同步发电机短路实验

合集下载

第 章同步发电机的运行特性

第 章同步发电机的运行特性

第17章同步发电机的运行特性17-1 同步发电机的空载和短路特性17-2 零功率因数负载特性17-3 同步发电机的外特性和调节特性17-4 滑差法和抽转子法测定同步电机参数17-1 同步发电机的空载和短路特性一、用空载特性和短路特性确定X d1. 空载试验试验条件电枢开路(空载)用原动机把被试同步电机拖动到同步转速改变励磁电流I f ,并记取相应的电枢端电压U 0(空载时U 0=E 0),直到U 0=1.25U N 左右,就可以得到空载特性曲线E 0= f (I f )。

试验目的测得空载特性E 0=f (I f )•空载特性可以通过计算或试验得到。

调节励磁回路可变电阻,使激磁电流逐步上升,每次记下If 和E的读数。

作同步电机的空载特性E=f(I f),由于存在剩磁,规定用下降曲线来表示空载特性,从1.25UN对应的激磁逐步减小。

•同步电机的空载特性也常用标么值表示,空载电势以额定电压为基值,取U=UN时的励磁电流 (称为额定励磁电流)为励磁电流的基值。

用标么值表示的空载特性具有典型性,不论电机容量的大小、电压的高低,其空载特性彼此非常接近。

空载特性实验求取图17-1 空载实验电路和空载特性曲线注意:在绘制空载特性曲线时,应注意把E0换算成相值。

2. 短路试验试验条件电枢绕组短路用原动机把被试同步电机拖动到同步转速试验目的测得短路特性:I=f(If)调节励磁电流使电枢电流I 从零一直增加到1.2I N左右,便可以得到短路特性曲线。

(一)实验步骤:1.电枢端三相短路,短路实验接线图如图17-2;2.原动机拖动转子至同步速度,n = n1;3.调I f,使I由零升至1.2I N左右,逐点记录电枢电流和励磁电流;4.画出U=0,Ik =f(If)图17-2 短路实验电路短路的等效电路图17-3短路特性和短路时的相矢图(a) 短路时的相矢图 ( b)短路特性•(二)短路特性短路时,限制短路电流的只有发电机的同步阻抗,忽略电枢电阻只考虑同步电抗,短路电流可认为纯感性。

同步发电机试验方法

同步发电机试验方法

同步发电机试验方法1 基本概念同步发电机指发电机发出的电压频率f 与发电机的转速n 与发电机的磁极对数有着如下固定的关系:pf60n转/分 同步发电机按其磁极的结构又可分为隐极式和凸极式;此外,还可按其冷却方式进行分类, 常见的有全空冷、双水内冷、半水内冷、水氢氢定子水内冷、转子氢内冷、铁心氢冷等;2 发电机的绝缘定子绝缘对于用户来说,主要关心其主绝缘即对地及相间绝缘;发电机的主绝缘又大致可分为槽绝缘、端部绝缘及引线绝缘;我国高压电机的主绝缘目前主要是环氧粉云母绝缘,按其含胶量又可分为多胶体系和少胶体系;定子线圈导线与定子铁芯以及槽绝缘在结构上类似一个电容器,在电气试验中完全可以把它当作一个电容器对待;为了防止定子线棒表面电位过高在槽中产生放电,环氧粉云母绝缘的定子线棒表面涂有一层低电阻的防晕漆,或在外层包一层半导体防晕带;端部绝缘表面从槽口开始依次涂有低阻、中阻、高阻绝缘漆,防止端部电位变化梯度过大而产生电晕; 转子绝缘转子绝缘包括对地绝缘和绕组的匝间绝缘;3 发电机的绝缘试验项目 发电机常规试验项目电气部分1定子绕组的绝缘电阻、吸收比或极化指数测量 2定子绕组的直流电阻测量3定子绕组泄漏电流测量和直流耐压试验 4定子绕组交流耐压试验 5转子绕组绝缘电阻测量 6转子绕组直流电阻测量 7转子绕组交流耐压试验8发电机和励磁机的励磁回路所连接的设备不包括发电机转子和励磁机电枢的绝缘电阻测量 9发电机和励磁机的励磁回路所连接的设备不包括发电机转子和励磁机电枢的交流耐压试验 10发电机组和励磁机轴承的绝缘电阻 11灭磁电阻器或自同期电阻器的直流电阻12转子绕组的交流阻抗和功率损耗测量发电机特殊试验项目电气部分1定子铁心试验2定子槽电位测量3定子绕组端部手包绝缘施加直流电压测量4轴电压测量5定子绕组绝缘老化鉴定6空载特性试验7三相稳定短路特性试验8检查相序9温升试验4 绝缘电阻测量试验目的检查发电机绝缘是否存在受潮、脏污、机械损伤等问题;定子绝缘电阻测量测量接线如图,电机额定电压在1000V以上者采用2500V兆欧表,测量15 s和60s的绝缘电阻,并计算吸收比,如果绝缘电阻或吸收比偏小,可以增加测量10分钟的绝缘电阻,计算极化指数,对于环氧粉云母绝缘,吸收比不应小于,极化指数不应小于2;图定子绝缘电阻测量吸收比= 1分钟绝缘电阻/15秒绝缘电阻极化指数= 10分钟绝缘电阻/1分钟绝缘电阻注意事项1 为了克服电容充电电流的影响,兆欧表的短路电流应足够大,表是选择兆欧表的参考数据;如果吸收比的测量结果比较大,往往是由于兆欧表的短路电流太小造成的;表对兆欧表短路电流的要求参考值试品电容/μF 1 2 3 5测量吸收比I D/mA≥ 1 2 4 5 10测量极化指数I D/mA≥ 12测量前后应将被测量的绕组三相短路对地放电5分钟以上;如果由于意外的原因造成测量中断,应该重新充分放电后再进行测量;如果放电不充分,对同一相重复测量的结果是绝缘电阻值偏大,而换相时,由于残余极化电势与兆欧表的电势方向一致,会出现一个极化电荷先释放再极化的过程,造成后面测量的两相绝缘电阻偏小的假像,如图所示;图绕组相间电容对绝缘电阻测量的影响3当测量结果不合格时,应首先排除穿墙套管、支柱瓷瓶的影响,如用干净的布进行擦拭,或在套管上用软铜线绕一个屏蔽电极,接于兆欧表的屏蔽端子上;如图所示;图对套管泄漏电流进行屏蔽的接线4如果绝缘电阻和吸收比都很小,说明绝缘有受潮的可能,应对绕组进行烘干处理;对大型电机可采用三相稳定短路的方式升流烘干或采用直流电流进行升温烘干,水内冷机组可通热水烘干,中小型电机可用电热元件、大功率白炽灯或机组自带的加热元件进行烘干;转子绝缘电阻测量1使用1000V兆欧表进行测量,转子水内冷的电机用500V兆欧表测量;2测量绕组滑环对转子本体大轴的绝缘电阻;3不测量吸收比;轴承座绝缘电阻测量测量目的:由于发电机磁通不对称会在大轴上产生轴电压,为了防止轴电压与轴承间的环流烧坏轴瓦,通常将励磁机侧的轴承与地绝缘;典型的汽轮发电机轴承绝缘结构如图所示,检查轴承绝缘时用1000V兆欧表测量金属垫片对地的绝缘电阻;有些汽轮发电机采用轴瓦绝缘的方式,每块轴瓦引出一个测点,应检查每个轴瓦的绝缘电阻,有些汽轮发电机没有引出轴瓦的测量点,只能在安装过程进行检查;水轮发电机的的推力轴承、导轴承在每块推力瓦下垫有绝缘垫,应在安装过程检查每块轴瓦的绝缘电阻,在轴承充油前每块轴瓦的绝缘电阻不应低于100MΩ;当轴承绝缘不合格时,除了检查绝缘垫,还应注意检查与轴承相连接的部件如温度、振动传感器、油管等的绝缘是否正常;图汽轮发电机典型的轴承绝缘结构励磁机的励磁回路所连接的设备不包括发电机转子和励磁机电枢的绝缘电阻测量1小修时用1000V兆欧表,大修时用2500V兆欧表;2如果励磁回路中有半导体电子元件时,测量前应退出这些元件或将这些元件短路,避免这些元件在测量中击穿;5 直流电阻测量测量目的:检查绕组导体是否存在断股、断裂、开焊或虚焊等问题;测量发电机定子或转子绕组的直流电阻、灭磁电阻不包括非线性灭磁电阻等可以采用双臂电桥、电压电流法直流、直流电阻测试仪等;目前多数是采用直流电阻测试仪进行测量;测量要点:1测量前应在定子绕组或转子绕组不同部位放置三支以上的温度计,取平均值作为绕组的温度;2如果仪器的电流端子和电压端子分开时,应将电压端子夹在电流端子的内侧,避免电流端子的接触压降影响测量的准确度,如图所示;图 直流电阻测量接线图3测量结果换算到75℃时的数值,并与历年试验数据进行比较;铜导体换算公式如下: tR R t++=2357523575 式中,R 75:换算至75℃时的电阻;R t :温度为t ℃时测量的电阻值;t :测量时的温度;6 直流耐压试验及泄漏电流测量 直流耐压试验的特点1对检出绕组端部绝缘缺陷有较高灵敏度在交流电压下和直流电压下电机端部绝缘的电压分布如图所示;在交流电压下电压的分布与电容有关,由于电机绝缘的介电系数比空气大,而且端部绕组距离铁心远,所以绝缘层的电容C i 比绝缘表面到铁心的电容C g 大得多,绝缘层的容抗比绝缘表面对地的容抗小得多,所以绕组端部绝缘层中的交流电压降U Ci 要比绝缘层表面对地的电压降U Cg 小得多,不容易检查出端部绝缘的缺陷;而直流电压的分布与绝缘电阻成正比,端部表面的绝缘在制造时从槽口向外依次喷涂低阻、中阻、高阻绝缘漆,所以端部绝缘层的绝缘电阻R i 比绝缘表面电阻R g 大得多,绝缘层上的电压降U Ri 很大,表面电位U Rg 较低,对检出端部绝缘层的缺陷有较高的灵敏度;由于交流耐压时绕组端部绝缘表面电压较高,所以交流耐压时端部电晕较大,而直流耐压时端部绝缘表面电压较低,一般不容易看到电晕;图 在交流电压和直流电压下绕组端部绝缘的电压分布2对绝缘的破坏性较小直流耐压试验设备输出的功率一般都很小,对试品的破坏性也很小,而且不会象交流耐压试验那样对绝缘的破坏存在累积效应;在进行耐压试验时首先进行直流耐压试验,还可以通过监测直流泄漏电流的大小和变化了解绝缘是否存在局部缺陷或受潮等可以处理的问题,减少在交流耐压时绝缘击穿的可能性;直流耐压试验电压的确定发电机绝缘在进行直流耐压和交流耐压试验时,它们的击穿电压值是不一样的;如果以U DB代表直流击穿电压,以U AB代表交流击穿电压,它们的比值K通常称为巩固系数,即:K = U DB/U AB大量的试验统计数据说明,对新绝缘来说K值在~的范围内,平均值为左右,绝缘无损伤时K值最大,随着绝缘损伤深度的增加K值成比例地减小;随着绝缘的运行小时增加,K值也会随着减小;也就是说,在大多数情况下要击穿同一个绝缘缺陷,所施加的直流电压要比交流电压高得多;根据我国的实际经验,K的取值为~,并据此制定出交流耐压与直流耐压的标准;以额定电压为6kV~24kV的电机为例,按我国现行的交接和预防性试验标准,在进行定子绕组直流耐压和交流耐压试验时,K值在~之间;如果交流耐压值为U N为发电机额定电压,直流耐压值应为:×~U N = ~U N平均值约为U N,现发现有些电厂在进行的交流耐压前随意将直流耐压的数值降为,显然对后续的交流耐压是比较危险的,是不可取的做法;试验方法一般电机可以使用直流发生器进行试验,试验接线见图图发电机直流耐压试验接线1 在正式试验前应进行一次空升试验,即甩开被试验绕组按每级分阶段升一次电压,记录各阶段的泄漏电流,一方面可以检查试验设备和接线是否正常,另一方面可以测量试验设备本身的泄漏电流,以便于在正式试验时将所测量的泄漏电流减去空升时的泄漏电流;2 正式试验;试验电压按每级分阶段升高,每阶段停留1分钟,记录1分钟时的泄漏电流;3 试验前应将绕组短路接地放电,试验后应首先将被试绕组通过放电棒放电,待电压降到一定数值后比如1000V以下才能将被试绕组直接接地放电;4 在试验中应注意观察泄漏电流的变化,如果发现泄漏电流摆动或急剧增加,应停止试验,待查明原因后方可继续试验;5 对于电压较高的电机,在试验中应采取必要的措施防止电晕过大造成泄漏电流不正常;一般的措施有增加高压端与地端的距离,如果距离不够可增加绝缘隔板,避免接线中存在尖端放电等等;6 对于氢冷发电机禁止在氢气置换过程中进行试验;7 高压试验应遵守相关的安全工作规定;7 交流耐压试验 常规试验方法由于发电机试验时电容电流通常都比较大,限流电阻和保护电阻的选择应根据实际情况选择,应保证被试品击穿时过流保护能可靠动作并有足够大的功率,通常是水电阻,可添加食盐调节水的电阻;图 常规交流耐压试验接线限流电阻:由于电流较大,阻值越大,压降越大,损耗也越大,阻值应小于试品的容抗,而且要有足够大的热容量,通常采用水电阻;铜球保护电阻:为了保证铜球击穿后过流保护装置能够动作,应满足U T / 阻值≥动作电流;CX C ω=1Ω T CTCU X U I ω==A 式中,C :绕组对地及相间电容F ;Xc :容抗Ω;ω:角频率,ω = 2πf,对于工频,f = 50 Hz,ω = 314 串联谐振交流耐压试验 7.2.1 试验接线图 变频式串联谐振法交流耐压试验接线7.2.2 谐振条件I L =I C =I X L =X C U L =-U C 式中:X L =ωL由于谐振的条件是X L =X C ,即:ωL=1/ωC,整理后可得谐振条件为:LCf π=21从上式可知,通过调整电感L 或电容C 或调整频率f,都可以使试验回路达到谐振的状态;目前电子调频技术已经相当成孰,而且调频试验装置小巧轻便,已经得到广泛的应用; 7.2.3 试验回路的Q 值品质因数电感线圈的品质因数Q L 等于线圈的感抗X L 与损耗电阻R L 的比值:LL L R X Q =但在发电机试验回路中,除了线圈的损耗电阻,还存在绕组的绝缘损耗,对水内冷发电机,还存在水电阻引起的损耗;考虑电机绕组损耗后回路的等效Q 值为:δ+=tan 11LQ Q国产空冷发电机整相绕组绝缘损耗通常为~左右,水内冷绕组充水时总损耗可达~,将这些数据以及Q L ≈30代入上式,可得试验回路的等效Q 值为:国产空冷发电机试验: Q≈10~16 国产水内冷发电机试验:Q≈6~10对于串联谐振,Q 值也等于试验电压与励磁变输出电压的比值,Q 值越大,励磁电压越小,所需要的试验电源功率越小; 7.2.4 串联谐振耐压的优点在谐振状态,回路阻抗为:()R X X R Z C L B ≈-+=222 R 代表试验回路的总损耗电阻;一旦试品击穿,X C 变为零,谐振条件被破坏,此时回路阻抗变为:()L L B X X R Z ≈-+=022由于X L 是R 的Q 倍,所以击穿后回路电流下降到击穿前的Q 分之一,不存在过电流的问题,所以试验比较安全;在进行发电机的交流耐压试验时,为了防止绝缘击穿时由于电流过大而将定子铁芯烧坏定子铁芯烧坏后极难修复,通常要求击穿后的短路电流不要大于5A,由于串联谐振法试验在试品击穿后回路电流会下降,而且试验电压波形较好电压中的高次谐波不满足谐振条件被抑制,所以发电机的交流耐压应优先采用串联谐振法;按照国标规定,工频试验电压的频率范围为45Hz ~65Hz,因此在选择电感时应满足频率的规定;串联谐振耐压的优点:1减小升压器输出电压为试验电压的Q 份之一,从而减小试验设备容量; 2试品击穿后电流下降为原来的Q 份之一,比较安全; 3不需要串接限流电阻串联谐振法不得串联限流电阻; 并联谐振交流耐压试验图 并联谐振法交流耐压并联谐振特点:U C =U L = U T X L =X C I L =-I C回路阻抗:Z≈QX L回路电流:QI Q IQX U Z U I C L L T T ===≈并联谐振耐压试验特点:1试验电流为试品电流的Q 份之一,从而减小试验设备容量; 2试品击穿时试验电流可能会增加,过流保护应可靠;3需要串接限流电阻; 谐振试验时电感或电容的选择前面已介绍通过调节电路的电感、电容或频率都可以使电路达到谐振状态;试验标准规定工频耐压时的频率范围为45Hz ~65Hz,在选择电路参数时应满足这一要求;当频率为50Hz 、电容的单位为μF 、电感的单位为H 时,可按下式估算电感或电容:L10C :C 10L ==或 对于调感或调容装置,可通过微调电感量或电容量使电路达到谐振状态;如果采用调频装置,估算电感或电容后,再按下式计算实际的谐振频率:LCf π=21如果频率落在45Hz ~65Hz 范围内,电感L 或电容C 就不用再调整,如果频率超过65Hz,应增加电感量或电容量;如果频率低于45Hz,应减小电感量或电容量;8 转子交流阻抗测量 试验目的检查转子绝缘是否存在匝间短路的问题; 隐极式转子交流阻抗测量试验经验说明,发电机的转子交流阻抗与试验电压的数值有很大的关系,因此规程中强调转子交流阻抗的测量必须在同一电压下进行,必须同时测量交流损耗,测量接线见图图 转子交流阻抗测量接线测量注意事项1 试验电压的峰值不宜超过额定励磁电压,最高试验电压为220伏;2 转子交流阻抗的测量分为膛内和膛外两种情况,膛内测量又分为静态测量和动态测量,膛内测量时,应拆开炭刷,防止灭磁电阻对测量的影响;3 膛外测量时,应注意消除转子支架对测量的影响,转子周围不宜放置铁架、铁板或其它铁磁材料;4为了消除剩磁对测量的影响,可以重复测量几次,利用交流电压进行消磁,取重复性较好的几次结果的平均值作为测量结果;5动态测量只要求测量超速试验前后额定转速下的数据,如果怀疑转子绕组有动态匝间短路,可以测量不同转速下的交流阻抗和损耗值;交流阻抗的计算记录试验中的电压U 、电流I 、损耗P 的读数以及电压表的量程、分度和CT 的变比等数据;电流值和功率损耗均应乘以CT 的变比;转子交流阻抗Z 、损耗电阻R 、感抗X 的计算: I U Z =Ω 2IP R = Ω 22R Z X -= Ω水轮发电机转子交流阻抗测量水轮发电机转子要求测量单个磁极的交流阻抗;按图接好线后,调节调压器使转子回路电流保持为恒定值,然后用电压表测量每个磁极的电压降;数据判断1 隐极转子:与历年数据比较,如果交流阻抗明显减小而损耗明显增加,可怀疑存在匝间短路的可能,但还要与空载特性、机组的振动情况等进行综合的分析,不宜轻易下结论;动态试验时,由于转子绕组在离心力的作用下被挤压高度有所减小而且线圈向外圆方向移动,会造成在一定的转速下阻抗值下降的情况,应视为正常情况;2 水轮发电机转子:当某个磁极中存在匝间短路时,该磁极的电压降就会偏小,而且该磁极左右两个相邻磁极由于磁路上的联系电压降也会比正常磁极的压降偏低,这种规律可以作为判断磁极是否存在匝间短路的依据;9 发电机短路特性试验试验目的检查励磁系统及发电机定子或发电机—变压器组一、二次电流回路是否正常;试验方法1将励磁电源改为他励电源用临时电缆将厂用电连接到励磁变高压侧;2在发电机出口接好短路排或在主变高压侧接好短路排;3按图接好试验线路;4励磁调节器改为手动调节,并置于输出最小位置;5退出发电机过流保护,退出强励装置;6按运行规程启动发电机并维持额定转速,合上励磁开关和灭磁开关;7调节励磁调节器的输出电流,使发电机定子电流逐渐增加,并同时检查盘表的指示值是否正确,一直达到倍额定定子电流值,录取定子电流、转子电流数据;8逐步减小励磁电流以减小定子电流,在定子电流分别为1、、、倍额定电流下记录定子电流和励磁电流值;图发电机短路特性试验原理图10 发电机空载特性试验试验目的检查励磁系统和发电机定子一、二次电压是否正常;试验方法1按图接好试验线路;2发电机出口开路或带主变时主变高压侧开路;3励磁调节器为手动调节,并置于输出最小位置;4投入发电机过流保护和差动保护,退出发电机过压保护;5按规程启动发电机并维持额定转速,合上励磁开关和灭磁开关;6单方向调节励磁调节器,使定子电压升高至倍额定电压值,录取定子电压、转子电流数据;7 单方向调节励磁调节器,使定子电压逐步降低,分别记录9~11组定子电压、转子电流数据,同时检查盘表;8跳开灭磁开关;图发电机空载特性试验原理图11 空载及不同负荷下发电机的轴电压测量测量方法1试验前分别检查轴承座与金属垫片、金属垫片与金属底座的绝缘电阻,应大于Ω;2试验接线见图;3在空载试验额定电压下,用高内阻的电压表先测量轴电压Ul,然后将转轴的汽机端与轴承座短接,测量励磁机端大轴对承座的电压U2以及轴承对地的轴电压U3;4在发电机不同负荷下分别测量发电机的轴电压;图轴电压测量原理图测量结果判断1 轴电压一般不大于10V;2正常情况下U1≈U3,U2≈0,如果测量结果是U3明显小于U1,U2数值较大正常情况下一般U3/U2大于10 以上,说明轴承绝缘不好,可能会产生轴电流;12 水内冷定子绕组充水或通水情况下直流电压试验水内冷发电机定子绕组结构对于水内冷的定子绕组,冷却水由端部进水总管经塑料王聚四氟乙烯水管引入各个线圈的鼻部,热水从另一端或另一个线圈的线圈鼻部经塑料王水管引入出水总管,发电机引出线的出水或进水也有一个总管;大型发电机的进、出总管分别位于定子的两端,小型发电机的进、出总管也有位于定子同一端的;定子汇水总管固定在定子端部,为圆形,通称为汇水环或汇水管;为了方便进行高压试验,三个汇水管与外部水管是绝缘的通过绝缘法兰对接;运行中必须将三个汇水管可靠接地,防止汇水环上产生高电压而击穿;图水内冷定子水路图图水内冷汽轮发电机定子概述在吹干水的情况下,试验方法与一般空冷电机相同,但将定子绕组中的水吹干在实际操作中比较困难,如果水吹不干在高电压下容易将绝缘水管损坏,很不安全;在定子绕组充水或通水的情况下,内冷定子绕组交流电压试验可按常规方法进行,因为水电阻电流与绝缘的电容电流相比小得多,而且是按相量的关系相加,可以勿略不计;而在直流电压试验中,水电阻电流比绝缘的泄漏电流大得多,必须采取特殊的试验接线将水电流排除掉;定子绝缘电阻测量12.3.1测量原理测量原理见图;图水内冷定子绕组绝缘电阻测量原理图图中RF、RU组成分压器,用于测量试验电压;RI为绝缘泄漏电流测量电阻;R1为绕组对汇水环的水电阻;R2为汇水环对地的水电阻;从测量原理上与普通的兆欧表相同,兆欧表的屏蔽端子必须接到汇水环上;所不同的是:1兆欧表需要提供流向水电阻的电流;假如水电阻为100kΩ,试验电压为2500V,那么流过水电阻的电流就是25mA,而一般的兆欧表短路电流只有几mA;所以测量水内冷绕组绝缘电阻的兆欧表必须能输出足够大的电流;2由于汇水环对地水电阻R2只有几kΩ~几十kΩ,为了保证绝缘的泄漏电流大部分流入测量电阻RI,就要求RI<<R2,但是,RI太小时,电流信号就会很小;假如RI为500Ω,发电机绝缘电阻为5000MΩ,则RI上的信号电压只有;R2的大小与水质有关,因而试验时对水质也有要求;3由于冷却水与金属导体之间会产生极化电势,虽然极化电势很小,但由于RI上的信号也很小,所以极化电势会影响测量结果;在专用的兆欧表中应有相应的极化电势补偿电路;12.3.2 测量方法1如果在充水的情况下测量,水质应达到运行要求,如果吹干水后做试验,必须将水彻底吹干;2如果充水试验,应首先测量并记录绕组对汇水环以及汇水环对地的绝缘电阻;3采用2500V兆欧表测量,分别测量15s和60s的数据,测量前后应将三相对地短路5min以上;4如果吸收比不合格或绝缘电阻不合格,可增加测量极化指数,即测量1min和10min的数据,根据测量结果作进一步的分析;12.3.3 水内冷定子绕组绝缘电阻测量中常见问题1汇水环对地短路:如果是金属性对地短路,此时RI上没有电流流过,这时所测数据是一个无穷大的假数据,而且没有吸收现象;如果是不完全接地,所测得的也是一个偏大的绝缘电阻,而且由于极化现象出现负的增长吸收比小于1;。

电气专业运行考试题库及答案(简答题)

电气专业运行考试题库及答案(简答题)

1、同步发电机和系统并列应满足哪些条件?(1) 待并发电机的电压等于系统电压。

允许电压差不大于5%;(2) 待并发电机频率等于系统频率,允许频率差不大于0.5Hz;(3) 待并发电机电压的相序和系统电压的相序相同;(4) 待并待并发电机电压的相位和系统电压的相位相同。

2、发电机的短路试验目的何在?短路试验条件是什么?新安装或大修后,发电机应作短路试验,其目的是测量发电机的线圈损耗即测量铜损。

发电机在进行短路试验前,必须满足下列条件:(1) 发电机定子冷却水正常投入;(2) 发电机出口用专用的短路排短路;(3) 励磁系统能保证缓慢、均匀从零起升压。

3、油浸变压器正常运行中的检查项目有哪些?(1)变压器的声音应正常;(2)油枕及套管的油位应正常; 各部无渗漏油现象(3)瓦斯继电器内应充满油(4)各导线连接部分无发热现象(5)套管应清洁、无裂纹、无放电现象;(6)油温与绕组温度应在允许范围内;(7)冷却装置运行良好风扇起停正常;(8)压力释放阀(或防爆管)应完好无喷油现象;(9)变压器外壳接地良好;(10)各端子箱完好并关闭严密。

4、工作票许可人的职责?(1)负责审查工作票所列安全措施是否正确完备,是否符合现场条件;(2)工作现场布置的安全措施是否完善;(3)负责检查停电设备有无突然来电的危险;(4)对工作票中所列内容即使发生很小疑问,也必须向工作票签发人询问清楚,必要时应要求作详细补充。

5、哪些工作需要填写第一种工作?(1)高压设备上工作需要全部停电或部分停电者;(2)高压室内的二次接线和照明等回路上的工作,需要将高压设备停电或做安全措施者。

6、哪些工作需要填写第二种工作票?(1)带电作业和在带电设备外壳上的工作;(2)控制盘和低压配电盘.配电箱.电源干线上的工作;(3)二次结线回路上的工作,无需将高压设备停电者;(4)转动中的发电机.同期调相机的励磁回路或高压电动机转子电阻回路上的工作;(5)非当值值班人员用绝缘棒和电压互感器定相或用钳形电流表测量高压回路的电流7、“两票三制”是什么?两票是指工作票、操作票;三制是指交接班制、巡回检查制、设备定期试验与轮换制。

1000mw发电机短路试验方案

1000mw发电机短路试验方案

1000mw发电机短路试验方案
进行1000mw发电机的短路试验时,需要注意安全防护措施,并遵循以下步骤:
1. 确保所有操作人员都佩戴符合标准的个人防护装备,如安全帽、安全鞋、护目镜、防护手套等。

2. 关闭发电机的输出开关,并将所有电气设备的电源断开。

3. 断开发电机的负载端,并将负载电缆连接到一短路电阻或铜棒等。

4. 将电阻或铜棒连接到发电机的输出端。

此时,发电机处于空载状态。

5. 打开发电机的输出开关,并逐渐增加负载电流的大小,直到达到短路电流的额定值。

6. 在短路状态下进行一段时间的试验,通常为几分钟至数十分钟。

7. 在试验完成后,逐步减小负载电流,直至负载完全断开。

8. 关闭发电机的输出开关,并切断电源。

在试验过程中,应当密切观察发电机的运行状态,确保发电机的温度、振动等参数在正常范围内。

如发现异常情况,应立即
停止试验,并进行故障排除和维修。

请注意,完成该任务需要专业知识和操作经验,请在合适的场合由专业人士进行。

同步发电机的运行特性

同步发电机的运行特性

同步发电机的运行特性同步发电机的运行特性有(空载特性、短路特性、负载特性)合称电机基本特性、(外特性和调整特性)主要是运行特性等五种。

外特性和调整特性是主要的运行特性,根据这些特性,可以判断发电机的运行状态是否正常,以便及时调整,保证高质量安全发电。

空载特性、短路特性和负载特性是检验发电机基本性能的特性,用于测量、计算发电机的各项基本参数一、发电机的空载特性(Eo与IL关系)所谓发电机空载运行是指发电机以额定转速运转,定子不带负荷时的运行。

此时,空载电势Eo与励磁电流IL之间的关系叫做空载特性。

当发电机处于空载运行状态,其端电压U就等于电势Eo,因此,端电压U与励磁电流的关系曲线就是空载特性。

如图所示空载特性曲线E0=f(I),做空载特性试验时,应维持发电机转速不变,逐渐增加励磁电流,直至端电压等于额定电压的130%时为止。

在增加励磁电流的过程中,读取励磁电流值及与其对应的端电压值,便可以得到空载特性的上升分支。

接着减小励磁电流,按上面方法读取数值;便得到下降分支,如图2-1-2(a)所示。

由于两曲线的平均,如图中虚线所示。

空载特性曲线是发电机的一条最基本的特曲线。

可用来求发电机的电压变化率、不饱和的同步电抗值等参数。

二、发电机的短路特性(定子绕组的稳态电流I与励磁电流Ii的关系曲线)所谓发电机的短路特性,系指发电机在额定转速下,定子绕组短路时,定子绕组的稳态电流I与励磁电流Ii的关系曲线。

如图2-1-3所示。

短路试验测得的短路特性曲线,不但可以用来求取同步发电机的重要参数饱和的同步电抗与短路比外,在发电厂中,常用它来判断励磁绕组有无匝间短路等故障。

显然,励磁绕组存在匝间短路时,因安匝数的减少,短路特性曲线是会降低的。

三、发电机的外特性(负荷与端电压)所谓发电机的外特性,就是指励磁电流、转速、功率因数为常数的条件下,变更定子负荷电流时,端电压U的变化曲线,即U=f(I)曲线。

在滞后的功率因数情况下cos(θ),当定子电流增加时,电压降落较大,就是由于此时电枢反应是去磁的。

同步发电机突然短路的暂态过程仿真实验总结

同步发电机突然短路的暂态过程仿真实验总结

同步发电机突然短路的暂态过程仿真实验总结一、实验背景同步发电机是电力系统中重要的发电设备之一,其运行状态对整个系统的稳定性和安全性都有着重要的影响。

然而,在实际运行过程中,同步发电机可能会遭遇短路等突发事件,导致暂态过程出现异常。

因此,对同步发电机的暂态过程进行仿真实验研究,能够帮助我们更好地了解其运行特点和应对措施。

二、实验目的本次仿真实验旨在探究同步发电机突然短路时的暂态过程,并分析其影响因素和应对策略。

三、实验原理在同步发电机突然短路时,由于负荷突然减小或者断开导线等原因,使得发电机输出功率大幅下降,同时由于突然短路产生大量瞬时电流,容易导致转子绕组内部温度升高、绝缘层损坏等问题。

为了模拟这种情况,在仿真实验中需要考虑转子惯量、励磁系统特性、定子绕组参数等多个因素。

四、实验内容本次仿真实验采用PSCAD软件进行,主要包括以下内容:1.建立同步发电机模型,包括定子绕组、转子绕组、励磁系统等部分;2.设置突然短路事件,模拟负荷突然减小或者断开导线等情况;3.观察同步发电机的暂态过程,包括输出功率、电流变化、转速变化等;4.分析影响因素和应对策略。

五、实验结果经过仿真实验,我们得到了如下结果:1.同步发电机在突然短路时会出现大幅度的输出功率下降和电流瞬时增大;2.转速也会出现一定程度的变化,但是变化幅度较小;3.在应对策略方面,可以采取调整励磁系统参数、增加降低负荷的措施等方法来减轻暂态过程带来的影响。

六、实验结论通过本次仿真实验,我们深入了解了同步发电机在突然短路时的暂态过程,并探究了其影响因素和应对策略。

这对于进一步提高电力系统运行稳定性和安全性具有重要意义。

同步发电机短路实验

同步发电机短路实验

同步发电机突然短路的分析一、实验目的1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。

2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同二、实验原理同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。

同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。

为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。

因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。

三、实验内容电力系统时域分析实例(仿真)范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。

图1 同步电机突然短路电路模型1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。

电压测量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。

3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三相故障同时选中并设置转换时间。

4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:四、实验报告(三相短路分析)1故障点电流波形图➢在万用表元件M1中分别选择故障点A相、B相、C相电流作为测量电气量,分别得到故障点A相电流波形图、故障点B相电流波形图、故障点C相电流波形图2故障点电压波形图在万用表M1中选择故障点A相电压、故障点B相电压、故障点C相电压作为测量电气量,激活仿真按钮,得到故障点三相电压波形图3电源端电流波形图➢(1)在同步发电机短路系统中,使用相量选择器在电源端选择三相电流信号,测三相电流波形图➢(2)在恒定电压源系统中,使用相量选择器在电源端选择三相电流作为测量电气量比较并分析以上结果图2 恒定电压源电路短路模型(上次实验内容)。

发电机短路试验

发电机短路试验

发电机短路试验(一)
发电机的短路试验,是指发电机在额定转速下定子三相绕组短路时,定子稳态短路电流与励磁电流的关系曲线。

在做发电机的短路试验时,要先将发电机三相绕组的出线端短路,然后维持转速不变,增加励磁读取励磁电流及相应的定子电流数值,直到定子电流达到额定电流时为止,特别注意的是在进行发电机的短路试验过程中调整励磁电流时严禁往返来回调整。

做发电机短路实验的目的,是为了检查三相电流的对称性,并结合空载特性用来求取电机的参数,可以判断线圈有无匝间短路。

此外计算发电机的主要参数同步电抗短路比以及进行电压调整的计算也需要短路特性注意:
1.三相短路实验尽量采用铜排或铝排同时连接必须良好以免过热现象。

2.调节励磁电流时应缓慢进行。

3.在实验中当Il升至15—20%时应检查三相电流对称性合格后继续。

4.三相短路应尽量装在出口断路器内侧以免在实验过程中断路器误跳引起电机绝缘损坏。

相关数据采集:转子励磁电流和电压可在功率柜上或励磁调节柜电脑上直接读取;定子电流测量计量的在机组电量采集或监控电脑上直接读取;定子励磁用电流在励磁调节柜电脑上直接读取;保护和差动电流在发电机保护装置上读取,并注意其相位的正确性。

短路试验资料

短路试验资料

短路试验在电工领域,短路试验是一种常用的测试方法,用来评估电路中的短路情况以及相关的安全性。

通过模拟电路中发生短路的情况,可以识别潜在的风险并采取相应的措施来防范可能的事故。

短路试验的意义短路试验旨在检测电路中可能存在的短路问题,以确保设备和电路的正常运行。

在实际的电气系统中,短路是一种常见的故障形式,可能导致设备损坏、电路无法正常工作甚至造成安全事故。

通过进行短路试验,可以及早发现潜在问题并及时修复,保障设备的可靠性和安全性。

短路试验的方法短路试验可以采用多种方法来进行,其中常见的包括直流短路试验和交流短路试验。

在直流短路试验中,通过连接正负极来模拟短路情况,检测电路中的电流和电压变化。

而在交流短路试验中,则会使用专门的测试仪器来模拟不同频率下的短路情况,以评估电路的稳定性和安全性。

短路试验的步骤进行短路试验时,需要按照一定的步骤进行,以确保测试的准确性和可靠性。

首先需要对电路进行彻底的检查,确认电路中不存在其他故障或问题。

然后在实验室或专门的测试场地中设置测试设备,并根据所选用的试验方法进行相应的连接和操作。

在测试过程中要及时记录测试数据,并根据测试结果来评估电路的实际情况。

短路试验的注意事项在进行短路试验时,需要特别注意安全问题,避免因操作不当而造成意外伤害或设备损坏。

在测试前应对测试设备和环境进行全面检查,确保测试条件符合要求。

另外,在测试过程中应严格按照操作规程进行,避免误操作或操作失误导致不良后果。

总的来说,短路试验是一种重要的电路测试方法,可帮助我们及早发现潜在问题并做出相应的处理,确保电路和设备的正常运行和安全性。

通过合理的测试方法和注意事项,我们可以更好地保障电气系统的可靠性和耐久性。

同步发电机的特性实验

同步发电机的特性实验

1. 1. 空载特性空载特性空载特性空载特性:指在发电机的转速保载电压(U 0=E 0)与励磁电流空载特性曲线实际上就是电机实验测定时,电枢绕组开路,录不同励磁电流下对应的电枢和I f 值,由于铁磁材料的磁滞图1(a )不同剩具体实验过程如下:注意负载端子处不接任何负载(1) 监控主站应该调整到2所示。

同步发电机特性试验转速保持为同步转速(n =n 1),电枢电路开路(I =0电流I f 之间的关系曲线U 0=f (I f )。

是电机的磁化曲线,它可用计算法得到,也可用实验法,用原动机把发电机拖到同步转速,然后逐渐增加的电枢端电压,直到U 0=1.3U N 左右,再逐步减少I 的磁滞现象,将得到上升和下降两条不同的曲线见下不同剩磁下的空载特性 (b )空载特性的校正何负载!整到“单机”运行模式,合闸监控主站空开,按下启图2 “单机”运行模式=0)的情况下。

空实验法测出。

渐增加励磁电流并记f ,记录对应的U 0线见下图1所示。

校正按下启动按钮,如图(2) 合闸发电机运行实验台上空开和按下启动按钮,并按下发电机实验区中的负载特性实验按钮,如图3所示。

图3 按下“负载特性”按钮(3) 设定微机励磁调节装置中“起励PT电压”为45V。

进入设定菜单 调节参数 常规参数中,如图4所示。

[注意:管理员密码为1111]图4 修改微机励磁调节装置中“起励PT电压”为45V返回主页后,应该显示如下图5所示。

图5 微机励磁调节装置为45V时状态显示图(4) 按下微机调速装置(恒压模式,设定电压默认为200V )中的启动键2-3秒,启动直流电机以带动发电机运转,如图6所示。

当转速到显示转速为1400r/min 左右,机端电压显示18V 左右,按下起励按钮(如图7所示),励磁电压为12V 左右,机端电压升至170V 左右。

图6 微机调速装置图7 起励按钮(5) 调节微机调速装置中的“开大”按钮将电压升高,同时注意转速调整到1500 r/min左右。

发电机转子匝间短路试验方法

发电机转子匝间短路试验方法

机械工业部 1 9 一 9 0 批准 9 60 一3
1 9 一10 9 7 0 一 1实施
J T 4 6- 9 Bi 8 4 1 6 9
电压、 电流、 功率或两极电压( 指两极机)
表 1
序号
试 验 阶 段 转 子装配 全序 完
转 速(/ i) rm n
电压 ( ) V- 喊
5 .0 . 5 . 0 , 2 0 1 0 10 2 0 2 0
3 试验准备
测量中所用仪器、 仪表的准确度应符合G / 12-9 要求 BT 9 3 0 探测线圈波形法所用探测线圈的横截面积、 匝数及安装位置应保证其具有足够的灵敏度和准确度
4 测最环境 当进行静态转子阻抗测量时, 若不在机座内, 转子本体与周围铁磁物体的空间距离必须在 l 以 m 上 如上述条件无法满足, 必须在转子旋转几何 10 80 前后读取两组数据, 以作比较 5 测且状态 转子匝间短路测量分别在静止及旋转两种状态下进行( 见表 10 )
中华人民共和国机械行业标准
J/ 8 4 一1 9 B T 4 6 96
隐极式同步发电机转子匝间短路判别方法
1 范围
本标准规定 隐极式同步发电机转子匝间短路的测量方法及限定值 了 本标准适用于隐极式同步发电机制造过程、 交接试验的转子匝间短路的测量。 发电机的交流励磁机 转子匝间试验参照本标准执行 2 引用标准
2 2 0
降速测量
升速及降
速 测量
叹一。间隔 30 N 0
‘试验中所加试验电压峰值不得超过转 子 绕组的额定励磁电压
注: 交接试验中做序 1序 b 、 曲线上 ‘ 点
63 旋转状态 F . 探测线圈波形法测量 631 探测线圈的布置: .. 探测线圈为径向布置, 应安装在与转子本体表面之间适当距离( 一般为气隙的 13的固定支架上。在安装探测线圈时, /) 应保证探测线圈的轴线与转子径向重合。 632 转子绕组的线圈标号: . . 紧靠磁极的第一槽的线圈标号为 1 1 第二个槽的线圈标号为2 2, 或 ' , 或 ' 以F 类推, 在转子轴上做好定位标记。 633 测量仪器的选取: .. 应选择输人阻抗大、 频域宽、 灵敏度高的专用匝间短路测试仪或测量精度、 功 能达到本标准要求的其他测试仪器 634 测量及数据记录; .. 在转子动平衡期间, 被试转子绕组通人其额定励磁电流 4 %以下的直流电流,

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告一、实验目的1. 掌握三相同步发电机的空载、短路及零功率因数负载特性的实验求取法。

2.学会用实验方法求取三相同步发电机对称运行时的稳太参数。

二、实验内容:1.空载实验:在n=nN,I=0的条件下,测取同步发电机的空载特性曲线Uo=f(If)。

2.三相短路实验:在n=n N,U=0的条件下,测取同步发电机的三相短路特性曲线I k=f(I f).3..求取零功率因数负载特性曲线上的一点,在n=nN;U=UN;cosØ≈0的条件下,测取当I=IN 时的If值。

三、实验仪器及其接线1.实验仪器如下图所示:2.实验室实际接线图如下图所示:图1 实验室实际接线图四、实验线路及操作步骤:1. 空载实验实验接线图如图2所示图2 实验接线图实验时启动原动机(直流电动机),将发电机拖到额定转速,电枢绕组开路,调节励磁电流使电枢空载电压达到120%U N值左右,读取三相线电压和励磁电流,作为空载特性的第一点。

然后单方向逐渐减小励磁电流,较均匀地测取8到9组数据,最后读取励磁电流为零时的剩磁电压,将测量数据记录于表1中。

表1 空载实验数据记录 n=no=1500转/分 I=0(1)表1中U 0=3AC BC AB U U U ++ U 0*=NU U 0 I f =I ´f +ΔI f0 I I fofI f =* I f0为U 0= U N 时的I f 值,在本实验室中取U N =400V,I N =3.6A 。

(2)若空载特性剩磁较高,则空载特性应予以修正,即将特曲线的的直线部分延长与横轴相交,交点的横坐标绝对植ΔI f0即为修正量,在所有试验测得的励磁电流数据上加上ΔI f0,即得通过坐标原点之空载校正曲线。

如图3所示。

图3 空载特性曲线校正2.短路实验实验线路图如图2所示。

在直流电动机不停机状态下,并且,发电机励磁电流等于零的情况下,这时合上短路开关K 2,将电枢三相绕组短路,将机组转速调到额定值并保持不变,逐步增加发电机的励磁电流I f ,使电枢电流达到(1.1-1.2)倍额定值,同时量取电枢电流和励磁电流,然后逐步减小励磁电流直到降为0为止。

同步发电机及调相机试验方法

同步发电机及调相机试验方法

发电机及调相机试验方法第一部分:发电机及调相机的静态试验方法一.测量定子绕组的绝缘电阻及吸收比※各项绕组绝缘电阻的不平衡系数≤2※吸收比:对沥青浸胶及烘卷云母绝缘≥1.3;对环氧粉云母绝缘≥1.6;1.工具选择2500V兆欧表2.步骤⑴断开发电机出口电源开关;⑵用放电棒分别对U1、V1、W1接地充分放电,如图1所示;⑶解开中性点接线;⑷分别摇测出线侧U1、V1、W1对地绝缘电阻:记录R15和R60的数据。

⑸分别摇测出线侧U1对V1W1、V1对U1W1、W1对U1V1的地绝缘电阻:记录R15和R60的数据。

⑹用放电棒分别对U1、V1、W1接地充分放电。

二.测量转子绕组和励磁回路的绝缘电阻1.转子绕组※测量前将发电机大轴处的接地电刷提起(电刷离开大轴);※转子绕组、励磁回路的绝缘电阻一般≥0.5MΩ;※水内冷转子绕组选择500V的兆欧表或其它仪器,绝缘电阻≥0.5MΩ;※当发电机定子绕组绝缘电阻已符合启动要求,而转子绕组的绝缘电阻≥0.2MΩ时,可以投运;※转子绕组额定电压>200V时,选择2500V兆欧表;≤200V时,选择1000V兆欧表。

2.励磁回路※将回路中的电子元件拔出或将其两端短路。

三.测量轴承座的绝缘电阻※选择500V的兆欧表,测量值≥0.5 MΩ;※分别测量轴承座与薄铁板、薄铁板与基础台板、轴承座与基础台板之间的绝缘电阻。

四.测量定子绕组、转子绕组和灭磁电阻的直流电阻※测量定子绕组、转子绕组的直流电阻,应在冷态下进行,绕组表面温度与周围温度之差在±3℃内;※测量定子绕组、转子绕组的直流电阻,测量数值与产品出厂数值换算至同温度下的数值比较,其差值≤2%。

※测量灭磁电阻数值与铭牌数值比较,其差值≤10%。

1.电流、电压表法※ mV表的连线不应超过该表规定的电阻值,且应接于靠近触头侧2.平衡电桥法(电桥用法见《进网作业电工培训教材》P320※测量时,电压引线尽量靠近触头侧;电流引线在电压线外侧,宜分开不宜重叠※直流双臂电桥法:1~10-5Ω及以下※单臂电桥法:1~106Ω五.定子绕组的直流耐压和泄漏电流试验※定子直流耐压的试验电压为电机额定电压的3倍;※试验电压按0.5倍的额定电压分阶段升压试验,每段停留1min;※在试验电压下,各相泄漏电流的差别≤最小值的50%,当最大泄漏电流在20μA以下时,各相间差值与出厂值比较不应有明显差别;※水内冷电机,宜采用低压屏蔽法;※氢冷电机必须在充氢前或排氢后且含量在3%以下时进行。

同步发电机的五种特性

同步发电机的五种特性

同步发电机的五种特性:2009-06-05 08:341.空载特性&lt;n=nN,Ia=0,E0=f(If)&gt;通过空载试验可以检查电机接线是否正确,励磁系统是否正常,还可以从空载特性来判断电机磁路饱和程度.2.短路特性&lt;n=nN,U=0,Ia=IK=f(If)&gt;试验时,三相电枢绕组端短接,转子被拖到同步转速nN,调节励磁电流If,使电枢电流Ia从零逐渐增大到1.2IN左右,短路特性IK=f(If)是通过坐标原点的直线.短路试验时机端短接U=0,电枢绕组电阻ra剩去不计,则电枢回路为一纯电感回路,电枢反映为纯d轴去磁性质.稳态短路时,同步发电机气隙电动势仅仅等于漏抗压降,故电机磁路处于不饱和状态.3.零功率因数负载特性:发电机n=nN,负载为纯电感线圈(功率因数为0),保持电枢电流Ia=IN,同步发电机端电压U与励磁电流If间的关系曲线U=f(If).他可以用来测量漏电抗xσ(xp),是同步发电机基本特性之一.4.同步发电机的外特性&lt;n=nN,If=常数,功率因数=常数,U=f(Ia)&gt;外特性描述了发电机在负载电流Ia变化时端电压U的变化规律.在感性负载和纯电阻负载时,随负载电流增大,发电机端电压,这是因为:A.其电枢反应均有去磁作用,使气隙合成磁场削弱,发电机端电压从而降低.B.负载电流在漏阻抗上的压降Ia(ra+jxσ)随Ia的增大而增大,使端电压降低.若发电机带容性负荷,且电机φ角呈负值,则发电机有助磁性质的电枢反应,使气隙合成磁场增强,同时容性电流的漏抗压降有使电压增高的作用,结果使发电机端电压随负载电流增大而升高.5.调节特性&lt;n=nN,U=常数,功率因数=常数,If=f(Ia)&gt;在感性和纯电阻性质负载时,为弥补电枢反应去磁作用和漏阻抗压降使端电压降低的影响,励磁电流应随着Ia增大而相应增大。

发电机转子绕组匝间短路故障的常见形式及其检测方法

发电机转子绕组匝间短路故障的常见形式及其检测方法

故障维修发电机转子绕组匝间短路故障的常见形式及其检测方法汪成喜(惠州市光大环保能源(龙门)有限公司,广东 惠州 516000)摘 要:通过电机试验对两种方法的灵敏性和可靠性进行了验证。

根据电机生产企业对电机转子绕组匝间短路测试的实际需求,提出了测试方法的组合方案,既能保证判断的准确性,又能检测出具体的故障槽位置。

关键词:发电机;短路;方法汽轮发电机组在高速旋转时,其转子在运转时,经常会出现转子绕组匝间发生短路,严重影响运行安全。

若汽轮发电机间存在短路,则不会对发电机造成其它影响,但若出现较大的问题,则会增加机组振动幅度,造成转子损坏,甚至机器不能运行,或者就是会有一些比较严重的故障,影响到其运行的安全问题。

所以,对于发电机转子进行故障检测是十分有必要的,并在检测过程中还能够不断的提高系统运行的水平。

1 转子绕组结构由于汽轮发电机组容量不稳定,转子间的冷却方式也不尽相同。

空冷系统一般为小容量机组所采用。

其优点是维护量较小,可靠性较高,并且对于运行部门来说,对于这一种模式也是十分的欢迎,但是,由于单机容量正在不断的提高,使用空冷方式已经并不是一个最好的解决办法,并且现在有绝大多数的国家依然在对材料的结构以及性能进行改进。

但是由于性价比比较合理,一些容量比较大的空冷机组都得到了生产,并且在容量比较适合的机组中,存在氢冷以及水内冷这两种冷却的方法。

除此之外,转子的开槽也是两种方式中转子的开槽形式,这对于励磁绕组的放置来说,是十分的方便。

从目前的状况来看,国内外的代行机组基本上都是用了一个氢冷的方法,而这一种方式的发电铣削的时候有一个槽,大汽轮发电机转子中有两个磁极,每个磁极上存在 n个槽,槽内存有串连的是一个槽的个数——半个线圈,而在每一个线圈中都有一个含有银的扁铜线并联成匝。

就像中心绕组一样,整个绕组是由末端的转子绕组中包含的线圈组成的。

与转子两极相连的是末端开始的线圈。

在电机转子线圈的时候使用到这一方式,以实心裸铜线绕制,然后贴上垫片或匝间绝缘。

31.同步发电机的空载短路实验

31.同步发电机的空载短路实验

一、空载特性空载特性:n =n 1,I =0时,U 0=f (i f )§10-6 空载和短路特性空载特性是发电机的基本特性之一:(1)空载特性表征了电机磁路的饱和情况;(2)空载特性和短路特性等其它特性配合在一起,可以确定同步电机的基本参数。

测取方法:ff δfU Uf 1.00*U定子短路特性:n =n 1,U =0时,I k =f (i f )测取方法:二、短路特性AAA定子fkNI 短路特性是直线的原因:k E U jI x δσ=+=f i E I δ∴∝∝ka1f k E jI x δσ=∴电机磁路处于不饱和状态0151015k x .I =E =.σδ***≈∴当时,fkI 从物理意义上解释:忽略电阻,短路回路只包含电抗,故I k 总是滞后于E 0 900。

F a 与F f 1方向相反,去磁作用,磁路不饱和。

三、利用空载特性和短路特性求同步电抗的不饱和值sk s k a k xI j x I j r I E ≈+=00s kE x I =f0E k I 注意:1)取E 0而非E 0’计算x s2)E 0、I k 为相值3)凸极机计算为直轴同步电抗x dfi 0k I 0'E 短路时电枢的电动势方程:同步电抗的不饱和值四、短路比定义:在能产生空载额定电压的励磁电流下,三相稳态短路时的短路电流与额定电流的比值(K c )。

000()()()kN f f f N c Nfk k N I i i i U U K I i I I =====0fE kNI fkI N U N I kE fk 0k dE jI x =−000**//1/1N d c N N d N N ddE U E x E K I I x U U x k x φφφμ===⨯=不计饱和时:*/1dc xK =dkNx E I 0=当i f =i f 0时有:f δ短路比对电机的影响:1)短路比小则同步电抗大,短路电流小,但负载变化时发电机的电压变化较大,而且并联运行时发电机的稳定性较差,但电机的成本较低;*d x 2)短路比大电机性能较好,但成本高,因为短路比大表示小,故气隙大,使励磁电流和转子用铜量增大;4)我国汽轮发电机的K c =0.47-0.63,水轮发电机的K c =1.0-1.4。

同步发电机突然短路的暂态过程仿真实验总结

同步发电机突然短路的暂态过程仿真实验总结

同步发电机突然短路的暂态过程仿真实验总结标题:同步发电机突然短路的暂态过程仿真实验总结摘要:本文通过进行同步发电机突然短路的暂态过程仿真实验,深入探讨了该过程中的多个方面。

通过分析仿真结果,我们得出了一些有价值的观点和理解,对于同步发电机暂态过程中的电气特性和保护措施具有一定的指导意义。

1. 引言同步发电机是电力系统中重要的电力装置之一,而突然短路是其运行过程中可能面临的一种故障情况。

为了研究同步发电机在突然短路时的暂态过程,我们进行了仿真实验,并在本文中总结了相关结果和结论。

2. 仿真实验设计与参数设定在实验中,我们利用电力系统仿真软件搭建了同步发电机与电力系统的模型,并对系统参数进行合理设定。

为了模拟突然短路情况,我们在某一时刻突然将发电机输出接入短路。

3. 暂态过程分析通过仿真得到的结果,我们对同步发电机突然短路的暂态过程进行了分析。

具体包括以下几个方面:3.1 电压和电流的变化:突然短路引起了电压和电流的突变,仿真结果显示了这一过程中电压和电流的变化曲线,并对其进行了解读。

3.2 同步发电机的转子电流:同步发电机的短路故障对转子电流产生了很大的影响,我们对转子电流的变化进行了分析,并总结了其特点和变化规律。

3.3 功角稳定性:同步发电机突然短路可能导致系统的功角不稳定,我们对仿真结果中功角的变化进行了研究,并探讨了功角稳定性相关的问题。

4. 结果与讨论通过对仿真实验结果的分析,我们得出了以下几点观点和理解:4.1 突然短路引起的暂态过程是复杂的,其中电压、电流、转子电流和功角等参数都发生了较大的变化。

4.2 同步发电机的短路故障会导致转子电流迅速增大,可能影响到设备的安全运行。

4.3 突然短路时,系统中的功角可能会不稳定,需要采取合适的控制和保护措施来维持系统的稳定性。

5. 总结与展望本文通过同步发电机突然短路的暂态过程仿真实验,对该过程中的多个方面进行了探讨和分析。

通过对仿真结果的总结和回顾,我们获得了一些有价值的观点和理解,对同步发电机暂态过程的研究具有一定的参考意义。

同步发电机的短路比

同步发电机的短路比

同步发电机的短路比全文共四篇示例,供读者参考第一篇示例:同步发电机的短路比是指在特定工作条件下,发电机的短路电流与额定电流之比。

短路比是一个重要的参数,它直接影响着发电机的安全运行和稳定性。

在电力系统中,短路比能够反映发电机的内部短路能力,也可以用来评估其对系统短路故障的影响。

发电机的短路比通常是在额定功率下进行测试的。

测试过程中,通过给发电机一个外部短路电流,然后测量其短路电流大小,就可以计算出短路比。

通常情况下,短路比的值应当在0.2到0.3之间,这样才能保证发电机在短路故障时有足够的内部短路电流,从而保障系统的安全运行。

发电机的短路比与其内部结构和绕组设计有着密切的关系。

高短路比通常意味着发电机具有较强的短路能力,但也会带来一些负面影响。

短路比过高会导致发电机的绕组过热,从而影响其寿命和稳定性。

在设计发电机时,需要综合考虑短路比、额定电流和负载能力等因素,以确保发电机在工作中具有良好的性能和可靠性。

短路比还可以用来评估电气设备的绝缘水平。

通过短路比的测试,可以了解设备的绝缘能力是否符合要求,从而及时发现可能存在的故障隐患。

在运行中,如果发现短路比异常偏高或偏低,就需要及时对设备进行检修和维护,以确保设备的正常运行和安全性。

第二篇示例:同步发电机的短路比是指在设备发生短路时,电流通过短路路径的比例。

短路比反映了短路电流在各支路之间的分布情况和电流在设备中的流动路径,是评价同步发电机短路瞬态能力的重要指标之一。

对于同步发电机来说,短路比直接影响短路时的电流分布和设备的瞬态稳定性。

短路比越大,表示短路电流主要通过短路路径,流过短路支路的电流少,设备的瞬态稳定性较好。

反之,短路比较小时,短路电流主要绕过短路支路,流向其他支路,这会导致设备的瞬态稳定性变差。

在实际运行中,同步发电机的短路比需要根据设备的具体参数来进行计算和评估。

一般来说,高压发电机的短路比要小于中压和低压设备,这是因为高压设备的绕组阻抗较小,电流更容易绕过短路支路。

永磁同步电机稳态短路试验

永磁同步电机稳态短路试验

永磁同步电机稳态短路试验WANG Yingchun;LI Xiangcheng;CHAI Qunkang;FENG Lu【摘要】通过对永磁同步电机(PMSM)稳态短路工况中短路电流和短路转矩进行理论分析,得到了PMSM稳态短路电流和电磁转矩的解析表达式.结合二维有限元法对某型号180 kW PMSM短路工况下的短路电流和短路转矩进行仿真分析计算,确定PMSM在稳态短路试验时短路电流、短路转矩随电机转速的变化规律.采用1台PMSM进行三相稳态短路试验验证,记录了短路试验时不同转速下的短路电流和短路转矩.对试验结果与理论分析、仿真分析结果进行对比分析,验证了短路电流、短路转矩随转速的变化规律.【期刊名称】《电机与控制应用》【年(卷),期】2019(046)004【总页数】6页(P82-86,114)【关键词】永磁同步电机;稳态短路试验;短路电流;短路转矩;有限元【作者】WANG Yingchun;LI Xiangcheng;CHAI Qunkang;FENG Lu【作者单位】【正文语种】中文【中图分类】TM3510 引言永磁同步电机(PMSM)具有结构简单、效率高、弱磁调速性能优良等优点,在牵引电机行业应用广泛[1]。

PMSM的电气性能稳定性取决于永磁材料。

永磁材料在过高温度、冲击电流电枢反应或剧烈的机械振动作用下,都可能发生不可逆退磁,使电机的性能下降,甚至无法使用[2]。

永磁电机在三相短路时,短路电流产生直轴电枢磁动势对永磁体去磁,在三相突然短路时去磁能力最强。

为了避免永磁体在发电机短路过程中发生不可逆退磁,设计中必须进行最大去磁工作点校核计算,应保证此工作点在最高工作温度时回复线的线性段,或者说高于回复线的拐点。

研究三相短路特性有助于完善和补充电机在线检测理论,为失磁电机的检测提供依据[3]。

同时,稳态短路是进行永磁电机负载电流试验的重要方法之一。

稳态短路电流和短路转矩的理论计算,是试验线路和试验设备选择的前提条件[4-5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步发电机突然短路的分析
一、实验目的
1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。

2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同
二、实验原理
同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。

同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。

为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。

因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。

三、实验内容
电力系统时域分析实例(仿真)
范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。

图1 同步电机突然短路电路模型
1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下
2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。

电压测
量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。

3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三相
故障同时选中并设置转换时间。

4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:
四、实验报告(三相短路分析)
1故障点电流波形图
➢在万用表元件M1中分别选择故障点A相、B相、C相电流作为测量电气量,分别得到故障点A相电流波形图、故障点B相电流波形图、故障点C相电流波形图
2故障点电压波形图
在万用表M1中选择故障点A相电压、故障点B相电压、故障点C相电压作为测量电气量,激活仿真按钮,得到故障点三相电压波形图
3电源端电流波形图
➢(1)在同步发电机短路系统中,使用相量选择器在电源端选择三相电流信号,测三相电流波形图
➢(2)在恒定电压源系统中,使用相量选择器在电源端选择三相电流作为测量电气量
比较并分析以上结果
图2 恒定电压源电路短路模型(上次实验内容)。

相关文档
最新文档