高中数学竞赛定理
全国高中数学联赛竞赛大纲稿及全部定理内容
全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容; 补充要求:面积和面积方法;2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点;到三角形三顶点距离的平方和最小的点--重心;三角形内到三边距离之积最大的点--重心;4、几何不等式;5、简单的等周问题;了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大; 在周长一定的简单闭曲线的集合中,圆的面积最大;在面积一定的n边形的集合中,正n边形的周长最小; 在面积一定的简单闭曲线的集合中,圆的周长最小;6、几何中的运动:反射、平移、旋转;7、复数方法、向量方法; 平面凸集、凸包及应用;二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像;三倍角公式,三角形的一些简单的恒等式,三角不等式;2、第二数学归纳法;递归,一阶、二阶递归,特征方程法; 函数迭代,求n次迭代,简单的函数方程;3、n个变元的平均不等式,柯西不等式,排序不等式及应用;4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用;5、圆排列,有重复的排列与组合,简单的组合恒等式;6、一元n次方程多项式根的个数,根与系数的关系,实系数方程虚根成对定理;7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质;三、立体几何1、多面角,多面角的性质;三面角、直三面角的基本性质;2、正多面体,欧拉定理;3、体积证法;4、截面,会作截面、表面展开图;四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用;2、二元一次不等式表示的区域;3、三角形的面积公式;4、圆锥曲线的切线和法线;5、圆的幂和根轴;五、其它抽屉原理; 容斤原理; 极端原理; 集合的划分; 覆盖;数学竞赛中涉及的重要定理1、第二数学归纳法:有一个与自然数n有关的命题,如果:1当n=1时,命题成立;2假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立;那么,命题对于一切自然数n来说都成立;2、棣美弗定理:设复数z=rcosθ+isinθ,其n次方z^n = r^n cosnθ+isinnθ,其中n为正整数;3、无穷递降法:证明方程无解的一种方法;其步骤为:假设方程有解,并设X为最小的解;从X推出一个更小的解Y;从而与X的最小性相矛盾;所以,方程无解;4、同余:两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余,记作a ≡ b mod m ,读作a同余于b模m,或读作a与b关于模m同余; 比如26 ≡ 14 mod 12定义设m是大于1的正整数,a,b是整数,如果m|a-b,则称a与b关于模m同余,记作a≡bmod m,读作a同余于b模m.;有如下事实:1若a≡0mod m,则m|a;2a≡bmod m等价于a与b分别用m去除,余数相同.5、欧几里得除法:即辗转相除法; 详见高中数学课标人教B版必修三6、完全剩余类:从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系;例如,一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系;可以看出0和4,1和5,2和-2,3和11关于模4同余,这4组数分别属于4个剩余类;7、高斯函数:fx=ae-x-b^2/c^2 其中a、b与c为实数常数 ,且a > 0.8、费马小定理:假如p是质数,且a,p=1,那么 a^p-1 ≡1mod p 假如p是质数,且a,p互质,那么 a的p-1次方除以p的余数恒等;9、欧拉函数:φ函数的值:通式:φx=x1-1/p11-1/p21-1/p31-1/p4…..1-1/pn,其中p1, p2…pn为x的所有质因数,x是不为0的整数;φ1=1唯一和1互质的数就是1本身;若n是质数p的k次幂,φn=p^k-p^k-1=p-1p^k-1,因为除了p的倍数外,其他数都跟n互质;欧拉函数是积性函数——若m,n互质,φmn=φmφn;特殊性质:当n为奇数时,φ2n=φn, 证明于上述类似;10、孙子定理:此定理的一般形式是设m = m1 ,… ,mk 为两两互素的正整数,m=m1,…mk ,m=miMi,i=1,2,… ,k ;则同余式组x≡b1modm1,…,x≡bkmodmk的解为x≡M'1M1b1+…+M'kMkbk modm;式中M'iMi≡1 modmi,i=1,2,…,k ;11、裴蜀定理:对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程称为裴蜀等式:若a,b是整数,且a,b=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立;它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.11、梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=1 12、梅涅劳斯定理的逆定理: 如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线; 13、塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M,则1=••PA CP NC BN MB AM14、塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点;15、广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和;推论2:设△ABC 三边长分别为a 、b 、c,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+16、三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有AC AB DCBD = 外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D,则有AC AB DC BD = 17、托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD18、三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P19、正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===R 为△ABC 外接圆半径余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;20、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC,PE ⊥AC,PF ⊥AB,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线;21、欧拉定理:△ABC 的外接圆圆心为O,半径为R,内切圆圆心为I,半径为r,记OI=d,则有:d 2=R 2-2Rr.22、巴斯加线定理:圆内接六边形ABCDEF不论其六顶点排列次序如何,其三组对边AB与DE、BC与EF、CD与FA的交点P、Q、R共线;。
高中奥林匹克数学竞赛-几个重要定理
竞赛专题讲座-几个重要定理《定理1》正弦定理△ABC中,设外接圆半径为R,则证明概要如图1-1,图1-2过B作直径BA',则∠A'=∠A,∠BCA'=90°,故即;同理可得当∠A为钝角时,可考虑其补角,π-A.当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。
《定理2》余弦定理△ABC中,有关系a2=b2+c2-2bccosA;(*)b2=c2+a2-2cacosB;c2=a2+b2-2abcosC;有时也用它的等价形式a=ccosB+bcosC;b=acosC+ccosA;(**)c=acosB+bcosA.证明简介余弦定理的证法很多,下面介绍一种复数证法如图建立复平面,则有=(bcosA-c2)+(bsinθ)2即a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。
《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。
在△FBD、△CDE、△AEF中,由正弦定理,分别有《定理4》塞瓦定理(Ceva) (塞瓦点)设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则证法简介(Ⅰ)本题可利用梅内劳斯定理证明:(Ⅱ)也可以利用面积关系证明同理 ④ ⑤③×④×⑤得《定理5》塞瓦定理逆定理在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。
证法简介(Ⅰ)若AD∥BE(如图画5-1) 则EACEBD BC =代入已知式:1=⋅⋅FB AF BD BC DC BD 于是 CBDCFB AF =, 故 AD∥CF,从而AD∥BE∥CF(Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得1='⋅⋅B F AF EA CE DC BD 而已知1=⋅⋅FB AFEA CE DC BD 可见FB AF B F F A ='' 则 FBAF AFB F F A F A +='+'' AB FB AF B F F A =+='+' AF F A =' 即F '即F ,可见命题成立《定理6》斯特瓦尔特定理在△ABC 中,若D 是BC 上一点,且BD=p ,DC=q ,AB=c ,AC=b ,则证明简介:在△ABD 和△ABC 中,由余弦定理,得《定理7》托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆BD AC AD BC CD AB •=•+•的充要条件是共圆ABCD《定理7》、西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
高中竞赛数学几何定理
关于圆圆幂定理线段成比例托米勒定理线段成比例帕斯卡定理三点共线西摩松线三点共线关于三角形海伦公式三角形面积梅内劳斯定理线段成比例塞瓦定理线段成比例欧拉线三点共线且成比例圆幂定理圆幂的定义:一点P对半径R的圆O的幂定义如下:OP^2-R^2所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有PA·PB=PC·P D。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
进一步升华(推论):过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。
则PA·PB=PC·PD。
若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (一定要加绝对值,原因见下)为定值。
这个值称为点P到圆O的幂。
(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。
(这就是“圆幂”的由来)圆的方程通常表示为x^2+y^2=r^2[编辑本段]证明圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理)相交弦定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。
高中数学竞赛平面几何基本定理
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a −+=. 4. 垂线定理:2222BD BC AD ACCD AB −=−⇔⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===−−−=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=−+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222−+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE −==−==−==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠−︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠−︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr −−−==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF −=∆∆.。
高中数学竞赛平面几何定理
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 与其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11.弦切角定理:弦切角等于夹弧所对的圆周角. 12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB 于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC 的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以与垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22.锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. 23.重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则;(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3);(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2);(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,.29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C B A R r C B A R r C B A R r C B A R r c b a ====.1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 .(逆定理也成立)31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA =1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,与该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R 关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC 的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC 的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点与M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点与M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L 两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点与M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C 和F,则这三线共点.67.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和F A的(或延长线的)交点共线.68.阿波罗尼斯(Apollonius)定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69.库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70.密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F 六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点.71.葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.72.欧拉关于垂足三角形的面积公式:O是三角形的外心,M是三角形中的任意一点,过M向三边作垂线,三个垂足形成的三角形的面积,其公式:.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃与的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日与拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD 三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形与其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。
高中数学竞赛常用定理
高中数学竞赛常用定理在高中数学竞赛中,掌握一些常用的数学定理和公式是至关重要的。
这些定理和公式可以帮助学生在比赛中更快、更准确地解决问题,提高竞赛成绩。
下面我们就来介绍一些高中数学竞赛中常用的定理和公式。
1. 三角函数的基本关系:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=2R$,其中$a$、$b$、$c$分别为三角形$ABC$的三边长度,$A$、$B$、$C$为对应的内角,$R$为三角形$ABC$的外接圆半径。
- 余弦定理:$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
- 正弦函数和余弦函数的关系:$\sin(a \pm b)=\sin a \cos b \pm \cosa \sin b$,$\cos(a \pm b)=\cos a \cosb \mp \sin a \sin b$。
2. 相似三角形的性质:- 相似三角形的对应角相等,对应边成比例。
- 直角三角形中,正弦、余弦、正切函数的关系:$\sinA=\frac{a}{c}$,$\cos A=\frac{b}{c}$,$\tan A=\frac{a}{b}$。
3. 平面几何中的重要定理:- 圆的性质:圆内角的和为$180^\circ$,圆周角等于其对应圆心角的一半。
- 相交弦定理:相交弦乘积相等,即$AB \times CD=BC \timesDA$。
- 切线和半径的关系:切线和半径垂直,切线与半径的交点与圆心连线构成直角三角形。
- 内切圆和外切圆的性质:内切圆的切点和三角形的顶点共线,外切圆的切点和三角形的对边中点共线。
4. 数列和级数中的常用公式:- 等差数列前$n$项和公式:$S_n=\frac{n}{2}(a_1+a_n)$。
- 等比数列前$n$项和公式:$S_n=\frac{a_1(1-q^n)}{1-q}$。
高中数学竞赛平面几何定理证明大全
高中数学竞赛平面几何定理证明大全莫利定理是一个有趣的几何定理,它指出如果将任意三角形的各角三等分,那么每两个角的相邻三等分线的交点构成一个正三角形。
我们可以通过构造莫利三角形来证明这个定理。
莫利三角形的顶点D是三角形ABC中∠B和∠C的三等分角线的交点。
我们可以在CP和BP上分别找到另外两个顶点E和F,使△DEF是一个正三角形,并且证明AE和AF是∠BAC的三等分线。
为了构造莫利三角形,我们可以先将DP连起来,然后在CP和BP上分别取两个点E和F,使得∠EDP=∠FDP=30°。
由于D是三角形BPC的内心,所以DP是∠___的角平分线,即∠DPE=∠DPF。
因此,△DPE≌△DPF,从而DE=DF,也就是说,△DEF是一个等腰三角形,并且是一个正三角形。
接下来,我们需要证明AE和AF是∠BAC的三等分线。
为此,我们在AB和AC上分别取两个点G和H,使得BG=BD,CH=CD。
然后将G、F、E、H依次连接起来,根据△BFD≌△BFG和△CED≌△CEH,我们可以得到GF=FD=FE=ED=EH。
如果能证明G、H、E、F、A五点共圆,那么就可以证明AE和AF是∠BAC的三等分线了。
为了证明五点共圆,我们需要证明∠___∠___∠A/3.首先,我们可以注意到△GFE是一个等腰三角形,所以如果能求出∠GFE,那么∠___也就能求出来了。
另外,△___也是一个等腰三角形,因为△PDF≌△PDE。
因此,PF=PE,且∠PFE=∠PEF。
由于DE=DF,所以△DEF是一个等边三角形,∠FED=60°。
因此,∠___∠FED=30°=∠___,从而∠___∠PEF=∠A/3.同理,可以证明∠___∠A/3.因此,我们证明了五点共圆,从而证明了AE和AF是∠BAC的三等分线,完成了莫利定理的证明。
我们需要证明D、E、F在同一直线上。
证明过程如下:首先,我们可以得到∠QUB=∠QPB,∠QVC=∠___,∠QWA=∠QPA。
高中数学竞赛第十七章 整数问题【讲义】
第十七章 整数问题一、常用定义定理1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。
b 不能被a 整除,记作a b.2.带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≤r<|a|,当r=0时a|b 。
3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,0<u 2<|u 1|; u 1=q 1u 2+u 3,0<u 3<u 2; u 2=q 2u 3+u 4,0<u 4<u 3; …u k-2=q k-2u 1+u k-1+u k ,0<u k <u k-1; u k-1=q k-1u k+1,0<u k+1<u k ; u k =q k u k+1.4.由3可得:(1)u k+1=(u 0,u 1);(2)d|u 0且d|u 1的充要条件是d|u k+1;(3)存在整数x 0,x 1,使u k+1=x 0u 0+x 1u 1.5.算术基本定理:若n>1且n 为整数,则k ak aap p p n 2121=,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。
6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。
7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。
8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p≡a(modp).9.若(a,m)=1,则)(m aϕ≡1(modm),ϕ(m)称欧拉函数。
高中数学联赛常用定理
常用定理1、费马点(I)基本概念定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。
(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。
所以三角形的费马点也称为三角形的等角中心。
(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。
(II)证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。
△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠P A1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)P A+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结△PD,则PDB为等边三角形,所以∠BPD=60度又∠BP A=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故P A+PB+PC=AA1。
(3)P A+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、△CM,将BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1<A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。
平面四边形费马点平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。
(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。
费马点(2)在凹四边形ABCD中,费马点为凹顶点D(P)。
经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。
高中数学竞赛中平面几何涉及的定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
个人精心整理!高中数学联赛竞赛平面几何四大定理~及考纲
1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、、、。
几个重要的极值:到三角形三顶点距离之和最小的点--。
到三角形三顶点距离的平方和最小的点--。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
方法、方法。
平面、及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带的函数的图像。
,三角形的一些简单的恒等式,三角不等式。
,一阶、二阶递归,法。
函数,求n次迭代,简单的函数方程。
n个变元的平均不等式,,及应用。
复数的指数形式,欧拉公式,,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完全剩余类,,,,,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的式,直线的,直线束及其应用。
二元一次不等式表示的区域。
三角形的。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它。
集合的划分。
覆盖。
西姆松线的存在性及性质()。
及其逆定理。
一、平面几何1.梅涅劳斯定理(Menelaus)定理(简称梅氏定理)是由数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
个人精心高中数学联赛竞赛平面几何四大定理及考纲
个人精心高中数学联赛竞赛平面几何四大定理及考纲Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、、、。
几个重要的极值:到三角形三顶点距离之和最小的点--。
到三角形三顶点距离的平方和最小的点--。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
方法、方法。
平面、及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带的函数的图像。
,三角形的一些简单的恒等式,三角不等式。
,一阶、二阶递归,法。
函数,求n次迭代,简单的函数方程。
n个变元的平均不等式,,及应用。
复数的指数形式,欧拉公式,,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完全剩余类,,,,,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的式,直线的,直线束及其应用。
二元一次不等式表示的区域。
三角形的。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它。
集合的划分。
覆盖。
西姆松线的存在性及性质()。
及其逆定理。
一、平面几何1. 梅涅劳斯定理(Menelaus)定理(简称梅氏定理)是由数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
全国高中数数学联赛定理技巧大全(内含225个定理、89个解题方法技巧)
(4)
√ a± b=
1
√ a + a2 − b
±
1
√ a − a2 − b
,
其中
a
⩾
√ b.
2
2
ห้องสมุดไป่ตู้
定理 1 – 2 (数学归纳法) 设 P(n) 是关于自然数 n 的命题, 则有下述一些方法证明其正确
性.
1. 第一数学归纳法:
(1) P(n0) 成立; (2) 当 P(k) 成立时 (k ⩾ n0), P(k + 1) 成立, 则命题 P(n) 对一切自然数 n ⩾ n0 成立. 2. 第二数学归纳法:
定理 1 – 5 在有限闭区间上连续的函数必是有界函数.
定理 1 – 6 在有限闭区间上连续的函数必有最大值和最小值.
定理 1 – 7 (介值定理) 设函数 f (x) 在区间 [a, b] 上连续, 则对 f (a), f (b) 之间的任何一个
数 A, 必存在 [a, b] 上的一个数 c, 使得 f (c) = A.
(1) P(m0, n0) 成立;
(2) 当 P(k, r) 成立时 (k ⩾ m0, r ⩾ n0), P(k + 1, r) 与 P(k, r + 1) 成立, 则命题 P(m, n) 对一切
自然数 m ⩾ m0, n ⩾ n0 成立.
定理 1 – 3
lim
1 1+
n
= e.
n→∞
n
定理 1 – 4 单调有界数列存在极限.
定理 1 – 8 (零点定理) 设函数 f (x) 在区间 [a, b] 上连续, 且 f (a) f (b) < 0, 则存在 [a, b] 上
的一个数 c, 使得 f (c) = 0.
高中数学竞赛平面几何定理
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11.弦切角定理:弦切角等于夹弧所对的圆周角. 12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB 于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC 的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22.锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. 23.重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则a c b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RB AR QA CQ PC BP .(逆定理也成立)31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A 和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R 关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC 的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC 的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L 两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C 和F,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式:222ABC D 4||R d R S S EF -=∆∆.平面几何的意义 就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD 三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重 心定义:重心是三角形三边中线的交点,可用燕尾定理证明,十分简单。
证明过程又是塞瓦定理的特例。
已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。
求证:F 为AB 中点。
证明:根据燕尾定理,S △AOB=S △AOC ,又S △AOB=S △BOC ,∴S △AOC=S △BOC ,再应用燕尾定理即得AF=BF ,命题得证。
重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、三角形到三边距离之积最大的点。
5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3外 心定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。
外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。
设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c )垂 心定义:三角形的三条高的交点叫做三角形的垂心。
性质:锐角三角形垂心在三角形部直角三角形垂心在三角形直角顶点钝角三角形垂心在三角形外部设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积。
1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c垂心坐标:( 1c /c ,2c /c ,3c /c )九点圆三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆,这个圆为九点圆 〔 或欧拉圆 或 费尔巴哈圆. )九点圆性质:1.三角形的九点圆的半径是三角形的外接圆半径之半; 即九点圆r :外接圆r =2:12.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的切圆,三个旁切圆均相切设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c垂心坐标::( (3212c c c ++)/4c ,(3212c c c ++)/4c ,(3212c c c ++)/4c )欧拉线定义:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。
欧拉线定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。
欧拉线的性质:1、在任意三角形中,以上四点共线。
2、欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。
欧拉线的证法1如图 作△ABC 的外接圆,连结并延长BO ,交外接圆于点D 。
连结AD 、CD 、AH 、CH 、OH 。
作中线AM ,设AM 交OH 于点G’∵ BD 是直径∴ ∠BAD 、∠BCD 是直角∴ AD ⊥AB ,DC ⊥BC∵ CH ⊥AB ,AH ⊥BC∴ DA//CH ,DC//AH∴ 四边形ADCH 是平行四边形∴ AH=DC∵ M 是BC 的中点,O 是BD 的中点∴ OM=21DC ∴ OM= 21AH ∵ OM//AH∴ △OMG’ ∽△HAG’ ∴GM AG =12 ∴ G’是△ABC 的重心∴ G 与G’重合∴ O 、G 、H 三点在同一条直线上欧拉线的证法2如图 设H,G,O,分别为△ABC 的垂心、重心、外心。
连接AG 并延长交BC 于D, 则可知D 为BC 中点。
连接ODO 为外心∴OD ⊥BC连接AH 并延长交BC 于EH 为垂心∴ AE ⊥BC∴OD//AE ,有∠ODA=∠EAD 。
由于G 为重心,则GA:GD=2:1。
连接CG 并延长交BA 于F 则可知F 为AB 中点同理,OF//CM∴∠OFC=∠MCF连接FD FD//AC,DF:AC=1:2∴∠DFC=∠FCA ,∠FDA=∠CAD又∠OFC=∠MCF ,∠ODA=∠EAD相减可得∠OFD=∠HCA,∠ODF=∠EAC∴△OFD∽△HCA∴OD:HA=DF:AC=1:2又GA:GD=2:1∴OD:HA=GA:GD=2:1又∠ODA=∠EAD∴△OGD∽△HGA∴∠OGD=∠AGH又连接AG并延长∴∠AGH+∠DGH=180°∴∠OGD+∠DGH=180°即O、G、H三点共线欧拉线的证法3设H,G,O,分别为△ABC的垂心、重心、外心.则OH=OA+OB+OCOG=(OA+OB+OC)/3,3 ×OG=OH∴O、G、H三点共线(注:OH, OA, OB , OC ,OG 均为向量)费马点定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。
费马点的判定(1)对于任意三角形△ABC,若三角形或三角形上某一点E,若EA+EB+EC有最小值,则E为费马点。
(2)如果三角形有一个角大于或等于120°,这个角的顶点就是费马点;如果3个角均小于120°,则在三角形部对3边角均为120°的点,是三角形的费马点。
费马点性质:(1)平面一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。
(2).特殊三角形中,三角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.(3).特殊三角形中,若三角形有一角大于或等于120度,则此钝角的顶点就是费马点(4)特殊三角形中,当△ABC为等边三角形时,此时外心与费马点重合证明(1)费马点对边的角为120度在B CC 1∆和B AA 1∆中BC=1BA ,BA=1BC ,1CBC ∠=∠B+︒60=1ABA ∠,∴B CC 1∆和B AA 1∆是全等三角形∴∠PCB=B PA 1∠同理可得∠CBP=P CA 1∠由B PA 1∠+P CA 1∠=︒60,得∠PCB+∠CBP=︒60,∴∠CPB=︒120同理,∠APB=︒120,∠APC=︒120(2)PA+PB+PC=1AA将△BPC 以点B 为旋转中心旋转︒60与1BDA ∆重合,连结PD ,则△PDB 为等边三角形 ∴∠BPD=︒60又∠BP A=︒120因此A 、P 、D 三点在同一直线上又∠CPB=DB A 1∠=︒120,∠PDB=︒60,PDA ∠=︒180∴A 、P 、D 、1A 四点在同一直线上故PA+PB+PC=1AA(3)PA+PB+PC 最短在△ABC 任意取一点M (不与点P 重合),连结AM 、BM 、CM ,将△BMC 以点B 为旋转中心旋转︒60与1BGA ∠重合,连结AM 、GM 、G A 1(同上),则1AA <A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A 、B 、C 的距离最短。
梅涅劳斯定理容:如果一条直线与△ABC 的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点,那么FB AF ×DC BD ×EA CE =1。
或 设X 、Y 、Z 分别在△ABC 的BC 、CA 、AB 所在直线上,则X 、Y 、Z 共线的充要条件是ZB AZ ×XC BX ×YA CY =1证明一:如图 过点A 作AG ∥BC 交DF 的延长线于G,则FB AF =BD AG ,DC BD =DC BD , EA CE =AGDC 。
三式相乘得:FB AF ×DC BD ×EA CE =BD AG ×DC BD ×AGDC =1证明二:过点C 作CP ∥DF 交AB 于P ,则DC BD =PF FB ,EA CE =AF PF ∴FB AF ×DC BD ×EA CE =FB AF ×PF FB ×AFPF =1 它的逆定理也成立:若有三点F 、D 、E 分别在△ABC 的边AB 、BC 、CA 或其延长线上,且满足FB AF ×DC BD ×EA CE =1,则F 、D 、E 三点共线。
利用这个逆定理,可以判断三点共线。
证明三:过ABC 三点向三边引垂线AA'BB'CC',∴AD :DB=AA':BB',BE :EC=BB':CC',CF :FA=CC':AA'∴FB AF ×DC BD ×EACE =1在△ABC 的三边BC 、CA 、AB 或其延长线上分别取L 、M 、N 三点,又分比是λ=BL/LC 、μ=CM/MA 、ν=AN/NB 。
于是L 、M 、N 三点共线的充要条件是λμν=1。
第一角元形式的梅涅劳斯定理如图:若E ,F ,D 三点共线,则FCB ACF ∠∠sin sin ×DAC BAD∠∠sin sin ×ABE CBA∠∠sin sin =1即图中的蓝角正弦值之积等于红角正弦值之积第二角元形式的梅涅劳斯定理在平面上任取一点O ,且EDF 共线,则DOB AOF∠∠sin sin ×DOC BOD∠∠sin sin ×AOE COA∠∠sin sin =1。
(O 不与点A 、B 、C 重合)塞瓦定理容:在△ABC 任取一点O 直线AO 、BO 、CO 分别交对边于D 、E 、F ,则 (BD/DC)*(CE/EA)*(AF/FB)=1证法:(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC 被直线BOE 所截∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD 被直线COF 所截∴(BC/CD)*(DO/OA)*(AF/FB)=1 ②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S △ABD/S △ACD=S △BOD/S △COD=(S △ABD-S △BOD)/(S △ACD-S △COD)=S △AOB/S △AOC ③同理 CE/EA=S △BOC/ S △AOB ④AF/FB=S △AOC/S △BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB 、BC 、AC 的垂足分别为D 、E 、F ,根据塞瓦定理逆定理,∵(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA )/[(CD*ctgB )]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,∴三条高CD 、AE 、BF 交于一点。