全同态加密算法研究与实现

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全同态加密算法研究与实现素质拓展报告

FHE 的应用价值早就被众人所熟知,但是直到目前为止,还没有真正实用的FHE 方案。2009 年,Gentry 首次创造性地提出基于理想格的第一个 FHE 方案之后,FHE 的研究再一次成为了众多密码学家和公司关注的焦点。因此,FHE方案的构造是当前密码学领域的主要研究的问题之一。

在以前的基于“译码难题(其中包括格上难题)”陷门的非对称同态密码方案的构造过程中,密码学家所考虑的是如何将有限的双同态的“限”做大,使得它能够接近无限的双同态。其具体做法是将密文空间的“模”尽可能的做大而能够容纳大尺寸的误差。但是,这样做的代价是密文空间的尺寸将大得难以承受。

2009 年 Gentry 创造性的提出了一个新的 FHE 方案的构造方法 [2] 。由于明文比特之间的“异或”运算和“与”运算构成了操作完备集,Gentry 基于一个对“异或”操作(或者是 mod 2 加法运算)和“与”操作(或者是 mod 2 乘法运算)同态加密

方案来实现 FHE 方案的构造,其主要构造思想是:

构造一个支持有限次“异或”操作(或者是 mod 2 加法运算)和“与”操作(或者是 mod 2 乘法运算)同态的加密方案。在构造一般的同态加密方案时,为了保证安全性,Gentry 引入了噪声。但是随着同态操作的进行,噪声的值将迅速增长,当噪声的尺寸过大时,解密会出错。

为了降低噪声的尺寸,Gentry 考虑到可以对解密运算进行“密文端的同态运算”——重加密(recrypt),从而实现压缩噪声的尺寸进而继续进行加法同态和乘法同态运算。为此,Gentry 引入了重加密和自举的概念。Gentry 的构造方法完成了一个不可思议的功能:解密算法不但能够表示成简单的布尔运算,而且该运算竟然能够进行“密文端的同态运算”;通过递归式自嵌入的方式,一般地同态加密方案可以转化为 FHE 方案。

重加密技术是通过实施“密文端的同态运算”来实现的。假设消息 m 在公钥1pk 作用下的密文为1c ,符号 D 表示解密电路。如果使用加密公钥2pk 加密1sk 后的解密密钥为1sk ←Encrypt(2pk 1sk),通常情况下,对于一个加密方案实施二次加密的过程是:首先对外层加密进行解密,而后才能对内层加密进行解密。但是, Recrypt 算法的奇妙之处正在于它能够突破这种常规,具有直接对”内层加密”实施解密的能力。当然,在这个过程中,必须保证密文的噪声不会增大或者增长不能太大。

相关文档
最新文档