整式、分式、二次根式的性质和概念;教学内容

合集下载

数学中的二次根式与分式方程

数学中的二次根式与分式方程

数学中的二次根式与分式方程二次根式是数学中的一种重要概念,与之相关的分式方程也是数学中一个常见且有挑战性的问题。

本文将介绍二次根式的定义、性质以及与分式方程的关系,并通过例题进行具体说明。

一、二次根式的定义与性质1. 定义:二次根式是形如√a 的数,其中 a 为非负实数。

其中,√a 可以理解为满足b^2 = a 的非负实数b。

在二次根式中,a 称为根式的被开方数,b 称为根式的值。

2. 性质:(1)二次根式的值是不唯一的,因为一个数的平方可能有两个相反的值。

(2)二次根式的乘法:√a * √b = √(a * b)。

即根式的乘积等于被开方数的乘积的二次根式。

(3)二次根式的除法:√a / √b = √(a / b)。

即根式的商等于被开方数的除法的二次根式。

二、分式方程的概念与解法1. 概念:分式方程是一个含有分式的方程,其中方程中至少有一个变量(未知数)存在于分式中。

2. 解法:解决分式方程的关键是将方程中的分式转化为整式,从而得到更简化的等式。

下面将介绍三种常见的解法。

(1)通分法:将方程中的所有分式的分母找出最小公倍数,并使每个分式的分母都等于最小公倍数,然后将方程两边同乘以最小公倍数,消去分母。

(2)消去法:通过观察可以将分式方程进行简化,将分子或分母中某些数值相同的项通过消去的方式,从而得到一个更简单的等式,进而求解。

(3)代换法:对于某些特定的分式方程,可以通过适当的代换使得方程更加简洁,然后利用已知的数学性质求解。

三、例题分析1. 题目:求解方程 3 / (x+2) + 2 / (x-1) = 1解法:采用通分法解此方程。

首先,找到最小公倍数为 (x+2)*(x-1),然后将方程两边同时乘以(x+2)*(x-1),得到 3*(x-1) + 2*(x+2) = (x+2)*(x-1)。

经过展开和整理后,得到 7x - 7 = x^2 + x - 2。

进一步整理后变为 x^2 - 6x + 5 = 0。

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

初中数学教学大纲

初中数学教学大纲

初中数学教学大纲初中数学教学大纲一、课程性质与任务数学是研究空间形式和数量关系的学科。

在当代社会中,数学的应用越来越广泛,成为人们参加社会生活、从事生产劳动和研究、研究现代科学技术必不可少的工具。

数学的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。

初中数学是素质教育的主要学科之一,是研究物理、化学、计算机等学科以及参加社会生活、生产和进一步研究的基础。

通过必要的数学教育,学生可以具备一定的数学素养,有助于提高全民族素质,为培养社会主义建设人才奠定基础。

二、课程教学目标初中数学的教学目的是:使学生学好当代社会中每一个公民适应日常生活、参加生产和进一步研究所必需的代数、几何的基础知识与基本技能,进一步培养运算能力,发展思维能力和空间观念,使他们能够运用所学知识解决简单的实际问题,并逐步形成数学创新意识。

同时,培养学生良好的个性品质和初步的辩证唯物主义的观点。

三、教学内容的确定初中数学课程分为代数和几何两个大部分。

在代数方面,选择一个公民所必需的代数、几何中最基本最有用的部分作为初中数学的教学内容。

在理论要求和题难度方面,应当适当。

在几何方面,要注意数学知识的系统性,符合学生的认识规律,处理好数学各部分内容之间的联系,特别是数与形的结合,初中内容与小学内容的衔接。

同时,还要注意与物理、化学等邻近学科的配合。

一年级下学期至三年级同时安排代数和几何。

四、教学内容与要求第一章代数教学要求:1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简化运算,并能够使用计算器或算表计算平方、立方、平方根和立方根。

2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则,能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。

3.使学生了解有关方程、方程组的概念,灵活运用一元一次方程、二元一次方程组和一元二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元二次方程的根的判别式。

2011中考数学代数式、整式、分式、二次根式知识点

2011中考数学代数式、整式、分式、二次根式知识点

2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。

二次根式全章教案(8课时)

二次根式全章教案(8课时)

初二数学二次根式全章教案授课时间:年月日第周星期课时序号一、课前导学:学生自学课本2-3页内容,并完成下列问题 1. 温故而知新:(1)如果一个数x 的平方等于a ,即2x =a ,那么x 叫做a 的,记为x =,(2)如果一个非负数x 的平方等于a ,即2x =a (0≥x ),那么非负数x 叫做a 的,记为x =, (3)计算下列各式的值:=,=,=,=,=,2)9(=,2.一般地我们把形如()叫做二次根式,a 叫做_____________, 3. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3, 16-, 34, )0(3≥a a , 12+x4.根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31(根据计算结果,你能得出结论: (0≥a ), 5.计算:(1)2)23( (2)2)52(- 二、合作、交流、展示: 1.理解二次根式概念(1)二次根式a 中,字母a 必须满足 ; (2)二次根式与算术平方根有何关系呢? (3)当0≥a 时,a 是什么数?教 学 过 程 设 计2)3(________)(2=a【归纳】二次根式的双重非负性: 2.当x 取何值时,下列各二次根式有意义(1); (2)x 322- (3)2)2(-x (4)x--21 3.若,则= ,4.已知,求xy的值.【收获感悟】:, 三、巩固与应用1. 若x -在实数范围内有意义,则x 为(), A.正数 B.负数 C.非负数 D.非正数2.当x 时,二次根式x 35-有意义,3. 在式子xx+-121中,x 的取值范围是____________.4.在实数范围内因式分解:①72-x ② 4a 2-115a 的值为___________. 6.已知42-x +y x +2=0,则=-y x _____________. 7.已知+3,求y x 的值.8.拓展提高:已知a 、b =b +4,求a 、b 的值.四、小结:1.二次根式的概念:; 2.二次根式的性质:(1),(2); 3.巧用非负数解题. 五、作业:《作业本》第1页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 43-x 20a -2a b -一、课前导学:学生自学课本第4页内容,并完成下列问题 1.计算:=24=23.0=2)52(=20观察其结果与根号内幂底数的关系,归纳得到:当=≥2,0a a 时2.计算:=-2)4(=-2)3.0(=-2)52(=-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3.【归纳】二次根式的性质:=2a = 4.化简下列各式:(1)=22.0(2)=-2)3.0( (3)=-2)4( (4)()22a =(0<a )5.代数式:用基本运算符号把连接起来的式子叫做代数式. 二、合作、交流、展示:1.理解二次根式三条基本性质: (1)双重非负性:a 0() (2)()=2a () (3) =2a2.【讨论】二次根式的性质:)0()(2≥=a a a 与a a =2有什么区别与联系?教 学 过 程 设 计3.化简下列各式(1))0(42≥x x (2) 4x (3))3()3(2≥-a a4.已知2<x <3,化简:3)2(2-+-x x5.已知a 、b 、c 在数轴上的位置如图所示,化简b b c c a a ---++-22)(.三、巩固与应用 1. 课本第4页练习2; 2.2)4(-π= ;3.a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________; 4.你能运用公式a a =2比较53与34的大小吗?5.当x = 6.拓展提高:(1)已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx(2)已知实数a 满足a a a =-+-2014)2013(2,求22013-a 的值.四、小结:1.二次根式的性质:,,;2.灵活运用二次根式的性质解题. 五、作业:《作业本》第2页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号一、课前导学:学生自学课本6-7页内容,并完成下列问题1、探究 ⑴ 计算下列各式,观察计算结果:①×=______ ,=_______ ② × =_______ ,=_______ ③ × =_______ , =_______ ⑵ 仔细观察上题中的规律,猜想b a ∙=()0,0≥≥b a (二次根式乘法法则)再例举两个例子验证你的猜想:; 2、计算× =;×= ;274∙= ;123∙=3、乘法公式反过来得到:=ab ()0,0≥≥b a ,4、填空:⑴=∙=⨯=24248;=∙=⨯=292918;⑵请你用上述方法化简下列二次根式: 12=; 27=; 48=; 72=; 98=; 250x =;二、合作、交流、展示:1.二次根式的乘法法则:b a ∙=,注意:乘法法则成立的条件是: (为什么?)2、积的算术平方根的性质(乘法法则的逆向运用)=ab 注意:⑴性质成立的条件是:(为什么?) ⑵如何化简:()()94-⨯-?4994⨯16252516⨯1003636100⨯23563、例题1 计算:⑴3127⨯ ⑵4510152⨯ ⑶1531372⨯-例题2 化简:⑴()()8116-⨯- ⑵3225b a ⑶4499ab ⑷【收获感悟】:如何进行二次根式的化简,例题3 计算:⑴714⨯ ⑵10253⨯ ⑶ xy x 31122⨯-三、巩固与应用 1、等式成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-12、下列各等式成立的是( ). A.4×2=8B .5×4=20 C.5×2=10 D .y x y x +=+224、不改变式子的值,把根号外的数移到根号里面: ⑴=32 ; ⑵313=;⑶ -=62 5、比较下列两数的大小:⑴227 ⑵347 ⑶23-32-6、已知一个三角形的一条边长为502,这条边上的高为83,求这个三角形的面积.7、计算:(1)6×(-2); (28、(拓展)化简⑴a a 1 ⑵aa 1-四、小结:1.二次根式的乘法法则:; 2.积的算术平方根的性质:, 五、作业:《作业本》第3页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 2212b a 1112-=-∙+x x x 55532532686一、课前导学:学生自学课本第8-9页内容,并完成下列问题 1、写出二次根式的乘法法则和积的算术平方根的性质b a ∙=,=ab2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1;(2; (3;(4.你能发现什么规律呢?一般地,对二次根式的除法规定:二次根式的除法法则商的算术平方根的性质 4、计算:(1)312(2)16141÷5、化简:(1)257(2)932(3))0,0(42522≥>b a a b 二、合作、交流、展示:仿照课本例题利用二次根式的除法法则和商的算术平方根的性质完成以下题目1、计算:(1(2(3)52154【温馨提示】:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,教 学 过 程 设 计被开方数之商为被开方数。

中考总复习《数与式》教案

中考总复习《数与式》教案

中考总复习教案第一章数与式《数与式》是初中数学的基础知识,是中考命题的重要内容之一,年年考查,北京近三年来在新课标中考试题中“数与式”部分的权重:35%左右,分量之中,不容忽视!一、本章知识要点与课时安排(大致安排五课时左右)(一)实数(一课时)(二)整式与因式分解(一至两课时)(三)分式与二次根式(两课时)(四)数式规律的探索(可以揉到前面几讲中去讲,也可以单设一课时)说明:您可以根据自己学生的学习程度,合理安排复习内容.二、课时教案第一课时实数教学目的1.理解有理数的意义,了解无理数等概念。

2.能用数轴上的点表示有理数,掌握相反数的性质,会求实数的绝对值.3。

会用科学记数法表示数。

4.会比较实数的大小,会利用绝对值知识解决简单化简问题.5.掌握有理数的运算法则,并能灵活的运用.教学重点与难点重点:数轴、绝对值等概念及其运用,有理数的运算。

难点:利用绝对值知识解决简单化简问题,实数的大小比较.教学方法:用例习题串知识(复习时要注意知识综合性的复习).教学过程(一)知识梳理1。

2.(二)例习题讲解与练习例1在3.14,1-,0,,cos30°,,,0.2020020002…(数字2后面“0”的个数逐次多一个)这八个数中,哪些是有理数?哪些是无理数?(考查的知识点:有理数、实数等概念.考查层次:易)(最基本的知识,由学生口答,师生共同归纳、小结)【归纳】:(1)整数与分数统称为有理数(强调数字0的特点);无限不循环小数是无理数。

注意:常见的无理数有三类①π,…②,,…,(不是无理数)③0.1010010001…(数字1后面“0”的个数逐次多一个).(2)一个无理数加、减、乘、除一个有理数(0除外)仍是无理数(是无理数).注:此题可以以其它形式出现,如练习题中2或12题等例2(1)已知a—2与2a+1互为相反数,求a的值;(2)若x、y是实数,且满足(x—2)2+=0,求(x+y)2的值.(考查的知识点:相反数的性质、二次根式的性质、非负数等概念.考查层次:易)(这是基础知识,由学生解答,老师总结)【总结】:(1)对于一个具体的数,要会求它的相反数(倒数、绝对值、平方根与算术平方根),对于一个代数式,也要会求它的相反数.解答是要注意从概念中蕴涵的数学关系入手:a、b互为相反数a+b=0;a、b互为倒数a·b=1.(2)非负数概念:例3 (1)若数轴上的点A表示的数为x,点B表示的数为—3,则A与B两点间的距离可表示为________________.(2)实数a、b在数轴上分别对应的点的位置如图所示,请比较a,—b,a-b,a+b的大小(用“<"号连接)___________________.(3)①化简_________;②=__________;③估计与0.5的大小关系是0.5(填“ > "、“="、“〈”) .(答案:(1);(2)a+b〈a〈-b<a—b;(3)①;②;③>)(考查的知识点:数轴、绝对值、比较大小等概念,无理数的估算、有理数的运算法则等。

二次根式的概念和性质(提高)知识讲解

二次根式的概念和性质(提高)知识讲解

二次根式的概念和性质(提高)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简. 【要点梳理】要点一、二次根式及代数式的概念 1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1、; 2.;3..要点诠释: 1.二次根式(a ≥0)的值是非负数。

一个非负数可以写成它的算术平方根的形式,即2(0a a a =≥).2a 2()a 要注意区别与联系:1).a 的取值范围不同,2)a 中a ≥02a a 为任意值. 2).a ≥0时,2()a 2a a ;a <0时,2)a 2a a -.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变(合并同类二次根式的方法与整式加减运算中的合并同类项类似). 要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式. 【典型例题】类型一、二次根式的概念1.(天津期末)已知y=+﹣4,计算x ﹣y 2的值.【思路点拨】根据二次根式有意义的条件可得:,解不等式组可得x 的值,进而可求出y的值,然后代入x ﹣y 2求值即可. 【答案与解析】解:由题意得:,解得:x=, 把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x ﹣y 2=﹣16=﹣14.【总结升华】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 举一反三【变式】方程480x x y m -+--=,当0y >时,m 的取值范围是( )A .01m << B.m ≥2 C.2m < D.m ≤2【答案】 C.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三【变式】(铁东区校级月考)问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3. (罗平县校级模拟)已知,1≤x≤3,化简:=_______.【思路点拨】由题意1≤x≤3,可以判断1﹣x≤0;x﹣3≤0,然后再直接开平方进行求解.【答案】2.【解析】解:∵1≤x≤3,∴1﹣x≤0,x﹣3≤0,∴=x﹣1+3﹣x=2.【总结升华】此题主要考查二次根式的性质和化简,计算时要仔细,是一道基础题.【高清课堂:高清ID号: 381279关联的位置名称(播放点名称):经典例题4】4.已知c b a ,,为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=. 【答案】a b c ++. 【解析】c b a ,,为三角形的三边,0,0,0a b c b c a b c a ∴+->--<+->,即原式=a b c a c b b c a +-++-++-=a b c ++. 【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.类型三、最简二次根式5.已知0<a <b ,化简2232232a b b ab aa b a b a b+-+-+.【答案与解析】原式=222()()a b b a a b a b a b +--+=1()()()a b b a a b a b ab a b a b +-⨯+⨯-++=1a b ab-+. 【总结升华】2a a =成立的条件是a >0;若a <0,则2a a =-.类型四、同类二次根式6. 如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( ) A.a =2,b =1 B.a =1,b =2 C. a =1,b =-1 D. a =1,b =1【答案】 D. 【解析】根据题意,得,解之,得,故选D.【总结升华】同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a 、b 的二元一次方程组,此类问题都可如此.举一反三【变式】若最简根式与根式是同类二次根式,求a 、b 的值.【答案】同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简==|b|×由题意得,∴,∴a =1,b=1.二次根式的概念和性质(提高)巩固练习【巩固练习】一、选择题1. (贵港)式子在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≤1C .x >1D .x ≥1 2.使式子有意义的未知数x 有( )个A .0B .1C .2D .无数 3. 把mm 1-根号外的因式移到根号内,得( ). A .m B .m -C .m --D .m -4.(蓬溪县校级模拟)下列四个等式:①2(4)4-=;②(﹣)2=16;③()2=4;④2(4)4-=-.正确的是( ) A.①② B.③④ C.②④ D.①③5. 若 ,则等于( ) A .B .C .D .6.将a a --中的a 移到根号内,结果是( ) A .3a -- B. 3a - C.3a - D.3a 二. 填空题7. 若最简二次根式与是同类二次根式,则.8. (江干区一模)在,,,﹣,中,是最简二次根式的是_________.9.已知,求的值为____________.10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第 n(n ≥1)个等式写出来________________.12. (乐山)在数轴上表示实数a 的点如图所示,化简+|a ﹣2|的结果为 .三. 综合题13. 已知x x y 211221-+-+=,求22y xy x ++的值. 14. 若时,试化简.15. (武昌区期中)已知a 、b 、c 满足+|a ﹣c+1|=+,求a+b+c 的平方根.【答案与解析】一、选择题 1.【答案】C.【解析】依题意得:x ﹣1>0,解得x >1.2.【答案】B. 3.【答案】C. 4.【答案】D. 【解析】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确; ④==4≠﹣4,不正确.①③正确.故选:D .5.【答案】D. 【解析】 因为=22(4)a +,即222(4)4A a a =+=+.6.【答案】 A.【解析】因为a ≤0,所以a a --=23()()a a a a a ---=---=--.二、填空题 7.【答案】1;1. 【解析】12,1;2534a a a b a +=∴=+=+又,所以1b =. 8.【答案】52. 9.【答案】5.【解析】23100x x x -+=∴≠,13,x x ∴+=即21()9x x+=,2217x x ∴+=,即原式=725-=. 10.【答案】3.【解析】因为原式=21x x -++=213x x -++=.11.【答案】 11(1)22n n n n +=+++ . 12.【答案】 3.【解析】由数轴可得:a ﹣5<0,a ﹣2>0,则+|a ﹣2|=5﹣a +a ﹣2=3.三、解答题 13.【解析】因为1+21122y x x =--2x-1≥0,1-2x ≥0,即x=12,y=12则2234x xy y ++=. 14.【解析】 因为,所以原式==23523510x x x x x x x -+++-=-+++-=-. 15.【解析】解:由题意得,b ﹣c ≥0且c ﹣b ≥0,所以,b ≥c 且c ≥b , 所以,b=c ,所以,等式可变为+|a ﹣b+1|=0,由非负数的性质得,,解得,所以,c=2, a+b+c=1+2+2=5, 所以,a+b+c 的平方根是±.。

整式、分式、二次根式

整式、分式、二次根式

第二讲 整式、分式一、课标下复习指南 (一)代数式1.代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独一个数或表示数的字母也叫做代数式.2.求代数式的值用数值代替代数式里的字母,按照代数式指明的运算计算出结果,叫做求代数式的值. 3.代数式的分类(二)整式1.整式的有关概念(1)单项式及有关概念由数字和字母的积组成的代数式叫单项式,单独的一个数和单独的一个字母也叫单项式.单项式的数字因数叫做这个单项式的系数,所有字母的指数之和叫做这个单项式的次数.(2)多项式及有关概念几个单项式的和叫做多项式.在多项式中,每个单项式叫多项式的项,其中,不含字母的项叫做常数项.多项式里次数最高的项的次数叫多项式的次数.(3)同类项的概念 多项式中,所含字母相同,相同字母的指数也相同的项,叫做同类项.两个常数项也是同类项.2.整式的运算(1)整式的加减 ①合并同类项把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.②添(去)括号法则如果括号前面是正号,括号里的各项都不变符号;如果括号前面是负号,括号里的各项都改变符号.③整式的加减几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项.(2)整数指数幂及其运算性质①整数指数幂正整数指数幂:⎪⎩⎪⎨⎧≥⋅⋅⋅⋅==),2(),1(为正整数个n n a a a a n aa n n零指数幂:10=a (a ≠0).负整数指数幂:n n aa 1=-(a ≠0,n 为正整数). ②整数指数幂的运算性质(以下四式中m ,n 都是整数) a m ·a n =a m +n : (a m )n =a mn ;(ab )m =a m ·b m . a m ÷a n =a m -n(a ≠0). (3)整式的乘法①单项式乘以单项式,把它们的系数、相同字母分别相乘;对于只在一个单项式里含的字母,连同它的指数作为积的一个因式.②单项式乘以多项式,根据分配律用这个单项式去乘多项式的每一项,再把所得的积相加.③多项式乘以多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.④乘法公式:(a +b )(a -b )=a 2-b 2; (a ±b )2=a 2±2ab +b 2;常用的几个乘法公式的变形:a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ;(a -b )2=(a +b )2-4ab .(4)整式的除法(结果为整式的)①单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,只在被除式里含有的字母,连同它的指数也作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3.因式分解的概念 (1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解.②因式分解后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简,同时,每个因式的首项不含负号.③多项式的因式分解是多项式乘法的逆变形. (2)因式分解的方法 ①提公因式法:ma +mb +mc =m (a +b +c ). ②运用公式法: a 2-b 2=(a +b )(a -b ); a 2±2ab +b 2=(a ±b )2:*③十字相乘法:x 2+(a +b )x +ab =(x +a )(x +b ).④用一元二次方程求根公式分解二次三项式的方法:ax 2+bx +c =a (x -x 1)(x -x 2).(当b 2-4ac ≥0时,,2421a acb b x -+-=)2422aac b b x ---=(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用乘法公式分解;③对于二次三项式,可先尝试用十字相乘法分解;④检查每一个因式是否都已分解彻底,是否符合要求.必要时,可用多项式的乘法运算从结果逆推回去,以检验因式分解所得结果是否正确. 4.分式(1)分式的有关概念①分式:若A 和B 均为整式(其中B 中含有字母),则形如BA的式子叫做分式. 注意 对于一个分式BA,字母的取值必须使分母B 的值不为零. ②最简分式:分子、分母没有公因式的分式叫做最简分式. 注意 关于分式概念的应用,一般有以下几种: 分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0⇔⎩⎨⎧≠=.0,0分母分子分式值为1⇔⎩⎨⎧==.0,分母分母分子分式值为正⇔分子、分母同号. 分式值为负⇔分子、分母异号.(2)分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.M B MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). (3)分式的运算①加减法:bd bc ad d c b a ±=±.特别地,当b =d 时,b c a b c b a ±=±. ②乘法:⋅=bdacd c b a . ③除法:bcadc d b a d c b a ==÷.(此法则将分式的除法转化为乘法). ④乘方:n nn b a ba =)((n 为正整数).二、例题分析例1 下列运算中,计算结果正确的个数是( ).(1)a 4·a 3=a 12;(2)a 6÷a 3=a 2;(3)a 5+a 5=a 10;(4)(a 3)2=a 9;(5)(-ab 2)2=ab 4;(6)⋅=-22212x x A .无 B .1个 C .2个 D .3个 解 A .说明 整数指数幂的运算性质是整式运算的基础,容易混淆.其原因是做题时不按性质做,而是跟着感觉走,必须培养良好的做题习惯.例2 如果关于x ,y 的单项式2ax my 与5bx 2m -3y 是同类项,(1)求(9m -28)2009的值;(2)若2ax m y +5bx 2m -3y =0,并且xy ≠0,求(2a +5b )2009的值. 解 ∵2ax m y 与5bx 2m -3y 是同类项, ∴2m -3=m .解得m =3. (1)(9m -28)2009=(9×3-28)2009=-1.(2)∵m =3,且2ax my +5bx 2m -3y =0, ∴2ax 3y +5bx 3y =0,即(2a +5b )x 3y =0. 又∵xy ≠0,∴2a +5b =0. ∴(2a +5b )2009=02009=0.说明 此题考查了同类项的概念,要注意同类项与单项式的系数无关.在合并同类项时,只要将它们的系数合并,而字母及字母的指数不变.例3 计算: (1);)3()41(212335a b a b a -⋅-÷ (2)(3xy 3-9x 4y 2)÷3xy -(x 2-2xy )·4x 2.解 (1)原式=23359)41(21a b a b a ⋅-÷.189)4(21242335b a a ba b a -=⋅-⨯=(2)原式=y 2-3x 3y -4x 4+8x 3y=y 2+5x 3y -4x 4.说明 正确运用幂的运算法则是进行幂的运算的关键.单项式相乘除时,要注意运算顺序,先做乘方,然后按从左到右的顺序做乘除法.例4 计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a +b -1)(a -b +1)-a 2+(b +2)2. 解 (1)原式=8x 2-(3x 2-5x -2)-2(x 2-4x -5) =8x 2-3x 2+5x +2-2x 2+8x +10 =3x 2+13x +12.(2)原式=[a +(b -1)][a -(b -1)]-a 2+(b +2)2 =a 2-(b -1)2-a 2+(b +2)2=(b +2)2-(b -1)2=(b +2+b -1)(b +2-b +1) =(2b +1)×3=6b +3.说明 在整式运算中,要注意:(1)灵活运用运算律、运算法则和乘法公式,寻找合理、简捷的运算途径;(2)利用乘法公式进行计算时,要分析式子的特点,正确选择公式,尤其要注意公式中字母的顺序及符号;(3)当几个多项式乘积前面出现负号时,处理负号的方法是可将负号视为(-1)先与其中的一个因式相乘,或将负号后面的多项式结合在一起先相乘,然后利用去括号法则去括号.例5 把下列各式分解因式:(1)6(a -b )2+8a (b -a ); (2)(x +y )2-4(x +y )+4; (3)16x 2-(x 2+4)2; (4).4412+-x 解 (1)原式=6(a -b )2-8a (a -b ) =2(a -b )[3(a -b )-4a ] =2(a -b )(3a -3b -4a ) =-2(a -b )(a +3b ).(2)原式=[(x +y )-2]2=(x +y -2)2. (3)原式=(4x )2-(x 2+4)2 =[4x +(x 2+4)][4x -(x 2+4)] =-(x 2+4x +4)(x 2-4x +4) =-(x +2)2(x -2)2.(4)原式)16(412--=x).4)(4(41-+-=x x说明 (1)分解因式必须进行到每一个因式都不能再分解为止(每个因式分别整理、化简后,一般要按降幂排列);(2)如果多项式最高次项的系数是负数,一般要提出负号,使括号内该项的系数是正数;(3)遇到有多项式乘方时,应注意下面的规律:(b -a )2k =(a -b )2k ;(b -a )2k +1=-(a -b )2k +1(k 为整数).(4)注意换元思想在因式分解中的应用:将题目中相同的代数式看成一个整体去提取公因式、运用乘法公式或进行十字相乘.例6 (1)当x 取何值时,分式6532+--x x x 无意义?(2)当x 取何值时,分式12922---x x x 有意义?值为零?解 (1)要使分式无意义,只需x 2-5x +6=0.解得x 1=2,x 2=3.∴当x =2或x =3时,分式无意义.(2)要使分式有意义,只要使x 2-x -12≠0,解得x ≠-3且x ≠4. ∴当x ≠-3且x ≠4时,分式有意义.要使分式的值为零,只⎪⎩⎪⎨⎧=/--=-.012,0922x x x解得⎩⎨⎧≠-=/-==.43,33x x x x 且或∴当x =3时,分式的值等于零.说明 (1)确定分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式;(2)只有当字母的取值使分子的值等于零且分母的值不等于零时,分式的值才等于零;(3)注意准确使用“或”和“且”字.例7 计算: (1)2121111x x x ++++-; (2)⋅--++--÷++-+296.4144222222x x x x x x x x x x 解 (1)原式212)1)(1(11x x x x x +++--++=)1)(1()1(2)1(21212222222x x x x x x +--++=++-= 414x-=. (2)原式.1)2)(2(.)2()2)(1(2--+++-=x x x x x x ⋅+++=++=-++1961)3()2)(1()3(222x x x x x x x x说明 对异分母的分式相加减时,一般先通分,变为同分母的分式,然后再加减.对于某些具体的分式运算也可以采取一些特殊的方法,如(1)题采用逐步合并的方法.对于分子、分母都是多项式的分式进行乘除运算时,一定要先将每个多项式分解因式,然后将除法统一为乘法,最后再进行约分,如(2)题.对于运算结果,一般的,二次的多项式应乘开.例8 已知12-=a ,化简求值:⋅+-÷++--+-24)44122(22a a a a a a a a解法一 原式42])2(1)2(2[2-+⨯+--+-=a a a a a a a 41)212(-⨯+---=a a a a a ⋅+=-⨯+-=)2(141)2(4a a a a a a .122,12+=+∴-=a a ∴原式.1)12)(12(1=+-=解法二 由12-=a ,得21=+a ,平方,移项,可得a 2+2a =1.∴将原式化简为aa 212+后,立即得其值为1. 例9 已知x +y =-4,xy =-12,求+++11x y 11++y x 的值. 解 原式)1)(1()1()1(22+++++=y x x y=1121222++++++++y x xy x x y y1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式,∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2说明 求代数式的值的问题,一般先将所求代数式进行化简,然后利用已知条件求值.在使用条件时有三种方式:(1)将已知条件直接代入计算;(2)将已知条件变形后再代入计算;(3)将已知条件整体代入再计算求值.例10 已知321=+xx ,求441x x +的值.解 2)1(122244-+=+xx x x2]2)32[(2]2)1[(2222--=--+=xx=102-2=98.说明 此题是反复运用完全平方公式把所求代数式变形,使问题得解. 三、课标下新题展示例11 在解题目“当x =1949时,求代数式x x x x x x x 122444.222-+-÷-+-+1的值.”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.解 聪聪说得有道理.∵原式11)2(2.)2)(2()2(2+--+-+-=xx x x x x x ,1111=+-=xx ∴只要使原式有意义,无论x 取何值,原式的值都相同,为常数1.例12 某种长途电话的收费方式如下:接通电话的第=分钟收费a (a <8)元,之后的每=分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .ba-8分钟 B .b a +8分钟 C .bba +-8分钟D .bba --8分钟解 C .说明 用代数式表示实际问题中的数量关系,是一类常见的考题.二次根式一、课标下复习指南 (一)二次根式的有关概念 1.二次根式形如)0(≥a a 的式子叫做二次根式. 2.最简二次根式(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 满足上述两个条件的二次根式叫做最简二次根式. (二)二次根式的主要性质1.)0(≥a a 是一个非负数; 2.);0()(2≥=a a a 3.⎩⎨⎧<-≥==);0(),0(||2a a a a a a4.);0,0(≥≥⋅=b a b a ab5.);0,0(>≥=b a ba ba6.若a >b ≥0,则.b a > (三)二次根式的运算1.二次根式的加减二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. *3.分母有理化把分母中的根号化去,分式值不变,叫做分母有理化.常用的二次根式的有理化因式: (1)a 与a 互为有理化因式;(2)b a +与b a -,一般的,b c a +与b c a -互为有理化因式;(3)b a +与b a -,一般的,b d a c +与b d a c -互为有理化因式. 二、例题分析例1 当x 为何值时,下列代数式有意义? .1)2(;322)1(232x x x x x -+----解 (1)欲使3222---x x x 有意义,只要使⎩⎨⎧=/--≥-.032,022x x x 即⎩⎨⎧≠-=/≥.31,2x x x 且 解得x ≥2且x ≠3. ∴当x ≥2且x ≠3时,3222---x x x 有意义.(2)欲使231x x -+-有意义,只要使-x 2≥0,解得x =0. ∴当x =0时,231x x -+-有意义.说明 代数式有意义的条件:分式有意义的条件是分式的分母不为零;二次根式有意义的条件是被开方数为非负数;由实际意义得到的代数式还要符合实际意义.例2 化简:(1);14962123xx x x x -+ *(2)已知1<x <2,化简122+-x x .442x x +-+ 解 (1)原式x x x x x x 4221-+=x x 23-=(2)∵1<x <2,∴x -1>0,2-x >0. 224412x x x x +-++-∴22)2()1(x x -+-==|x -1|+|2-x |=(x -1)+(2-x )=1.说明 (1)二次根式的化简要考虑最简二次根式的两个条件,根号内是多项式时,要考虑是否是完全平方式;(2)化简2a 时,要考虑字母a 的取值范围;(3)在二次根式运算中,根号外的因式可以平方后作为被开方数的因式移进根号内,从而使运算简化.例3 计算:(1);22)8321464(÷+- (2)+⋅-+-5()625()2332(202.)6219 解 (1)原式22)262264(÷+-=.232+=(2)原式=5)(625[()1861212(-++-62561230)625()]6219-+-=-⋅+.61435-=说明 整式和分式的运算性质在二次根式的运算中同样适用,乘法公式、分配律、约分等都有可能简化运算过程,要根据式子的结构特征灵活使用.例4 已知xy =3,求yxyx y x+的值. 分析 因为xy =3,所以x ,y 同正或同负,要分情况讨论. 解 当x >0,y >0时, 原式.322==+=xy xy xy 当x <0,y <0时,原式.322-=-=--=xy xy xy 综上可知,原式.32±= 三、课标下新题展示例5 若n 20是整数,则满足条件的最小正数n 为( ). A .2B .3C .4D .5解 D .说明 对于二次根式的性质:||);0()(22a a a a a =≥=,会有多种形式进行考查,要熟练掌握.例6 对正实数a ,b ,定义,*b a ab b a +-=若4*x =44,则x 的值是______. 解 依题意,得.4444=+-x x 整理,得.484=+x x 变形,得.4912)(2=++x x.49)1(2=+∴x71=+∴x 或,71-=+x 6=x 或8-=x (舍). ∴x =36.经检验,x =36是原方程的解. ∴x 的值是36.说明 此题考查了阅读理解能力、完全平方公式、二次根式的性质、配方法解方程,是一道代数综合题,要求每个基本知识点都熟练掌握.四、课标考试达标题(一)选择题1.下列各式中正确的是( ). A .-2(a -b )=-2a -b B .(-x )2÷x 3=xC .xyz ÷(x +y +z )=yz +xz +xyD .(-m -n )(m -n )=n 2-m 2 2.下列等式中不成立的是( ).A .y x y x y x -=--22 B .y x yx y xy x -=-+-222 C .y x yxyx xy -=-2 D .xyx y y x x y 22-=-3.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( ). A .①②B .①③C .②③D .①②③ 4.用配方法将代数式a 2+4a -5变形,结果正确的是( ). A .(a +2)2-1B .(a +2)2-5C .(a +2)2+4 D .(a +2)2-95.已知411=-b a ,则ab b a b ab a 7222+---的值等于( ).A .6B .-6C .152D .72-(二)填空题6.某公司2009年5月份的纯利润是a 万元,如果每个月纯利润的增长率都是x ,那么预计7月份的纯利润将达到______万元(用代数式表示). 7.多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是______ (填上一个正确的即可).8.若2x=3,4y=5,则2x -2y的值为______. 9.观察下面的单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,写出第7个式子是______.10.已知),3,2,1()1(12=+=n n a n , b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出b n 的表达式为b n =______.(用含n 的代数式表示) (三)解答题 11.求63)(41)(21ba b a b a b a --++++-的值,其中|a -1|=-(b +2)2.12.在实数范围内分解因式:(1)4x 4-1;(2)x 2+2x -5.13.观察下列等式:,322322,211211-=⨯-=⨯=.,433433 -=⨯(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.14.按下列程序计算,把答案填写在表格内,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)发现的规律是:(3)用简要的过程证明你发现的规律.(一)选择题1.在根式⑤④③②①;2;15;;5223ab a a -2;12a a ⑥中,最简二次根式是( ).A .②③⑤B .②③⑥C .②③④⑥D .①③⑤⑥2.如果最简根式ab b -3和22+-a b 是同类二次根式,那么a 、b 的值分别是( ).A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-23.下列各式中,运算正确的是( ). A .553322=+ B .236=÷ C .632=D .12233=-(二)填空题4.当x 满足______条件时,32++-x x在实数范围内有意义. 5.若式子|2|)1(2-+-x x 化简的结果为2x -3,则x 的取值范围是______. 6.已知x 为整数,且满足32≤≤-x ,则x =______.7.观察下列各式:=+=+412,312311514513,413=+…请你将发现的规律用含自然数n 的等式表示出来______.(n ≥1)(三)解答题 8.计算:.)2(xy yxxyxy ⋅+-9.化简:.)23(36329180-++--10.先化简,再求值:423)225(--÷---a a a a ,其中.33-=a。

初中数学整式 分式教案

初中数学整式 分式教案

初中数学整式分式教案教学目标:1. 理解整式和分式的概念及其性质;2. 掌握整式和分式的运算方法;3. 能够运用整式和分式解决实际问题。

教学内容:1. 整式和分式的概念及其性质;2. 整式和分式的运算方法;3. 实际问题中的应用。

教学过程:一、导入(5分钟)1. 引导学生回顾整数的定义,强调整数的重要性;2. 提问:能否用整数解决一些实际问题?引出整式的概念;3. 介绍整式的性质,如加减乘除运算等。

二、新课讲解(15分钟)1. 介绍分式的概念,解释分式与整数的关系;2. 讲解分式的性质,如分子分母的运算规律;3. 演示分式的运算方法,如约分、通分等;4. 举例说明分式在实际问题中的应用。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 选几位同学回答问题,检查掌握情况;3. 针对学生回答中的问题进行讲解和辅导。

四、课堂小结(5分钟)1. 回顾本节课所学内容,强调整式和分式的概念及其性质;2. 提醒学生掌握整式和分式的运算方法;3. 鼓励学生在日常生活中运用整式和分式解决实际问题。

五、作业布置(5分钟)1. 布置课后作业,要求学生巩固整式和分式的知识;2. 鼓励学生进行自主学习,探索更多有关整式和分式的知识。

教学反思:本节课通过导入、新课讲解、课堂练习、课堂小结和作业布置等环节,让学生掌握了整式和分式的概念及其性质,以及运算方法。

在教学过程中,注意引导学生积极参与,鼓励学生提问和发表自己的观点,使学生在轻松愉快的氛围中学习。

同时,结合实际问题,让学生感受到整式和分式在生活中的应用,提高了学生的学习兴趣。

但在教学中也存在一些不足,如课堂时间安排不够合理,导致课堂练习时间较为紧张。

在今后的教学中,应更加注重课堂时间的分配,保证课堂练习的充足时间,使学生能够更好地巩固所学知识。

同时,针对不同学生的学习情况,采取个性化的教学方法,使每个学生都能在课堂上得到充分的关注和指导。

二次根式的讲解

二次根式的讲解

二次根式的概念与性质一、知识结构:知识要点梳理知识点一:二次根式的概念一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。

(2) 3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

如与,a+与a-,-与+,互为有理化因式。

关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。

如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)象“,”等虽然可以进行开方运算,但它们仍属于二次根式。

知识点二:二次根式的性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.(6)若,则。

注意与的逆用。

要点诠释:二次根式(a≥0)的值是非负数,其性质可以正用亦可逆用,正用时去掉根号起到化简的作用;逆用时可以把一个非负数写成完全平方的形式,有利于在实数范围内进行因式分解.要注意以下问题:(1)因为被开方数a2≥0(非负数),所以a可以取任意实数。

人教版五四《轴对称,整式乘除因式分解,分式,二次根式》全册知识点

人教版五四《轴对称,整式乘除因式分解,分式,二次根式》全册知识点

整式乘除及因式分解知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

5n m ,都是正整数)逆运算为:同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

________3=⋅a a ;________32=⋅⋅a a a 532)()()(b a b a b a +=+∙+,6n m ,幂的乘方,底数不变,指数相乘。

如:10253)3(=-23326)4()4(4==_________)(32=a ;_________)(25=x ;())()(334a a =7、积的乘方法则:n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-________)(3=ab ;________)2(32=-b a ;________)5(223=-b a8n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷________3=÷a a ;________210=÷a a ;________55=÷a a91。

p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

1.14二次根式的意义及性质

1.14二次根式的意义及性质

1.14二次根式的意义及性质班级_________ 姓名____________________一、学习目标1、了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;2、了解二次根式的概念及其加、减、乘、除运算法则,要求掌握分母为一项或两项的无理式的分母有理化,会用它们进行有关实数的简单四则运算.二、学习重点难点1、重点: 二次根式的有关概念和性质及二次根式的四则运算。

2、难点:二次根式的四则运算以及分母有理化。

三、学习过程1、二次根式的有关概念(1)二次根式式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或O .(2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式. 2、二次根式的性质 ).0;0();0;0();0(),0(||);0()(22>≥=≥≥⋅=⎩⎨⎧<-≥==≥=b a b a b a b a b a ab a a a a a a a a a3、二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.(2)三次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化. 例1:在什么条件下,下列各式是二次根式?(1)b a - (2)a--25 例2:x 取什么实数时,下列各式有意义。

第22章二次根式全章教案

第22章二次根式全章教案

二次根式教学内容:本节课时从解决实际问题出发,通过人造地球卫星围绕地球运行的事例引入课题,概括出二次根式定义,并明确a的意义,认识二次根式的性质教学目标1、知识与技能:理解二次根式的定义,以及二次根式a中字母a的实际内涵2、过程与方法.经历“抽象出二次根式概念的过程.理解学习二次根式的意义,培养思维能力以及二次根式的概念的应用方法.3、情感、态度与价值观.让学生经历探究的过程、交流的过程,激发学生的学习兴趣,培养学生分析问题的能力和提高数学的应用意识.重难点、关键1.重点:理解二次根式的概念和性质2.难点:对二次根式a中字母a的认识·3.关键:通过算术平方根的意义来认识二次根式中a,感受到当a是负数时,a没有意义.教学准备1.教师准备:实物投影仪,补充到一些现实生活中与二次根式有关的图片,事例2.学生准备:复习平方根和算术平方根的意义.教学过程一、创设情境,合作交流1.回顾交流.(1)教师活动:提出以下问题供学生复习.(使用投影仪或小黑板)①什么叫做有理数?什么叫做无理数?什么叫做实数?请同学们举例说明.②什么叫做算术平方根?在正数、零、负数中哪些数有算术平方根?哪些数没有算术平方根,为什么?学生活动:先与同桌相互讨论,再举手发言.学生交流.回答后由教师进行完善和归纳.(2)教师归纳:”,其中正数a的①我们知道,正数a有两个平方根,即“a正的平方根叫做a 的算术平方根,记作a ,0的平方根也叫做0的算术平方根..②注意:当a 是正数或0(又叫做非负数)时,a 表示a 的算术平方根.③负数没有平方根,因此负数算术平方根也不存在.也就是说:在a 中,a 必须大于或等于0,a 没有意义。

2.导入新知(1)教师活动:充分应用投影仪,将图片展示给学生,同时引入新知(2)投影展示课题:二次根式图片:如课本第1页中实际的问题以及所收集的有关事例学生活动:在教师的引导下,观察所展示的图片,思考问题,感受到抽象出无理数二次根式的概念的过程,认识到二次根式的应用价值在师生完成上述探索之后,教师引导学生形成二次根式的概念(2)教师归纳:我们已经遇到过如16、0、a 这样的式子,知道符号“”叫做二次根号,二次根号下的数叫做被开方数,因为在实数范围内,负数没有平方根,所以被开方数只能是正数或0,也就是说:被开方数只能是非负数,一般地式a (a ≤0)叫作二次根式,即有a ≥0(a ≥0); ()2a =a (a ≥0) 二.范例学习,加深理解 例:x 是怎样的实数时,式子7-x 有意义? 教师分析:若要使得7-x 有意义,被开方数7-x 必须大于0或等于0,即7-x ≥0由此得x ≥7教师板书:略教师提问:请同学们再阅读课本第2页例题材,加深理解,然后做以下练习。

整式、分式、二次根式的性质和概念;教学内容

整式、分式、二次根式的性质和概念;教学内容

精品文档第五章整式、分式、二次根式的知识梳理1、整式的概念和指数:_________ 与 ________ 统称为整式。

单项式包括:________ 、__________ 、_____________ ;一个单项式中所有字母的________________ 叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

单项式中次数最______ 的项就是这个多项式的次数。

2、分式的概念和意义:A一般地,形如式子一,且B M0叫做分式。

B(1)、分式有意义的条件:(2)、分式无意义的条件:(3)、分式为0的条件:(4)____________________________________________________ 、分式的基本性质:分式的分子与分母同时_________________________________ 一个不等于0)的整式,分式的值不变。

(5)、约分:(6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。

(7)、通分:(8)、最简公分母:(9)、分母有理化:把分母中的根号化去,叫做分母有理化。

注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。

3、二次根式的概念和意义:(1)、定义:形如<a (a>0)的式子,叫做二次根式。

(2)、二次根式有意义的条件:二次根式无意义的条件:(3)、二次根式的性质:x a =a(a > 0);a ( a0 ) 0 (a 0 )a (a 0 )(a > 0, b > 0);i a a④;b =—b (a '0, b >0)。

(4) 、最简二次根式:_______ 中不含二次根式;被开方数中不含能开得尽的因数或因式。

(5) 、同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式知识点二:代数式的运算(一)、整式的加减运算(1) 、同类项:(2) 、合并同类项法则:(3) 、去括号法则:(4) 、整式的加减的实质就是合并同类项。

实数、整式、分式、二次根式教学目标

实数、整式、分式、二次根式教学目标

实数、整式、分式、二次根式教学目标下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!实数、整式、分式、二次根式教学目标在数学学习中,实数、整式、分式、二次根式是基础而重要的概念。

高一上册数学详解知识点

高一上册数学详解知识点

高一上册数学详解知识点数学是一门基础学科,对于学生来说,掌握数学知识点是十分重要的。

在高一上册数学学习中,有许多重要的知识点需要我们深入理解和掌握。

本文将详细介绍高一上册数学中的一些重要知识点。

1. 整式与分式整式指不含有分式的代数式,包括常数、变量、常数与变量之积的和或差。

分式指含有分式的代数式,包括有理式和无理式。

理解整式与分式的基本概念对于后续的数学学习非常重要。

2. 二次根式与分式方程二次根式是指形如√a的代数式,其中a是一个非负实数。

掌握二次根式的性质和运算法则,并了解分式方程的解的概念与求解方法。

3. 一次函数与一次方程一次函数是指函数y=kx+b,其中k和b都是常数。

一次方程是指形如ax+b=0的代数式,其中a和b都是已知数,x是未知数。

理解一次函数与一次方程的关系,能够灵活运用斜率和截距的概念,以及解一次方程的方法。

4. 二次函数与二次方程二次函数是指函数y=ax^2+bx+c,其中a、b和c都是已知数且a≠0。

二次方程是指形如ax^2+bx+c=0的方程,其中a、b和c都是已知数且a≠0。

掌握二次函数与二次方程之间的联系,熟练运用二次函数图像的性质,以及解二次方程的方法。

5. 等差数列与等差数列求和等差数列是指数列中任意相邻两项之差都相等的数列。

了解等差数列的定义和通项公式,并能够求解等差数列的前n项和,推导等差数列求和公式。

6. 等比数列与等比数列求和等比数列是指数列中任意相邻两项之比都相等的数列。

掌握等比数列的定义和通项公式,并能够求解等比数列的前n项和,推导等比数列求和公式。

7. 勾股定理与三角函数勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。

认识勾股定理的性质,并熟悉三角函数的定义,能够根据给定的三角函数值求解三角函数方程。

8. 概率与统计概率是研究随机事件的发生规律的数学分支,统计是指对大量数据进行收集、整理、分析和解释的过程。

掌握概率的基本概念、常见事件的概率计算方法,以及统计中的频数、频率等基本概念和统计图表的绘制方法。

人教版初中数学《二次根式》单元教材教学分析

人教版初中数学《二次根式》单元教材教学分析
下必要的基础
单元目标
知识与技能:了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式掌握二次根式的性质及加减乘除法则
熟练进行二次根式的化简和加、减、乘、除四则运算
过程与方法:经过观察、比较、总结等数学活动,经历从具体问题到一般规律的探索过程,用具体数据探究规律,用不完全归纳法得出二次根式的
性质,利用逆向思维,得出二次根式的乘(除)法规定。
情感、态度与价值观:运用它们进行化简和计算感受和体验发现的快乐提高应用意识
重点、难点与关键
教学重点:运用二次根式的概念和性质熟练进行化简和运算。
教学难点:正确理解与运用二次根式的性质。
关键点:运用二次根式的概念和性质熟练进行化简和运算。
教学方法和手段的设计
主要教学方法、手段、选用的教学媒体讲授法、练习法;小黑板,班班通
学生思想教育和行为习惯的培养及学习方法
行为决定习惯,习惯决定品质,品质决定命运。习惯不是一般的
行为,是经过反复训练而养成的语言行为、思维等生活方式,它是
头脑中所建立起来的一系列条件反射。从心理上说,行为一旦变成
了习惯,就会成为人的一种需要。中学学阶段是培养习惯的关键期,
第二课时:二次根式的性质
第三课时:二次根式的乘除
第四课时:二次本学期开始,分别进行以常规、卫生、文明礼仪、安全、学习习惯等几方面为主的养成教育。以培养学生良好习惯,树立良好校风,做到校风、校容、校纪有较大改观,全校各班在卫生习惯、品德习惯、
安全习惯、学习习惯的养成等方面有较大的进展,并以此建立我校养
成教育的长效机制。
课时安排
第一课时:二次根式的概念
人教版初中数学《二次根式》单元教材教学分析
学段及学科

人教版初中数学《二次根式》单元教材教学分析

人教版初中数学《二次根式》单元教材教学分析
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力, 培养学生一丝不苟的科学精神.
教学方法和手段的设计
采用学生自主类比学习、双主互动教学方法:运用多媒体技术做好动态演示,增强教学的直观性。
学生思想教育和行为习惯的培养及学习方法
教学时一定要根据教材内容,从具体数字的算术平方根的运算中观察规律,归纳得出二次根式的性质、运算法则,编写意图,让学生通过观察、思考、讨论等,经历从特殊到一般的过程,归纳得出有关结论。
(3)加强运算技能训练,提高运算能力
运算技能的训练是代数教学的基本任务,本章的训练点在两个方面。一是用二次根式的运算法则进行运算,核心是有效地利用二次根式的性质和乘法法则、除法法则,其中将各式转化为最简二次根式是关键步骤;二是运算习惯的培养,与数感、符号意识等相关,具体可以从先观察,后计算、先化为最简二次根式,后计算、利用乘法公式进行计算等方面着手。(4)加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。通过多种教学方法,充分调动学生的学习积极性,使学生形成主动学习的意识,教学中通过鼓励性的语言激励学生,使水同层次的学生都能得到鼓励,以此增强他们的学习信心。
人教版初中数学《二次根式》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《二次根式》
单元教材主题内容与价值作用
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十五章《分式》、第十四章《整式的乘除》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 整式、分式、二次根式的知识梳理
1、整式的概念和指数:
与 统称为整式。

单项式包括: 、 、 ;
一个单项式中所有字母的 叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

单项式中次数最 的项就是这个多项式的次数。

2、分式的概念和意义: 一般地,形如式子B
A ,且
B ≠0叫做分式。

(1)、分式有意义的条件:
(2)、分式无意义的条件:
(3)、分式为0的条件:
(4)、分式的基本性质:分式的分子与分母同时 (一个不等于0)的整式,分式的值不变。

(5)、约分:
(6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。

(7)、通分:
(8)、最简公分母:
(9)、分母有理化:把分母中的根号化去,叫做分母有理化。

注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。

3、二次根式的概念和意义:
(1)、定义:形如a (a ≥0)的式子,叫做二次根式。

(2)、二次根式有意义的条件:
二次根式无意义的条件:
(3)、二次根式的性质: ()a 2
=a(a ≥0);
②a 2=a =⎪⎩
⎪⎨⎧<-=>)0()0(0)0(a a a a a ③ab =a b ⋅ (a ≥0, b ≥0); ④b a =b
a ( a ≥0,
b >0)。

(4)、最简二次根式:
① 中不含二次根式;
② 被开方数中不含能开得尽的因数或因式。

(5)、 同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。

知识点二:代数式的运算
(一)、整式的加减运算
(1)、同类项:
(2)、合并同类项法则:
(3)、去括号法则:
(4)、整式的加减的实质就是合并同类项。

(二)、整式的乘除
(1)、同底数幂的乘法:a m ·a n
= ,底数不变,指数相加.
(2)、幂的乘方与积的乘方:(a m )n = ,底数不变,指数相乘;
(3)、(ab)n = ,积的乘方等于各因式乘方的积.
(4)、单项式的乘法:系数相乘,相同字母 ,只在一个因式中含有的字母,连同指数写在积里.
(5)、单项式与多项式的乘法:m(a+b+c)= ,用单项式去乘多项式的每一项,再把所得的积相加.
(6)、多项式的乘法:(a+b)·(c+d)= ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.
(7)、乘法公式:
平方差公式:(a+b)(a-b)= ,两个数的和与这两个数的差的积等于这两个数的平方差;
完全平方公式:
①(a+b)2= ,等于它们的,加上它们的积的2倍;
② (a-b)2= ,等于它们的,减去它们的积的2倍;十字相乘法:x2+(m+n)x+mn=()()
(8)、同底数幂的除法:a m÷a n= ,底数不变,指数相减. (9)、零指数与负指数公式:
a0= (a≠0); a-n= ,(a≠0).注意:00,0-2无意义;(10).单项式除以单项式: (11).多项式除以单项式:
★整式混合运算:先,后,最后,有括号先算括号内. ★整式的化简:①合并到不能再合并;②首项不能为负数;
★整式的因式分解
(1)提共因式法:
(2)公式法:
(3)十字相乘法:
(4)分组法,在循环运用“提十公分”法;
(三)、分式的运算
(1)、分式的加减法:
①、同分母的分式相加减,分母,把分子相。

②、异分母的分式相加减,先,变成同分母的分式,然后相加减。

(2)、分式的乘除法:
①、分式乘分式,用作为分子,作为分母。

②、分式除以分式,等于被除式乘除式的。

(3)、分式的方程的运算
1、分式方程
里含有未知数的方程;
2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以;
(2)解所得的方程;
(3)验根:将所得的根代入,若等于零,就是,应该;若不等于零,就是。

(四)、二次根式的运算
(1)、二次根式的加减实质就是合并同类二次根式。

(2)、二次根式的乘法:
(3)、二次根式的除法:
(4)、分母的有理化:。

相关文档
最新文档