MD Ì平面 ABCD ,MD CD ^ ,所以MD ^ 平面PCD , 又CF Ì平面PCD ,所以CF MD ^ ,又CF MF ^ ,MD MF M = I ,所以CF ^ 平面MDF . (2) 因为CF ^ 平面MDF ,DF Ì 平面MDF ,所以CF DF ^ , 又易知 060 PCD Ð= ,所以 030 CDF Ð= ,从而 11 22 CF CD == ,因为 // EF DC ,所以 DE CFDP CP= , 即 12 = 2 3DE ,所以 3 4 DE = ,所以 334 PE = , 13 28 CDE S CD DE D =×= ,222222 3336()() 442MD ME DE PE DE =-=-=-= , 所以 11362338216M CDE CDE V S MD - D =×=××= . 19.(本题满分 14分)设各项均为正数的数列{ } n a 的前n 项和为 n S ,且 n S 满足 ( ) ( )222 330 n n S n n S n n -+--+= , *n ÎN .(1) 求 1 a 的值;(2) 求数列{ }n a 的通项公式; ABCDP图 2PCBA DEF M 图 3(3) 证明:对一切正整数n ,有( ) ( ) ( ) 1122 11111113n n a a a a a a +++< +++ L .【解析】(1) 令 1 n = 得 211 60 S S +-= ,因为 1 0 S > ,所以 1 2 S = ,即 1 2 a = .(2) 由 () ()222330 n n S n n S n n -+--+= 得 2(3)()0 n n S S n n éù +-+= ëû ,因为 0 n a > ,所以 0 n S > ,从而 30 n S +> ,所以 2n S n n =+ ,当 2 n ³ 时, 221 (1)(1)2 n n n a S S n n n n n - éù =-=+--+-= ëû , 又 1 221 a ==´ ,所以 2 n a n = ,即数列{ } n a 的通项公式为 2 n a n = . (3) 当 2 n ³ 时,( ) ( ) ( )( ) 111111 1221212122121 n n a a n n n n n n æö=<=-ç÷ ++-+-+ èø所以( ) ( ) ( ) 1122 111 111 n n a a a a a a +++ +++ L 11111111 23235572121 n n æö <+-+-++- ç÷´-+ èøL 11111111 623216233n æö =+-<+´=ç÷ + èø 当 1 n = 时,( ) 11 11 13 a a < + ,故对一切正整数n ,有 ( ) ( ) ( ) 1122 11111113 n n a a a a a a +++< +++L .20.(本题满分 14分)已知椭圆C : 22 22 1 x y a b += ( 0 a b >> )的一个焦点为 ( )5,0 ,离心率为 53.(1) 求椭圆C 的标准方程;(2) 若动点 ( ) 00 , P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【解析】(1)由 5 c = 及 5 3 c e a == ,可得 3,952 a b ==-= ,故椭圆C 的标准方程为 22 1 94x y += .(2) 不妨设点P 引椭圆C 的两条切线对应的切点分别是 , A B ,且( ) ( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y Ï---- ,设直线PA 为 ( ) 00 y y k x x -=- ,则PB 为 ( ) 00 1y y x x k-=-- . 由 ( ) 00 22 1 94y y k x x x x ì-=- ï í += ï î 消去 y 整理得( ) ( ) ( ) 2 220000 49189360 k x k y kx x y kx ++-+--= , 则 ()220000 9240x k x y k y D =-++-= 同理可得( )22 0000 11 9240 x x y y k k æöæö --+-+-= ç÷ç÷ èøèø.可知k 和 1 k- 是方程()220000 9240 x x x y x y -++-= 的两个实数根,则有20 4 1 1 9 y k k x - æö ×-=-= ç÷ - èø,整理得 22 00 13 x y += , 易知( )( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y Î---- 也符合,故点P 的轨迹方程为 22 00 13xy += .21.(本题满分 14分)已知函数 ( ) 32 1 1 3f x x x ax =+++ ,其中a ÎR . (1) 求函数 ( ) f x 的单调区间;(2) 当 0 a < 时,试讨论是否存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèøU ,使得 ( ) 0 1 2 f x f æö = ç÷ èø. 【解析】(1)求导得 2()2 f x x x a ¢ =++ ,方程 220 x x a ++= 的判别式 44a D =- ,当 0 D £ 即 1 a ³ 时, ()0 f x ¢ ³ ,此时 ( ) f x 在( ) , -¥+¥ 上递增;当 1 a < 时,方程 220 x x a ++= 的两不等实根分别为 1 11 x a =--- , 2 11 x a =-+- , 由 ()0 f x ¢ > 得 11 x a <--- 或 11 x a >-+- ; 由 ()0 f x ¢ < 得 1 1 1 1 a x a ---< -+- < . 综上,当 1 a ³ 时, ( ) f x 的递增区间为( ) , -¥+¥ ;当 1 a < 时, ( ) f x 的递增区间为 ( ) ( ),11,11, a a -¥----+-+¥ , 递减区间为 ( )11,11 a a ----+- . (2) ( ) 3232 0000 111111 1()()()1 233222 f x f x x ax a æöéù -=+++-+++ ç÷ êú èøëû3322 000 1111()()() 3222x x a x éùéù =-+-+- êúêú ëûëû 2 0 00000 111111 ()()()()() 3224222x x x x x a x éù =-+++-++- êú ëû 2 00 00 111 ()() 236122 x x x x a =-+++++ 2 000 11 ()(414712) 122 x x x a =-+++ ,若存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö= ç÷ èø,必须 200 4147120 x x a +++= 在 11 0,,1 22 æöæö ç÷ç÷ èøèøU 上有解, 因为 0 a < ,所以 21416(712)4(2148)0 a a D =-+=-> , 方程 200 4147120 x x a +++= 的两根为 142214872148 84a a-±--±- = ,又 0 0 x > ,所以 0 72148 4 a x -+- =,依题意 7+2148 01 4a-- << ,即7214811 a <-< ,所以492148121 a <-< ,即 257 1212 a -<<- ,又由 7+21481 42 a -- = ,得 54a =- , 综上,当 257 1212 a -<<- 且 5 4 a ¹- 时,存在唯一的 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö= ç÷ èø, 当 2512 a <-或 7 12 a >- 或 5 4 a =- 时,不存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö = ç÷ èø.。

2014广东高考文科数学试卷及答案解析(word版)

2014广东高考文科数学试卷及答案解析(word版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2014佛山二模及答案(文数)

2014佛山二模及答案(文数)

图1佛山市普通高中2014届高三教学质量检测(一)数学文试题本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置处.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.参考公式:① 柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.② 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数ln y x =的定义域A ,{}01B x x =≤≤,则AB =A .()0,+∞B .[]0,1C .(]0,1D .[)0,1 2.已知,a b R ∈,i 为虚数单位,若211ia bi i-+=+,则实数a b += A .2 B .3 C . 4 D .5 3.设函数2sin 21y x =-的最小正周期为T ,最大值为A ,则A .T π=,1A =B . 2T π=,1A =C .T π=,2A =D .2T π=,2A = 4.已知1=a ,(0,2)=b ,且1=a b ,则向量a 与b 夹角的大小为A .6π B . 4π C .3π D .2π 5.给定命题p :若x R ∈,则12x x+≥; 命题q :若0x ≥,则20x ≥.则下列各命题中,假命题的是A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝ 6.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是中心角为60︒的扇形,则该几何体的体积为A .3πB .23πC .πD .2π7.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:图2那么方程220x x x +--=的一个最接近的近似根为A .1.2B .1.3C .1.4D .1.5 8.执行如图2所示的程序框图,若输入n 的值为7,则输出的s 的值为A .22 B.16 C .15D .11 9.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为A .13 B .12 C D .210.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为A . 32B .43C . 2D . 3二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9~13题)11.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 12.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-+<⎩.若()3f a ≤,则a 的取值范围是 .13.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线)1(-=x k y 将可行域分成面积相等的两部分,则实数k 的值为______.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1Cρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线A. .CDBEF图5图6ABCD PEF排球队 篮球队图4ABC ,已知3=AD ,33=AC ,圆O 的半径为5,则圆心O 到AC 的距离为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b、c ,且2a b =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.17.(本题满分12分)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179.(Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(Ⅱ) 现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?18.(本题满分14分)如图5,矩形A B C D 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP 、PF ,其中PF =(Ⅰ) 求证:PF ⊥平面ABED ;(Ⅱ) 在线段PA 上是否存在点Q 使得//FQ 平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(Ⅲ) 求点A 到平面PBE 的距离.图719.(本题满分14分)如图7,椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F到直线90x -=的距离等于椭圆的短轴长.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当QM的最大值为2时,求t 的值.20.(本题满分14分)数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,,...3,2,1=n . (Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)记1111n n n c a a +=+,证明:对一切正整数n ,有123111138n c c c c ++++<.21.(本题满分14分)已知函数()1ln 2f x x x a x =+-.(Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 的极值点.A B CDP EF Q2014年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,满分50分.11.18012.(,1]-∞13.3-14.15.2三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)【解析】(Ⅰ)因为B C=,所以c b=,……………………………………………………………2分又2a b=,所以22223cos24ba c bBac+-===,…………………………………………………………5分 (Ⅱ)由(Ⅰ)得sin B==,……………………………………………7分所以s i 63f Bππ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭s33B Bππ=+………………………………………………10分12=+=……………………………………………12分17.(本题满分12分)【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. ……………………………………5分(Ⅱ) 两队所有身高超过178cm的同学恰有5人,其中3人来自排球队,记为,,a b c,2人来自篮球队,记为,A B,则从5人中抽取3名同学的基本事件为:abc,abA,abB,acA,acB,aAB,bcA,bcB,bAB,cAB共10个;……………………………9分其中恰好两人来自排球队一人来自篮球队所含的事件有:abA,abB,acA,acB,bcA,bcB共6个, ………………11分所以,恰好两人来自排球队一人来自篮球队的概率是63105=.………………………………12分18.(本题满分14分)【解析】(Ⅰ)连结EF,由翻折不变性可知,6PB BC==,9PE CE==,在PBF∆中,222201636PF BF PB+=+==,所以PF BF⊥………………………………2分在图1中,易得EF==排球队篮球队1817161510368925893291088328在PEF ∆中,222612081EF PF PE +=+==,所以PF EF ⊥………………………………4分又BFEF F =,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .………6分(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE .证明如下:因为23AQ AP =,23AF AB =,所以//FQ BP ………………………………………………8分 又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以//FQ 平面PBE .………………………………10分(Ⅲ) 由(Ⅰ)知PF ⊥平面ABED ,所以PF 为三棱锥P ABE -的高. ……………………11分 设点A 到平面PBE 的距离为h ,由等体积法得A PBE P ABE V V --=, …………………………12分 即1133PBE ABE S h S PF ∆∆⨯=⨯⋅,又169272PBE S ∆=⨯⨯=,1126362ABE S ∆=⨯⨯=,所以36273ABE PBE S PF h S ∆∆⋅⨯===, 即点A 到平面PBE.……………14分 19.(本题满分14分)【解析】(Ⅰ)设椭圆的方程为22221x y a b +=(0a b >>), 依题意,19242b -==,所以2b =………2分又1c =,所以2225a b c =+=,所以椭圆C 的方程为22154x y +=. …………………………5分 (Ⅱ) 设(),Q x y (其中22154x y +=),……………………………………………………………6分 圆P 的方程为()2221x y t t +-=+, ……………………………………………………………7分因为PM QM ⊥, 所以Q M =-==……………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值,且max2QM==,解得3182t =<(舍去). ………………………………………11分当42t ->-即102t <<时,当4y t =-时,QM 取最大值,且max2QM==,解得218t =,又102t <<,所以4t =.……………………13分综上,当4t =时,QM 的最大值为2.……………………………………………………14分 20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=. …………………………………………1分由2212a b b =,可得222136a b b ==.…………………………………………………………2分(Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①. …………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b的每一项都是正数,所以1n a +…②. ……………………4分于是当2n ≥时,n a .……………………………………………………5分将②、③代入①式,可得=是首项为4,公差为2的等差数列,()122n d n -=+,于是()241n b n =+. ……………………………………6分则()41n a n n ==+. ………………………………………………7分 当1n =时,18a =,满足该式子,所以对一切正整数n ,都有()41n a n n =+.……………10分 (Ⅲ)方法一:2111114441n a n n n n ⎛⎫==- ⎪++⎝⎭,所以111111142n n n c a a n n +⎛⎫=+=- ⎪+⎝⎭.……………………12分 于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ………………………………………………………14分 方法二:()()()()1111111111414122242n n n c a a n n n n n n n n +⎛⎫=+=+==- ⎪+++++⎝⎭.…………12分 于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ……………………………………………………14分21.(本题满分14分)【解析】()f x 的定义域为()0,+∞.…………………………………………………………………1分 (Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =. 因为()1212f x x x '=+-,所以()512f '=,所以切线方程为()5212y x -=-,即5210x y --=.……3分(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x +-'=+-=,令()0f x '=,得10x >,20x =<(舍去),……………………5分 且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x的极小值点为x =……6分 ⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩.① 当x a ≥-时,()24212x ax f x x+-'=,令()0f x '=,得1x =,2x a -(舍去).a ≤-,即a ≤()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <<, 则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………9分 ② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-,若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x,4x =且340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<, 所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ……12分综上所述,当2a <-时,()f x的极小值点为x =x a =-,极大值点为x =当2a -≤≤,()f x 的极小值点为x a =-;当a >,()f x的极小值点为x =………………………………………14分。

广东省佛山市2014届高三教学质量检测(二)数学文考试试题

广东省佛山市2014届高三教学质量检测(二)数学文考试试题

广东省佛山市2014届高三教学质量检测(二)数学文试题一、选择题1、设U R =,若集合{}|12M x x =-<≤,则U C M =A. (],1-∞-B. ()2,+∞C. ()[),12,-∞-⋃+∞D. (](),12,-∞-⋃+∞ 2、复数1z i =+(i 为虚数单位),z 为z 的共轭复数,则下列结论正确的是 A. z 的实部为1- B. z 的虚部为1 C.2z z ⋅= D.zi z= 3、已知:1,:1p x q x =-=“”“ ,则p 是q 的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4、设等差数列{}n a 的前n 项和为n S ,若246a a +=,则5S = A. 10 B. 12 C. 15 D. 305、若变量,x y 满足约束条件0210430y x y x y ≤⎧⎪--≥⎨⎪--≤⎩,则35z x y=+的取值范围是A. [)3+∞,B. []83-,C. (],9-∞D. []89-,6、执行如图所示的程序框图,若输出1011S =,则输入()k k N *∈的值可以为A. 8B. 9C. 10D. 117、已知双曲线()222210,0x y a b a b-=>>的渐近线与实轴的夹角为45,则双曲线的离心率为 A.B. C. D.8、在圆O 中,的弦AB 不经过圆心,则AO AB ⋅的值为A.12B. C. 1 D.9、已知函数()2cos ,f x x x x R =-∈,则 A. ()134f f f ππ⎛⎫⎛⎫>>-⎪ ⎪⎝⎭⎝⎭ B. ()134f f f ππ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C. ()143f f f ππ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭ D. ()134f f f ππ⎛⎫⎛⎫>-> ⎪ ⎪⎝⎭⎝⎭10、对于集合M ,定义函数()1,1,M x Mf x x M-∈⎧=⎨∉⎩,对于两个集合,M N ,定义集合()(){}|1M N M N x f x f x *=⋅=-,已知{}{}246,124A B ==,,,,,则下列结论不.正确的是 A. 1A B ∈* B. 2A B ∈* C. 4A B ∉* D. A B B A *=*二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.记函数f(x)=x 12log 的反函数为g (x ),则函数y=g(x)在区间[]21,的值域为 12.一个几何体的三视图如下图所示,则该几何体的表面积为13.设直线x-ky-1=0与圆()()42122=-+-y x 相交于点A,B 两点,且弦AB 的长为32,则实数k 的值是(二)选做题(14~15题,考生从中选做一题)14.已知曲线1C :sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)与曲线2x t y kt =⎧⎨=-⎩(t 为参数)有且只有一个公共点,则实数k 的值为15.如图所示,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,已知CD=72,AB=BC=3,则AC 的长为16、(本题满分12分) 已知函数()sin sin(),3f x x x x R π=++∈(1) 求函数()f x 的最小正周期。

广东省佛山市普通高中2014届高三教学质量检测(一)数学(文)试卷Word版含答案

广东省佛山市普通高中2014届高三教学质量检测(一)数学(文)试卷Word版含答案

图1佛山市普通高中2014届高三教学质量检测(一)数学文试题本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置处.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.参考公式:① 柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.② 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数ln y x =的定义域A ,{}01B x x =≤≤,则AB =A .()0,+∞B .[]0,1C .(]0,1D .[)0,1 2.已知,a b R ∈,i 为虚数单位,若211ia bi i-+=+,则实数a b += A .2 B .3 C . 4 D .5 3.设函数2sin 21y x =-的最小正周期为T ,最大值为A ,则A .T π=,1A =B . 2T π=,1A =C .T π=,2A =D .2T π=,2A =4.已知1=a ,(0,2)=b ,且1=a b ,则向量a 与b 夹角的大小为A .6π B . 4π C .3π D .2π 5.给定命题p :若x R ∈,则12x x+≥; 命题q :若0x ≥,则20x ≥. 则下列各命题中,假命题的是A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝6.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是 中心角为60︒的扇形,则该几何体的体积为图2A .3πB .23πC .πD .2π7.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程220x x x +--=的一个最接近的近似根为A .1.2B .1.3C .1.4D .1.5 8.执行如图2所示的程序框图,若输入n 的值为7,则输出的s 的值为A .22B .16C .15 D .11 9.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为 A .13 B .12C D10.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为A . 32B .43C . 2D . 3二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9~13题)11.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 12.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-+<⎩.若()3f a ≤,则a 的取值范围是 .13.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线)1(-=x k y 将可行域分成面积相等的两部分,则实数k 的值为______.排球队 篮球队图4(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1C ρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线ABC , 已知3=AD ,33=AC ,圆O 的半径为5,则圆心O 到AC 的距离为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且a =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.17.(本题满分12分)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179. (Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(Ⅱ) 现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?18.(本题满分14分)如图5,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP 、PF ,其中PF =.(Ⅰ) 求证:PF ⊥平面ABED ;(Ⅱ) 在线段PA 上是否存在点Q 使得//FQ 平面PBE ?若存在,求出点Q 的位置;若不A. .CDBEF图5图6ABCD PEF图7存在,请说明理由.(Ⅲ) 求点A 到平面PBE 的距离.19.(本题满分14分)如图7,椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F 到直线90x -=的距离等于椭圆的短轴长. (Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当QM 的最大值为,求t20.(本题满分14分)数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,,...3,2,1=n .(Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)记1111n n n c a a +=+,证明:对一切正整数n ,有123111138n c c c c ++++<.21.(本题满分14分)已知函数()1ln 2f x x x a x =+-.(Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 的极值点.2014年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,满分50分.11.18012.(,1]-∞ 13.3- 14.15.2 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分) 【解析】(Ⅰ)因为B C=,所以c b =,……………………………………………………………………2分又a =, 所以22co s 2a cb Bac +-===,……………………………………………………………………5分(Ⅱ)由(Ⅰ)得sin B ==, ……………………………………………………………7分 所以s i n 63f B ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭s i n c os c o s s i n33B B ππ=+ ………………………………………………10分12=+=. …………………………………………………………12分 17.(本题满分12分)【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. …………………………………………………5分(Ⅱ) 两队所有身高超过178cm 的同学恰有5人,其中3人来自 排球队,记为,,a b c ,2人来自篮球队,记为,A B ,则从5人中抽 取3名同学的基本事件为:abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;……………………………9分 其中恰好两人来自排球队一人来自篮球队所含的事件有: abA ,abB ,acA ,acB ,bcA ,bcB 共6个, ………………11分所以,恰好两人来自排球队一人来自篮球队的概率是排球队篮球队18 17 16 15 10 3 6 8 92 5 8 93 2 9 1 0 8 8 3 2 8ABCD PE FQ 63105=.…………………………………………12分 18.(本题满分14分)【解析】(Ⅰ)连结EF ,由翻折不变性可知,6PB BC ==,9PE CE ==, 在PBF ∆中,222201636PF BF PB +=+==, 所以PF BF ⊥………………………………2分在图1中,易得EF ==在PEF ∆中,222612081EF PF PE +=+==,所以PF EF ⊥………………………………………4分又BF EF F =,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .…………………6分(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE .证明如下:因为23AQ AP =,23AF AB =,所以//FQ BP …………………………………………………………8分又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以//FQ 平面PBE .…………………………………………10分(Ⅲ) 由(Ⅰ)知PF ⊥平面ABED ,所以PF 为三棱锥P ABE -的高. ………………………………11分 设点A 到平面PBE 的距离为h,由等体积法得A PBE P ABE V V --=, ……………………………………12分即1133PBE ABE S h S PF ∆∆⨯=⨯⋅,又169272PBE S ∆=⨯⨯=,1126362ABE S ∆=⨯⨯=, 所以ABE PBE S PF h S ∆∆⋅===, 即点A 到平面PBE 的距离为.………………………14分 19.(本题满分14分)【解析】(Ⅰ)设椭圆的方程为22221x y a b +=(0a b >>), 依题意,19242b -==,所以2b =…………2分又1c =,所以2225a b c =+=,所以椭圆C的方程为22154x y +=. ……………………………………5分 (Ⅱ)设(),Q x y (其中22154x y +=),………………………………………………………………………6分 圆P的方程为()2221x y t t +-=+, ………………………………………………………………………7分因为PM QM ⊥, 所以Q M ==4t =+……………………9分当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值,且maxQM==,解得3182t =<(舍去). …………………………………………………11分 当42t ->-即102t <<时,当4y t =-时,QM 取最大值,且maxQM==,解得218t =,又102t <<,所以t =………………………………13分综上,当t =时,QM的最大值为.………………………………………………………………14分 20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=.………………………………………………………1分由2212a b b =,可得222136a b b ==.………………………………………………………………………2分 (Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①.………………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b 的每一项都是正数,所以1n a +=…②.…………………………………4分于是当2n ≥时,n a =…③.…………………………………………………………………5分将②、③代入①式,可得=+,因此数列是首项为4,公差为2的等差数列,()122n d n =-=+,于是()241n b n =+.…………………………………………………6分则()41n a n n ===+.……………………………………………………………7分 当1n =时,18a =,满足该式子,所以对一切正整数n ,都有()41n a n n =+.…………………………10分(Ⅲ)方法一:2111114441n a n n n n ⎛⎫==- ⎪++⎝⎭,所以111111142n n n c a a n n +⎛⎫=+=- ⎪+⎝⎭.……………………12分 于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ……………………………………………………………………14分 方法二:()()()()1111111111414122242n n n c a a n n n n n n n n +⎛⎫=+=+==- ⎪+++++⎝⎭.……………………12分 于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ………………………………………………………………14分 21.(本题满分14分)【解析】()f x 的定义域为()0,+∞.……………………………………………………………………………1分(Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =. 因为()1212f x x x '=+-,所以()512f '=,所以切线方程为()5212y x -=-,即5210x y --=.……3分(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x+-'=+-=, 令()0f x '=,得10x =>,20x =<(舍去),………………………………5分且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x 的极小值点为x =.……6分 ⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩.① 当x a ≥-时,()24212x ax f x x +-'=,令()0f x '=,得1x =2x a =-(舍去).a ≤-,即a ≤()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <<,则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………9分② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-,若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x =,4x =340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<, 所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ………………12分综上所述,当2a <-时,()f x的极小值点为x =和x a =-,极大值点为x =;当2a -≤≤,()f x 的极小值点为x a =-;当a >,()f x的极小值点为x =.……………………………………………………14分。

广东省佛山市南海区2014届高三题例研究数学(文)试题 Word版含答案

广东省佛山市南海区2014届高三题例研究数学(文)试题 Word版含答案

CBA75°45°佛山市南海区2014届高考数学(文科)题例研究参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高; 独立性检验随机变量:22()()()()()n ad bc K a b c d a c b d -=++++ , 其中n a b c d =+++ 为样本容量.一、选择题:本大题共10 小题,每小题5分,满分50分.1.已知全集U Z =,集合{}1,0,1M =-,{}0,1,3N =,则(C U M )∩N =A .{}1-B .{}0,1C .{}3D .{}1,3- 2.复数52i -的共轭复数是 A .2i + B .2i - C .2i -- D . 2i -3.在等差数列{}n a 中,已知公差2d =,且134,,a a a 成等比数列,则2a = A .4- B .6- C .8- D .10- 4. 下列各组向量中,可以作为基底的是A .12(0,0),(1,2)e e ==-B . 12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D . 1213(2,3),(,)24e e =-=-5x)6.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该 几何体的体积是A .203B .6C .4D .437.下列命题中,错误..命题的个数有 ①垂直于同一条直线的两条直线互相平行; ②平行于同一个平面的两个平面平行;③如果,a b 是两条直线,且//a b ,那么a 平行于经过b 的任何平面;④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β. A .4 B .3 C .2 D .18.一只艘船以均匀的速度由A 点向正北方向航行,如图,开始航行时,从A 点观测灯塔C 的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B 点观测灯塔C 的方位角为75°,则A 到C 的距离是( )海里.A.30B.30C.30D.309. 若抛物线24x y =-上一点M 到焦点F 的距离为1,则点M 的横坐标为A .78-B .98-C .1716-D .1516- 10.对于非空集合A 、B ,定义运算:{},A B x x A B x A B ⊕=∈∉U I 且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕= A.()(),,a d b c UB. (][),,a c d b UC. (][),,c a b d UD.()(),,c a d b U二、填空题(本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只需选做其中一题,两题全答的,只以第一小题计分.)(一)必做题:第11、12、13题为必做题,每道试题都必须做答. 11.在区间[]12-, 上任取一个数x ,则x []0,1∈ 上的概率为______. 12.执行下面的程序框图3,若p =0.8,则输出的n = .13.已知Ω为不等式组11106x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域,E 为圆()()222x a y b r -+-=(0r >)及其内部所表示的平面区域,若“点(),x y ∈Ω”是“点(),x y E ∈”的充分条件,则区域E 的面积的最小值为_________.(二)选做题(14—15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图,PA 是圆的切线,A 为切点,PBC是圆的割线,且12PB BC =,则PA BC= . 15.(坐标系与参数方程选做题)在极坐标系中,已知曲线C 的方程是θρsin 4=,过点)6,4(π作曲线C 的切线,则切线长等于 .P图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分) 已知函数()sin 3f x A x ωπ⎛⎫=- ⎪⎝⎭(0A >,0ω>)在某一个周期内的图象的最高点和最低点的坐标分别为5,212π⎛⎫ ⎪⎝⎭,11,212π⎛⎫-⎪⎝⎭. (1)求A 和ω的值; (2)已知0,2απ⎛⎫∈ ⎪⎝⎭,且4sin 5α=,求()f α的值.17.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不人中抽取了45人,求n 的值;(Ⅱ)所有参与调查的人中,完成下面列联表,并由表中数据分析,能否认为持“支持”态度与“20岁以下”有关?(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总18.(14分)如图, 已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,且2BCD BCE π∠=∠=,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2.求证: (Ⅰ)EC ⊥CD ; (Ⅱ)求证:AG ∥平面BDE ; (III )求:几何体EG BD C 的体积.19.(14分) 椭圆C:22221x ya b+=(0a b>>)的一个焦点()12,0F-,右焦点到直线l:2x=6.(1)求椭圆C的方程;(2)若M为直线l上一点,A为椭圆C的左顶点,连结AM交椭圆于点P,求PMAP的取值范围;(3)设椭圆C另一个焦点为2F ,在椭圆上是否存在一点T,使得1122111,,TF F F TF成等差数列?若存在,求出点T的坐标;若不存在,说明理由.20.已知函数()32f x x=-,数列{}n a的前n项和为n S,且点(),2n na S在函数()y f x=的图象上;(1)求数列{}n a的通项公式;(2)设nb=()nf a,数列{nb}的前前n项和为nT,若2142nnnT na tT n++<++对任意的*n N∈恒成立,求实数t的取值范围.21.已知函数2()ln ,(),f x a x g x x a R ==∈其中 .(1)若曲线()()y f x y g x ==与 在1x = 处的切线相互平行,求两平行直线间的距离. (2)若())1f x g x ≤-(对任意0x >恒成立,求实数a 的值;(3)当0a < 时,对于函数()()()1h x f x g x =-+ ,记在()h x 图象上任意两点A 、B 连线的斜率为AB k ,若1AB k ≥恒成立,求a 的取值范围.佛山市南海区2014届高考数学(文科)题例研究参考答案三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)已知函数()sin 3f x A x ωπ⎛⎫=- ⎪⎝⎭(0A >,0ω>)在某一个周期内的图象的最高点和最低点的坐标分别为5,212π⎛⎫ ⎪⎝⎭,11,212π⎛⎫-⎪⎝⎭. (1)求A 和ω的值;(2)已知0,2απ⎛⎫∈ ⎪⎝⎭,且4sin 5α=,求()f α的值.解:(1)依题意,2A =.……1分 最小正周期11521212T ππ⎛⎫=-=π ⎪⎝⎭,所以22T ωπ==.……3分 (2)由(1)得()2sin 23f x x π⎛⎫=- ⎪⎝⎭.……4分因为0,2απ⎛⎫∈ ⎪⎝⎭,且4sin 5α=,所以3cos 5α.……5分所以24sin 22sin cos 25ααα==,27cos212sin 25αα=-=-. ……9分所以()2sin 22sin 2cos cos2sin 333f ααααπππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭……12分17.(本小题满分12分) 解:(Ⅰ)由题意得80010080045020010015030045n++++++=, ……………2分所以100n =. ……………3分(Ⅱ)法一:由表中可知,800900远大于6501100,所以持“支持”态度与“20岁以下”有关. 法二:计算222000(800450650100)90011001450550k ⨯-⨯=⨯⨯⨯10> 所以持“支持”态度与“20岁以下”有关.………………………8分 (Ⅲ)总体的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=,………9分 那么与总体平均数之差的绝对值超过0.6的数只有8.2, ……………11分 所以该数与总体平均数之差的绝对值超过0.6的概率为81. ……………12分 18.(本小题满分14分)如图, 已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,且2B C D B C E π∠=∠=,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2.求证: (Ⅰ)EC ⊥CD ; (Ⅱ)求证:AG ∥平面BDE ; (III )求:几何体EG BD C 的体积.(Ⅰ)证明:由平面ABCD ⊥平面BCEG ,平面ABCD ∩平面BCEG =BC , ,CE BC CE ⊥⊂平面BCEG , ∴EC ⊥平面ABCD ,…………3分又CD ⊂平面BCDA , 故 EC ⊥CD …………5分(Ⅱ)证明:在平面BCDG 中,过G 作GN ⊥CE 交BE 于M ,连DM ,则由已知知;MG =MN ,MN ∥BC ∥DA ,且12MN AD BC ==∴MG ∥AD ,MG =AD , 故四边形ADMG 为平行四边形, ∴AG ∥DM ……………8分∵DM ⊆平面BDE ,AG ⊄平面BDE , ∴AG ∥平面BDE …………………………10分(III )解:13EGBDC D BCEG BCEG V V S DC -==⋅ …………………… 12分12122232+=⨯⨯⨯= …………………………………………14分19.(本题满分14分)椭圆C :22221x y a b +=(0a b >>)的一个焦点()12,0F -,右焦点到直线l :2x =的距离为6.(1)求椭圆C 的方程;(2)若M 为直线l 上一点,A 为椭圆C 的左顶点,连结AM 交椭圆于点P ,求PM AP的取值范围;(3)设椭圆C 另一个焦点为2F ,在椭圆上是否存在一点T ,使得1122111,,TF F F TF 成等差数列?若存在,求出点T 的坐标;若不存在,说明理由.解:(1)由题意得2c =,28a c =得216a =,212b =,所以所求椭圆方程为2211612x y +=. ……4分(2)设P 点横坐标为0x ,则000812144x PM AP x x -==-++,因为044x -<≤,所以00081211442x PM AP x x -==-≥++,所以PM AP 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. …………9分(3)12F F =2c =4,1228TF TF a +== …………10分1122111,,TF F F TF 成等差数列即:1212211F F TF TF =+ ,可化为:1212122F F TF TF TF TF ⋅=+ 1216TF TF ∴⋅=结合128TF TF +=解得:124TF TF ==…………12分由对称性知T只能是短轴端点((00,,-,经验证此时满足124TF TF ==.故存在((00T T 或,-满足题意.………………14分20.已知函数()32f x x =-,数列{}n a 的前n 项和为n S ,且点(),2n n a S 在函数()y f x = 的图象上;(1)求数列{}n a 的通项公式;(2)设n b =()n f a ,数列{n b }的前前n 项和为n T ,若2142n n n T na t T n++<++ 对任意的*n N ∈恒成立,求实数t 的取值范围. 解:(1)由题意有: 232n n S a =-① ………1分当n =1时,111232=2S a a =- 12a ∴= ………2分 当2n ≥时,11232n n S a --=- ② ………3分①-②有:1122332n n n n n S S a a a ---=-= 13n n a a -∴= ………………………5分 ∴{}n a 是首项为2,公比为3的等比数列,123n n a -=⋅ . ………………………6分(2)23223)(-⋅=-⋅==n n n n a a f b . ………………………7分∴12n n T b b b =+++n n 2)333(221-+++= ………………………8分 3231--=+n n . ………………………9分∴2121433233n n n n T n T n +++-=+-)13(3)13(32--=nn ………10分 13)13)(13(-+-=nn n 13+=n ………11分 ∴t n n +⨯<+3213恒成立,即max )13(+->n t . ………12分1≥n 且*N n ∈ ∴33≥n 213-≤+-∴n ………13分 故2->t . ………14分21.已知函数2()ln ,(),f x a x g x x a R ==∈其中 .(1)若曲线()()y f x y g x ==与 在1x = 处的切线相互平行,求两平行直线间的距离. (2)若())1f x g x ≤-(对任意0x >恒成立,求实数a 的值;(3)当0a < 时,对于函数()()()1h x f x g x =-+ ,记在()h x 图象上任意两点A 、B 连线的斜率为AB k ,若1AB k ≥恒成立,求a 的取值范围. 解: (Ⅰ)x x g xax f 2)(',)('==,依题意得:a =2; ……………2分 曲线y=f (x )在x =1处的切线为2x -y -2=0,曲线y=g (x )在x =1处的切线方程为2x -y -1=0. ……………3分 两直线间的距离为55……………4分 (Ⅱ)令h (x )=f (x )-g(x ) +1, ,则xx a x x a x h 222)('-=-=当a ≤0时, 注意到x>0, 所以)('x h <0, 所以h (x )在(0,+∞)单调递减, ………………5分又h (1)=0,故0<x <1时,h (x )>0,即f (x )> g(x )-1,与题设矛盾. ……………6分当a >0时,)0)(2)(2(2)('>-+=x x a x a x x h 当20a x <<,,0)('>x h 当2ax >时,0)('<x h所以h (x )在⎝⎛⎭⎫0,a 2上是增函数,在⎝⎛⎭⎫a 2,+∞上是减函数, ……………8分 ∴h (x )≤122ln 2)2(+-=a a a a f 因为h (1)=0,又当a ≠2时,1≠ ,0)1()2(=>h a h 与0)2(≤a h 不符.所以a =2. ……………9分(Ⅲ)当a <0时,由(2)知)('x h <0,∴h (x )在(0,+∞)上是减函数,不妨设0<x 1≤x 2,则|h (x 1)-h (x 2)|=h (x 1)-h (x 2),|x 1-x 2|=x 2-x 1, ……………10分∴|h (x 1)-h (x 2)|≥|x 1-x 2|等价于h (x 1)-h (x 2)≥x 2-x 1,即h (x 1)+x 1≥h (x 2)+x 2, ……………11分 令H (x )=h (x )+x =alnx -x 2+x +1,H (x )在(0,+∞)上是减函数,∵xax x x x a x H ++-=+-=2212)(' (x >0), ……………12分∴-2x 2+x +a ≤0在x >0时恒成立,∴a ≤(2x 2-x )min ……………13分第 11 页 共 11 页 又x >0时, (2x 2-x )min =81- ∴a ≤-18,又a <0,∴a 的取值范围是]81,(--∞. ……………14分。

2014年佛山市高三一模 文科数学 试题+答案

2014年佛山市高三一模 文科数学 试题+答案

图12014年佛山市普通高中高三教学质量检测(一)数 学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置处.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.参考公式:① 柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.② 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数ln y x =的定义域A ,{}01B x x =≤≤,则A B =A .()0,+∞B .[]0,1C .(]0,1D .[)0,1 2.已知,a b R ∈,i 为虚数单位,若211ia bi i-+=+,则实数a b += A .2 B .3 C . 4 D .5 3.设函数2sin 21y x =-的最小正周期为T ,最大值为A ,则A .T π=,1A =B . 2T π=,1A =C .T π=,2A =D .2T π=,2A = 4.已知1=a ,(0,2)=b ,且1= a b ,则向量a 与b 夹角的大小为A .6π B . 4π C .3π D .2π5.给定命题p :若x R ∈,则12x x+≥; 命题q :若0x ≥,则20x ≥. 则下列各命题中,假命题的是A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝6.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是 中心角为60︒的扇形,则该几何体的体积为A .3πB .23πC .πD .2π图27.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程220x x x +--=的一个最接近的近似根为A .1.2B .1.3C .1.4D .1.5 8.执行如图2所示的程序框图,若输入n 的值为7,则输出的s 的值为A .22B .16 C.15 D .11 9.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为 A .13 B .12C D10.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为A . 32B .43C . 2D . 3二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9~13题)11.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 12.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-+<⎩.若()3f a ≤,则a 的取值范围是 .13.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线)1(-=x k y 将可行域分成面积相等的两部分,则实数k 的值为______.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1C ρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知3=AD ,33=AC ,圆O 的半径为5,则圆心O 到AC 的距离为 . A. .ACDBEF图5图6ACD PEF排球队 篮球队图4三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且a =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.17.(本题满分12分)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179.(Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算); (Ⅱ) 现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?18.(本题满分14分)如图5,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP、PF ,其中PF =(Ⅰ) 求证:PF ⊥平面ABED ;(Ⅱ) 在线段PA 上是否存在点Q 使得//FQ 平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(Ⅲ) 求点A 到平面PBE 的距离.图719.(本题满分14分)如图7,椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F到直线90x -=的距离等于椭圆的短轴长.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当QM的最大值为2时,求t 的值.20.(本题满分14分)数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,,...3,2,1=n . (Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)记1111n n n c a a +=+,证明:对一切正整数n ,有123111138n c c c c ++++< .21.(本题满分14分)已知函数()1ln 2f x x x a x =+-.(Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 的极值点.2014年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,满分50分.11.180 12.(,1]-∞ 13.3-14.15.2三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)【解析】解法1:(Ⅰ) 因为B C =,所以c b =,……………………………………………………………2分又2a =, 所以222cos 2a c b B ac+-=, ………………………………………………………3分23b=……………………………………………………………………4分4=……………………………………………………………………5分解法2:∵2a =,∴sin 2A B =……………………………………………………2分∵B C =,且A B C ++=π,所以sin 2B B =………………………………………3分 又2sin cos B B B =………………………………………4分 ∵sin 0B ≠,∴cos 4B=.……………………………………………………………………5分 (Ⅱ)由(Ⅰ)得sin 4B ==,………………………………………………………………7分 (注:直接得到sin 4B =不扣分) 所以sin 63f B ππ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭………………………………………………………………8分 sin cos cossin 33B B ππ=+ ………………………………………………10分12424=+⨯ …………………………………………………………11分 38=. …………………………………………………………12分ACD PE FQ【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. …………………………………………………5分 (注:写对茎叶图3分,方差结论正确2分)(Ⅱ) 两队所有身高超过178cm 的同学恰有5人,其中3人来自 排球队,记为,,a b c , ……………………………6分2人来自篮球队,记为,A B ,……………………………7分则从5人中抽取3名同学的基本事件为: abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;……………………………9分其中恰好两人来自排球队一人来自篮球队所含的事件有: abA ,abB ,acA ,acB ,bcA ,bcB 共6个, ………………11分 所以,恰好两人来自排球队一人来自篮球队的概率是63105P ==.………………………………………12分 18.(本题满分14分)【解析】(Ⅰ)连结EF ,由翻折不变性可知,6PB BC ==,9PE CE ==, 在PBF ∆中,222201636PF BF PB +=+==, 所以PF BF ⊥………………………………2分在图1中,易得EF ==……3分在PEF ∆中,222612081EF PF PE +=+==,所以PF EF ⊥………………………………………4分 又BF EF F = ,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .…………………6分 (注:学生不写BF EF F = 扣1分)(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE . ………………………………………………7分 (注:只讲存在Q 满足条件1分) 证明如下: 因为23AQ AP =,23AF AB =,所以//FQ BP …………………………………………………………8分 又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以//FQ 平面PBE .…………………………………………10分 (注:学生不写FQ ⊄平面PBE ,扣1分)(Ⅲ) 由(Ⅰ)知PF ⊥平面ABED ,所以PF 为三棱锥P ABE -的高. ………………………………11分 设点A 到平面PBE 的距离为h ,由等体积法得A PBE P ABE V V --=, ……………………………………12分即1133PBE ABE S h S PF ∆∆⨯=⨯⋅,又169272PBE S ∆=⨯⨯=,1126362ABE S ∆=⨯⨯=,所以ABE PBE S PF h S ∆∆⋅===,即点A 到平面PBE .………………………14分(注:指出V V=给1分,若能最终得到结果给4分) 排球队篮球队18 17 16 15 10 3 6 8 92 5 893 2 9 1 0 8 8 3 2 8【解析】(Ⅰ)设椭圆的方程为22221x y a b+=(0a b >>),依题意,19242b -==, ……………………………………………………………………1分所以2b = …………………………………………………………2分 又1c =, …………………………………………………………3分所以2225a b c =+=, …………………………………………………………4分所以椭圆C 的方程为22154x y +=. ………………………………………………………………………5分(Ⅱ) 设(),Q x y (其中22154x y +=), ……………………………………………………………………6分圆P 的方程为()2221x y t t +-=+, ………………………………………………………………………7分因为PM QM ⊥,所以QM ==…………………………………………………8分=…………………………………………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值, ……………………………………………10分且max2QM==,解得3182t =<(舍去). ………………………………………………11分 当42t ->-即102t <<时,当4y t =-时,QM 取最大值, …………………………………………12分且maxQM==解得218t =,又102t <<,所以t =………………………………13分综上,当t =,QM . ……………………………………………………………14分 20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=. ………………………………………………………1分由2212a b b =,可得222136a b b ==. ………………………………………………………………………2分(Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①. ………………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b 的每一项都是正数,所以1n a +=…②. …………………………………4分于是当2n ≥时,n a .…………………………………………………………5分将②、③代入①式,可得6分因此数列是首项为4,公差为2的等差数列, …………………………………………………7分2则()41n a n n ==+. ……………………………………………………………9分 当1n =时,18a =,满足该式子,所以对一切正整数n ,都有()41n a n n =+.…………………………10分 (Ⅲ)方法一:2111114441n a n n n n ⎛⎫==- ⎪++⎝⎭,所以111111142n n n c a a n n +⎛⎫=+=- ⎪+⎝⎭.……………………12分 于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ……………………………………………………………………14分 方法二:()()()()1111111111414122242n n n c a a n n n n n n n n +⎛⎫=+=+==- ⎪+++++⎝⎭.……………………12分 于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ………………………………………………………………14分21.(本题满分14分)【解析】()f x 的定义域为()0,+∞.……………………………………………………………………………1分(Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =.因为()1212f x x x '=+-,所以()512f '=, …………………………………………………………………2分 所以切线方程为()5212y x -=-,即5210x y --=.………………………………………………………3分(注:有求导思想,虽然运算不对,给1分)(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x +-'=+-=, 令()0f x '=,得10x =>,20x =<(舍去),………………………………5分 且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()fx 的极小值点为x =.……6分⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩. ………………………………7分① 当x a ≥-时,()24212x ax f x x+-'=,令()0f x '=,得1x =,2x a -(舍去). ………………………………8分a ≤-,即a ≤()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <, 则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………9分② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-, ……………………………………10分若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x =,4x =340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<,所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ………………12分综上所述,当2a <-时,()f x 的极小值点为x =和x a =-,极大值点为x =;当2a -≤≤,()f x 的极小值点为x a =-; ……………………………………………………13分当a >,()f x 的极小值点为x =……………………………………………………14分注:第二问:3大类,每类全正确给3分;(1)若步骤清晰(即求导,解方程,比较两根大小,明确单调区间,得到极值),但计算不全对,给2分;(2)有这个思路,但步骤不清晰,给1分;。

2014年高考广东文科数学试题及答案(word解析版)

2014年高考广东文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,文1,5分】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( )(A ){}0,2 (B ){}2,3 (C ){}3,4 (D ){}3,5 【答案】B 【解析】{}2,3MN =,故选B .【点评】本题主要考查集合的基本运算,比较基础. (2)【2014年广东,文2,5分】已知复数z 满足(34i)25z -=,则z =( )(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】D【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z ++===+--+,故选D .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年广东,文3,5分】已知向量(1,2)a =,(3,1)b =,则b a -=( )(A )(2,1)- (B )(2,1)- (C )(2,0) (D )(4,3) 【答案】B【解析】()2,1b a -=-,故选B .【点评】本题考查向量的坐标运算,基本知识的考查.(4)【2014年广东,文4,5分】若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( )(A )7 (B )8 (C )10 (D )11 【答案】C 【解析】作出不等式组对应的平面区域如图:由2z x y =+,得2y x z =-+,平移直线2y x z =-+, 由图象可知当直线2y x z =-+经过点()4,2B 时,直线2y x z =-+的截距最大,此时z 最大,此时24210z ==⨯+=,故选C . 【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. (5)【2014年广东,文5,5分】下列函数为奇函数的是( )(A )122x x - (B )3sin x x (C )2cos 1x + (D )22x x +【答案】A【解析】对于函数()122x x f x =-,()()112222x x x x f x f x ---=-=-=-,故此函数为奇函数;对于函数()3sin f x x x =,()()()()33sin sin f x x x x x f x -=--==,故此函数为偶函数;对于函数()2cos 1f x x =+,()()()2cos 12cos 1f x x x f x -=-+=+=,故此函数为偶函数;对于函数()22x f x x =+,()()()2222x x f x x x f x ---=-+=+≠-,同时()()f x f x -=≠故此函数为非奇非偶函数,故选A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.(6)【2014年广东,文6,5分】为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )(A )50 (B )40 (C )25 (D )20 【答案】C【解析】∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25,故选C . 【点评】本题主要考查系统抽样的定义和应用,比较基础. (7)【2014年广东,文7,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分非必要条件 【答案】A【解析】由正弦定理可知sin sin a bA B=,∵ABC ∆中,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sin A ,sin B 都是正数,sin sin a b A B ≤⇔≤.∴“a b ≤”是“sin sin A B ≤”的充分必要条件,故选A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.(8)【2014年广东,文8,5分】若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) (A )实半轴长相等 (B )虚半轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】当05k <<,则055k <-<,111616k <-<,即曲线221165x y k-=-表示焦点在x 轴上的双曲线,其中216a =,25b k =-,221c k =-,曲线221165x y k -=-表示焦点在x 轴上的双曲线,其中216a k =-,25b =,221c k =-,即两个双曲线的焦距相等,故选D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键. (9)【2014年广东,文9,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )1l 与4l 既不垂直也不平行 (D )1l 与4l 的位置关系不确定 【答案】D【解析】在正方体中,若AB 所在的直线为2l ,CD 所在的直线为3l ,AE 所在的直线为1l , 若GD 所在的直线为4l ,此时14//l l ,若BD 所在的直线为4l ,此时14l l ⊥,故1l 与4l 的位 置关系不确定,故选D .【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.(10)【2014年广东,文10,5分】对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题: ①1231323()()()z z z z z z z +=**+*②1231213()()()z z z z z z z +=**+*; ③123123()()z z z z z z *=***④1221z z z z *=*;则真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】①12312313231323()()()()()()z z z z z z z z z z z z z z +++*===*+*,正确;②12312312312131213()()()()()()()z z z z z z z z z z z z z z z z z +=+=+=+=**+*,正确;③123123123123123(),()()(),z z z z z z z z z z z z z z z ===≠左边=*=右边*左边右边,等式不成立,故错误;④12122121,,z z z z z z z z ==≠左边=*右边=*左边右边,等式不成立,故错误; 综上所述,真命题的个数是2个,故选B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13) (11)【2014年广东,文11,5分】曲线53x y e =-+在点()0,2-处的切线方程为 . 【答案】520x y ++= 【解析】'5x y e =-,'5x y =∴=-,因此所求的切线方程为:25y x +=-,即520x y ++=.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题. (12)【2014年广东,文12,5分】从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为 .【答案】25【解析】142542105C P C ===.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.(13)【2014年广东,文13,5分】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= . 【答案】5【解析】设2122232425log log log log log S a a a a a =++++,则2524232221log log log log log S a a a a a =++++,215225log ()5log 410S a a ∴===,5S ∴=.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易. (二)选做题(14-15题,考生只能从中选做一题) (14)【2014年广东,文14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 . 【答案】(1,2)【解析】由22cos sin ρθθ=得22cos =sin ρθρθ(),故1C 的直角坐标系方程为:22y x =,2C 的直角坐标系方程为:1x =,12,C C ∴交点的直角坐标为(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题. (15)【2014年广东,文15,5分】(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长. 【答案】3【解析】由于CDF AEF ∆∆∽,3CDF CD EB AEAEF AE AE∆+∴===∆的周长的周长.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2014年广东,文16,12分】已知函数()sin ,3f x A x x R π⎛⎫=+∈ ⎪⎝⎭,且512f π⎛⎫= ⎪⎝⎭.(1)求A 的值;(2)若()()0,2f f πθθθ⎛⎫--=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.解:(1)553()sin()sin 121234f A A ππππ=+==3A ∴.(2)由(1)得:()3sin()3f x x π=+,()()3sin()3sin()33f f ππθθθθ∴--=+--+3(sin coscos sin )3(sin()cos cos()sin )6sin cos 3sin 3333πππππθθθθθθ=+--+-===sin 0,2πθθ⎛⎫∴=∈ ⎪⎝⎭,cos θ∴==()3sin()3sin()3cos 36632f ππππθθθθ∴-=-+=-==【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查. (17)【2014年广东,文17,12分】某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21.(2)茎叶图如下: (3)年龄的平均数为:(1928329330531432340)3020+⨯+⨯+⨯+⨯+⨯+=,这20名工人年龄的方差为:2222222111(11)3(2)3(1)50413210(121123412100)25212.6202020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+=+++++=⨯=⎣⎦【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题. (18)【2014年广东,文18,14分】如图1,四边形ABCD 为矩形,PD ABCD ⊥平面,1,2AB BC PC ===,做如图2折叠:折痕//EF DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF MDF ⊥平面; (2)求三棱锥M CDE -的体积. 解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,MD ∴⊥平面PCD ,CF ⊂平面PCD ,CF MD ∴⊥,又 CF MF ⊥,MD ,MF ⊂平面MDF ,MD MF M =,CF ∴⊥平面MDF .(2)CF ⊥平面MDF ,CF DF ∴⊥,又易知060PCD ∠=,030CDF ∴∠=,从而11==22CF CD ,EF DC ∥,DE CFDP CP ∴=122,DE ∴=,PE ∴=12CDE S CD DE ∆=⋅=,2MD ===,1133M CDE CDE V S MD -∆∴=⋅== 【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.(19)【2014年广东,文19,14分】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0,n n S n n S n n n N *-+--+=∈.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.解:(1)令1n =得:211(1)320S S ---⨯=,即21160S S +-=,11(3)(2)0S S ∴+-=,10S >,12S ∴=,即12a =.(2)由222(3)3()0nn S n n S n n -+--+=,得:2(3)()0n n S S n n ⎡⎤+-+=⎣⎦,0()n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,∴当2n ≥时,221(1)(1)2n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,2()n a n n N *∴=∈. (3)当k N *∈时,22313()()221644k k k k k k +>+-=-+, 111111111111131111(1)2(21)4444()()()(1)()(1)2444444k k a a k k k k k k k k k k ⎡⎤⎢⎥∴==⋅<⋅=⋅=⋅-⎢⎥++⎡⎤⎢⎥+-+-+--⋅+-⎢⎥⎣⎦⎣⎦11221111111111()()111111(1)(1)(1)41223(1)444444n n a a a a a a n n ⎡⎤⎢⎥∴+++<-+-++-⎢⎥+++⎢⎥-----+-⎣⎦1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0111111()11434331(1)44n n =-=-<+-+-. 【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.(20)【2014年广东,文20,14分】已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)cc e a ===3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=. (2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为00()y y k x x -=-,即00()y k x x y =-+,将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=, 即22220000(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即22004()4(94)0y kx k --+=, 2220000(9)240x k x y k y ∴--+-=,两切线相互垂直,121k k ∴=-,即2020419y x -=--,220013x y ∴+=, 显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y 关系.(21)【2014年广东,文21,14分】已知函数321()1()3f x x x ax a R =+++∈.(1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()=()2f x f .解:(1)'2()2f x x x a =++,方程220x x a ++=的判别式:44a ∆=-,∴当1a ≥时,0∆≤,'()0f x ∴≥,此时()f x 在(,)-∞+∞上为增函数.当1a <时,方程220x xa ++=的两根为1-(,1x ∈-∞-时,'()0f x >,∴此时()f x为增函数,当(11x ∈--,'()0f x <,此时()f x 为减函数,当(1)x ∈-+∞时,'()0f x >,此时()f x 为增函数,综上,1a ≥时,()f x 在(,)-∞+∞上为增函数,当1a <时,()f x 的单调增函数区间为(,1-∞-,(1)-++∞,()f x的单调递减区间为(11---.(2)3232332200000001111111111()()1()()()1()()()2332223222f x f x x ax a x x a x ⎡⎤⎡⎤⎡⎤-=+++-+++=-+-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦200011()(414712)122x x x a =-+++∴若存在011(0,)(,1)22x ∈,使得01()()2f x f =, 必须2004147120x x a +++=在11(0,)(,1)2上有解.0a <,21416(712)4(2148)0a a ∴∆=-+=->,00x >,0x ∴ 01<,即711<,492148121a ∴<-<,即2571212a -<<-,12,得54a =-,故欲使满足题意的0x 存在,则54a ≠-,∴当25557(,)(,)124412a ∈----时,存在唯一的011(0,)(,1)22x ∈满足01()()2f x f =.当2575(,][,0)12124a ⎧⎫∈-∞---⎨⎬⎩⎭时,不存在011(0,)(,1)22x ∈使01()()2f x f =.【点评】(1)求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.(2)对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.。

2014年广东省高考文科数学模拟试卷及参考答案

2014年广东省高考文科数学模拟试卷及参考答案

17. (本小题满分 12 分)(本小题主要考查概率与统计的概念,考查运算求解能力等.

解( 1) ∵
x
0.19
2000
x 380
………………3 分
( 2)高三年级人数为 y+z=2000 -( 373+ 377+ 380+ 370)= 500, …………………5 分 现用分层抽样的方法在全校抽取 48 名学生,应在高三年级抽取的人数为:
棱锥的高为 2, 连结 AM ,则 AM=
2
AB
BM 2 =
2
2
BM 2 ,
由( 2)知 PA
AM
∴S
1 PAM= PA ? AM
2
1 2 22 BM 2 2
4 BM 2
∴ V D— PAM= 1 ? S PAM 3
?2= 1 ?
3
4
BM 2 ? 2 = 2 4 BM 2
3
…………………
11分
∵ S AMD
5
( 1)求 cos( A C ) 的值;
( 2)求 sin B
的值;
6
uuur uuur ( 3)若 BAgBC 20 ,求
ABC 的面积 .
.
17.(本小题满分 12 分) 某完全中学高中部共有学生
2000 名,各年级男、女生人数如下表:
女生
高一年级 373
高二年级 x
高三年级 y
男生
377
370
∴ GH//AD//EF ,
∴ E, F, G, H 四点共面。
…………………………2 分
又 H 为 AB 中点,∴ EH//PB 。
…………………………3 分
又 EH 面 EFG, PB 平面 EFG,

广东省佛山市南海区2014届高三入学摸底考试数学文试题 Word版含答案[ 高考]

广东省佛山市南海区2014届高三入学摸底考试数学文试题 Word版含答案[ 高考]

佛山市南海区2014届高三数学(文)8月质量检测试题参考公式:13V Sh =锥 (其中S 为锥体的底面积,h 为锥体的高) 一、选择题(每小题5分,共50分,每小题只有一个正确答案)1.已知集合{}|3M x x =<,{}2|680N x x x =-+<,则MN =( )A .∅B .{}|03x x << C .{}|13x x <<D .{}|23x x <<2.复数1ii+的虚部是( ) A .i -B .1-C .1D .i3.已知向量(1,)a m =,(,2)b m = , 若a //b , 则实数m 等于( )A.BC.D .04.已知4cos 5α=-,且(,)2παπ∈,则tan()4πα-=( ) A .17- B .7- C .71 D .75.设曲线21y x =+在点(),()x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分A B C D6.一个正四棱锥的正(主)视图如右图所示,该四棱锥侧面积和体积分别是( )A .8B .83C .1),83D .8,87.用反证法证明命题:若整数系数的一元二次方程20(0)ax bx c a ++=≠ 有有理实数根,那么a ,b ,c 中至少有一个是偶数,下列假设中正确的是( )A . 假设a ,b ,c 都是偶数B . 假设a ,b ,c 都不是偶数C . 假设a ,b ,c 至多有一个是偶数D . 假设a ,b ,c 至多有两个偶数8.下列说法中正确的有( )(1)命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”; (2)“2x >”是 “2320x x -+>”的充分不必要条件; (3)若p q ∧为假命题,则p 、q 均为假命题;(4)对于命题p :x R ∃∈,210x x ++<,则p ⌝:x R ∀∈,210x x ++≥.A .1个B .2个C .3个D .4个9.已知数列{}n a 为等差数列,若m a a =,n a b =(1n m -≥,*,m n N ∈),则m n nb ma a n m+-=-。

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件A.7B.8,则z=2x+y的最大值等于()C.10D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的()A.充分必要条件C.必要非充分条件8.(5分)若实数k满足0<k<5,则曲线A.实半轴长相等B.虚半轴长相等B.充分非必要条件D.非充分非必要条件﹣=1与﹣=1的()C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4C.l1与l4既不垂直也不平行B.l1∥l4D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1B.2C.3其中2,2是ω2的共轭复数,D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.20.(14分)已知椭圆C:为.+=1(a>b>0)的右焦点为(,0),离心率(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】99:向量的减法;9J:平面向量的坐标运算.【专题】5A:平面向量及应用.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件A.7,则z=2x+y的最大值等于()C.10D.11B.8【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x【考点】3K :函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f (x )=2x ﹣故此函数为奇函数.对于函数f (x )=x 3sinx ,由于f (﹣x )=﹣x 3(﹣sinx )=x 3sinx=f (x ),故此函数为偶函数.对于函数f (x )=2cosx +1,由于f (﹣x )=2cos (﹣x )+1=2cosx +1=f (x ),故此函数为偶函数.对于函数f (x )=x 2+2x ,由于f (﹣x )=(﹣x )2+2﹣x =x 2+2﹣x ≠﹣f (x ),且f (﹣x )≠f (x ),故此函数为非奇非偶函数.故选:A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(),由于f (﹣x )=2x ﹣﹣=﹣2x =﹣f (x ),A .50B .40C .25D .20【考点】B4:系统抽样方法.【专题】5I :概率与统计.【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C .【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,则“a ≤b”是“sinA ≤sinB”的()A .充分必要条件C .必要非充分条件B .充分非必要条件D .非充分非必要条件【考点】HP :正弦定理.【专题】5L :简易逻辑.【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC 中,∠A ,∠B ,∠C 均小于180°,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sinA ,sinB 都是正数,∴“a ≤b”⇔“sinA ≤sinB”.∴“a ≤b”是“sinA ≤sinB”的充分必要条件.故选:A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k 满足0<k <5,则曲线A .实半轴长相等B .虚半轴长相等﹣=1与﹣=1的()C .离心率相等D .焦距相等【考点】KC :双曲线的性质.【专题】5D :圆锥曲线的定义、性质与方程.【分析】根据k 的取值范围,判断曲线为对应的双曲线,以及a ,b ,c 的大小关系即可得到结论.【解答】解:当0<k <5,则0<5﹣k <5,11<16﹣k <16,即曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16,b 2=5﹣k ,c 2=21﹣k ,曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16﹣k ,b 2=5,c 2=21﹣k ,即两个双曲线的焦距相等,故选:D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键.9.(5分)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4C .l 1与l 4既不垂直也不平行B .l 1∥l 4D .l 1与l 4的位置关系不确定【考点】LO :空间中直线与直线之间的位置关系.【专题】5F :空间位置关系与距离.【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB 所在的直线为l 2,CD 所在的直线为l 3,AE 所在的直线为l 1,若GD 所在的直线为l 4,此时l 1∥l 4,若BD 所在的直线为l 4,此时l 1⊥l 4,故l 1与l 4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z 1,z 2,z 3有如下命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3)②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3)③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1则真命题的个数是()A.1其中2,2是ω2的共轭复数,B.2C.3D .4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】5L:简易逻辑;5N :数系的扩充和复数.【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z 1+z 2)*z 3=(z 1+z 2)确;=(z 1+z 2=(z 1*z 3)+(z 2*z 3),正②z 1*(z 2+z 3)=z 1(③(z 1*z 2)*z 3=z 1成立,故错误;④z 1*z 2=z 1,z 2*z 1=z 2)=z 1(+)=z 1+z 1=(z 1*z 2)+(z 1*z 3),正确;)=z 1z 3,等式不,z 1*(z 2*z 3)=z 1*(z 2)=z 1(,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x +3在点(0,﹣2)处的切线方程为5x +y +2=0..【考点】6H :利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5e x ,∴y′|x=0=﹣5.因此所求的切线方程为:y +2=﹣5x ,即5x +y +2=0.故答案为:5x +y +2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】5I :概率与统计.【分析】求得从字母a ,b ,c ,d ,e 中任取两个不同字母、取到字母a 的情况,利用古典概型概率公式求解即可.【解答】解:从字母a ,b ,c ,d ,e 中任取两个不同字母,共有取到字母a ,共有∴所求概率为故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.=10种情况,=4种情况,=.【考点】4H :对数的运算性质;87:等比数列的性质;89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】可先由等比数列的性质求出a 3=2,再根据性质化简log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5log 2a 3,代入即可求出答案.【解答】解:log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2a 1a 2a 3a 4a 5=log 2a 35=5log 2a 3.又等比数列{a n }中,a 1a 5=4,即a 3=2.故5log 2a 3=5log 22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为(1,2).【考点】Q8:点的极坐标和直角坐标的互化.【专题】5S:坐标系和参数方程.【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3.【考点】%H:三角形的面积公式.【专题】58:解三角形.【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f (x )=Asin (x +(1)求A 的值;(2)若f (θ)﹣f (﹣θ)=),x ∈R ,且f ()=.,θ∈(0,),求f (﹣θ).【考点】GP :两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过函数f (x )=Asin (x +A 的值;(2)利用函数的解析式,通过f (θ)﹣f (﹣θ)=利用两角差的正弦函数求f (﹣θ).),x ∈R ,且f (,)=,,θ∈(0,),求出cosθ,),x ∈R ,且f ()=,直接求【解答】解:(1)∵函数f (x )=Asin (x +∴f (∴)=Asin (.+)=Asin=(2)由(1)可知:函数f (x )=3sin (x +∴f (θ)﹣f (﹣θ)=3sin (θ+=3[(=3•2sinθcos ∴sinθ=∴cosθ=,,=3sinθ=,),))])﹣3sin (﹣θ+)﹣(∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)19282930313240合计工人数(人)133543120(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:这20名工人年龄的方差为S 2=2=30.[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直.【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何.【分析】(1)要证CF ⊥平面MDF ,只需证CF ⊥MD ,且CF ⊥MF 即可;由PD ⊥平面ABCD ,得出平面PCD ⊥平面ABCD ,即证MD ⊥平面PCD ,得CF ⊥MD ;(2)求出△CDE 的面积S△CDE,对应三棱锥的高MD ,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD ∩平面ABCD=CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ;又CF ⊥MF ,MD 、MF ⊂平面MDF ,MD ∩MF=M ,∴CF ⊥平面MDF ;(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又∵Rt △PCD 中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF ∥DC ,∴∴DE==,即,;=,,∴PE=∴S△CDE=CD•DE=MD===×=,.∴V M﹣CDE =S△CDE•MD=×【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】(1)本题可以用n=1代入题中条件,利用S 1=a 1求出a 1的值;(2)利用a n 与S n 的关系,将条件转化为a n 的方程,从而求出a n ;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:∴(S 1+3)(S 1﹣2)=0.∵S 1>0,∴S 1=2,即a 1=2.(2)由.∵a n >0(n ∈N *),∴S n >0.∴.,得:,即.∴当n ≥2时,又∵a 1=2=2×1,∴.==<=<;(3)由(2)可知n ∈N *,当n=1时,显然有当n ≥2时,<+,=(),=﹣<.所以,对一切正整数n ,有【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C :+=1(a >b >0)的右焦点为(,0),离心率为.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点】J3:轨迹方程;K3:椭圆的标准方程.【专题】5D :圆锥曲线的定义、性质与方程.【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k 的一元二次方程,利用韦达定理表示出k 1•k 2,进而取得x 0和y 0的关系式,即P 点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P (x 0,y 0)的切线为y=k (x ﹣x 0)+y 0,+=+=1,4x 2+9[k 2x 2+﹣2kx 0x ++2ky 0x ﹣2ky 0x 0]=36整理得(9k 2+4)x 2+18k (y 0﹣kx 0)x +9[(y 0﹣kx 0)2﹣4]=0,∴△=[18k (y 0﹣kx 0)]2﹣4(9k 2+4)×9[(y 0﹣kx 0)2﹣4]=0,整理得(x 02﹣9)k 2﹣2x 0×y 0×k +(y 02﹣4)=0,∴﹣1=k 1•k 2=∴x 02+y 02=13.=﹣1,把点(±3,±2)代入亦成立,∴点P 的轨迹方程为:x 2+y 2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.21.(14分)已知函数f (x )=x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,)∪(,1),使得f (x 0)=f ().【考点】6B :利用导数研究函数的单调性;6E :利用导数研究函数的最值.【专题】51:函数的性质及应用;53:导数的综合应用.【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f (x 0)=f ()转化为f (x 0)﹣f ()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f (x )得f′(x )=x 2+2x +a ,令f′(x )=0,即x 2+2x +a=0,判别式△=4﹣4a ,①当△≤0即a ≥1时,f′(x )≥0,则f (x )在(﹣∞,+∞)上为增函数.②当△>0即a <1时,方程f′(x )=0的两根为当x ∈(﹣∞,﹣1﹣当当,即,)时,f′(x )>0,则f (x )为增函数;时,f′(x )<0,则f (x )为减函数;,+∞)时,f′(x )>0,则f (x )为增函数.综合①、②知,a ≥1时,f (x )的单调递增区间为(﹣∞,+∞),a <1时,f (x )的单调递增区间为(﹣∞,f (x )的单调递减区间为和.,+∞),(2)∵==21===∴若存在∪.,使得∪,即内必有实数解.,则关于x 的方程4x 2+14x +7+12a=0在∵a <0,∴△=142﹣16(7+12a )=4(21﹣48a )>0,方程4x 2+14x +7+12a=0的两根为∵x 0>0,∴依题意有即得∴当得当得,且,且∪成立;∪成立.∪{}时,不存在∪,使.时,存在唯一的∪,使,,且,,∴49<21﹣48a <121,且21﹣48a ≠81,,即,【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.22。

2014年佛山市普通高中高三教学质量检测(一)文科数学参考答案与评分标准(细则)

2014年佛山市普通高中高三教学质量检测(一)文科数学参考答案与评分标准(细则)

2014年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,满分50分.11.18012.(,1]-∞ 13.3-14.15.2三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)【解析】解法1:(Ⅰ) 因为B C =,所以c b =,……………………………………………………………2分又2a =,所以222cos 2a c b B ac +-=, …………………3分 23b=……4分,=……………………5分解法2:∵a =,∴sin A B =……………………………………………………2分 ∵B C =,且A B C ++=π,所以sin 2B B =………………………………………3分 又2sin cos B B B =………………………………………4分 ∵sin 0B ≠,∴cos B =……………………………………………………………………5分 (Ⅱ)由(Ⅰ)得sin B ==7分 (注:直接得到sin B =不扣分) 所以sin 63f B ππ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭………………………………………………………………8分 sin cos cossin 33B B ππ=+ ………………………………………………10分12=…………………………………………………………11分 =. …………………………………………………………12分 17.(本题满分12分)【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. …………………………………………………5分 (注:写对茎叶图3分,方差结论正确2分)(Ⅱ) 两队所有身高超过178cm 的同学恰有5人,其中3人来自ACD PEFQ排球队,记为,,a b c , ……………………………6分2人来自篮球队,记为,A B ,……………………………7分则从5人中抽取3名同学的基本事件为: abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;……………………………9分其中恰好两人来自排球队一人来自篮球队所含的事件有: abA ,abB ,acA ,acB ,bcA ,bcB 共6个, ………………11分所以,恰好两人来自排球队一人来自篮球队的概率是63105P ==.………………………………………12分 18.(本题满分14分)【解析】(Ⅰ)连结EF ,由翻折不变性可知,6PB BC ==,9PE CE ==, 在PBF ∆中,222201636PF BF PB +=+==, 所以PF BF ⊥………………………………2分在图1中,易得EF ==……3分在PEF ∆中,222612081EF PF PE +=+==,所以PF EF ⊥………………………………………4分 又BF EF F = ,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .…………………6分 (注:学生不写BF EF F = 扣1分)(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE . ………………………………………………7分 (注:只讲存在Q 满足条件1分) 证明如下: 因为23AQ AP =,23AF AB =,所以//FQ BP ……………………………8分 又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以//FQ 平面PBE .…………………………………………10分 (注:学生不写FQ ⊄平面PBE ,扣1分)(Ⅲ) 由(Ⅰ)知PF ⊥平面ABED ,所以PF 为三棱锥P ABE -的高. ………………………………11分 设点A 到平面PBE 的距离为h ,由等体积法得A PBE P ABE V V --=, ……………………………………12分即1133PBE ABE S h S PF ∆∆⨯=⨯⋅,又169272PBE S ∆=⨯⨯=,1126362ABE S ∆=⨯⨯=, 所以36273ABE PBE S PF h S ∆∆⋅⨯===,即点A 到平面PBE 的距离为3.………………………14分(注:指出A PBE P ABE V V --=给1分,若能最终得到结果3给4分) 19.(本题满分14分)【解析】(Ⅰ)设椭圆的方程为22221x y a b+=(0a b >>),依题意,19242b -==, ………1分,所以2b = ……………………2分 又1c =, …………3分,所以2225a b c =+=, ……………………………4分排球队 篮球队18 17 16 15 10 3 6 8 92 5 893 2 9 1 0 8 8 3 2 8所以椭圆C 的方程为22154x y +=. ………………………………………………………………………5分(Ⅱ) 设(),Q x y (其中22154x y +=), ……………………………………………………………………6分圆P 的方程为()2221x y t t +-=+, ………………………………………………………………………7分因为PM QM ⊥,所以QM ==…………………8分=……………………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值, ……………………………………………10分且max2QM==,解得3182t =<(舍去). ………………………………………………11分 当42t ->-即102t <<时,当4y t =-时,QM 取最大值, …………………………………………12分且maxQM==解得218t =,又102t <<,所以t =………………………………13分综上,当t =,QM . ……………………………………………………………14分 20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=. 由2212a b b =,可得222136a b b ==.………………2分 (Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①. ………………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b 的每一项都是正数,所以1n a +=…②. …………………………………4分于是当2n ≥时,n a .将②、③代入①式,可得6分因此数列是首项为4,公差为2的等差数列, (7)分()122n d n -=+,于是()241n b n =+.则()41n a n n ==+9分 当1n =时,18a =,满足该式子,所以对一切正整数n ,都有()41n a n n =+.…………………………10分 (Ⅲ)方法一:2111114441n a n n n n ⎛⎫==- ⎪++⎝⎭,所以11111142n n n c a a n n +⎛⎫=+=- ⎪+⎝⎭.……………………12分于是1231111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ……………………………………………………………………14分 21.(本题满分14分)【解析】()f x 的定义域为()0,+∞.……………………………………………………………………………1分(Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =.因为()1212f x x x '=+-,所以()512f '=, …………………………………………………………………2分 所以切线方程为()5212y x -=-,即5210x y --=.………………………………………………………3分(注:有求导思想,虽然运算不对,给1分)(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x +-'=+-=, 令()0f x '=,得10x =>,20x =<(舍去),………………………………5分 且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x的极小值点为x =.……6分⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩. ………………………………7分当x a ≥-时,()24212x ax f x x +-'=,令()0f x '=,得1x =,2x a <-(舍去). 8分a ≤-,即2a ≤-,则()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <, 则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………9分① 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-, ……………………………………10分若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x =,4x =340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<,所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ………………12分综上所述,当2a <-时,()f x的极小值点为x =和x a =-,极大值点为x =;当22a -≤≤时,()f x 的极小值点为x a =-;当2a >,()f x的极小值点为4a x -=.14分注:第二问:3大类,每类全正确给3分;(1)若步骤清晰(即求导,解方程,比较两根大小,明确单调区间,得到极值),但计算不全对,给2分;(2)有这个思路,但步骤不清晰,给1分;。

广东省佛山市普通高中2014届高三教学质量检测(一)数学文试题(含答案)

广东省佛山市普通高中2014届高三教学质量检测(一)数学文试题(含答案)

佛山市普通高中2014届高三教学质量检测(一)数学文试题本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置处.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.参考公式:① 柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.② 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数ln y x =的定义域A ,{}01B x x =≤≤,则AB =A .()0,+∞B .[]0,1C .(]0,1D .[)0,1 2.已知,a b R ∈,i 为虚数单位,若211ia bi i-+=+,则实数a b += A .2 B .3 C . 4 D .5 3.设函数2sin 21y x =-的最小正周期为T ,最大值为A ,则A .T π=,1A =B . 2T π=,1A =C .T π=,2A =D .2T π=,2A = 4.已知1=a ,(0,2)=b ,且1=a b ,则向量a 与b 夹角的大小为A .6π B . 4π C .3π D .2π 5.给定命题p :若x R ∈,则12xx+≥; 命题q :若0x ≥,则20x ≥. 则下列各命题中,假命题的是A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝6.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是图2中心角为60︒的扇形,则该几何体的体积为A .3π B .23π C .π D .2π7.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程220x x x +--=的一个最接近的近似根为A .1.2B .1.3C .1.4D .1.5 8.执行如图2所示的程序框图,若输入n 的值为7,则输出的s 的值为A .22B .16C .15D .119.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为 A .13 B .12 C .3 D .210.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为A . 32B .43C . 2D . 3二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9~13题)11.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 12.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-+<⎩.若()3f a ≤,则a 的取值范围是 .13.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线)1(-=x k y 将可行域分成面积相等的两部分,则实排球队 篮球队图4数k 的值为______.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1C ρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线ABC , 已知3=AD ,33=AC ,圆O 的半径为5,则圆心O 到AC 的距离为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且2a =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.17.(本题满分12分)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179.(Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(Ⅱ) 现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?18.(本题满分14分)如图5,矩形A B C D 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且A. .ACDBEF图5图6ABCD PEF图73DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP 、PF ,其中PF =(Ⅰ) 求证:PF ⊥平面ABED ;(Ⅱ) 在线段PA 上是否存在点Q 使得//FQ 平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(Ⅲ) 求点A 到平面PBE 的距离.19.(本题满分14分)如图7,椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F 到直线90x -=的距离等于椭圆的短轴长.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当QM 的最大值为2时,求t 的值.20.(本题满分14分)数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,,...3,2,1=n . (Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)记1111n n n c a a +=+,证明:对一切正整数n ,有123111138n c c c c ++++<.21.(本题满分14分)已知函数()1ln 2f x x x a x =+-.(Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 的极值点.2014年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,满分50分.11.180 12.(,1]-∞ 13.3- 14. 15.2 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)【解析】(Ⅰ)因为B C =,所以c b =,……………………………………………………………………2分又2a =, 所以2223co 2ba cb B ac +-===5分(Ⅱ)由(Ⅰ)得sin 4B ==, ……………………………………………………………7分 所以s i63f B ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭s33B B ππ=+………………………………………………10分 12=+=. …………………………………………………………12分17.(本题满分12分)【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. …………………………………………………5分(Ⅱ) 两队所有身高超过178cm 的同学恰有5人,其中3人来自 排球队,记为,,a b c ,2人来自篮球队,记为,A B ,则从5人中抽 取3名同学的基本事件为:abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;……………………………9分其中恰好两人来自排球队一人来自篮球队所含的事件有:排球队篮球队18 17 16 15 10 3 6 8 9 2 5 893 2 9 1 0 8 8 3 2 8AB CD PEFQabA ,abB ,acA ,acB ,bcA ,bcB 共6个, ………………11分所以,恰好两人来自排球队一人来自篮球队的概率是63105=.…………………………………………12分 18.(本题满分14分)【解析】(Ⅰ)连结EF ,由翻折不变性可知,6PB BC ==,9PE CE ==, 在PBF ∆中,222201636PF BF PB +=+==, 所以PF BF ⊥………………………………2分 在图1中,易得EF ==在PEF∆中,222612081EF PF PE +=+==,所以P F ⊥………………………………………4分又BF EF F =,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .…………………6分(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE .证明如下:因为23A Q AP =,23AF AB=,所以//FQ BP …………………………………………………………8分又FQ ⊄平面PBE ,PB ⊂平面PBE,所以//FQ 平面PBE .…………………………………………10分(Ⅲ) 由(Ⅰ)知PF ⊥平面ABED ,所以PF 为三棱锥P A B E -的高. ………………………………11分 设点A到平面PBE的距离为h,由等体积法得A PBE P ABE V V --=, ……………………………………12分即1133PBE ABE S h S PF ∆∆⨯=⨯⋅,又169272PBE S ∆=⨯⨯=,1126362ABE S ∆=⨯⨯=, 所以853ABE PBE S PF h S ∆∆⋅===, 即点A 到平面PBE 的距离为.………………………14分 19.(本题满分14分)【解析】(Ⅰ)设椭圆的方程为22221x y a b +=(0a b >>), 依题意,19242b -==,所以2b =…………2分又1c =,所以2225a b c =+=,所以椭圆C的方程为22154x y +=. ……………………………………5分(Ⅱ) 设(),Q x y (其中22154x y +=),………………………………………………………………………6分 圆P 的方程为()2221x y t t +-=+, ………………………………………………………………………7分因为PM QM ⊥, 所以Q M =-==……………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值,且max2QM=,解得3182t =<(舍去). …………………………………………………11分 当42t ->-即102t <<时,当4y t =-时,QM 取最大值,且max2QM==,解得218t =,又102t <<,所以4t =………………………………13分综上,当4t =时,QM的最大值为2.………………………………………………………………14分 20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=.………………………………………………………1分由2212a b b =,可得222136a b b ==. ………………………………………………………………………2分 (Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①.………………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b 的每一项都是正数,所以1n a +…②.…………………………………4分于是当2n ≥时,n a .…………………………………………………………………5分将②、③代入①式,可得是首项为4,公差为2的等差数列,()122n d n-=+,于是()241nb n=+.…………………………………………………6分则()41na n n===+.……………………………………………………………7分当1n=时,18a=,满足该式子,所以对一切正整数n,都有()41na n n=+.…………………………10分(Ⅲ)方法一:2111114441na n n n n⎛⎫==-⎪++⎝⎭,所以111111142n n nc a a n n+⎛⎫=+=-⎪+⎝⎭.……………………12分于是12311111111111114324112nc c c c n n n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+-⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L11113142128n n⎛⎫=+--<⎪++⎝⎭.……………………………………………………………………14分方法二:()()()()1111111111414122242n n nc a a n n n n n n n n+⎛⎫=+=+==-⎪+++++⎝⎭.……………………12分于是12311111111111114324112nc c c c n n n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+-⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L11113142128n n⎛⎫=+--<⎪++⎝⎭.………………………………………………………………14分21.(本题满分14分)【解析】()f x的定义域为()0,+∞.……………………………………………………………………………1分(Ⅰ)若1a=,则()()11ln2f x x x x=+-,此时()12f=.因为()1212f x xx'=+-,所以()512f'=,所以切线方程为()5212y x-=-,即5210x y--=.……3分(Ⅱ)由于()1ln2f x x x a x=+-,()0,x∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x +-'=+-=, 令()0f x '=,得10x =>,20x <(舍去),………………………………5分且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x的极小值点为x =……6分 ⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩.① 当x a ≥-时,()24212x ax f x x +-'=,令()0f x '=,得1x =,2x a -(舍去).a ≤-,即a ≤()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <<, 则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………9分② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-,若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x =,4x 且340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<, 所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ………………12分综上所述,当2a <-时,()f x的极小值点为x =x a =-,极大值点为x =当2a -≤≤,()f x 的极小值点为x a =-;x=……………………………………………………14分。

2014年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2014年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2014年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 2.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>03.设i iz ++=11,则|z |=( )A .21B .22C .23D .24.已知双曲线)0(13222>=-a y a x 的离心率为2,则a=( ) A .2 B .26 C .25D .15.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数6. 设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+FC EB ( )A .ADB .AD 21C .BC 21D .BC7.在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱9.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15810.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=54x0,则x0=( )A.1 B.2 C.4 D.811.设x,y满足约束条件,1,x y ax y+≥⎧⎨-≤-⎩且z=x+ay的最小值为7,则a= ( )A.-5 B.3 C.-5或3 D.5或-312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞, -2) D.(-∞, -1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.15.设函数113,1(),1xe xf xx x-⎧<⎪=⎨⎪≥⎩,则使得f(x)≤2成立的x的取值范围是______.16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点. 从A点测得M点的仰角:∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°. 已知山高BC=100m,则山高MN=______m.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分. 17.(本小题满分12分)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列2n na⎧⎫⎨⎬⎩⎭的前n项和.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本题满分12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(Ⅰ)证明:B1C⊥AB;(Ⅱ)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.20.(本小题满分12分)已知点P(2,2),圆C: x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(Ⅰ)求M的轨迹方程;(Ⅱ)当|OP|=|OM|时,求l的方程及ΔPOM的面积.设函数f (x )= a ln x+212a x --bx (a ≠1),曲线y =f (x )在点(1, f (1))处的切线斜率为0 (Ⅰ)求b ; (Ⅱ)若存在x 0≥1,使得f (x 0)<1aa -,求a 的取值范围.请考生从第22、23、24三题中任选一题作答.多答按所答的首题进行评分. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE (Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.24. (本小题满分10分)选修4—5:不等式选讲若0,0a b >>,且11ab a b+=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.2014年高考全国1卷文科数学参考答案1.解:取M , N 中共同的元素的集合是(-1,1),故选B2.解:tan α>0,α在一或三象限,所以sin α与cos α同号,故选C3.解:111,12222i i z i i z i -=+=+=+∴==+,故选B4.解:2c e a ====,解得a=1,故选D 5.解:设F (x )=f (x )|g (x )|,依题可得F (-x )=-F (x ),∴ F (x )为奇函数,故选C6.解:+EB FC EC CB FB BC +=++=111()222AC AB AB AC AD +=+=,故选A7.解:由cos y x =是偶函数可知①y=cos|2x|=cos2x ,最小正周期为π;②y=|cos x |的最小正周期也是π;③中函数最小正周期也是π;正确答案为①②③,故选A8.解:几何体是一个横放着的三棱柱. 故选B9.解:运行程序M,a,b,n 依次为33(,2,,2)22;838(,,,3)323;15815(,,,4)838;输出158M =.故选D.10.解:根据抛物线的定义可知|AF |=001544x x +=,解之得x 0=1. 故选A11.解:联立x+y=a 与x-y =-1解得交点M 11(,)22a a -+,z 取得最值11722a a a -++⨯=,解之得a =-5或a =3. 但a =-5时,z 取得最大值,舍去,所以a =3,故选B.12.解:依题a≠0,f '(x )=3ax 2-6x ,令f '(x )=0,解得x =0或x =2a,当a >0时,在(-∞, 0)与(2a ,+∞)上,f '(x )>0,f (x )是增函数.在(0,2a) 上,f '(x )<0,f (x )是减函数.且f (0)=1>0,f (x )有小于零的零点,不符合题意.当a <0时,在(-∞,2a )与(0,+∞)上,f '(x )<0,f (x )是减函数.在(2a,0)上,f '(x )>0,f (x )是增函数.要使f (x )有唯一的零点x 0,且x 0>0,只要2()0f a>,即a 2>4,所以a <-2.故选C另解:依题a≠0,f (x )存在唯一的正零点,等价于3113a x x=-有唯一的正零根,令1t x=,则问题又等价于a =-t 3+3t 有唯一的正零根,即y =a 与y =-t 3+3t 有唯一的交点且交点在在y 轴右侧,记g (t )=-t 3+3t ,g '(t )=-3t 2+3,由g '(t )=0,解得t =±1,在(-∞,-1)与(1,+∞)上,g '(t )<0,g (t )是减函数.在(-1,1)上,g '(t )>0,g (t )是增函数.要使a =-t 3+3t 有唯一的正零根,只要a <g (-1)=-2,故选C 二、填空题13.23 14.A 15.(-∞,8] 16.15013.解:设数学书为1,2,语文书为A ,则所有的排法有(1,2,A),(1,A,2),(2,1, A),(2, A,1),(A,1,2),(A,2,1)共6 种,其中2 本数学书相邻的情况有4 种情况,故所求概率为4263P ==.14.解:∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市,∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.本题考查逻辑推理,反证法的思想.15.解:当x<1时,由e x -1≤2可得x ≤1+ln 2,故x<1;当x≥1时,由13x ≤2可得x ≤8,故1≤x ≤8,综上可得x ≤8.16.解:在RtΔABC 中,由条件可得AC =,在ΔMAC 中,∠MAC=45°;由正弦定理可得sin60sin 45AM AC =︒︒,故AM =在直角RtΔMAN 中,MN=AM sin60°=150.三、解答题17.解:(Ⅰ) 解x 2-5x +6=0得的两个根为2,3,依题a 2=2,a 4=3,…2分所以2d =1,故12d =,从而132a =, …4分所以通项公式为a n =a 2+(n -2)d 112n =+ …6分(Ⅱ) 由(Ⅰ)知1222n n n a n ++=,设{}2n na 的前n 项和为S n ,则 2313412...2222n n n n n S +++=++++,① 341213412 (22222)n n n n n S ++++=++++,② …8分①-②得3412131112...242222n n n n n S ++++=++++-123112(1)4422n n n -++=+--所以,1422n n n S ++=- …12分18.解:(Ⅰ)…4分(Ⅱ)质量指标值的样本平均数为 x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 所以平均数估计值为100,…6分 质量指标值的样本方差为 s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+(10)2×0.22+(20)2×0.08=104. 方差的估计值为104. …8分(Ⅲ)依题0.38+0.22+0.08=0.68 < 80%, 所以该企业生产的这种产品不符合“质量指 标值不低于95的产品至少要占全部产品的 80%”的规定. …12分19.(Ⅰ)证明:连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD 3由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=,由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217,所以三棱柱ABC-A 1B 1C 1的高高为217. …12分另解(等体积法):∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得BO 3AC ⊥AB 1,∴111OA B C ==,∴AB =1,2,…9分则等腰三角形ABC 的面积为2212271()24-,设点B 1到平面ABC 的距离为d ,由V B 1-ABC =V A-BB 1C 73121,27d ==解得, 所以三棱柱ABC-A 1B 1C 1的高高为217. …12分20.解:(Ⅰ)圆C 可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. …2分 设M (x ,y ),则(,4)CM x y =-,(2,2)MP x y =--,由题知0CM MP =,…4分 故x (2-x )+(y -4)(2-y )=0,整理得(x -1)2+(y -3)2=2, 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2 …6分(Ⅱ)由(Ⅰ)可知M 的轨迹是以点N (1,3)2 为半径的圆.由于|OP |=|OM |22=O 在线段PM 的 垂直平分线上,又P 在圆N 上,从而ON ⊥PM . …8分因为ON 的斜率为3,所以l 的斜率为13-,直线l 的方程为:12(2)3y x -=--,即1833y x =-+, …10分 又|OP |=|OM |22=O 到l 410,410||PM =,所以ΔPOM 的面积为165. …12分另解:因为|OP |=|OM |22=P ,M 也在圆x 2+y 2=8上,点P ,M 也在圆(x -1)2+(y -3)2=2,…8分 两式相减可得公共弦方程2x +6y -16=0,即1833y x =-+,就是线l 的方程. …10分21.解:(Ⅰ) ()(1)af x a x b x'=+--(x >0),依题f '(1)=0,解得b =1, …3分(Ⅱ)由(Ⅰ)知f (x )= a ln x+212a x --x ,2(1)(1)[(1)]()a x x a x a x a f x x x--+---'==,因为a ≠1,所以f '(x )=0有两根:x =1或1ax a=-. …4分(1)若12a ≤,则11aa≤-,在(1,+∞)上,f '(x )>0,f (x )单调递增.所以存在x 0≥1,使得f (x 0)<1a a -,的充要条件为(1)1a f a ≤-,即1121a aa--<-, 解得2121a -<<. …6分(2)若112a <<,则11a a >-,在 (1,1a a -)上,f '(x ) <0 , f (x )单调递减, 在(,1aa+∞-)时,f '(x )>0,f (x )单调递增. 所以存在x 0≥1,使得f (x 0)<1a a -,的充要条件为()11a af a a≤--, 而()2()ln 112111a a a a a f a a a a a a=++>-----,所以不合题意. …9分(3) 若a >1,则11(1)1221a a af a ---=-=<-.存在x 0≥1,符合条件.…11分 综上,a 的取值范围为:(21,21)(1,)---⋃+∞. …12分22.证明:(Ⅰ)由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE =,CBE E ∴∠=∠,所以D E ∠=∠ (Ⅱ)设BC 的中点为N ,连结MN ,如图所示,则 由MC MB =知BC MN ⊥,所以,O 在MN 上,又AD不是⊙O 的直径,M 为AD 的中点,故AD OM ⊥,即AD MN ⊥,所以BC AD //,故D A ∠=∠,由(Ⅰ)D E ∠=∠,所以△ADE 为等边三角形. 23.解:(Ⅰ)C:⎩⎨⎧==θθsin 3cos 2y x l :062=-+y x(Ⅱ)P 到直线l 的距离为|6sin 3cos 4|55-+=θθd |6sin 3cos 4|55230sin ||0-+==θθd PA ,从而||PA 的最大值为5522,最小值为552 24.解:(I )由112ab a b ab=+≥,得2ab ≥,且当2a b ==时取等号. 故33a b +33242a b ≥≥,且当2a b ==时取等号.所以33a b +的最小值为42. ……5分(II )由(I )知,232643a b ab +≥≥.由于436>,从而不存在,a b ,使得236a b +=.……10分N。

佛山市2014年高三教学质量检测(一)文科数学试题

佛山市2014年高三教学质量检测(一)文科数学试题

图12014年佛山市普通高中高三教学质量检测(一)数 学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置处. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.参考公式:① 柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.② 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数ln y x =的定义域A ,{}01B x x =≤≤,则A B =A .()0,+∞B .[]0,1C .(]0,1D .[)0,12.已知,a b R ∈,i 为虚数单位,若211ia bi i-+=+,则实数a b += A .2 B .3 C . 4 D .5 3.设函数2sin 21y x =-的最小正周期为T ,最大值为A ,则A .T π=,1A =B . 2T π=,1A =C .T π=,2A =D .2T π=,2A = 4.已知1=a ,(0,2)=b ,且1= a b ,则向量a 与b 夹角的大小为A .6π B . 4π C .3π D .2π5.给定命题p :若x R ∈,则12x x+≥; 命题q :若0x ≥,则20x ≥.则下列各命题中,假命题的是A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝6.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是中心角为60︒的扇形,则该几何体的体积为A .3π B .23π C .π D .2π7.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其那么方程220x x x +--=的一个最接近的近似根为A .1.2B .1.3C .1.4D .1.5图28.执行如图2所示的程序框图,若输入n 的值为7,则输出的s 的值为A .22B .16C .15D .11 9.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为A .13 B .12C.3 D.210.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为A . 32B .43C . 2D . 3二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9~13题)11.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 12.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-+<⎩.若()3f a ≤,则a 的取值范围是 .13.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线)1(-=x k y 将可行域分成面积相等的两部分,则实数k 的值为______.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1C ρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知3=AD ,33=AC ,圆O 的半径为5,则圆心O 到AC 的距离为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且a =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.A..A CD B EF图5 图6A C D P E F 排球队 篮球队 图4 佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179.(Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(Ⅱ) 现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?18.(本题满分14分)如图5,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP、PF ,其中PF =(Ⅰ) 求证:PF ⊥平面ABED ;(Ⅱ) 在线段PA 上是否存在点Q 使得//FQ 平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(Ⅲ) 求点A 到平面PBE 的距离.图7如图7,椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F到直线90x -=的距离等于椭圆的短轴长.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P的切线,切点为M ,当QM,求t 的值.20.(本题满分14分)数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,,...3,2,1=n . (Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)记1111n n n c a a +=+,证明:对一切正整数n ,有123111138n c c c c ++++< .已知函数()1ln 2f x x x a x =+-.(Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程;(Ⅱ)求函数()f x 的极值点.2014年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准11.180 12.(,1]-∞13.3- 14.15.2 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)【解析】解法1:(Ⅰ) 因为B C =,所以c b =,……………………………………………………………2分又2a =,所以222cos 2a c b B ac +-=, ………………………3分23b =……………………………………………………………………4分=……………………………………………………………5分 解法2:∵a =,∴sin A B =……………………………………………………2分 ∵B C =,且A B C ++=π,所以sin 2B B =………………………………………3分 又2sin cos B B B =……………………………………4分 ∵sin 0B ≠,∴cos B =…………………………………………………5分(Ⅱ)由(Ⅰ)得sin B ==7分(注:直接得到sin B =不扣分)所以sin 63f B ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭……………………………………………………8分sincos cossin 33B B ππ=+ ………………………………………………10分12424=+⨯ ……………………………………………………11分 38=. ………………………………………………………12分17.(本题满分12分) 【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. ………………………………………………5分 (注:写对茎叶图3分,方差结论正确2分)(Ⅱ) 两队所有身高超过178cm 的同学恰有5人,其中3人来自A B CDPEFQ2人来自篮球队,记为,A B ,……………………………7分则从5人中抽取3名同学的基本事件为:abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;……………………………9分其中恰好两人来自排球队一人来自篮球队所含的事件有:abA ,abB ,acA ,acB ,bcA ,bcB 共6个, ………………11分所以,恰好两人来自排球队一人来自篮球队的概率是63105P ==.…………………………………12分18.(本题满分14分)【解析】(Ⅰ)连结EF ,由翻折不变性可知,6PB BC ==,9PE CE ==, 在PBF ∆中,222201636PF BF PB +=+==, 所以PF BF ⊥………………………………2分 在图1中,易得EF ==……3分在PEF ∆中,222612081EF PF PE +=+==,所以PF EF ⊥………………………………………4分又BF EF F = ,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .……………6分 (注:学生不写BF EF F = 扣1分)(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE . ……………………………………7分 (注:只讲存在Q 满足条件1分) 证明如下:因为23AQ AP =,23AF AB =,所以//FQ BP ………………………………………………………8分 又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以//FQ 平面PBE .………………………………………10分 (注:学生不写FQ ⊄平面PBE ,扣1分)(Ⅲ) 由(Ⅰ)知PF ⊥平面ABED ,所以PF 为三棱锥P ABE -的高. ……………………………11分 设点A 到平面PBE 的距离为h ,由等体积法得A PBE P ABE V V --=, …………………………………12分即1133PBE ABE S h S PF ∆∆⨯=⨯⋅,又169272PBE S ∆=⨯⨯=,1126362ABE S ∆=⨯⨯=, 所以ABE PBE S PF h S ∆∆⋅===,即点A 到平面PBE 的距离为3.……………………14分(注:指出A PBE P ABE V V --=给1给4分) 19.(本题满分14分)【解析】(Ⅰ)设椭圆的方程为22221x y a b+=(0a b >>),依题意,19242b -==, ...........................................................................1分 所以2b = ...............................................................2分 又1c =, (3)分所以2225a b c =+=, (4)分所以椭圆C 的方程为22154x y +=. ……………………………………………………………………5分 (Ⅱ) 设(),Q x y (其中22154x y +=), …………………………………………………………………6分 圆P 的方程为()2221x y t t +-=+, ………………………………………………………………7分排球队 篮球队18 17 16 15 10 3 6 8 9 2 5 8 93 2 9 1 0 8 8 3 2 8因为PM QM ⊥,所以QM ==………………………………………………8分=………………………………………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值, …………………………………………10分且max 2QM ==,解得3182t =<(舍去). ……………………………………………11分当42t ->-即102t <<时,当4y t =-时,QM 取最大值, ………………………………………12分且max 2QM ==,解得218t =,又102t <<,所以4t =.……………………………13分综上,当t =,QM. …………………………………………………………14分20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=. ……………………………………………………1分由2212a b b =,可得222136a b b ==. ……………………………………………………………………2分(Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①. ……………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b 的每一项都是正数,所以1n a +=…②. ………………………………4分于是当2n≥时,n a =. ………………………………………………………5分将②、③代入①式,可得6分因此数列是首项为4,公差为2的等差数列, (7)分()122n d n -=+,于是()241n b n =+. ………………………………………………8分则()41n a n n ==+. …………………………………………………………9分 当1n =时,18a =,满足该式子,所以对一切正整数n ,都有()41n a n n =+.………………………10分 (Ⅲ)方法一:2111114441n a n n n n ⎛⎫==- ⎪++⎝⎭,所以111111142n n n c a a n n +⎛⎫=+=- ⎪+⎝⎭.…………………12分于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ………………………………………………………………14分 方法二:()()()()1111111111414122242n n n c a a n n n n n n n n +⎛⎫=+=+==- ⎪+++++⎝⎭.…………………12分于是12311111111111114324112n c c c c n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L 11113142128n n ⎛⎫=+--< ⎪++⎝⎭. ……………………………………………………………14分 21.(本题满分14分)【解析】()f x 的定义域为()0,+∞.……………………………………………………………………………1分(Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =.因为()1212f x x x '=+-,所以()512f '=, ………………………………………………………………2分所以切线方程为()5212y x -=-,即5210x y --=.……………………………………………………3分(注:有求导思想,虽然运算不对,给1分)(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x +-'=+-=, 令()0f x '=,得10x =>,20x =<(舍去),……………………………5分 且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x的极小值点为x =.…6分⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩. ………………………………7分① 当x a ≥-时,()24212x ax f x x +-'=,令()0f x '=,得1x =,2x a -(舍去). …………………………8分a -,即2a ≤,则()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <,则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………9分② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-, …………………………………10分若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x =,4x =340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<,所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ……………12分综上所述,当2a <-时,()f x的极小值点为x =和x a =-,极大值点为x =;当2a -≤≤,()f x 的极小值点为x a =-; …………………………………………………13分当2a >,()f x的极小值点为x =…………………………………………………14分注:第二问:3大类,每类全正确给3分;(1)若步骤清晰(即求导,解方程,比较两根大小,明确单调区间,得到极值),但计算不全对,给2分;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档