第三章 几何光学
第三章几何光学球面反射折射物像公式
例3.4:
一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为 2cm。若在 离哑铃左端5cm处的轴上有一物点,试求像的位置和性质。
[解]:两次折射成像问题。
n
P
O1
n
P’1 n` O 2
1、P为物, 对球面O1折射成像P1’
已知 : s1 5cm , r1 2cm , n 1, n ' 1.6 n n n n 由折射成像公式 ' r1 s1 s1
沿轴线段
A、凡光线与主轴交点在顶点右方者线段长度数值为正; 凡光线与主 轴交点在顶点左方者线段长度数值为负; B、物点或像点至主轴的距离在主轴上方为正,下方为负。 ② 光线的倾角均从主轴或球面法线算起,并取小于900的角度;由主轴 (或法线)转向有关光线时: A、顺时针转动,角度为正;B、逆时针转动,角度为负。 (注意:角度的正负与构成它的线段的正负无关)
2
r
2
s r
'
2
2 r s ' r cos
光程 PAP ' nl nl ' n
r 2 r s 2 2 r r s cos r
2
n
s r
'
2
2 r s r cos
1、高斯公式:
球面反射 : f ' f 1 1 2 ' s s r
六、理想成象的两个普适公式
n' n n' n 将物像公式 ' 变形为 : s s r n' n r r ' ' ' f f n n n n 1 1 ' ' s s s s
第三章几何光学的基本原理-卓士创($5-6)
其中:
(17)——横向放大率
(18)——角度放大率
(16)
推广:对于共轴光具组,理想成像应满足亥——拉定理,即
(19)
小结
一、 近轴物近轴光线条件下的球面反射
(1) 物象公式
(11)
(2) 横向放大率
(12)
二、近轴物近轴光线条件下的球面折射
(1)物象公式
(13)
(2)横向放大率
(14)
倒立象 ;
(2)公式:
(8)
由图知:
所以有:
近轴光线、近轴物物件下!
(9) ——也适用于单个球面
将
、
代入上式有:
说明:
(1)
,表示放大;
,表示等大;
(2) 对实物而言: ,表示像相对物正立;
对虚物而言: ,表示像相对物倒立;
(10)
,表示缩小。 ,表示像倒立。 ,表示像正立。
参图
小结
一、近轴条件下的薄透镜成像公式
已知: f1’= -f1 =2cm, f2’=-f2=2cm , -r =8cm。试求:(1) d12= 5cm, d23= 10cm,-s2 =1cm ,叉丝P经光学系统成像的位置: S1’ (经L1) 、 S2’ (经L2) 、 S3’ (经L3) 、 S4’ (回经L2) 、 S5’ (又经L1) =? (2)当d12= 5cm时,目镜L1能成1个清晰叉丝像, d23=?
令
球
令
——球面折射公式(2)
面
反
射
令焦距
公
式
⑸
——球面折射公式(3)——高斯公式
由
、
——球面折射公式(4)——牛顿公式
例题3.4 一个折射率为1.6的玻璃哑铃,长为20cm,两端的曲 率半径为2.0cm.若在离哑铃左端5.0cm处的轴上有一物点,试 求像的位置和性质。
第三章-几何光学
第三章、几何光学的基本原理一、选择题1.如图,直角三角形ABC 为一透明介质制成的三棱镜的截面,且30=∠A 0,在整个AC 面上有一束垂直于AC 的平行光线射入,已知这种介质的折射率n>2,则( ) A .可能有光线垂直AB 面射出 B .一定有光线垂直BC 面射出 CC .一定有光线垂直AC 面射出D .从AB 面和BC 面出射的光线能会聚一点 A 300 B2.如图所示,AB 为一块透明的光学材料左侧的端面。
建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。
现有一束单色光a 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个 ( )A. B. C. D.3.如图,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。
a 、b 两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。
则ab 两种单色光的频率υ1、υ2间的关系是( )A 、 υ1 = υ2B 、 υ1 > υ2C 、 υ1 < υ2D 、 无法确定 D 、4、发出白光的细线光源ab ,长度为L ,竖直放置,上端a 恰好在水面以下,如图所示,现考虑线光源ab 发出的靠近水面法线(图中虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以1L 表示红光成的像长度,2L 表示蓝光成的像的长度,则( ) A 、L L L <<21B 、L L L >>21C 、L L L >>12D 、L L L <<125、如图所示,真空中有一个半径为R ,质量分布均匀的玻璃球,频率为0υ的细激光束在真空中沿直线BC 传播,并于玻璃球表面C 点经折射进入玻璃球,且在玻璃球表面D 点又经折射进入真空中,0120=∠COD ,已知玻璃对该激光的折射率为3,则下列说法中正确的是( )A 、 一个光子在穿过玻璃球的过程中能量逐渐变小B 、 此激光束在玻璃球中穿越的时间cRt 3=(c 为真空中光速) 水 a b O CDB α1200y a θ xo A ByxoyxoyxoyxoC 、 改变入射角α的大小,细激光可能在玻璃球的内表面发生全反射D 、 图中的激光束的入射角045=α6、如图所示,两束单色光A 、B 自空气射向玻璃,经折射形成复合光束C ,则下列说法中正确的是:( )A 、 A 光子的能量比B 光子的能量大 B 、 在空气中,A 光的波长比B 光的波长短C 、 在玻璃中,A 光的光速小于B 光的光速D 、 玻璃对A 光的临界角大于对B 光的临界角7、如图所示,激光液面控制仪的原理是:固定的一束光AO 以入射角i 照射到液面上,反射光OB 射到水平的光屏上,屏上用一定的装置将光信号转变为电信号,电信号输入控制系统用以控制液面高度,如果发现光点B 在屏上向右移动了Δs 的距离到B ˊ,则可知液面升降的情况是( )A 、 升高了2S ∆·tan i B .降低了2S ∆·tan i D 、 升高了2S ∆·cot i D 、 降低了2S∆·cot i8.人类对光的本性的认识经历了曲折的过程。
第三章几何光学
第三章 几何光学1.证明反射定律符合费马原理证明:设界面两边分布着两种均匀介质,折射率为1n 和2n (如图所示)。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
(1)反正法:如果反射点为'C ,位于ox 轴与A 和B 点所著称的平面之外,那么在ox 轴线上找到它的垂足点"C 点,.由于'''''',AC AC BC BC >>,故光线'AC B 所对应的光程总是大于光线''AC B 所对应的光程而非极小值,这就违背了费马原理。
故入射面和反射面在同一平面内。
(2)在图中建立坐xoy 标系,则指定点A,B 的坐标分别为11(,)x y 和22(,)x y ,反射点C 的坐标为(,0)x 所以ACB 光线所对应的光程为:222211122[()()]n x x y x x y ∆=-+-+根据费马原理,它应取极小值,所以有111211222221122(sin sin )0()()d n i i dx x x y x x y ∆==-=-+-+即: 12i i =2.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光22(,)B x y(,0)c x'C 题1 图11(,)A x yxyo线的光程都相等。
证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点'S 。
设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光源S 所发出光波的一个波面,而球面DB 是会聚于象点'S 的球面波的一个波面,所以有关系式SC SA =,''S D S B =.因为光程''''SCEFDS SABS SC CE nEF FD DSSA nAB BS⎧∆=++++⎪⎨∆=++⎪⎩ 根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。
光学 第3章 几何光学的基本原理
(1) 偏向角
i1
又
i2
i2
i2 '
i1'i2
A
'
i1 i1' A
(2) 最小偏向角0
当i1改变时 、i1'均随之而改变,当 i1 i1'时,偏向角取最小 0。
0 2i1 A
A
此时在棱镜内传播的光线平行于底边,有:
i2
i2 '
A 2
,i1
i1'
0
2
A
2. 棱镜的折射率
3、折射定律:(1) 折射线在入射线和法线决定的平面内; (2) 折射线、入射线分居法线两侧; (3) 折射角和入射角满足斯涅尔定律:n1sini1=n2sini2
i1 i1'
n1
n2
i2
7 反射和折射定律光路图
3、光的独立传播定律:几个光源发出的光在空间传播并相遇后, 它们将各自保持自己原有的特性(频率、波长、偏振状态)沿原来 的方向继续传播,互不影响。 4、光路可逆原理:当光线的方向反转时,它将逆着同一路径传 播,称为光路可逆原理。
i2 i2
A2 x2,0
i1 i1
B2 n2
x
n1
晰,像的深度由上式确定,y‘ 叫做像似深度 ,y是物的实际深度。
20
(3)像散现象:当i1≠0,即入射光束倾斜入射时,折射光线会发生像散现象。如沿 着倾斜的角度观察水中的物体时,像的清晰度由于像散而被破坏。
例1: 使一束向P点会聚的光在到达P点之前通过一平行玻璃板。如果将玻璃板 垂直于光束的轴竖放,问会聚点将朝哪个方向移动?移动的距离为多少?
A1 A2
P
P'
M
第三章 几何光学的基本原理
第三章几何光学的基本原理干涉和衍射现象揭示了光的波动性。
光既然具有波动性,那么,所有光学现象都应该能用波动概念来解释,包括光的直线传播现象在内。
但是直线传播,尤其是反射,折射成像等问题,如果不用波长、相位等波动的概念,而代之以光线和波面等概念,并用几何学方法来研究将更为方便。
这就是几何光学的研究内容。
由于这只有在波面线度远比波长大时才适用,因此本章所讲述的内容仅以成像的一级近似理论为限,因为这种近似有很大的实用意义。
3.1 光线的概念3.1.1 光线与波面“光线”只能表示光的传播方向,不可以误认为是从实际光束中借助于有孔光阑分出的一个狭窄部分,那么,在极限情况下,选用任意小的孔,就能得到像几何线那样的所谓“光线”,但是由于衍射作用,实际上要分出任意窄的光束是不可能的。
通过半径为R的圆孔的实际光束,其传播范围不可比避免的要扩大,其角宽度由衍射角θ∝λ/R决定[见(2-23)?的情况下,由衍射引起的扩大已不显著,光的传播过程才不用以次波叠式]。
只有在R l加的原理来分析,而只用光线来表示光的传播方向。
我们说“光束由无数光线构成”,不过是说明光沿着无数不同的方向传播罢了。
光波在介质中沿着光线传播时,相位不断地改变,但是同一波面上所有点的相位是相同的。
在各向同性介质中,光的传播方向总是和波面的法向方向相重合。
在许多实际情况中,人们经常考虑的只是光的传播方向问题,而不去考虑相位。
这时波面就只是垂直于光线的几何平面或曲面。
在这种极限情况下,实际上是把光线和波面都看做是抽像的数学概念。
对许多实际问题,特别是光学技术成像和照明工程等问题,借助于上述光线(有时用波面)的概念,并应用某些基本实验定律及几何定律,就可以进行所有必要的计算而不必涉及光的本性问题。
这部分以几何定律和某些基本实验定律为基础的光学称为几何光学(或光线光学)。
反映光的波动性的那部分光学称为波动光学。
在第1、2章波动光学中主要考虑的是波长、振幅和相位;这一章几何光学所考虑的主要将是光线和波面。
光学第三章几何光学
联系光与电磁波
3、λ ——光波长
是否趋近于零 区分几何光学与波动光
学 4、χ ——介质的电极化率
其对光场响应是线性与非线性区分线性 与非线性光学
费马原理
一、费马原理:光在指定的两点间传播时,
实际的光程总是一个极值。其数学表达式为:
B nds 极值(极大值、极小值或恒定值) A
射光束都是单心光束的成像。这也是我们
着重研究的情况。
3、物、像与人眼
问题:
‘
这里的像就是人眼视网膜上所成的
像吗?人眼能否区分物与像?
结论:
对人眼来所,物与像都是进入瞳孔的发
射光束的顶点。物、像、虚像人眼不能分辨。
但对于像,其光束有一定的限制,必须在特定
的范围才能观察到。
光在平面界面上的反射和折射 光学纤维 棱镜
第 三 章 几 何 光 学
三角形孔夫琅禾费衍射图像
本章内容
光线的概念 几何光学的基本定律 费马原理 光束 实象和虚像 平面反射和折射,棱镜的最小偏向角,光
学纤维 光在球面界面上的反射和折射、符号法则 近轴物点近轴光线成像的条件 薄透镜 理想光具组的基点和基面
光线的概念、几何光学的基本定律
B
或: nds 0 A
或:t 1
B
nds 0
ccA
二、几何光学的基本实验定律与费马原理
1、几何光学的基本实验定律或费马原理都可以 作为几何光学出发点,从而建立几何光学内容 体系。 2、由费马原理可以推导几何光学的基本实验 定律。 (1)、光在均匀介质中的直线传播
S
1
l = ([ - r)2 +(r - s)2 + (2 - r)( r - s)cos ] 2
第三章几何光学
sin
l s l s
n n n n s s r
定义:光焦度(m-1)
n n r
表征球面的 光学特性
讨论:
2. 物空间: 入射光束行进的空间 不在物空间的物为 “虚物”!
像空间: 出射光束行进的空间
3. 物方焦点 F , 物方焦距
开
关
4. 测三棱镜折射率
A
偏向角的概念:
i1 i 1i 2 i2
( i1 i1 ) ( i2 i2 ) i1 i2 a
B
n
C
i1 i2 a
a min sin 2 n a sin 2
最小偏向角法
min : i1 i2 min a i2 2
入射光为单心光束时:设n1>n2
2 n1 x y( 2 - 1)tg 3 i1 n2 2 n2 n1 y y [1 ( 2 - 1)tg 2 i1 ]3 / 2 n1 n2
i2
i2+ i2
n2
o
P2 P1
P
x x1
P
x
i1+ i1
i1
改变眼睛的位置,像的位置也改变。 讨论:
最小偏向角入射时, 棱镜内的折射光线 与 底 边 平 行
作业:21、22、3、4
§3.3
光在球面上的反射和折射
3.5
一些专用名词介绍: 顶点、曲率中心、曲率半径
主截面(入射面), 光轴:光学系统中各光学元件的对称轴. (亦称:主轴或主光轴)
一. 符号法则
光线方向
n
A r O
n
u
第三章几何光学基本概念与费马原理
2
教学要求
(1)理解光线和光束的概念 (2)理解物和像的概念,掌握物、像虚实的实质 及判断。 (3)掌握几何光学基本定律,并应用它讨论一些 问题。 (4)了解由惠更原理,费马原理导出几何光学基 本定律,了解费马原理在光学中的地位及作用。 (5)掌握几何光学中的符号法则。
3
(6)掌握用物像公式寻找成像规律。 (7)掌握以光线作图法寻找成像规律。 (8)熟练掌握正确运用物像公式和光线 作图法求解单球面、薄透镜及简单光具组 的成像问题。
y A(x1,y1,o) i i’ D(x,0,0) C(x,0,z) z B(x2,y2,0) x
y 由A 经C 到 B 的光程为
A(x1,y1,o) i i’
B(x2,y2,0)
L n AC n CB
n ( x x1 ) y z
2 2 1 2 2 2 2 2
x
D(x,0,0)
波线
波线
在波场中有一线簇,它们每点的切线方向代表该点波的 传播方向,这种线簇——波线。 在各向同性介质中,波线总是与波面垂直的。
二、 基本实验规律 1 、光在均匀介质中沿直线传播
说明:不均匀介质中,光线弯曲
2 、光的独立传播和光路可逆原理
3、 光的反射定律和折射定律
反射、折射线同在入射面内,并与入射线分居 两侧,且 i' i n1 sin i1 n 2 sin i 2
二、几何光学基本定律 1、光的直线传播定律:
光在各向同性的均匀介质中沿直线传播物体的影子、针孔
成像、日蚀、月蚀、日食、月食都是直线传播的实验。
2、光的独立传播定律: 自不同方向或不同物体发出的光线相遇时,对每一光线 的独立传播不发生影响,相遇前后的传播方向和强度都保 持原来的传播方向和强度。 适用于强度不太大,相干性较差的光线传播。
第三章 几何光学基本原理
② 当i1=0,即当P所发出的光束几乎垂直于界 面时,有 x=0 ,y = y1 = y2 = y n2 n1 。 这表明y近似地与入射角i1无关,则折射光 束是近似单心的,y称为像视深度,y为物的实 际深度。 如果:n1 >n2,那么y<y,即像点p位于物 点p的上方,视深度减小。 (渔民叉鱼) 如果:n1 <n2, 那么y>y,即像点p位于物点 p的下方,视深度增大。 • 例. P162 L 3.1 PPˊ= d(1-1/n)
3.2 费马原理
光在指定的两点间传播,实际的光程总是一个极值
nds 极值(极小值、极大值、恒定值)
B A
在一般情况下,实际光程多取极小值
用费马原理导出折射定律 y
光程最短
(x1,y1) A i
1
C (x,0)
i2
n1
x
n2
B (x2,y2)
光程(ACB)为
n ( AC ) n (CB )
i sin
n1 n2
四. 棱 镜
主截面:垂直于两界面的截面. 偏向角:出射线与入射线间的交角. =(i1-i2 )+(i1 -i2 )= i1 +i2 -A • 最小偏向角:
A
0 1 1 1 2 2
A =2i A , i i , i i (i i A) 2 2 0 A 计算折射率: sin i1 sin 2 n 应用:①分光计 A sin i2 sin 2 ②利用全反射
( s ) ( x) ( f ) s ( f ) ( x)
即: x s f , x s f 于是有: x x = f f ――物像关系牛顿公式
3.6 光连续在几个球面界面上的折射
光学教程___第3章_几何光学的基本原理
i2 ic的光线折射出光纤;i2 ic 的光线在两层介质间多次全
反射从一端传到另一端.
内窥镜、光导通讯……
为了使更大范围内的光束能在纤维中传播,应选择n1和n2的差
值较大的材料去制造光学纤维。
/ 77
20
四.棱镜
主截面:垂直于两界面的截面. 偏向角:出射线与入射线间的夹角.
=(i1-i2 )+(i1 -i2 )= i1 +i1 -A
由P点所发出的单心光束经球面反射后,单心性被破坏
/ 77
26
三、近轴光线条件下球面反射的物像公式
当φ很小时,cosφ 1
l r2 r s2 2 rr s r r s2 s
l' r2 s' r 2 2 r s' r r s' r 2 s'
由:
A
d l
n 2rs rsin 0 P
l
l
-u
i
-i′ l '
-u`
C
P` -s` O
化简有:r l
s
s r l'
0
-r -s
即:1 l'
1 l
1 r
s l'
s l
对一定的球面和发光点P(S一定),不同的入射点对应有不同的S‘。
即:同一个物点所发出的不同光线经球面反射后不再交于一点。
第三章 几何光学的基 本原理
/ 77
1
干涉和衍射现象揭示了光的波动性,所有 光学现象都能够用波动概念解释。但是在波面 线度远大于波长时,研究光的反射,折射成象 等问题,如果不用波长、位相等波动概念而代 之以光线和波面等概念,即用几何的方法来研 究,将更为方便。
第三章 几何光学
几何光学的基本原理
光既然是电磁波,那么光学现象原则上能用波 动概念来解释,但为了简单,用光线、波面的概念, 纯粹几何学的方法来研究共轴球面系统的成像问题 更方便。
条件:衍射效应可忽略
即: 1 1 . 22
l
D
0
所以:几何光学是波动光学在 D >>l 条件下的近似.
教学目的:
1. 牢固掌握新笛卡尔符号法则、高斯公式、牛顿公式;
会聚
平面波, 球面波 发散 曲面波
曲面上的任 一点有两个 主曲面半径.
二. 几何光学的基本实验定律
1. 直线传播定律 2. 光的反射、折射定律 3. 光的独立传播定律 和光路可逆原理 成立条件: 1)均匀、各向同性介质: n =常量 , 2)光强不太强,线性介质 3)光学元件的线度: D >>l
几何光学的例子: 光线的传播.
2 2
x2
x y2
2
2
由费马原理有:
n1 x x1
n2 x2 x
x
x1 y 1
2
2
x2
x y2
2
0
2
x x1 0
必有 x 2 x 0 x 2 x
Y
A x1 , y1
M C x,0 B‘ i2 B x P O’
: 两点间直线距离最短
B A
ds 的极小值为直线
故 : 光在均匀介质中沿直线
传播 .
得证 .
2、折射定律:(在非均匀介质中) 如图示:A点发出的光线入射到两种介质的平面分界面上, 折射后到达B点。
① 折射线在入射线和法线决定的平面内 只需证明折射点C点在交线OO’上即可.
第三章几何光学薄透镜作图求像法
2、透镜作图求像的原理
透镜作图求像的原理是利用焦点、焦平面和光心的性质:
(1)光心:入射光线入射到光心,出射光线从光心 出射并保持原来的传播方向。 (2)焦点:平行于光轴的光线入射到光学系统,出射
的会聚光线的顶点;或平行于光轴的出射光线所对应的入
射的发散光线的顶点。 (3)焦平面:平行光线入射到光学系统后,出射光线必 相交于第二焦平面(像方焦平面)上的一点。
P`
F` P`
O
F`
O
F P
物方焦平面
O
O
P
F
薄透镜的作图求像法
⑴ 利用物方焦平面与副轴作图法(凸透镜) ①从P点作沿主轴的入射线,折射后方向不变; ②从P点作任一光线PA,与透镜交于A点,与物方焦平面交于B点; ③作辅助线(副轴)BO,过A作与BO平行的折射光线与沿着主轴 的折射线交于点P',则P'就是物点P的像点。 ⑵ 利用像方焦平面与副轴作图法(凸透镜) ①从P点作沿主轴的入射线, 折射后方向不变; ②从P点作任一光线PA,与 透镜交于A点;过透镜中心 O作平行于PA的副轴OB‘与 像方焦平面交于B'点; ③连接A、B'两点,它的延长 线与沿着主轴的光线交于点 P',则P'就是所求像点。
(四)、例题
1、已知物点P求像点 P
F
O
P
P
F’
2、已知像点P’,求物点P
F’
O
P
F
P’
3、组合系统的成像
P1
P2
P
F1
F1’
F2’
F2
【习题3.15】有两块玻璃(折射率1.5)薄透镜的两表明面为
凸球面和凹球面,曲率半径均为10cm。若物和镜均浸在水 中(水的折射率1.33),物在主轴上距镜20cm处,作图和 计算求像的位置。
第三章几何光学的基本原理1
i1 0 x 0 n2 y y1 y 2 y n1
i1
y2 y1 P(0, y) P′(x′, y′)
n1
y
此时,弧矢象线和子午象线合为一点,折射光 束为单心光束,象散消失。
34
由以上的讨论可知: 1)光在平面界面上的反射不破坏光束的单心 性,所成的象为完善虚象。 2)光在平面界面上折射,光束的单心性遭到 破坏,折射光束为象散光束,各光线的反 向延长线交于互相垂直的线段——弧矢象 线和子午象线。 3)发光点在平面界面上折射所成的象为不完 善虚象(象散现象)。
P
L(QP) n(r )ds L(l )
Q (l )
是路径(l)的函数,平稳值要求变分为零,
n(r )ds 0,或 L(l ) 0
Q (l )
P
11
*费马原理与三个实验定律 1、光在均匀介质中直线传播 2、反射定律 Q P
M
M’
Q’ 要点:反射光线在入射面,反射角等于入射角,光程最短。
12
3、折射定律
y
Q(x1, y1) i1
A
n1 n2
M(x, 0)
i2 B
x P(x2,y2)
(1)折射光线在入射面内,方法和反射定律推导一样。 (2)入射角和折射角的关系; QMP的光程:
L n1 QM n2 MP n1 y1 ( x x1 ) 2 n2 y2 ( x2 x) 2
后发生漫反射,因而可以看见白纸上的亮点。
而虚象则不能在白纸上显现出来。
物方空间:对某一光学系统,入射光束所在的空间。
象方空间:对某一光学系统,出射光束所在的空间。
(不是指光束的心所在的空间,光学系统的物可以不
第三章-几何光学的基本原理课件
作业: P159---第3、4题
第三章 几何光学的基本原理 §3.3光在球面上的反射和折射
§3.3 光在球面上的反射和折射
3.3.1 几个概念和符号法则 1.物空间和像空间 物空间: 入射光束所在的几何空间 像空间: 经光学系统变换后的光束所在的几何空间 2.球面的顶点、主轴、主截面
为高斯最先建立起光线理想成像的定律。
第三章 几何光学的基本原理 §3.3 光在球面上的反射和折射 当s=- 时,
焦距可写为
则有:
——球面反射的成像 公式
适用条件: ① 近轴光线 ② 凹、凸球面均可,式中各量满足符号法则
P129 例3.3
第三章 几何光学的基本原理 §3.3 光在球面上的反射和折射
3.2.4 棱镜 1.棱镜的主截面: 与棱镜 的棱边垂直的平面。
2.偏向角: 出射光线的方 向和入射光线的方向之间
的夹角9。
因为
当i1 = i1 时,偏向角达到最小值90 , 90 称为最小
偏 向角。 因此,最小偏向角为:
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
又当i1 = i1 时,折射角为i2 = i2=A/2 ,由折射定律:
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
2.光导纤维 利用全反射原理制成的光能量的传输线
光导纤维:内层折射率 大,表层折射率小的透 明细玻璃丝。
光进入光导纤维后, 在内壁上发生全反射, 光从纤维的一端传向另 一端。
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
物方焦点, 用F 表示
f 与f 之比为:
第三章 几何光学
第三章 几何光学(一)§1 基本概念及定律1、光线与波面2、基本定律(实验规律)(1)光在均匀介质中沿直线传播 例:不均匀介质中,光线弯曲(太阳落山)(2)光的反射和折射定律A 、反、折线同在入射面内,并与入射线分居两侧B 、11i i ='C 、211221sin sin n n n i i ==(第二媒质相对第一媒质的相对折射率)例:如反射面凹凸不平,且线度远大于波长,形成漫反射。
(3)光的独立性,光路可逆原理1)sin sin (,sin sin 21122121===i i n n i i3、统一性(折、反、直)折射坐标反演反直传 )射( ,)( ,sin sin 211212122211n n l i n n i i i n i n ≠-=-===§2 费马原理概括了光线传播所遵循的规律光沿光程值为极小、极大或恒定(极值)的路径传播。
⎰=AB 极值ndsδ⎰=BA 0nds大多数情况下是极小:例:用费马原理导出折射定律(光程极小)光:B A →21 n n过A 、B 两点作垂直于界面的平面,交线O O '证明:(1)据费马原理,折射点必在O O '上(即入射面内)反证,如在C ',作垂线O O C C '⊥'''上(即入射面内)使光程不为极小C )()( '''>'''>'''>'B C A B C A B C B C C A C A 因而,折射点C 必在O O '上,入、折两面在同一平面内(2)确定C 点的位置(在O O '上)),( ),,( ),,(2211o x C y x B y x A必有21x x x <<CB n AC n ACB 21)(+=2222221211)()(y x x n y x x n +-++-= 0sin sin )()()()()(221121222222222212111=-='-'=+-+--+--=+i n i n CBB C n AC C A n y x x y x x n y x x x x n dx B A d同理可导出反射定律 费马原理不涉及光沿哪个方向传播,只涉及路径,光从B A →,与A B →,光程为极值的条件相同。
第三章 几何光学的基本原理
β的讨论:
{ β <0, 倒立象
1. 焦点性质
β >0, 正立象
{ |β| <1,
· F ·
F'
|β| >1,
放大
缩小
三、薄透镜的作图法成象
2. 光心性质
O
3. 物(象)方焦平面性质
F 注: (1)光线方向,箭头不可少; (2) 辅助线用虚线。 举例:
F'
P •
•
F' P • F
• P'
利用 物方焦点 象方焦点
二、几何光学的基本定律
1. 直线传播定律 均匀介质中光沿直线传播。 非均匀介质中,光以曲线传播,向折射率增大方向弯曲
夏日柏油路上的倒影 mirage
2. 反射和折射定律 ▲反射光和折射光在入射面内; n1 sin i1 n2 sin i2 ▲ ' i1 i1 3. 光的独立传播定律和光路可逆原理 光按照一定的规律传播,若传播方向逆转,光路不变
本章小结
3.1 光线的概念
一、光线与波面
1、光源:发光物体统称光源 点光源 面光源 以外形抽象 扩展光源 分类 线光源 2、光线:表示光波能流传播方向 3、波面:是电磁波位相相同点的集合 在各向同性媒质中,能量传播方向垂直于波面, 即光线是波面的法线方向。
平面波 平行光
球面波 发散光
球面波 会聚光
光线PAP'的光程为: △ =nl+n'l' =n [r2+(-s +r)2-2r(-s +r)cosφ]1/2 +n'[r2+(s' -r)2+2r(s' -r)cosφ]1/2 根据费马原理:
第三章几何光学
如图,光线好像是从虚像 P'
点P 发出的,人眼无法直
接辨别光束的顶点是否有
实际光线通过。
P
22
把发出发散光束的像点看作物,对于下一个球面的折射来 说,可以认为与真正的发光物点没有区别,而且不必考虑 这个像是实还是虚。
物与像的区别:由于球折射面的大小有一定的范围,故对 折射光束的张角是有一定的限制。因此,像点发散光束的 张角是有限的,小于。而实物可以向各个方向发光,其 张角可以是大于,而等于2。
因为折射率和长度L1 和L2 均为正值,所以只有y
=0 (1)式才成立。就是说,折射点P在交线OO’
上, P点位于过A、B两点且垂直于折射界面的平 面内(x0y平面内),即证明了入射光线、法线和 折射光线三者在同一平面内。
16
如图
sini1
x
x1 L1
sini2
x2 L2
x
因此(2)式可写成:
7
n1
n2
S1
Av1
S2
v2
n3
S3
n iS i
v3
vi
Sk vk
nk
B
光从A点经过几种不同的均匀介质到达B
点,所需时间为:
ts1 s2
sk
ik
si
1 2
k i1 i
因为介质的折射率 ni ci ,
所以上式可写为
t
1 c
ik i1
ni si .
8
也可以说,光沿着所需时间为极值的路径传播。 费马原理是几何光学的基本原理。
14
令AP=L1,PB=L2 ,则由A点
到B点的光程为:
z•A
Ln1L1n2L2
n1
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章、几何光学的基本原理一、选择题1.如图,直角三角形ABC 为一透明介质制成的三棱镜的截面,且30=∠A 0,在整个AC 面上有一束垂直于AC 的平行光线射入,已知这种介质的折射率n>2,则( ) A .可能有光线垂直AB 面射出B .一定有光线垂直BC 面射出C .一定有光线垂直AC 面射出D .从AB 面和BC 面出射的光线能会聚一点 B2.如图所示,AB 为一块透明的光学材料左侧的端面。
建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。
现有一束单色光a 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个 ( )A. B. C. D.3.如图,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。
a 、b 两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。
则ab 两种单色光的频率υ1、υ2间的关系是( )A 、 υ1 = υ2B 、 υ1 > υ2C 、 υ1 < υ2D 、 无法确定 D 、4、发出白光的细线光源ab ,长度为L ,竖直放置,上端a 恰好在水面以下,如图所示,现考虑线光源ab 发出的靠近水面法线(图中虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以1L 表示红光成的像长度,2L 表示蓝光成的像的长度,则( ) A 、L L L <<21B 、L L L >>21C 、L L L >>12D 、L L L <<125、如图所示,真空中有一个半径为R ,质量分布均匀的玻璃球,频率为0υ的细激光束在真空中沿直线BC 传播,并于玻璃球表面C 点经折射进入玻璃球,且在玻璃球表面D 点又经折射进入真空中,0120=∠COD ,已知玻璃对该激光的折射率为3,则下列说法中正确的是( )A 、 一个光子在穿过玻璃球的过程中能量逐渐变小B 、 此激光束在玻璃球中穿越的时间cRt 3=(c 为真空中光速)C 、 改变入射角α的大小,细激光可能在玻璃球的内表面发生全反射D 、 图中的激光束的入射角045=α6、如图所示,两束单色光A 、B 自空气射向玻璃,经折射形成复合光束C ,则下列说法中正确的是:( )A 、 A 光子的能量比B 光子的能量大 B 、 在空气中,A 光的波长比B 光的波长短C 、 在玻璃中,A 光的光速小于B 光的光速D 、 玻璃对A 光的临界角大于对B 光的临界角7、如图所示,激光液面控制仪的原理是:固定的一束光AO 以入射角i 照射到液面上,反射光OB 射到水平的光屏上,屏上用一定的装置将光信号转变为电信号,电信号输入控制系统用以控制液面高度,如果发现光点B 在屏上向右移动了Δs 的距离到B ˊ,则可知液面升降的情况是( )A 、 升高了2S ∆·tan i B .降低了2S ∆·tan i D 、 升高了2S ∆·cot i D 、 降低了2S∆·cot i8.人类对光的本性的认识经历了曲折的过程。
下列关于光的本性的陈述符合科学规律或历史事实的是 ( )(A )牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的. (B )光的双缝干涉实验显示了光具有波动性. (C )麦克斯韦预言了光是一种电磁波. (D )光具有波粒二象性.9.玻璃棱镜的折射棱角A 为60°,对某一波长的光其折射率n 为1.6.则最小偏向角为( ) A 46°16′ B 45°16′ C 30°16′ D 45°16′10.高5cm 的物体距凹面镜的定点12cm ,凹面镜的焦距是10cm,,求像的位置( ) A 60cm B -60cm C 100cm D -100cm11. 高5cm 的物体距凹面镜的定点12cm ,凹面镜的焦距是10cm,,求像的高度( ) A 45cm B-45cm C 25cm D -25cm12. 一平面镜与水平桌面成45°角,一小球以1m/s 的速度沿桌面向平面镜匀速滚去(如图3所示),则小球在平面镜里的像( )B B ˊ液面YYWIYA.以1m/s的速度做竖直向上运动;B.以1m/s的速度做竖直向下运动;C.以2m/s的速度做竖直向上运动;D.以2m/s的速度做竖直向下运动二、填空题1.一个5cm 高的物体放在球面镜前10cm处成1cm搞的虚像,则此镜的曲率半径为,此镜是(凸面镜/凹面镜)。
2. 和现象揭示了光的波动性。
3.凡是具有单个顶点的光束称为4.不同波长的光在同一介质中的折射率不同,这种现象称为5.欲使由无穷远出发的近轴光线通过透明球体并成像在右边球的定点处,则这透明球的折射率为6.有以折射率为1.5、半径为4cm的玻璃球,物体在距球表面6cm处时,物体成像到球心距离为,像的横向放大率为7.一个折射率为1.53、直径为20cm的玻璃球内有两个小气泡,看上去一个恰好在球心,另一个从离观察者最近的方向看去,好像在表面与球心连线的中点上,则两气泡的实际位置在、8.直径为1m的球形鱼缸的中心有一条小鱼,若玻璃缸壁的影响可以忽略不计,则缸外的观察者看到的小鱼位置在9.玻璃棒的一端成半球形,其曲率半径为2cm,将它水平的侵入折射率为133的水中,沿着棒的轴线离球面顶点8cm处的水中有一物体,则像的位置在,横向放大率为10.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm,一物点在主轴上距镜20cm处,若物和镜都浸在水中,则像点的位置在、(设玻璃的折射率为1.5,水的折射率为1.33)三、简答题1.几何光学的基本实验定律是哪些?2.简述费马原理3.棱镜的主要用途有哪些(至少两点)四、画图题1.有一面镜子竖直挂在墙壁上,如图所示,在镜子前面有A、B、C三个物体,人眼在图中位置能从镜子里看到哪几个物体的像。
()2.如图所示,在房间的A墙上水平排列着两个字母“FB”,小明站在房间里通过B墙上的平面镜看到字母的像是()(①“FB”或②“”)(填写序号);若A墙与B墙相距4m,则字母的像与字母间的距离为()m。
3.如图所示,S是一个发光点,S’是它在平面镜中成的像,SA是S发出的一条光线,请在图中画出平面镜的位置和SA经平面镜反射后的光线。
4.如图所示,电视遥控器对着天棚也能控制电视机。
图中从A点发出的光经天棚MN反射后射入电视机的接收窗口B,试画出其光路图。
5.如图所示:发光点S在平面镜MN中的像为S1,当平面镜转过一定角度后,它的像为S2,请你利用平面镜成像特点,画出转动后平面镜的大致位置。
6.如图所示,S为一发光点,S'和S在平面镜中的像,S发出的一条入射光线的反射光线在AB方向上,请在图中画出平面镜的位置及这条入射光线。
7. 如图所示是某同学制作的昆虫观察箱.请你画出她通过平面镜观察昆虫下部的光路图(可取昆虫下部的任何一点作图)8. 作出下列各图的入射光线(或反射光线、镜面、折射光线)并标出入射角、反射角或折射角。
9. 根据平面镜成像特点画出镜中的像(或镜前的物体)。
10. 如图所示,发光点S所发出的光,经平面镜AB反射后,在障碍物CD的后面出现一片光明亮区,请画出明亮区的范围。
五、计算题1.证明反射定律符合费马原理。
2.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.3.高5cm 的物体距凹面镜的焦距顶点12cm ,凹面镜的焦距是10cm,求像的位置及高度. 4.某观察者通过一块薄玻璃板去看凸面镜中他自己的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起,若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离灵40cm,问玻璃板观察者眼睛的距离为多少?5.欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率为多少?6.有一折射率为1.5,半径为4cm 的玻璃球,物体在距球表面6cm 处,求(1)物所在的像到球心之间的距离;(2)像的横向放大率.7.直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率.8..玻璃棒一端成半球形,其曲率半径为2cm.将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图.9.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm.一物点在主轴上距离20cm 处,若物和镜均浸在水中,分别用作图法和计算法求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.10.一凸透镜在空气中的焦距为40cm,在水中时焦距为136.8cm,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于CS 2中(CS 2的折射率为1.62),其焦距又为多少?11.两片极薄的表玻璃,曲率半径分别为20cm 和25cm.将两片的边缘粘起来,形成内含空气的双凸透镜,把它置于水中,求其焦距为多少?12.把焦距为10cm 的会聚透镜的中央部分C 切去,C 的宽度为1cm,把余下的两部分粘起来(题3.12图).如在其对称轴上距透镜5cm 处置一点光源,试求像的位置.13.一折射率为1.5的薄透镜,其凸面的曲率半径为5cm,凹面的曲率半径为15cm,且镀上银(见题3.13图).试证明:当光从凸表面入射时,该透镜的作用相当于一个平面镜.(提示:物经过 凸面折射,凸面反射和凹面再次折射后,s’=-s,b=1.)ABCBA题3.12图题3.13图14.双凸透镜的折射率为1.5, │r 1│=10cm ,│r 2 │=15cm ,r 2 的一面镀银,污点P 在透镜的前主轴上20cm 处,求最后像的位置并作出光路图。
15.一厚透镜的焦距f ′为60mm ,其两焦点间的距离为125mm,若(1)物点置于光轴上物方焦点左方20mm 处 ;(2)物点置于光轴上物方焦点右方20mm 处;(30)虚物落在光轴上像方主点右方20mm 处,文在这三种情况下像的位置各在何处?像的性质各如何?16.两个焦距均为2m的双凸透镜,其间距离为4/3组成一个目镜,求其焦点和节点的位置,如他们的焦距分别为6c 和2cm,间距为4cm 再求其焦点和节点的位置17一个会举薄透镜和一个发散薄透镜互相接触而成一复合光具组,当物距为-80cm时,实像距镜60cm,若会聚透镜的焦距为10cm,问发散透镜的焦距是多少?18一焦距为20cm的薄凸透镜与一焦距为20cm的薄凹透镜相距6cm,求:(1)复合光具组焦点及主平面的位置。