2019-2020学年广州市番禺区七年级上学期期末数学试卷解析版

合集下载

2019-2020学年七年级(上)期末数学试卷(附解析)

2019-2020学年七年级(上)期末数学试卷(附解析)

2019-2020学年七年级(上)期末数学试卷1. −2019的绝对值是( )A. 2019B. −2019C. 12019D. −120192. 如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A.B.C.D.3. 如图,下列说法中错误的是( )A. ∠3和∠5是同位角B. ∠4和∠5是同旁内角C. ∠2和∠4是对顶角D. ∠1和∠4是内错角4. 下列运算正确的是( )A. 0−3=−3B. −52−12=−2 C. (−52)÷(−25)=1D. (−2)×(−3)=−65. 宜宾五粮液机场已于2019年12月5日正式投运,预计到2020年,通航的城市将达到30个,年旅客吞吐量达200万人次,该项目中航站楼总建筑面积约2.4万平方米,用科学记数法表示2.4万为( )A. 2.4×103B. 2.4×104C. 2.4×105D. 0.24×1056. 若锐角α的补角是140°,则锐角α的余角是( )A. 30°B. 40°C. 50°D. 60°7. 一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“创”相对的面上的汉字是( )A. 文B. 明C. 宜D. 宾8. 把多项式1−5ab 2−7b 3+6a 2b 按字母b 的降幂排列正确的是()A. 1−7b3−5ab2+6a2bB. 6a2b−5ab2−7b3+1C. −7b3−5ab2+1+6a2bD. −7b3−5ab2+6a2b+19.下列去括号正确的是()A. a−(b−c)=a−b−cB. x2−[−(−x+y)]=x2−x+yC. m−2(p−q)=m−2p+qD. a+(b−c−2d)=a+b−c+2d10.已知直线m//n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A. 20°B. 30°C. 45°D. 50°11.若代数式x−2y=3,则代数式2(x−2y)2+4y−2x+1的值为()A. 7B. 13C. 19D. 2512.将一副三角板按如图放置,则下列结论:①∠1=∠3;②∠CAD+∠2=180°;③若∠1=45°,则有BC//AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A. ①②③B. ①②④C. ③④D. ①②③④13.如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作______.14.单项式2x m y3与−3xy3n是同类项,则m+n=______.15.如图,数轴上的点A所表示的数为a,化简|a|−|1−a|的结果为______.16.规定⊗是一种新运算规则:a⊗b=a2−b2,例如:2⊗3=22−32=4−9=−5,则5⊗[1⊗(−2)]=______.17.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=______cm.18.下列说法中:①若对于任意有理数x,则|x+1|+|3−x|存在最小值为4;②如果关于x的二次多项式−3x2+mx+nx2−x+3的值与x的取值无关,则(m2+n)(m2−n)的值为−8;③一条线垂直于两条直线中的一条,则这条直线也垂直于另一条;④在同一平面内,四条直线两两相交,如果最多有m个交点,最少有n个交点,则m−n的值为5.其中正确的有(填序号)______.19.计算:(1)15×(1−13−15);(2)(−1)2019−17×[2−(−3)2].20.化简:(1)−3a2−2a+2+6a2+1+5a;(2)x+2(3y2−2x)−4(2x−y2).21.先化简,再求值:2x2y−[5xy2+2(x2y−3xy2+1)],其中x,y满足(x−2)2+|y+1|=0.22.如图,已知∠1+∠2=180°,∠B=∠3,试判断∠C与∠AED的大小关系,请补全证明过程,即在横线处填上结论或理由.解:∠AED=∠C.理由如下:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(______),∴∠2=∠DFE(______),∴AB//______(______),∴∠3=∠ADE(______),∵∠B=∠3(已知),∴∠______=∠______(______),∴______//______(______),∴∠C=∠AED(______).23.如图,射线OC、OD把∠AOB分成三个角,且度数之比是∠AOC:∠COD:∠DOB=2:3:4,射线OM平分∠AOC,射线ON平分∠BOD,且OM⊥ON.(1)求∠COD的度数;(2)求∠AOB的补角的度数.24.为鼓励居民节约用电,某市电力公司采用分段计费方式计算电费;每月用电不超过180度时,按每度0.5元计费;每月用电超过180度但不超过280度时,其中的180度仍按原标准收费,超过部分按每度0.6元计费.收费标准如下表:超过180度不超过280超过280度的部分用电量不超过180度度的部分收费标准(元/度)0.50.60.8(1)若小陈家每月交电费y元,每月用电量为x度,用含x的代数式表示电费y为:当0≤x≤180时,y=______;当180<x≤280时,y=______;当x>280时,y=______.(2)小陈家第三季度交电费132元,求小陈家第三季度用电多少度?25.如图1,AB//CD,∠PAB=125°,∠PCD=115°,求∠APC的度数.小明的思路是:过P作PM//AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)如图2,AB//CD,点P在直线a上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点B、D两点不重合),请直接写出∠APC与α、β之间的数量关系答案和解析1.【答案】A【解析】解:−2019的绝对值是:2019.故选:A.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】B【解析】【试题解析】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.3.【答案】D【解析】【试题解析】解:A、同位角:在截线同旁,被截线相同的一侧的两角.同位角的边构成“F“形,∠5和∠3是同位角,正确;B、同旁内角:在截线同旁,被截线之内的两角,同旁内角的边构成”U“形.∠1和∠2是同旁内角、∠4和∠5是同旁内角,正确;C、对顶角:有公共顶点且一角的两边是另外角的两边的反向延长线,∠4和∠2是对顶角,正确;D、内错角:在截线两旁,被截线之内的两角,内错角的边构成”Z“形,∠1和∠4不是内错角,错误.故选:D.根据同位角、同旁内角、内错角的定义判断.考查了同位角、内错角及同旁内角的知识,正确且熟练掌握同位角、同旁内角、内错角的定义和形状,是解题的关键.4.【答案】A【解析】 【试题解析】 【分析】根据各个选项中的式子,可以计算出正确的结果,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 【解答】解:∵0−3=0+(−3)=−3,故选项A 正确; ∵−52−12=−3,故选项B 错误;∵(−52)÷(−25)=52×52=254,故选项C 错误;∵(−2)×(−3)=6,故选项D 错误; 故选A .5.【答案】B【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 【解答】解:2.4万=24000=2.4×104. 故选:B .6.【答案】C【解析】【试题解析】解:由锐角α的补角是140°,可得锐角α的余角为:140°−90°=50°.故选:C.根据补角和余角的定义可知,一个角的补角比它的余角大90°,据此列式计算即可.本题考查了余角和补角的知识,解答本题的关键是掌握互补两角之和为180°,互余两角之和为90°.7.【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“明”是相对面,“文”与“宾”是相对面,“创”与“宜”是相对面.故选:C.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.【答案】D【解析】解:1−5ab2−7b3+6a2b按字母b的降幂排列为−7b3−5ab2+6a2b+1.故选:D.字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.本题主要考查了多项式,解题的关键是熟记按照某一个字母的指数从高到低进行排列叫按这个字母降幂排列.9.【答案】B【解析】【试题解析】【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,分别进行各选项的判断即可.本题考查了去括号得知识,属于基础题,掌握去括号得法则是解答本题的关键.【解答】解:A、a−(b−c)=a−b+c,原式计算错误,故本选项错误;B、x2−[−(−x+y)]=x2−x+y,原式计算正确,故本选项正确;C、m−2(p−q)=m−2p+2q,原式计算错误,故本选项错误;D、a+(b−c−2d)=a+b−c−2d,原式计算错误,故本选项错误;故选:B.10.【答案】D【解析】解:∵直线m//n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.【答案】B【解析】【试题解析】解:∵x−2y=3,∴2(x−2y)2+4y−2x+1,=2(x−2y)2−2(x−2y)+1,=2×32−2×3+1,=18−6+1,=13.故选:B.原式中间两项提取−2变形后,把x−2y=3代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.【答案】D【解析】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,故①正确;∵∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°,故②正确;∵∠1=45°,∴∠3=∠B=45°,∴BC//AD.故③正确;∵∠2=30°,∴∠1=∠E=60°,∴AC//DE,∴∠4=∠C,故④正确.故选:D.根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③;根据①的结论和平行线的性质定理判断④.本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.13.【答案】−15°【解析】【试题解析】解:“正”和“负”相对,所以如果顺时针方向旋转21°,记作+21°,那么逆时针旋转15°,应记作−15°.故答案为:−15°.为了表示两种相反意义的量,出现了负数,也就是说正数和负数是两种相反意义的量,如果顺时针旋转21°记作+21°,那么逆时针旋转15°记作−15°.此题考查的知识点是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.【答案】2【解析】【试题解析】解:由单项式2x m y3与−3xy3n是同类项,得m=1,3n=3,解得m=1,n=1,∴m+n=1+1=2,故答案为2.根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.15.【答案】1【解析】【试题解析】【分析】直接利用绝对值的性质化简得出答案.此题主要考查了绝对值、数轴,正确化简绝对值是解题关键.【解答】解:由数轴上A点位置可得:1<a<2,则1−a<0,故|a|−|1−a|=a−(a−1)=1.故答案为1.16.【答案】16【解析】【试题解析】解:根据题中的新定义得:原式=5⊗(1−4)=5⊗(−3)=25−9=16.故答案为:16.原式利用题中的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【答案】1【解析】【试题解析】【分析】本题主要考查线段的中点和线段的和差,解答此题的关键是熟练掌握线段的中点的定义.根据中点的定义可求解BM,及PB的长,进而可求解.【解答】解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM−PB=4−3=1cm.故答案为1.18.【答案】①②④【解析】解:|x+1|+|3−x|的意义是:数轴上表示数x的点到表示−1和3的点的距离之和,当−1≤x≤3时,这个距离之和最小,最小值为|−1−3|=4,因此①正确;由关于x的二次多项式−3x2+mx+nx2−x+3的值与x的取值无关,则m=1,n=3,因此(m2+n)(m2−n)=−8,所以②正确;一条线垂直于两条直线中的一条,如果这两条直线不平行,则这条直线就不垂直于另一条,因此③不正确;在同一平面内,四条直线两两相交,最多有6个交点,最少有1个交点,即m=6,n=1,有m−n=5,因此④正确;综上所述,正确的有①②④,故答案为:①②④.逐项进行判断即可.本题考查垂线、非负数性质、合并同类项和多项式等知识,理解和掌握非负数、同类项和垂线性质是正确判断的前提.19.【答案】解:(1)原式=15×1−15×13−15×15=15−5−3 =7;×(−7)(2)原式=−1−17=−1+1=0.【解析】【试题解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最简算加减运算即可求出值.20.【答案】解:(1)原式=3a2+3a+3;(2)原式=x+6y2−4x−8x+4y2=10y2−11x.【解析】【试题解析】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.21.【答案】解:原式=2x2y−[5xy2+2x2y−6xy2+2]=2x2y−5xy2−2x2y+6xy2−2=xy2−2,由(x−2)2+|y+1|=0,得到x=2,y=−1,则原式=2×(−1)2−2=2−2=0.【解析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【答案】平角的定义等量代换EF内错角相等,两直线平行两直线平行,内错角相等ADE B等量代换DE BC同位角相等,两直线平行两直线平行,同位角相等【解析】解:∠AED=∠C.理由如下:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(平角的定义),∴∠2=∠DFE(等量代换),∴AB//EF(内错角相等,两直线平行),∴∠3=∠ADE(两直线平行,内错角相等),∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE//BC(同位角相等,两直线平行),∴∠C=∠AED(两直线平行,同位角相等).故答案为:平角的定义;等量代换;EF;内错角相等,两直线平行;两直线平行,内错角相等;ADE;B;等量代换;DE;BC,同位角相等,两直线平行;两直线平行,同位角相等.证出∠2=∠DFE,得AB//EF,由平行线的性质得∠3=∠ADE,证出∠ADE=∠B,得DE//BC,由平行线的性质即可得出结论.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.23.【答案】解:(1)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵OM⊥ON,∴∠MON=90°,即6x=90°,解得x=15°,∴∠COD=45°;(2)∵∠AOB=9×15°=135°,∴∠AOB的补角的度数为45°.【解析】【试题解析】(1)设∠AOC=2x,∠COD=3x,∠DOB=4x,依据∠MON=90°,即可得到x的值,进而得出∠COD的度数;(2)依据∠AOB的度数,即可得到∠AOB的补角的度数.本题考查了补角的定义以及角平分线的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.24.【答案】(1)0.5x;0.6x−18;0.8x−74;(2)将y=132代入y=0.5x,可得x=264,不符合x的取值范围,舍去,将y=132代入y=0.6x−18,可得x=250,符合x的取值范围,将y=132代入y=0.8x−74,可得x=257.5,不符合x的取值范围,舍去,即小陈家第三季度用电250度.【解析】【试题解析】解:(1)根据题意得:当0≤x≤180时,y=0.5x,当180<x≤280时,y=0.5×180+0.6×(x−180)=90+0.6x−108=0.6x−18,当x>280时,y=0.5×180+0.6×(280−180)+0.8×(x−280)=0.8x−74,故答案为:0.5x;0.6x−18;0.8x−74;(2)见答案;(1)根据“第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费,第三档:超过280度时,超过280度的部分按每度0.8元计费”,据此列出函数关系式即可;(2)根据(1)的结论;将交电费132元分别代入三个档次,可得用电量.本题考查一次函数的应用,考查分段函数,确定函数解析式是关键.25.【答案】120【解析】解:(1)如图1,过P作PM//AB,∴∠APM+∠PAB=180°,∴∠APM=180°−125°=55°,∵AB//CD,∴PM//CD,∴∠CPM+∠PCD=180°,∴∠CPM=180°−115°=65°,∴∠APC=55°+65°=120°;故答案为:120;(2)如图2,∠APC=∠α+∠β,理由如下:过P作PE//AB交AC于E,∵AB//CD,∴AB//PE//CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,当P在BD延长线时,∠APC=∠α−∠β;理由:过P作PE//AB,∵AB//CD,∴AB//PE//CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE−∠CPE=∠α−∠β;如图4,当P在DB延长线时,∠APC=∠β−∠α;理由:过P作PE//AB,∵AB//CD,∴AB//PE//CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠CPE−∠APE=∠β−∠α;(1)过P作PM//AB,构造同旁内角,通过平行线性质,可得∠APC的度数;(2)过P作PE//AE交AC于E,推出AB//PE//CD,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)画出图形,分两种情况:①点P在BD的延长线上,②点P在DB的延长线上,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.。

人教版2019-2020学年七年级(上)期末数学试卷 含答案解析

 人教版2019-2020学年七年级(上)期末数学试卷 含答案解析

人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。

2019-2020学年七年级数学上学期期末原创卷A卷(广东)(全解全析)

2019-2020学年七年级数学上学期期末原创卷A卷(广东)(全解全析)

2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析12345678910BCCBDCBCCA1.【答案】B 【解析】2-的相反数是2,2的倒数是12,故选B.2.【答案】C 【解析】从a 的取值范围应是大于等于1,小于10,可以确定B 、D 选项错误;1500是4位数,所以n 应该是4-1=3,故选C.3.【答案】C 【解析】∵侧面展开图为3个三角形,∴该几何体是三棱锥,故选C .4.【答案】B【解析】∵AD +BC =AC +CD +BD +CD ,∴AD +BC =2CD +AC +BD ,又∵AD +BC =75AB ,∴2CD +AC +BD =75AB ,∵AB =AC +BD +CD ,AC +BD =a ,∴75(a +CD )=2CD +a ,解得:CD =23a ,故选B .5.【答案】D 【解析】A.2与x 不是同类项,不能合并,故错误;B.x +x +x =3x ,故选项错误;C.3ab -ab =2ab ,故选项错误;D.222223310.2544=4x x x x x +=+,故选项正确;故选D.6.【答案】C 【解析】∵221x x -+=5,∴22x x -=4,∴2361x x -+=3(22x x -)+1=3×4+1=13.故选:C .7.【答案】B 【解析】去分母得9(x -1)=1+2x ,去括号得9x -9=1+2x ,故选B.8.【答案】C【解析】A 、32ab 2c 的次数是4次,说法正确,故此选项不合题意;B 、多项式2x 2﹣3x ﹣1是二次三项式,说法正确,故此选项不合题意;C 、多项式3x 2﹣2x 3y +1的次数是4次,原说法错误,故此选项符合题意;D 、2πr 的系数是2π,说法正确,故此选项不合题意;故选:C .9.【答案】C 【解析】∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线,∴∠COD =12∠COE ,∠BOC =∠AOB =12∠AOC ,又∵∠AOB =40°,∠COE =60°,∴∠BOC =40°,∠COD =30°,∴∠BOD =∠BOC +∠COD =40°+30°=70°,故选C .10.【答案】A【解析】设这款服装的进价是每件x 元,由题意,得300×0.8﹣x =60.故选:A .11.【答案】105°【解析】∠1的补角:180°﹣75°=105°.故答案为:105°.12.【答案】8【解析】因为a 、b 互为相反数,c 、d 互为倒数,并且x 的绝对值等于3,所以有a +b =0,cd =1,a b cd ++=1,29x =,即原式=23108-+=.13.【答案】1【解析】∵单项式﹣3a 2m +b 3与4a 2b 3n 是同类项,∴2233m n +==,,∴01m n ==,,∴1m n +=,所以答案为1.14.【答案】-2【解析】根据一元一次方程的定义可得:1120k k ⎧-=⎨-≠⎩,解得2k =-.15.【答案】98【解析】()()2(4)(82)482168298-⊕-=---=+=.故答案为98.16.【答案】6cm 或4cm 【解析】①当点C 在线段AB 的延长线上时,此时AC =AB +BC =12,∵M 是线段AC 的中点,则AM =12AC =6;②当点C 在线段AB 上时,AC =AB -BC =8,∵M 是线段AC 的中点,则AM =12AC =4.故答案为6或4.17.【解析】(﹣2)3×3﹣4÷(12-)=(﹣8)×3+8=﹣24+8=﹣16.(6分)18.【解析】12226y y y -+-=-去分母得:()()631122y y y --=-+,去括号得:633122y y y -+=--,移项得:631223y y y -+=--,合并得:47y =,系数化为1得:74y =.(6分).19.【解析】原式=2a +2a ﹣2b ﹣3a +2b +b =a +b ,(3分)当a =﹣2,b =5时,原式=﹣2+5=3.(6分)20.【解析】(1)∵(3×5)2=225,32×52=225,[(-12)×4]2=4,(-12)2×42=4,∴每组两个算式的结果相等;(2分)(2)由(1)可知,(ab )2=a 2b 2;猜想,当n 为正整数时,(ab )n =a n •b n ,即(ab )的n 次方=ab •ab •ab …ab =a •a •a …a •b •b •b …b =a n b n .(3分)(3)①(-8)2019×(18)2019=(-8×18)2019=-1,(5分)②(-115)2020×(56)2020=202065-56⎡⎤⎛⎫⨯ ⎪⎢⎥⎝⎭⎣⎦=1.(7分)21.【解析】(1)由题意,可得所挡的二次三项式为:(x 2-5x +1)-3(x -1)=x 2-5x +1-3x +3=x 2-8x +4;(3分)(2)当x =-3时,x 2-8x +4=(-3)2-8×(-3)+4=9+24+4=37.(7分)22.【解析】(1)∵()215290a b -+-=,∴()215a -=0,29b -=0,∵a 、b 均为非负数,∴a =15,b =4.5.(4分)(2)∵点C 为线段AB 的中点,AB =15,∴17.52AC AB ==,∵CE =4.5,∴AE =AC +CE =12,∵点D 为线段AE 的中点,∴DE =12AE =6,∴CD =DE −CE =6−4.5=1.5.(7分)23.【解析】(1)根据题意,设湿地公园x 个,森林公园为(x +4)个,则(4)42x x ++=,解得:19x =,∴湿地公园有19个,∴森林公园有:19+4=23(个);(4分)(2)①根据题意,设标价为m 元,则0.82000200020%m -=⨯,解得:3000m =,∴该电器的标价为3000元;(7分)②30000.9200027002000700⨯-=-=元,∴获得利润为700元.(9分)24.【解析】(1)∵()324825M a x x x =++-+是关于x 的二次多项式,且二次项系数为b ,∴40,8a b +==,则4a =-,∴A 、B 两点之间的距离为4812-+=,故答案为-4;8;12.(3分)(2)依题意得,4123456720182019--+-+-+-++- 410092019=-+-1041=-,故点P 所对应的有理数的值为1041-.(4分)(3)设点P 对应的有理数的值为x ,①当点P 在点A 的左侧时,PA =-4-x ,PB =8-x ,依题意得,8-x =3(-4-x ),解得x =-10;(5分)②当点P 在点A 和点B 之间时,PA =x -(-4)=x +4,PB =8-x ,依题意得,8-x =3(x +4),解得x =-1;(7分)③当点P 在点B 的右侧时,PA =x -(-4)=x +4,PB =x -8,依题意得,x -8=3(x +4),解得x =-10,这与点P 在点B 的右侧(即x >8)矛盾,故舍去;综上所述,点P 所对应的有理数分别是-10和-1.(9分)25.【解析】(1)由题意得,∠AOB =∠EOD =90°,∵125AOE ∠=︒,∴∠AOD =AOE ∠-∠DOE =125°-90°=35°,∴∠BOD =∠AOB -∠AOD =90°-35°=55°.(3分)(2)设∠BOE =x ,则∠AOE =∠AOB +∠BOE =90°+x,∠BOD =∠DOE -∠BOE =90°-x,∵4AOE BOD ∠=∠,∴90°+x =4(90°-x ),∴x =54°,∴∠BOE =54°.(6分)(3)在图1中,∠BOD =∠DOE -∠BOE =90°-∠BOE,∠AOE =∠AOB +∠BOE =90°+∠BOE,∴∠BOD +∠AOE =(90°-∠BOE )+(90°+∠BOE )=180°,在图2中,∠BOD =∠DOE +∠BOE =90°+∠BOE,∠AOE =∠AOB -∠BOE =90°-∠BOE,∴∠BOD +∠AOE =(90°+∠BOE )+(90°-∠BOE )=180°,在图3中,∠BOD +∠AOE =360°-∠AOB -∠DOE =360°-90°-90°=180°.(9分)。

广州市2019-2020学年七年级上学期数学期末考试试卷(I)卷

广州市2019-2020学年七年级上学期数学期末考试试卷(I)卷

广州市2019-2020学年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2017七下·金乡期末) 下列各组数中互为相反数的是()A . ﹣2与﹣B . 2与|﹣2|C . ﹣2与D . ﹣2与2. (2分) (2019七上·港闸期末) 数字25800000用科学记数法表示为()A . 258×105B . 2.58×109C . 2.58×107D . 0.258×1083. (2分) (2016七上·启东期中) 方程2x+a﹣4=0的解是x=﹣2,则a等于()A . ﹣8B . 0C . 2D . 84. (2分) (2017九上·云南月考) 下列运算正确的是()A .B .C .D .5. (2分) (2019七上·桐梓期中) 下面计算正确的是()A . 3a+6b=9abB . 3a3b-3ba3=0C . 8a4-6a3=2aD . y2- y2=6. (2分) (2018七上·大石桥期末) 下列平面图形中不能围成正方体的是()A .B .C .D .7. (2分) (2018七上·龙江期末) 若∠A=12°12′,∠B=20°15′30″,∠C=20.25°,则()A . ∠A>∠B>∠CB . ∠B>∠C>∠AC . ∠A>∠C>∠BD . ∠C>∠A>∠B8. (2分)(2018·凉山) 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A . 和B . 谐C . 凉D . 山9. (2分)(2019·合肥模拟) 某校九年级月份中考模拟总分分以上有人,同学们在老师们的高效复习指导下,复习效果显著,在月份中考模拟总分分以上人数比月份增长,且月份的分以上的人数按相同的百分率继续上升,则月份该校分以上的学生人数().A . 人B . 人C . 人D . 人二、填空题 (共7题;共16分)10. (1分) (2017七上·鄞州月考) =________.11. (1分) (2019八上·江汉期中) 如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B 处在C处的南偏西80°方向,则∠ABC的度数为 ________12. (1分) (2016七上·昌平期中) 已知p是数轴上的一点﹣4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表示的数是________.13. (1分) (2019七上·且末期末) 30度的余角等于________ 度.120度的补角等于 ________ 度.14. (1分) (2018八上·江汉期末) 若x2﹣y2=8,x2﹣z2=5,则(x+y)(y+z)(z+x)(x﹣y)(y﹣z)(z ﹣x)=________.15. (1分) (2015八上·吉安期末) “十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为________.16. (10分) (2020七上·抚顺期末) 解方程:(1)﹣2x+9=3(x﹣2)(2) 1+ .三、解答题 (共9题;共82分)17. (10分) (2018六上·普陀期末) .18. (10分) (2019七上·吉林期末) 先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=﹣.19. (10分)七(2)班男生进行引体向上测试,以做5个为合格标准,超过的次数用正数表示,不足的次数用负数表示,其中6名学生的成绩如下表:A B C D E F2-103-2-3(1)这6名同学一共做了多少个引体向上?(2)他们6人共有几人合格?合格率是多少?20. (5分) (2015七下·宽城期中) 要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?21. (10分) (2018七上·泰州月考) 如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.22. (11分)已知数轴上有A,B,C三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.23. (5分)在一次植树活动中,甲班植树的棵数比乙班多20%,乙班植树的棵数比甲班的一半多10棵,设乙班植树x棵.(1)列两个不同的含x的代数式,分别表示甲班植树的棵数;(2)根据题意列出含未知数x的方程;(3)检验甲班、乙班植树的棵数是不是分别为35棵和25棵.24. (10分) (2019七下·长春月考) 如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.25. (11分) (2019七下·闽侯期中) 已知∠MAN,点B是∠MAN内的点,以点B为顶点作∠CBD(1)如图1,若边BC∥AN,BD∥AM,点C,D分别在边AM,AN上,求证:∠CBD=∠MAN;(2)如图2,∠MAN是钝角,BD⊥AM,垂足为D,BC∥AN,且2∠MAN﹣∠CBD=30°,请你补全图形,并求∠MAN 的度数.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共7题;共16分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共9题;共82分) 17-1、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、第11 页共11 页。

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。

2019-2020年七年级数学上期期末考试参考答案

2019-2020年七年级数学上期期末考试参考答案

2019-2020年七年级数学上期期末考试参考答案说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案ADDCCB二、 填空题(每小题3分,共27分) 题号 7891011 12131415 答案5-圆柱,圆锥2145°(0.8b-10)4487月14号(或7月15号)三、解答题(共55分) 16.解:21)2(6)1(2011⨯-÷--)23(1---= ……………………………………4分21=. ………………………………………………………………………6分 17.解:(1)如图;…………………………2分 (2)如图; …………………………4分 (3)MN ⊥PH . ……………………6分18.解:①. …………………………………………………………………………1分6)15()12(2=--+x x .61524=+-+x x . ………………………………………4分 62154+--=-x x .3=-x .3-=x . ……………………………………………6分19.解:理由如下:设这个数是x ,则 …………………………………………………1分[][].)10(10)10(141014)10()75(214x x x x =-÷-=-÷+--=-÷-⨯--20. 解:(1)(名)50%2412=÷.该班共50名同学; ………………………………………………3分 (2) 如图; ………………………………………6分学生平均每天完成作业用时统计图/学生平均每天完成作业用时统…………………………………………………4分…………………………………………………6分…………………………………………………8分(3)这名同学平均每天完成作业用时为1小时的可能性最大,因为从扇形统计图可以看出平均每天完成作业用时为1小时占的区域最大. ………………9分21. 解:(1)三角形个数依次为:0,5,10; ………3分(2)5(n -1)个; …………………………6分 (3)不能. ………………7分因为5(n -1)=2011, 而52016=n 不是整数,所以不能.…………………10分 22. 解:(1)设经过x 秒后,农用车发出的噪声开始使小明受到影响. 由题可得2064100+=+x x . 解得40=x .经过40秒时,农用车发出的噪声开始使小明受到影响. ……………………4分 (2)设小明受到农用车噪声的影响会持续y 秒. 由题可得202046++=y y . 解得20=y .小明受到农用车噪声的影响会持续20秒. ……………………7分(3) 农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. …………………8分理由如下: 设农用车从离小明20米到追上小明用z 秒.由题可得2046+=z z . 解得10=z .因为313620=÷,311331310=+<20.所以农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. ……………………10分。

2019-2020学年广东省广州市番禺区七年级上学期期末考试数学试卷及答案解析

2019-2020学年广东省广州市番禺区七年级上学期期末考试数学试卷及答案解析

第 1 页 共 13 页2019-2020学年广东省广州市番禺区七年级上学期期末考试数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.2的相反数是( )A .12B .2C .﹣2D .−12 2.2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为( )A .5.5×103B .55×103C .5.5×104D .6×1043.如果a <0,b >0,那么( )A .ab >0B .a ﹣b >0C .a b >0D .a ﹣b <04.如果x =y ,那么根据等式的性质下列变形不正确的是( )A .x +2=y +2B .3x =3yC .5﹣x =y ﹣5D .−x 3=−y 35.下列关于几何画图的语句,正确的是( )A .延长射线AB 到点C ,使BC =2ABB .点P 在线段AB 上,点Q 在直线AB 的反向延长线上C .将射线OA 绕点O 旋转,当终止位置OB 与起始位置OA 成一条直线时形成平角D .已知线段a 、b ,若在同一直线上作线段AB =a ,BC =b ,则线段AC =a +b6.下列说法中,正确的是( )A .若x ,y 互为倒数,则(﹣xy )2020=﹣1B .如果|x |=2,那么x 的值一定是2C .与原点的距离为4个单位的点所表示的有理数一定是4D .若﹣7x 6y 4和3x 2m y n 是同类项,则m +n 的值是77.若x =2时,多项式mx 3+nx 的值为6,则当x =﹣2时,多项式mx 3+nx 的值为( )。

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。

广州市2019-2020学年七年级上学期期末数学试题(I)卷-1

广州市2019-2020学年七年级上学期期末数学试题(I)卷-1

广州市2019-2020学年七年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列图形中,哪一个是正方体的展开图()A.B.C.D.2 . 下列各题中,计算结果正确的是()A.19a2b﹣9ab2=10ab B.3x+3y=6xyC.16y2﹣9y2=7D.3x﹣4x+5x=4x3 . 有理数﹣1,﹣2,0,3中,最小的数是()A.﹣1B.﹣2C.0D.34 . 已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm5 . 已知等式,则下列等式中不一定成立的是()A.B.C.D.6 . 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;④在同一平面内,垂直于同一条直线的两条直线互相平行.其中是真命题的个数是()A.1个B.2个C.3个D.4个7 . 下列两个单项式中,是同类项的是()A.3与x B.3x2y与2xy2C.3ab与a3b D.3m2n与﹣nm28 . 如图,数轴上点A表示数a,则﹣a表示的数是()A.﹣1B.0C.1D.29 . 下列说法正确的是()A.过一点有且只有一条直线与已知直线垂直B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.在平面内,有且只有一条直线与已知直线垂直D.直线a外一点M与直线a上各点连接而成的所有线段中最短线段的长是3cm,则点M到直线a的距离是3cm10 . 已知是方程的解,则()A.1B.2C.3D.7二、填空题11 . 如图,若,则___________________________.12 . 如图,直线AB与CD相交于点O,且∠1+∠2=60°,则∠AOD的度数为____.13 . 某市对居民天然气收费采用阶梯气价,以“年度”作为一个阶梯气价结算周期,年度用气量分档和价格如下:第一档:年用气量0~242(含)立方米,价格a元/立方米,第二档:年用气量242~360(含)立方米,价格b元/立方米,即年用气量超过242度,超出部分气价按b元收费,某户居民一年用天然气300立方米,该户居民这一年应交纳天然气费是_____元.(用含a,b的代数式表示)14 . 我们根据指数运算,得出了一种新的运算.下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子,①log232=5;②log416=4;③log2=﹣1,其中正确的是_____(填式子序号)15 . 学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有▲ 个.16 . 上海世博会场地是当今世界最大的太阳能应用场所,装有460000亿瓦的太阳能光伏并网发电装置, 460000亿瓦用科学记数法表示为亿瓦.三、解答题17 . 尺规作图.如图,已知在平面上有三个点A,B,C,请按下列要求作图:(1)作直线AB;(2)作射线AC;(3)在射线AC上作线段AD,使AD=2AA.18 . (1)已知(x+y+3)2+=0,试求多项式x2+y2-x-3的值.(2)已知多项式,在时,其值为8,试求时,其多项式的值.19 . 某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为3000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措;甲旅行社对每位员工七五折优惠,而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10人),则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简)(2)如果计划在五月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为.(用含x 的代数式表示,并化简)(3)在(2)的条件下,假如这七天的日期之和为49的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)(4)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.20 . 如图,OM是∠AOB的平分线,OP是∠MOB内的一条射线.已知∠AOP比∠BOP大30°,试求∠MOP的度数.21 . 解下列一元一次方程:(1)(2)2(10-0.5y)=-(1.5y+2)22 . 某粮库3天内的粮食进出库的吨数为:+26,-32,-15,+34,-38,-20.问:(1)经过这3天,库里的粮食是增多了多少?还是减少了多少?(2)经过这3天,仓库管理员发现库里还存有520吨粮食,那么3天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这3天需要多少装卸费?23 . 如图,直线、相交于,比大,是的2倍.(1)求的度数;(2)试说明平分.24 . 先化简,再求值:(a+)(a﹣)﹣a(a﹣2),其中a=-1.25 . 计算:﹣14+(﹣3)×[(﹣4)2+2]﹣(﹣2)3÷4.26 . 已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B 在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t的值.。

2019-2020学年广东省广州市番禺区七年级(上)期末数学试卷(含解析)

2019-2020学年广东省广州市番禺区七年级(上)期末数学试卷(含解析)

2019-2020学年广东省广州市番禺区七年级(上)期末数学试卷(考试时间:100分钟满分:100分)一、选择题(每小题2分,共20分)1.2的相反数是()A.B.2 C.﹣2 D.﹣2.2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A.5.5×103B.55×103C.5.5×104D.6×1043.如果a<0,b>0,那么()A.ab>0 B.a﹣b>0 C.D.a﹣b<04.如果x=y,那么根据等式的性质下列变形不正确的是()A.x+2=y+2 B.3x=3y C.5﹣x=y﹣5 D.5.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b6.下列说法中,正确的是()A.若x,y互为倒数,则(﹣xy)2020=﹣1B.如果|x|=2,那么x的值一定是2C.与原点的距离为4个单位的点所表示的有理数一定是4D.若﹣7x6y4和3x2m y n是同类项,则m+n的值是77.若x=2时,多项式mx3+nx的值为6,则当x=﹣2时,多项式mx3+nx的值为()A.﹣6 B.6 C.0 D.268.一个几何体的表面展开图如图所示,这个几何体是()A.圆柱B.圆锥C.长方体D.球9.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.b<﹣a<﹣b<a B.b<﹣a<a<﹣b C.b<﹣b<﹣a<a D.﹣a<﹣b<b<a10.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm3二、填空题(每小题3分,共18分)11.整式a4﹣2a2b+b2的次数是.12.一个角是70°39′,则它的余角的度数是.13.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.14.某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是元.15.比较大小:.(填“>”或“<”号).16.《九章算术》是中国古代的数学专著,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱那么仍旧差3钱,求买羊的人数和羊的价钱.”设共有x个人买羊,可列方程为.三、解答题(共62分)17.(8分)计算下列各式的值:(1)(2)42×18.(8分)解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)19.(6分)先化简下式,再求值:5(3ba2﹣b2a)﹣(ab2+3a2b),其中a=,b=.20.(6分)夜来南风起,小麦覆陇黄.今年夏天,小鹏家的麦田喜获丰收,某天收割的10袋小麦,称后纪录如下(单位:千克):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1在没带计算器的情况下,小鹏想帮父亲快速算出这10袋小麦一共多少千克.(1)小鹏通过观察发现,如果以90千克为标准,把超出的千克数记为正,不足的千克数记为负,则可写出这10袋小麦的千克数与90的差值,请你依次写出小鹏得到的这10个差值.(2)请利用(1)中的差值,求这10袋小麦一共多少千克.21.(4分)美国著名的数学科普作家马丁•加德纳,他的妙趣横生的科普作品《哈哈!灵机一动》让无数读者为数学着谜,下面的问题改编自马丁•加德纳的文集.最早的器具型趣题无疑是古代中国的七巧板(由如图1的七块板组成的,完整图案为一正方形)游戏,它可以引出一些不平凡的数学问题,例如用一副七巧板可拼出多少种凸多边形(图形均在各边所在的直线的同侧)?1942年,中国浙江大学的两位数学家王福春和熊全治,证明了用一副七巧板只能拼出13种凸多边形.图2中给出了其中的一种凸六边形,请你参考图1,在图2中画出七巧板中的七块.22.(8分)如图,点D是线段AB上的任意一点(不与点A和B重合),C是线段AD的中点,AB=4cm.(1)若D是线段AB的中点,求线段CD的长度.(2)在图中作线段DB的中点E,当点D在线段AB上从左向右移动时,试探究线段CE长度的变化情况.23.(10分)列方程解应用题.(1)某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如果用新工艺,则废水排量比环保限制的最大量少100t;新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?(2)元旦期间,晓睛驾车从珠海出发到香港,去时在港珠澳大桥上用了60分钟,返回时平均速度提高了5千米/小时,在港珠澳大桥上的用时比去时少用了5分钟,求港珠澳大桥的长度.24.(12分)如图,长方形纸片ABCD,点E在边AB上,M、N分别在射线BC和射线AD上,连接EM,EN,将三角形MBE沿EM折叠(把物体的一部分翻转和另一部分贴拢),点B落在点B′处;将三角形NAE沿EN 折叠,点A落在点A’处.(1)若∠MEB=30°,∠NEA=45°,用直尺、量角器画出射线EB′与EA′;(2)若∠MEB=30°,∠NEA=45°,求∠A'EB'的度数;(3)若∠MEB=α,∠NEA=β,用含α、β的代数式表示∠A'EB'的度数.1.【解答】解:﹣2的相反数是2.故选:C.2.【解答】解:55000=5.5×104.故选:C.3.【解答】解:∵a<0,b>0,∴ab<0,∵a<6,b>0,∴选项B不符合题意;∴<0,∵a<0,b>0,∴选项D符合题意.故选:D.4.【解答】解:A、x+2=y+2,正确;B、3x=3y,正确;C、5﹣x=3﹣y,错误;D、﹣=﹣,正确;故选:C.5.【解答】解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,B.因为直线不能反向延长,C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角.D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.故选:C.6.【解答】解:A、若x,y互为倒数,则(﹣xy)2020=1,故A错误;B、若|x|=2,那么x是±2,故B错误;C、与原点的距离为4个单位的点所表示的有理数是6或﹣4,故C错误;D、若﹣7x6y4和3x8m y n是同类项,则2m=6,n=4,所以m+n的值是7,故D正确.故选:D.7.【解答】解:∵x=2时,mx3+nx=6,∴8m+2n=6,mx3+nx=﹣(8m+8n)故选:A.8.【解答】解:由几何体的表面展开图可知,这个几何体是圆锥.故选:B.9.【解答】解:∵由图可知,b<0<a,|a|<|b|,∴0<a<﹣b,b<﹣a<0,故选:B.10.【解答】解:易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,这个几何体的体积为3cm3故选:A.11.【解答】解:多项式a4﹣2a4b+b2的次数是4,故答案为:4.12.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.13.【解答】解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.14.【解答】解:∵某种商品原价每件b元,第一次降价打八折,∴第一次降价后的售价为:0.8b.∴第二次降价后的售价是0.8b﹣10.故答案为:0.6b﹣10.15.【解答】解:|﹣|>|﹣|,所以﹣>﹣.答案:>.16.【解答】解:由题意可得,5x+45=7x+3,故答案为:5x+45=7x+2.17.【解答】解:(1)=(﹣)+5+6+(﹣9)(2)42×=﹣28+3=﹣25.18.【解答】解:(1)去括号得:3x﹣7x+7=3﹣4x﹣6,移项合并得:﹣2x=﹣10,(2)去分母得:15x﹣5x+5=105﹣3x﹣8,解得:x=7.19.【解答】解:原式=15ba2﹣5b2a﹣ab2﹣3a3b=12a2b﹣6ab2,当a=,b=时,原式=1﹣=.20.【解答】解:(1)+1,+1,+1.5,﹣4,+1.2,+1.3,﹣1.8,﹣1.2,+1.8,+1.2;(2)+1+1+1.2﹣1+1.2+1.3﹣6.3﹣1.2+1.8+2.1,90×10+5.4=905.4(千克),答:这10袋小麦一共905.3千克.21.【解答】解:如图,图2中画出了七巧板中的七块.22.【解答】解:(1)∵AB=4,点D在线段AB上,点D是线段AB的中点,∴AD=AB=×4=2,∴CD=AD=×2=1;∴CD=AD,DE=BD,∵AB=4,∴线段CE长度不变.23.【解答】解:(1)设新、旧工艺的废水排量分别为2xt、5xt,则依题意得5x﹣200=2x+100,则2x=200,答:新、旧工艺的废水排量分别为200t和500t;由题意可得:+5=答:港珠澳大桥的长度55千米.24.【解答】解:(1)图形如图1中所示:∴∠A′EB′=180°﹣90°﹣60°=30°.当α+β>90°时,∠A′EB′=2(α+β)﹣180°。

2019-2020学年广东省广州市番禺区七年级上学期期末考试数学试卷及答案解析

2019-2020学年广东省广州市番禺区七年级上学期期末考试数学试卷及答案解析

2019-2020学年广东省广州市番禺区七年级上学期期末考试
数学试卷
一.选择题(共10小题,满分20分,每小题2分)
1.﹣2的相反数是()
A.2B.﹣2C .D .﹣
2.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×107
3.下列各数中,是负数的是()
A.﹣(﹣3)B.(﹣3)2C.﹣(﹣3)3D.﹣|﹣3|
4.下列等式变形不一定正确的是()
A.若x=y,则x﹣5=y﹣5B.若x=y,则ax=ay
C.若x=y,则3﹣2x=3﹣2y D.若x=y ,则
5.﹣a一定是()
A.正数B.负数
C.0D.以上选项都不正确
6.多项式3x2+xy ﹣xy2的次数是()
A.2B.1C.3D.4
7.方程2y ﹣=y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣.这个常数应是()
A.1B.2C.3D.4
8.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()
第1 页共15 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以D选项错误,不符合题意.
故选:C.
6.下列说法中,正确的是( )
A.若x,y互为倒数,则(﹣xy)2020=﹣1
B.如果|x|=2,那么x的值一定是2
C.与原点的距离为4个单位的点所表示的有理数一定是4
D.若﹣7x6y4和3x2myn是同类项,则m+n的值是7
【解答】解:A、若x,y互为倒数,则(﹣xy)2020=1,故A错误;
A.5.5×103B.55×103C.5.5×104D.6×104
【解答】解:55000=5.5×104.
故选:C.
3.如果a<0,b>0,那么( )
A.ab>0B.a﹣b>0C. D.a﹣b<0
【解答】解:∵a<0,b>0,
∴ab<0,
∴选项A不符合题意;
∵a<0,b>0,
∴a﹣b<0,
∴选项B不符合题意;
【解答】解:A.延长射线AB到点C,使BC=2AB,
因为射线不能延长,
所以A选项错误,不符合题;
B.因为直线不能反向延长,
所以B选项错误,不符合题意;
C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角.
C选项正确,符号题意;
D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.
D、 ,正确;
故选:C.
5.下列关于几何画图的语句,正确的是( )
A.延长射线AB到点C,使BC=2AB
B.点P在线段AB上,点Q在直线AB的反向延长线上
C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角
D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b
∵第二次降价每件又减10元,
∴第二次降价后的售价是0.8b﹣10.
故答案为:0.8b﹣10.
15.(3分)比较大小: > .(填“>”或“<”号).
【解答】解:| |>| |,所以 .答案:>.
16.(3分)《九章算术》是中国古代的数学专著,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱那么仍旧差3钱,求买羊的人数和羊的价钱.”设共有x个人买羊,可列方程为5x+45=7x+3.
故选:B.
10.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是( )
A.3cm3B.14cm3C.5cm3D.7cm3
【解答】解:易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,
这个几何体的体积为3cm3
故选:A.
二、填空题(本大题共6小题,每小题3分,共18分)
∵a<0,b>0,
∴ 0,
∴选项C不符合题意;
∵a<0,b>0,
∴a﹣b<0,
∴选项D符合题意.
故选:D.
4.如果x=y,那么根据等式的性质下列变形不正确的是( )
A.x+2=y+2B.3x=3yC.5﹣x=y﹣5D.
【解答】解:A、x+2=y+2,正确;
B、3x=3y,正确;
C、5﹣x=5﹣y,错误;
11.(3分)整式a4﹣2a2b+b2的次数是4.
【解答】解:多项式a4﹣2a2b+b2的次数是4,
故答案为:4.
12.(3分)一个角是70°39′,则它的余角的度数是19°21′.
【解答】解:它的余角=90°﹣70°39′=19°21′.
故答案为:19°21′.
13.(3分)笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说线动成面.
A.﹣6B.6C.0D.26
【解答】解:∵x=2时,mx3+nx=6,
∴8m+2n=6,
∴当x=﹣2时,
mx3+nx
=﹣8m﹣2n
=﹣(8m+2n)
=﹣6.
故选:A.
8.一个几何体的表面展开图如图所示,这个几何体是( )
A.圆柱B.圆锥C.长方体D.球
【解答】解:由几何体的表面展开图可知,这个几何体是圆锥.
【解答】解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.
故答案为:线动成面.
14.(3分)某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是0.8b﹣10元.
【解答】解:∵某种商品原价每件b元,第一次降价打八折,
∴第一次降价后的售价为:0.8b.
故选:B.
9.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是( )
A.b<﹣a<﹣b<aB.b<﹣a<a<﹣bC.b<﹣b<﹣a<aD.﹣a<﹣b<b<a
【解答】解:∵由图可知,b<0<a,|a|<|b|,
∴0<a<﹣b,b<﹣a<0,
∴b<﹣a<a<﹣b.
2019-2020学年广州市番禺区七年级上学期期末数学试卷解析版
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的)
1.2的相反数是( )
A. B.2C.﹣2D.
【解答】解:﹣2的相反数是2.
故选:C.
2.2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为( )
B、若|x|=2,那么x是±2,故B错误;
C、与原点的距离为4个单位的点所表示的有理数是4或﹣4,故C错误;
D、若﹣7x6y4和3x2myn是同类项,则2m=6,n=4,所以m+n的值是7,故D正确.
故选:D.
7.若x=2时,多项式mx3+nx的值为6,则当x=﹣2时,多项式mx3+nx的值为( )
18.(8分)解方程:
(1)3x﹣7(x﹣1)=3﹣2(x+3)
(2)
【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,
【解答】解:由题意可得,
5x+45=7x+3,
故答案为:5x+45=7x+3.
三、解答题(本大题共62分,解答应写出文字说明、证明过程或演算步骤.)
17.(8分)计算下列各式的值:
(1)
(2)42
【解答】解:(1)
=( )+5 4 (﹣9 )
=0;
(2)42
=﹣28+( )×(﹣4)
=﹣28+3
=﹣25.
相关文档
最新文档