保位阀与电磁阀的区别

合集下载

电动阀门和电磁阀的主要区别

电动阀门和电磁阀的主要区别

电动阀门和电磁阀的主要区别一、工作原理1、电磁阀:电磁阀是由电磁线圈(电磁铁)和阀芯及阀体组成,当电磁线圈通电或断电时,带动阀芯动作,使流体通过阀体或被切断;2、电动阀门:电动阀门是通过电机驱动阀杆,带动阀芯动作,来实现流体的通过或切断;二、阀门类型:1、电磁阀:(1)两通电磁阀:阀体有一个入口一个出口与管路连接,有两种控制方式常开型(通电时电磁阀关闭,流体被切断),常闭型(通电时电磁阀打开,流体通过阀门);(2)三通电磁阀:阀体三个口与管路连接,并有两个孔,可用于三种控制方式:常闭型(断电时压力口关闭,排气口连接到缸口,通电时,压力口连到缸口,排气口关闭),常开型(阀门断电时,压力口连到缸口,排气口关闭,阀通电时,压力口关闭,缸口连到排气口),通用型(允许阀连接成常闭或常开的位置其中之一);(3)四通电磁阀:一般用与操作双作用缸,有四或五个管线连结口,一个压力口,两个缸口和一个或两个排气(油)口。

2、电动阀门:(1)阀体与电动角行程执行器配套的电动阀门:电动执行器转动阀板角度来控制和调节阀门的关断和控制管路的流量,电动执行器输出轴的转动小于一周,即小于360度,通常为90度就实现阀门的启闭过程控制。

此类电动阀门主要为蝶阀、球阀、旋塞阀等;(2)阀体与多回转电动执行器(转角>360度)配套的电动阀门,多回转电动执行器输出轴的转动摇大于一周,即大于360度,一般需多圈才能实现阀门的启闭过程控制。

此类电动阀门门主要为闸阀、截止阀等;(3)阀体与直行程电动执行器(直线运动)配套的电动阀门:其驱动部分电动执行器输出轴的运动为直线运动式,不是转动形式,以升降阀门阀板的方式来实现启闭控制。

此类电动阀门门主要为调节阀,单座调节阀、双座调节阀等;三、控制方式1、电磁阀通过线圈驱动,只能起到开或关的作用;2、电动阀门是用电机驱动,开或关的动作完成过程需要时间比电磁阀长,且可通过对执行器输入电流、电压信号来调节流量,一般控制信号为:电流信号(4~20mA、0~10mA)或电压信号(0~5V、1~5V)。

阀门配件(附件) 阀门配件种类

阀门配件(附件) 阀门配件种类

阀门配件(附件) 阀门配件种类阀门本身是由阀体和各种操作机构组成,其中又包含了很多的零部件和配件,包括操作方式不同又有手动、气动、电动等等。

不同的使用方式所装配的部件也是有分别的。

阀门配件主要有:1,气动执行机构:主要分为单作用和双作用,单作用是弹簧复位式结构,双作用是气开气关原理,调节型一般选用双作用气动执行器。

2,电动执行机构:常见的有直行程、角行程、精小型和防爆型,电动执行器的结构相对复杂、造价要高,但其性能稳定、启闭迅速、适合远距离控制系统。

3,液压执行机构:液压执行器是由液压能转换成机械能的一种装置,主要有直线式和旋转式两种。

其造价较高结构相对复杂,是工况特殊和要求高使用的产品,市场通用率较小。

4,气液联动执行机构:气液联动执行器把管线天然气或氮气作为动力,液压油作为传动介质驱动管线阀门的开启和关闭。

主要是用在天然气、液化气、氮气、气液罐、气体等中作为多功能驱动装置的。

5,电液联动执行机构:电液联动执行器由控制模块和动力模块两部分组成,智能可控电机接受控制模块的功能命令,控制动力模块,以线行或角位移输出大力距,气动控制对象,同时通过自身移位反馈,完成调节过程,实现各种功能控制。

6,手动执行机构:手动执行器是完善电流不稳定和气压不足时进行的手动控制,当气压和电流发生特殊情况无法控制或安装维修无电流和气压时,将手动反馈器开启,可快速进行手动控制。

阀门组成配件:手柄、手轮、蜗轮、阀体、阀芯、阀杆、阀盖、阀门消音器、毛坯、螺栓螺母、卡箍、弹簧、膜片、填料、盘根、O形圈、聚四氟乙烯制品垫片、法兰、非标准坚固件等。

定位器与附件:气动阀门定位器、电气阀门定位器、智能阀门定位器、电液伺服器、伺服放大器、电气转换器、过滤减压阀、阀位变送器、保位阀、电磁阀、限位开关、气动放大器、智能模块、电液伺服器、伺服放大器、报警器、防爆线圈、快速排气阀其他阀门配件:阀门试验机手柄手轮蜗轮阀体阀芯阀杆阀盖阀门消音器信号发生器毛坯模具螺栓螺母卡箍弹簧膜片填料盘根 O形圈流量汁聚四氟乙烯制品垫片法兰弯头快速接头伸缩器流量计过滤器非标准坚固件。

化工常用阀门基础知识

化工常用阀门基础知识

阀门基础知识一、阀门基础1.阀门基本参数为:公称压力 PN、公称通经DN2.阀门基本功能 :截断接通介质 , 调节流量 ,改变流向3.阀门连接得主要方式有:法兰、螺纹、焊接、对夹4.阀门得压力——温度等级表示:不同材质、不同工作温度下,最大允许无冲击工作压力不同5 a 管法兰标准主要有两个体系:欧州体系与美州体系。

b 两个体系得管法兰连接尺寸完全不同无法互配;以压力等级来区分最合适: 欧州体系为PN0 、 25、 0、 6、 1、0、1、 6、 2、 5、4、0、 6、 3、 10、 0、16 、 0、25 、0、32 、0、40 、0MPa; 美州体系为PN1 、0(CIass75) 、2 、0( CIass150) 、5、0( CIass300) 、11、0 (CIass600) 、15 、 0( CIass900) 、 26 、 0( CIass1500)、42、0( CIass2500)MPa。

c 管法兰类型主要有:整体 (IF) 、板式平焊(PL) 、带颈平焊(SO) 、带颈对焊(WN) 、承插焊 (SW) 、螺丝 (Th) 、对焊环松套(PJ/SE)/(LF/SE)、平焊环松套(PJ/RJ) 与法兰盖 (BL) 等。

d法兰密封面型式主要有 :全平面 (FF) 、突面 (RF) 、凹 (FM) 凸 (M)面、榫 (T) 槽(G) 面、环连接面(RJ) 等二、常用 (通用 )阀门1.一般工业用阀门型号编制方式,用七个单元来表示。

其含义类型驱动方式连接形式结构形式阀座密封面及衬里材料公称压力阀体材料2.阀门类型代号得Z、J、 L、 Q、 D、 G、 X、 H、 A 、Y 、 S 分别表示 :闸阀、截止阀、节流阀、球阀、蝶阀、隔膜阀、旋塞阀、止回阀、安全阀、减压阀、疏水3.阀门得连接式代号1、 2 、 4 、6 、 7 分别表示 :1、内螺纹、2、外螺纹、 4、法兰、 6、焊接、 7 、对夹4.阀门得传动方式代号9、 6、 3 分别表示 :9、电动、 6 、气动、 3、涡轮蜗杆5.阀体材料代号Z、 K、 Q、 T、 C 、P 、 R、 V 分别表示 :灰铸铁、可锻铸铁、球墨铸铁、铜及合金、碳钢、铬镍系不锈钢、铬镍钼系不锈钢、铬钼钒钢6.阀座密封或衬里代号R、 T、 X、 S、N 、 F、 H 、Y 、 J、 M、 W 分别表示 :Cr 系不锈钢、硬质合金、衬胶、奥氏体不锈钢、铜合金、橡胶、塑料、尼龙塑料、氟塑料、蒙乃尔合金、阀门本体材料7.铸铁阀体不适合用于得场合有:1) 水蒸气或含水量多得湿气体;2)易燃易爆流体;3)环境温度低于- 20 ℃场合 ;4)压缩气体。

调节阀故障的几种保位方案

调节阀故障的几种保位方案

调节阀故障的几种保位方案调节阀在过程控制中的作用是人所共知的,在许多控制过程中要求调节阀在故障时处于某一个位置,以保护工艺过程不出现事故,这就要求调节阀在设计上实现故障—安全的三断(断气、断电、断信号)保护措施。

对于电动调节阀来说,比较简单,断信号时,可以根据控制模块的设定而停留在全开、全关、保持中的任一位置,而断电时,自然停留在故障位置,或带有复位装置的电动执行器也可将阀位运行到全开或全关。

对于气动调节阀来说,情况就比较复杂了,所以我们主要讨论气动调节阀的三断保位方法。

一般来说,我们在选择气动薄膜调节阀时,都要先确定选气开还是气闭,这就是选择调节阀断气时的保护位置,如果工艺要求断气时阀门打开,则选择常开(气闭)式调节阀,反之则选常闭(气开)式调节阀。

这只是一个粗浅的方案,如果工艺要求断气、断电、断信号的三断保护,则调节阀就需要配置一些附件来组成一个保护系统才能实现控制要求,这些附件主要有保位阀、电磁阀、气罐等。

以下是单作用气动薄膜调节阀和双作用气动调节阀的两种保位方案。

一、气动薄膜调节阀方案(调节阀配用电-气阀门定位器)本方案主要由气动调节阀、电-气阀门定位器、失电(信号)比较器、单电控电磁换向阀、气动保位阀、阀位信号返回器等组成。

其工作原理如下:1、断气源:当控制系统气源故障(失气)时,气动保位阀自动关闭将定位器的输出信号压力锁定在气动控制阀的膜室内,输出信号压力与控制阀弹簧产生的反力相平衡,气动控制阀的阀位保持在故障位置。

该保位阀应设定在略低于气源的最小值时启动。

2、断电源:当控制系统电源故障(失电)时,失电(信号)比较器控制单电控电磁换向阀的输出电压消失,单电控电磁换向阀失电,单电控电磁换向阀内的滑阀在复位弹簧的作用下滑动,电磁阀换向,将气动保位阀的膜室压力排空,气动保位阀关闭,将定位器的输出信号压力锁定在气动控制阀的膜室内,输出信号压力与控制阀弹簧产生的反力相平衡,气动控制阀的阀位保持在故障位置。

气动保位阀工作原理

气动保位阀工作原理

气动保位阀工作原理 Prepared on 22 November 2020一、气动保位阀工作原理气动保位阀是阀位保护装置。

当仪表的气源压力中断,或气源供给系统发生故障时,气动保位阀能够自动切断调节器与调节阀气室,或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样介质的被调作用不中断,故障消除后,气动保位阀立刻恢复正常位置。

下图所示为气动保位阀的结构。

当气源信号进入气室B时,作用在比较部件2上的力,与弹簧1的作用力进行比较。

正常状态时,膜片比较部件2的推力,大于给定的弹簧力,此时平板阀芯3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,气室B的压力下降,在弹簧力作用下,平板阀芯3盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

气动保位阀结构图1—弹簧2—比较部分3、平板阀芯4—喷嘴A、B—气室TAG:气动薄膜三通调节阀气动智能调节阀气动薄膜双座调节阀气动薄膜衬四氟调节阀卫生级气动薄膜调节阀注:气动保位阀安装在定位器与膜头之间如果有电磁阀,电磁阀因安装在保位阀和膜头之间二、气动继动器工作原理气动继动器本质上是一种气动放大器。

它与气动薄膜式或气动活塞式执行机构配套使用,用以提高气动执行机构的动作速度。

当仪表远距离传送压力信号,或执行机构气室的容量很大时,由于将产生较明显的传递时间滞后,因此,使用这种附件能显着提高执行机构的响应特性。

下面所示为一种典型的气动继动器的结构。

它是以力平衡原理工作的。

当由调节器或阀门定位器来的控制信号压力输入到气室A时,在膜组件1上产生一个向下的推力,膜片组件1向下转动,打开阀芯2。

此时,气源压力由阀芯、阀座之间的间隙,流人到反馈气室B,同时经由输出端被送到执行机构。

当膜片的上下两侧所产生的作用力相平稀时,输入信号与输出信号将保持一定的比例关系。

电磁阀的知识都在这里啦!附几通几位辨别方法及使用注意事项

电磁阀的知识都在这里啦!附几通几位辨别方法及使用注意事项

电磁阀的知识都在这里啦!附几通几位辨别方法及使用注意事项“一站式工业品采购,就上工品汇”方向控制阀的分类按照不同的分类方式,方向控制阀分类可分为如下几类:如果觉的上图过于复杂,可以先竖向看,然后再横向看。

或者,等看完了整篇内容后,再返回到这个分类,你会有对这一分类有更为充分的理解哦。

电磁阀工作原理我们通过法拉第的左手定则可以知道,当电流通过螺旋线圈时,会产生磁场力。

如果将磁铁材料放入螺旋管内,则可产生更多的电磁吸力,电磁阀的电磁头就是利用这个原理工作的。

以SMC品牌的产品为例,其电磁阀分为两大类:直动式电磁阀和先导式电磁阀。

△ 直动式:直接用电磁力来驱动阀芯的切换。

△ 先导式:用电磁力来驱动先导气的通断,并用先导气来推动阀芯的动作。

简单来说:•阀芯用电驱动→直动式直动式直动式电磁的结构简单,易于维护,且切换速度快,动作频率高,但连接口径不宜大于1/8(除间隙密封滑阀和滑柱座阀式阀外)。

通径大,所需的电磁力要大,体积和电耗都大。

此外,当阀芯粘住而动作不良时,如是交流电磁铁,容易烧毁线圈。

•阀芯用气驱动→先导式先导式阀的机能讨论机能之前,首先,我们要来认识一下我们常说的“几位几通”所表达的“位”和“通”分别指的是什么?“位”是指切换阀的阀芯有几个位置(工作状态)。

“通”是指电磁阀有几个可外部链接的通口。

常用以下的符号来表示:2位5通单电控五个通口的二位阀,单电控是指只有一个电磁头,电磁头得电和失电阀各有一个工作位置2位5通双电控五个通口的二位阀,双电控是有两个电磁头,两个电磁头分别得电,阀工作于两个不同工作位置3位5通中封五个通口的三位阀,阀芯处于中间位置时各通口呈封闭状态,称为中位封闭式阀。

若动作时还有另外两工作位置3位5通中泄五个通口的三位阀,当阀芯处于中间位置时,出口与排气口相通,称为中位泄压式阀。

若动作时还有另外两个工作位置3位5通中压五个通口的三位阀,当阀芯处于中间位置时,出口与进气口相通,称为中位加压阀。

电磁阀、热力膨胀阀、四通阀、闸阀、蝶阀的作用

电磁阀、热力膨胀阀、四通阀、闸阀、蝶阀的作用

电磁阀、热力膨胀阀、四通阀、闸阀、蝶阀的作用电磁阀(Electromagneticvalve)是用电磁掌控的工业装备,是用来掌控流体的自动化基础元件,属于执行器,并不限于液压、气动。

用在工业掌控体系中调整介质的方向、流量、速度和其他的参数。

电磁阀可以搭配不同的电路来实现预期的掌控,而掌控的精度和快捷性都能够保证。

电磁阀有很多种,不同的电磁阀在掌控体系的不同位置发挥作用,最常用的是单向阀、安全阀、方向掌控阀、速度调整阀等。

热力膨胀阀是通过掌控蒸发器出口吻态制冷剂的过热度来掌控进入蒸发器的制冷剂流量。

热力膨胀阀实现冷凝压力至蒸发压力的节流,同时掌控制冷剂的流量;它的体积虽小,但作用巨大,它的工作好坏,直接决议整个体系的工作质量,以最佳的方式给蒸发器供液,保证蒸发器出口制冷剂蒸汽的过热度稳定,感温包必需与压缩机的吸气管精良的打仗从而精准的感应压缩机的吸气温度,通常充注着与制冷体系内部相同的制冷剂,从而实现通过感温包反馈回来的压力即是压缩机吸气温度对应的该种类型制冷剂的饱和压力,通过膨胀阀确保了在运行环境发生变化时(比如热负荷变化),实现蒸发器最优及最佳的供液方式,感温包的充注量只依据在某一特定的温度下完全感温包内液态制冷剂完全蒸发来进行修正的,这就等于给作用在膨胀阀膜片上方感温包反馈回来的压力规定了一个上限,由于假如管壁外貌温度连续增高,只会加添感温包内部气态制冷剂的温度(处于过热状态),而压力基本上不再更改。

四通阀,液压阀术语,是具有四个油口的掌控阀。

四通阀是制冷装备中不可缺少的部件,其工作原理是,当电磁阀线圈处于断电状态,先导滑阀在右侧压缩弹簧驱动下左移,高压气体进入毛细管后进入右端活塞腔,另一方面,左端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀左移,使排气管与室外机接管相通,另两根接管相通,形成制冷循环。

闸阀(gatevalve)是用闸板作启闭件并沿阀座轴线垂直方向移动,以实现启闭动作的阀门。

电磁阀分类及功能

电磁阀分类及功能

电磁阀分类及功能电磁阀是一种基础性的自动控制元件,广泛应用于液压、气动和机电一体化领域。

根据不同的工作原理和结构特点,电磁阀可以分为多种类型,下面将对电磁阀分类及其功能进行详细介绍。

一、按工作原理分类1.直动式电磁阀直动式电磁阀是指电磁铁芯直接与阀芯相连,当通电时,铁芯受到吸力作用,使阀芯移动,从而实现开关控制。

该类型的电磁阀结构简单、可靠性高、响应速度快,但因为铁芯与阀芯相连,在大流量或高压差情况下易出现卡死现象。

2.间接式电磁阀间接式电磁阀是指通过弹性元件(如弹簧)将铁芯与阀芯分离,在通电时铁芯受到吸力作用向上移动,使弹性元件变形并推动阀芯移动。

该类型的电磁阀具有良好的密封性能和流量调节特性。

3.比例式电磁阀比例式电磁阀是指通过改变电磁铁芯的位置来调节阀口的开度,从而实现流量的精确控制。

该类型的电磁阀可以根据需要进行比例调节,具有精度高、响应速度快、稳定性好等优点。

4.单向电磁阀单向电磁阀是指只能实现单向流动控制的电磁阀,通常用于气体或液体的流量控制和方向控制。

该类型的电磁阀结构简单、可靠性高、响应速度快。

5.反向电磁阀反向电磁阀是指可以实现正反两个方向流动控制的电磁阀,通常用于液压系统中。

该类型的电磁阀具有结构紧凑、可靠性高、操作方便等特点。

二、按结构分类1.直通式电磁阀直通式电磁阀是指介质从一端进入,经过一个固定的通道后从另一端出去。

该类型的电磁阀结构简单、流量大,但对介质污染敏感。

2.角式电磁阀角式电磁阀是指介质在进入后沿着一个角度改变方向,再经过一个固定的通道后出去。

该类型的电磁阀结构紧凑、可靠性高、适用于污染较严重的介质。

3.直行式电磁阀直行式电磁阀是指介质从一端进入,经过一个弯曲通道后从另一端出去。

该类型的电磁阀结构紧凑、流量大、适用于污染较轻的介质。

4.膜片式电磁阀膜片式电磁阀是指采用弹性薄膜作为控制元件的电磁阀,通过改变薄膜弯曲程度来实现介质流量调节。

该类型的电磁阀具有响应速度快、精度高等优点。

气动保位阀工作原理

气动保位阀工作原理

一、气动保位阀工作原理气动保位阀是阀位保护装置.当仪表的气源压力中断,或气源供给系统发生故障时,气动保位阀能够自动切断调节器与调节阀气室,或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样介质的被调作用不中断,故障消除后,气动保位阀立刻恢复正常位置。

下图所示为气动保位阀的结构。

当气源信号进入气室B时,作用在比较部件2上的力,与弹簧1的作用力进行比较。

正常状态时,膜片比较部件2的推力,大于给定的弹簧力,此时平板阀芯3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,气室B的压力下降,在弹簧力作用下,平板阀芯3盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

气动保位阀结构图1—弹簧 2-比较部分 3、平板阀芯 4-喷嘴 A、B—气室TAG:气动薄膜三通调节阀气动智能调节阀气动薄膜双座调节阀气动薄膜衬四氟调节阀卫生级气动薄膜调节阀注:气动保位阀安装在定位器与膜头之间如果有电磁阀,电磁阀因安装在保位阀和膜头之间二、气动继动器工作原理气动继动器本质上是一种气动放大器。

它与气动薄膜式或气动活塞式执行机构配套使用,用以提高气动执行机构的动作速度。

当仪表远距离传送压力信号,或执行机构气室的容量很大时,由于将产生较明显的传递时间滞后,因此,使用这种附件能显著提高执行机构的响应特性。

下面所示为一种典型的气动继动器的结构。

它是以力平衡原理工作的。

当由调节器或阀门定位器来的控制信号压力输入到气室A时,在膜组件1上产生一个向下的推力,膜片组件1向下转动,打开阀芯2.此时,气源压力由阀芯、阀座之间的间隙,流人到反馈气室B,同时经由输出端被送到执行机构。

当膜片的上下两侧所产生的作用力相平稀时,输入信号与输出信号将保持一定的比例关系。

如果设P为信号压力,膜片组件1 上膜片的有效面积为A1,下膜片的有效面移为A2,输出压力为Pout,则有下列的平衡关系成立:气动继电器结构1—膜片组建 2—阀芯 3—针形阀PA1=PoutA2式中,面积A1、A2均为常数。

电磁阀与电动阀的原理及差异!

电磁阀与电动阀的原理及差异!

电磁阀与电动阀的原理及差异!一、电磁阀的介绍与原理1、电磁阀的组成电磁阀是制冷系统中控制制冷剂自动通、断的阀门。

电磁阀可分为直接作用式和间接作用式两种,用于商业制冷设备中的电磁阀一般为直接作用式。

电磁阀由阀体和电磁头两部分组成,一般都是直动式的,所谓的直接启闭式电磁阀,也就是利用电磁头中的衔铁直接控制阀孔的启闭,孔径一般在6-22mm之间。

2、电磁阀的作用与工作原理制冷系统分高压和低压,液态和气态,为了防止压缩机停机后高压液态的制冷剂对压缩机形成冲击,故采用电磁阀来保护,当压缩机启动前系统压力处于平衡的状态所以不存在冲击,这时电磁阀供电打开压缩机启动,制冷剂循环制冷。

当要停机时压缩机断电或停止后电磁阀快速断电截止,高压侧的制冷剂不会反方向回到压缩机,而是通过循环的方向通过压缩机,慢慢的整个制冷系统有与压缩机的停止压力慢慢的恢复平衡。

工作原理:当制冷设备启动时,电磁线圈产生电磁力把阀门打开,电磁头中的线圈通电时,线圈与衔铁产生感应磁场,衔铁带动阀针上移,阀孔被打开,流体正常流动。

当达到设定温度时,电磁头中线圈断电时,磁场消失,衔铁靠自雨和弹簧力下落,阀针将阀孔关闭,流体停止流动。

电磁阀的选用一般应根据系统的流量选择合适接管口径的电磁阀,同时还要考虑其工作电压、适用的环境温度、工作压力等参数要求。

在进行电磁阀安装时,电磁阀的阀体应与管道垂直,以保证电磁阀阀芯能轻松地上下运动。

二、电动阀的介绍与原理电动阀分两种,一种为角行程电动阀,由角行程的电动执行器配合角行程的阀使用,实现阀门90度以内旋控制管道流体通断;另一种为直行程电动阀:由直行程的电动执行器配合直行程的阀使用,实现阀板上下动作控制管道流体通断。

通常在自动化程度较高的设备上配套使用。

电动阀通常由电动执行机构和阀门连接起来,经过安装调试后成为电动阀。

电动阀使用电能作为动力来接通电动执行机构驱动阀门,实现阀门的开关、调节动作。

从而达到对管道介质的开关或是调节目的。

比例阀和普通电磁阀有什么不同

比例阀和普通电磁阀有什么不同

比例阀和普通电磁阀有什么不同在控制系统中,阀门是一个非常关键的组件,其对电液传动系统的控制具有重要的意义。

电磁阀是普遍使用的组件,但是在某些应用场合中,为了更精确的控制流量和压力,需要使用比例阀。

本文将介绍比例阀和普通电磁阀的不同之处。

比例阀和普通电磁阀概述比例阀是一种电液连续调节元件,在液压系统中用于控制流量和压力。

与普通电磁阀相比,比例阀的最大特点是可以按照输入信号控制输出信号的大小,可以实现精确的控制流量和压力。

普通电磁阀是直接控制液压传动系统的流体流量的单向阀组件,其控制方式是二元控制,只有开和关两种状态。

因此,控制系统中的电磁阀只能实现开关状态的控制,而无法实现连续的精确流量或压力控制。

因此在部分要求精度高的系统中,普通电磁阀效果不佳。

为了更好地理解比例阀和普通电磁阀的不同之处,下面将从以下几个方面进行详细介绍:1.工作原理比例阀的主要工作原理是利用电流或电压等输入信号,通过配合变阻器、放大器、脉冲宽度调制等辅助元件,控制成型截面积,从而控制液体流量或者压力的大小。

而普通电磁阀的原理是将电脉冲通过线圈产生磁场,使控制阀芯从而影响液体的流动方向和流速等状态。

这种方式是一个二元控制,而且只有在电源供电的情况下才能正常工作。

2.工作稳定性由于比例阀利用信号将汲取处理成准确的输出信号,利用电阻、电感判断制式的稳定性中等高端,能够实现较为精确的流量或压力控制。

而普通电磁阀通过二元面控制液体流动和环节方向,流速受重程影响,容易受周围环境因素影响,因此难以保证其流量和压力的精度,稳定性相对较差。

3.控制范围普通电磁阀只能实现开关控制,而比例阀可以通过调节输入电平的大小,实现流量和压力的连续变化控制。

随着输入电压的不同,输出信号的大小也会不同,因此比例阀的控制范围远比普通电磁阀更广。

4.控制灵敏度比例阀可以通过外部输入设定,实现较高的精度和灵敏度。

而普通电磁阀的质量和精度往往受到生产商的控制,造成了很大的误差,控制灵敏度相对较差。

电磁阀的种类及应用

电磁阀的种类及应用

电磁阀的种类及应用电磁阀是一种控制流体流动的装置,利用电磁力使阀芯或阀板进行运动,从而打开或关闭阀门。

根据不同的工作方式和应用场景,电磁阀可以分为多种类型,本文将对常见的电磁阀种类及其应用进行介绍。

1. 直动式电磁阀直动式电磁阀是最常见的一种电磁阀。

其结构简单,具有较小的体积和较高的灵敏度。

直动式电磁阀分为常闭和常开两种类型。

常闭电磁阀在无电流驱动时处于关闭状态,施加电流才能打开阀门;常开电磁阀则正好相反,在无电流时阀门处于打开状态,施加电流才能闭合阀门。

直动式电磁阀广泛应用于液体和气体的控制系统中,如供水系统、燃气系统、空调系统等。

2. 内导型电磁阀内导型电磁阀的特点是磁线圈内有一个导向管,磁铁周围的磁场仅作用于阀芯。

内导型电磁阀的阀芯通过磁铁的磁场移动来控制流体的通断。

它具有响应速度快、体积小、可靠性高等优点。

因此,内导型电磁阀广泛应用于高频率、高精度控制和小流量控制的场合,如医疗装置、分析仪器等。

3. 行程型电磁阀行程型电磁阀是一种通过移动磁铁实现阀芯运动的电磁阀。

行程型电磁阀的优点是开启和关闭阀门更为迅速,适用于高频率控制。

行程型电磁阀广泛应用于气动系统和流体控制系统中,如汽车发动机控制系统、空气调节系统。

4. 锁定型电磁阀锁定型电磁阀是一种特殊的电磁阀,它在持续通电或断电的状态下能够保持阀门的开或闭状态。

这种电磁阀适用于用户需要长时间保持阀门状态的场合,如冷库门、船舶舱门等。

5. 防爆型电磁阀防爆型电磁阀主要应用于易燃易爆场所,防止因电火花引起的爆炸事故。

这种电磁阀在设计上采用了防爆结构,通过在阀门和电磁部分之间设置爆炸保护的结构,使得电磁阀在使用时不会产生电弧、火花等。

6. 比例电磁阀比例电磁阀根据控制信号的大小,能够精确调节流体的流量。

它通过控制电磁驱动阀门开度来实现对流体的调节。

比例电磁阀常用于对压力、流量、温度等参数有要求的系统中,如工业自动化控制系统、液压系统等。

7. 多通电磁阀多通电磁阀是一种具有多个进出口的电磁阀,可以实现复杂的流体控制。

保位阀的动作原理

保位阀的动作原理

保位阀的动作原理保位阀作为一种常用的阀门类型,在工业领域有着广泛的应用。

其主要功能是控制流体流动,实现流体的分流、合流和关闭。

保位阀的动作原理可以分为以下几个方面来详细解释。

首先,保位阀的主要组成部分包括阀体、阀盖、阀芯和弹簧等。

在阀体内部,有进口和出口口径两个管道。

当保位阀工作时,通过控制进口和出口的流体压力来实现阀芯的动作。

其次,保位阀的动作过程可以分为三个阶段:开启、关闭和保位。

开启阶段是指阀芯与阀座分离,使流体能够通过阀体流动。

关闭阶段是指阀芯与阀座接触,阻止流体通过。

保位阶段是指阀芯保持在某个特定的位置,以保证流体的特定流量。

在保位阀的动作过程中,阀芯的运动由流体压力和弹簧力共同作用决定。

当进口压力大于出口压力时,流体从进口流入阀体,继而将阀芯向上推动,使阀芯与阀座分离,从而实现开启。

反之,当出口压力大于进口压力时,流体将进入阀体内的密封腔,将阀芯向下压紧,使阀芯与阀座接触,实现关闭。

保位阀的保位功能是指阀芯可以停留在开启或关闭的特定位置,以控制流体的特定流量。

为了实现保位功能,保位阀中通常会设置一个位移传感器,用于检测阀芯的位置。

当阀芯达到特定的位置时,位移传感器将通过信号反馈给执行机构,控制阀芯的运动停留在特定位置。

这样可以保证流体的流量稳定,确保系统的正常运行。

此外,保位阀还具有的一个重要特点是其可调性。

通过调整阀芯与阀座之间的间隙,可以改变流体通过阀体的流通面积,从而调节流量。

这种可调性使得保位阀的应用更加灵活,能够适应不同工况下的需求。

总结起来,保位阀的动作原理主要是通过控制进口和出口的流体压力来实现阀芯的开启、关闭和保位。

阀芯的动作由流体压力和弹簧力共同作用决定,通过位移传感器的反馈控制阀芯的位置,实现流体的特定流量控制。

同时,保位阀还具有可调性,能够根据需要调节流体的流量。

这些特点使得保位阀在工业领域有着广泛的应用。

保位阀与电磁阀的区别

保位阀与电磁阀的区别

1、保位阀是阀位保护装置。

当仪表的气源压力中断或气源供给系统发生故障时,保位阀能够自动切断调节器与调节阀气室或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样,介质的被调作用不中断,故障消除后,保位阀立刻恢复正常位置。

图8-33所示为一个气动保位阀的结构原理。

当气源信号进入气室B时,作用在比较部件2上的力与弹簧1的作用力进行比较。

正常状态时,膜片比较部件的推力大于给定弹簧的力,此时平板阀3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,B室压力下降,在弹簧力作用下,平极阀芯盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封住,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

2 、TN-C:三相四线制供电,分别引出L1,L2,L3,PEN。

PEN为【保护接零】方式,即设备外壳连接到工作零线上(通常PEN 要在用电侧进线处做重复接地)。

节省线路有色金属,工业供电常用(三相负荷相对平衡运行时,PEN线上的电流一般不太大),民用建筑不用。

TN-S:三相五线制供电,分别引出L1,L2,L3,N,PE。

N为工作零线,PE为专用【保护接地】线,即设备外壳连接到PE上。

因为用5线配电,有色金属用量大,多为民用建筑配电选择方式,对于大量单相负荷造成的三相不平衡问题,因为N为专用,平时PE不导电,安全性好。

TN-C-S:变压器引出为TN-C方式,在某级配电系统开始将PE与N从PEN中区分开(二者此后不得再见面握手),也就是该分歧点之前为TN-C型式,此后类似TN-S(不是真正的TN-S)。

对于要求不严格的民用建筑可以选用,如变压器及一级配电用TN-C,在建筑电源进线总箱处将PE从PEN中分离,建筑二级配电仍为5线制。

无论什么方式,变压器的中性点一般都是接地的(包括外壳),所以对变压器来说,PE、N是连接在一起的。

补充:对变压器,TT、TN-S中性点接地方式相同,比如用扁钢将变压器外壳接到【总接地装置】上,变压器的N排也与之连接(可以有不同做法),但通过工作电流的N线(到开关柜)和五线制的PE必须按照设计要求,一般仍是铜排、母线。

电子膨胀阀、电磁阀、截止阀、节流阀和球阀讲解

电子膨胀阀、电磁阀、截止阀、节流阀和球阀讲解

电子膨胀阀、电磁阀、截止阀、节流阀和球阀讲解阀门是在流体系统中,用来控制流体的方向、压力、流量的装置,是使配管和设备内的介质(液体、气体、粉末)流动或停止并能控制其流量的装置。

阀门是管路流体输送系统中控制部件,用来改变通路断面和介质流动方向,具有导流、截止、节流、止回、分流或溢流卸压等功能。

用于流体控制的阀门,从最简单的截止阀到极为复杂的自控系统中所用的各种阀门,其品种和规格繁多,阀门的公称通径从极微小的仪表阀大至通径达10m的工业管路用阀。

可用于控制水、蒸汽、油品、气体、泥浆、各种腐蚀性介质、液态金属和放射性流体等各种类型流体地流动,阀门的工作压力可以从0.0013MPa到1000MPa 的超高压,工作温度可以c-270℃的超低温到1430℃的高温。

阀门的控制可采用多种传动方式,如手动、电动、液动、气动、涡轮、电磁动、电磁液动、电液动、气液动、正齿轮、伞齿轮驱动等;可以在压力、温度或其它形式传感信号的作用下,按预定的要求动作,或者不依赖传感信号而进行简单的开启或关闭,阀门依靠驱动或自动机构使启闭件作升降、滑移、旋摆或回转运动,从而改变其流道面积的大小以实现其控制功能。

电子膨胀阀电子膨胀阀是一种可按预设程序进入制冷装置的制冷剂流量的节流元件。

在一些负荷变化剧烈或运行工况范围较宽的场合,传统的节流元件(如毛细管、热力膨胀阀等)已不能满足舒适性及节能方面的要求,电子膨胀阀结合压缩机变容量技术已得到越来越广泛的应用。

目前对电子膨胀阀的研究大致包括应用研究、流量特性、控制策略及算法3个方向。

电子膨胀阀作为一种新型的控制元件,已成为制冷系统智能化的重要环节,也是制冷系统优化得以真正实现重要手段和保证,被应用在越来越多的领域中。

电子膨胀阀的应用必将随着技术的进步和发展而日趋成熟。

在较热的天气情况下,电子膨胀阀的优点是可以更好地利用蒸发器;在较冷的天气下,其可以降低机组的运行压力,从而降低耗电量,提高效率。

电子膨胀阀价格比传统热力膨胀阀价格高一倍,有句话叫一分钱一分货,电子膨胀阀常用在机房空调、精密空调、恒温恒湿空调等高端制冷设备上。

保位阀原理

保位阀原理

保位阀原理
保位阀是一种用来控制液压系统中执行元件位置的装置,它能够在系统压力变
化时保持执行元件的位置稳定,从而确保系统的正常运行。

保位阀的原理主要包括工作原理、结构原理和调节原理。

首先,我们来看一下保位阀的工作原理。

保位阀通过控制液压系统中的液压油
流量,来调节执行元件的位置。

当系统压力发生变化时,保位阀会根据预设的压力值来调节油流量,使执行元件的位置保持在设定的位置上。

这样可以有效地避免因压力变化而导致的位置偏移,确保系统的稳定运行。

其次,我们来了解一下保位阀的结构原理。

保位阀通常由阀体、阀芯、弹簧、
调节螺母等部件组成。

阀芯是保位阀的核心部件,它通过受力来控制油路的开闭,从而实现对液压系统的控制。

弹簧则起到支撑和平衡的作用,调节螺母则用来调整阀芯的工作位置,以实现对系统压力的调节。

最后,我们来讨论一下保位阀的调节原理。

保位阀的调节原理主要是通过调节
阀芯的位置来实现对系统压力的调节。

当系统压力超过设定值时,阀芯会受力移动,改变油路的通断,从而调节系统压力;当系统压力低于设定值时,阀芯会受力恢复原位,保持系统的稳定运行。

综上所述,保位阀通过工作原理、结构原理和调节原理来实现对液压系统中执
行元件位置的稳定控制。

它在液压系统中起着重要的作用,能够确保系统的正常运行,提高系统的稳定性和可靠性。

希望本文能够对保位阀的原理有所了解,并能够在实际应用中发挥其作用。

调节阀故障有哪几种保位方案

调节阀故障有哪几种保位方案

调节阀故障有哪几种保位方案调节阀在过程控制中的作用是人所共知的,在许多控制过程中要求调节阀在故障时处于某一个位置,以保护工艺过程不出现事故,这就要求调节阀在设计上实现故障—安全的三断(断气、断电、断信号)保护措施。

对于电动调节阀来说,比较简单,断信号时,可以根据控制模块的设定而停留在全开、全关、保持中的任一位置,而断电时,自然停留在故障位置,或带有复位装置的电动执行器也可将阀位运行到全开或全关。

对于气动调节阀来说,情况就比较复杂了,所以我们主要讨论气动调节阀的三断保位方法。

一般来说,我们在选择气动薄膜调节阀时,都要先确定选气开还是气闭,这就是选择调节阀断气时的保护位置,如果工艺要求断气时阀门打开,则选择常开(气闭)式调节阀,反之则选常闭(气开)式调节阀。

这只是一个粗浅的方案,如果工艺要求断气、断电、断信号的三断保护,则调节阀就需要配置一些附件来组成一个保护系统才能实现控制要求,这些附件主要有保位阀、电磁阀、气罐等。

以下是单作用气动薄膜调节阀和双作用气动调节阀的两种保位方案。

一、气动薄膜调节阀方案(调节阀配用电-气阀门定位器)本方案主要由气动调节阀、电-气阀门定位器、失电(信号)比较器、单电控电磁换向阀、气动保位阀、阀位信号返回器等组成。

其工作原理如下:1、断气源:当控制系统气源故障(失气)时,气动保位阀自动关闭将定位器的输出信号压力锁定在气动控制阀的膜室内,输出信号压力与控制阀弹簧产生的反力相平衡,气动控制阀的阀位保持在故障位置。

该保位阀应设定在略低于气源的最小值时启动。

2、断电源:当控制系统电源故障(失电)时,失电(信号)比较器控制单电控电磁换向阀的输出电压消失,单电控电磁换向阀失电,单电控电磁换向阀内的滑阀在复位弹簧的作用下滑动,电磁阀换向,将气动保位阀的膜室压力排空,气动保位阀关闭,将定位器的输出信号压力锁定在气动控制阀的膜室内,输出信号压力与控制阀弹簧产生的反力相平衡,气动控制阀的阀位保持在故障位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、保位阀是阀位保护装置。

当仪表的气源压力中断或气源供给系统发生故障时,保位阀能够自动切断调节器与调节阀气室或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样,介质的被调作用不中断,故障消除后,保位阀立刻恢复正常位置。

图8-33所示为一个气动保位阀的结构原理。

当气源信号进入气室B时,作用在比较部件2上的力与弹簧1的作用力进行比较。

正常状态时,膜片比较部件的推力大于给定弹簧的力,此时平板阀3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,B室压力下降,在弹簧力作用下,平极阀芯盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封住,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

2 、TN-C:三相四线制供电,分别引出L1,L2,L3,PEN。

PEN为【保护接零】方式,即设备外壳连接到工作零线上(通常PEN 要在用电侧进线处做重复接地)。

节省线路有色金属,工业供电常用(三相负荷相对平衡运行时,PEN线上的电流一般不太大),民用建筑不用。

TN-S:三相五线制供电,分别引出L1,L2,L3,N,PE。

N为工作零线,PE为专用【保护接地】线,即设备外壳连接到PE上。

因为用5线配电,有色金属用量大,多为民用建筑配电选择方式,对于大量单相负荷造成的三相不平衡问题,因为N为专用,平时PE不导电,安全性好。

TN-C-S:变压器引出为TN-C方式,在某级配电系统开始将PE与N从PEN中区分开(二者此后不得再见面握手),也就是该分歧点之前为TN-C型式,此后类似TN-S(不是真正的TN-S)。

对于要求不严格的民用建筑可以选用,如变压器及一级配电用TN-C,在建筑电源进线总箱处将PE从PEN中分离,建筑二级配电仍为5线制。

无论什么方式,变压器的中性点一般都是接地的(包括外壳),所以对变压器来说,PE、N是连接在一起的。

补充:
对变压器,TT、TN-S中性点接地方式相同,比如用扁钢将变压器外壳接到【总接地装置】上,变压器的N排也与之连接(可以有不同做法),但通过工作电流的N线(到开关柜)和五线制的PE必须按照设计要求,一般仍是铜排、母线。

TN-S系统中,PE、N是共同接到变压器(已经接地的)N端的。

3 、电磁流量计由传感器和转换器两大部分组成。

传感器典型结构如下图所示,测量管上下装有励磁线圈,由转换器提供励磁电流产生磁场充满测量管道,一对或多对电极装在测量管内壁(与磁场方向垂直)与液体接触来检测并引出感应电动势,通过电缆送到转换器进行信号处理。

测量管内壁安装有绝缘衬里,形成高阻抗非磁性测量管道。

衬里与被测流体接触,不同腐蚀性、磨损性和温度的流体选用不同类型的衬里。

智能电磁流量计测量原理是基于法拉第电磁感应
定律:导电液体在磁场中做切割磁力线运动时,导
体中产生感应电势,其感应电势E为:
E=KBVD
式中:
K---------------- 仪表常数
B---------------- 磁感应强度
V---------------- 测量管道截面内的平均流速
D --------------- 测量管道截面的内径
测量流量时,导电性液体以速度V流过垂直于流动
方向的磁场,导电性液体的流动在测量电极上感应
出一个与平均流速成正比的电压,由此可以得出通
过管道的体积流量为:
Q=0.785DE / KB
式中:
Q---------------- 体积流量
E---------------- 感应电压
由此式可知,当测量管结构、磁场磁感应强度一定
时,体积流量与感应电势成正比。

测量出感应电压
就可得到流过管道的体积流量。

将感应电压信号通
过一对或多对与液体直接接触的电极检出,并通过
电缆送至转换器通过智能化处理,然后LCD显示
或转换成标准信号4~20mA、频率信号或Hart协
议通讯的输出。

4 、OPC全称是OLE for Process Control,它的出现为基于Windows的应用程序和现场过程控制应用建立了桥梁。

在过去,为了存取现场设备的数据信息,每一个应用软件开发商都需要编写专用的接口函数。

由于现场设备的种类繁多,且产品的不断升级,往往给用户和软件开发商带来了巨大的工作负担。

通常这样也不能满足工作的实际需要,系统集成商和开发商急切需要一种具有高效性、可靠性、开放性、可互操作性的即插即用的设备驱动程序。

在这种情况下,OPC标准应运而生。

OPC标准以微软公司的OLE技术为基础,它的制定是通过提供一套标准的OLE/COM接口完成的,在OPC技术中使用的是OLE 2技术,OLE标准允许多台微机之间交换文档、图形等对象。

相关文档
最新文档