九年级上册数学期末考试试题及复习资料人教版

合集下载

2024年人教版初中九年级数学(上册)期末试题及答案(各版本)

2024年人教版初中九年级数学(上册)期末试题及答案(各版本)

专业课原理概述部分一、选择题(每题1分,共5分)1.若一个正方形的边长为a,则它的对角线长为()。

A.a/2B.a√2C.2aD.a√32.下列函数中,哪一个不是二次函数?()A.y=2x^23x+1B.y=x^2+4C.y=3x+2D.y=-x^2+5x43.在直角坐标系中,点(3,-4)位于()。

A.第一象限B.第二象限C.第三象限D.第四象限4.若一组数据的方差为4,则这组数据的()。

A.平均数为4B.标准差为2C.众数为4D.中位数为45.下列哪个数是素数?()A.21B.27C.29D.35二、判断题(每题1分,共5分)1.两个负数相乘的结果是正数。

()2.任何数与零相乘都等于零。

()3.平行四边形的对角线互相平分。

()4.一元二次方程的解一定是实数。

()5.在三角形中,大边对大角,小边对小角。

()三、填空题(每题1分,共5分)1.一个等差数列的前三项分别是2、5、8,那么第四项是______。

2.若直线y=3x+2与y轴的交点为(0,b),则b的值为______。

3.若一个圆的半径为r,则这个圆的面积为______。

4.若一个分数的分子和分母同时除以2,这个分数的值______。

5.若|a|=5,则a的值为______或______。

四、简答题(每题2分,共10分)1.请简述等差数列的定义。

2.请解释什么是一元二次方程的判别式。

3.简述直角三角形的勾股定理。

4.请解释什么是平行四边形的对角线。

5.简述二次函数的性质。

五、应用题(每题2分,共10分)1.已知等差数列的前三项分别是2、5、8,求这个等差数列的公差和首项。

2.已知直角三角形的两个直角边长分别是3和4,求这个直角三角形的斜边长。

3.已知一个圆的半径为5,求这个圆的周长和面积。

4.解一元二次方程x^25x+6=0。

5.已知一个二次函数的顶点为(2,-3),且过点(0,1),求这个二次函数的解析式。

六、分析题(每题5分,共10分)1.分析并解释为什么两个负数相乘的结果是正数。

人教版九年级上册数学期末考试试题及答案解析

人教版九年级上册数学期末考试试题及答案解析

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程是一元二次方程的是( )A .222x +=B .221x y -=C .20x =D .11x x=- 3.若关于x 的方程20x m -=有实数根,则m 的取值范围是( )A .0m <B .0m ≤C .0m >D .0m ≥4.二次函数y =﹣3(x +1)2﹣7有( )A .最大值﹣7B .最小值﹣7C .最大值7D .最小值75.将抛物线2y x =向右平移1个单位,再向上平移3个单位后,它的解析式为( )A .2(1)3y x =++B .2(1)3y x =-+C .2(1)3y x =+-D .2(1)3y x =--6.下列事件是随机事件的是( )A .购买一张福利彩票就中奖B .有一名运动员奔跑的速度是50米/秒C .在一个标准大气压下,水加热到100C ︒会沸腾D .在一个仅装有白球和黑球的袋中摸球,摸出红球7.如图,AB 是⊙O 的直径,AC =BC ,则⊙A 的度数等于( )A .30°B .45°C .60°D .90°8.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为( )A .12 B .15 C .110 D .3109.已知圆心角是60︒,半径为30的扇形的弧长为( )A .5πB .10πC .20πD .25π10.已知圆心角为120︒的扇形的弧长为6π,该扇形的面积为( )A .12πB .21πC .27πD .36π11.已知直线y ax b =+经过一、二、三象限,则抛物线2y ax bx =+大致是( )A .B .C .D .12.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .12二、填空题 13.一元二次方程()()320x x --=的根是_____.14.抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为_____.15.数学老师将全班分成4个小组开展合作学习,采用随机抽签方式确定2个小组进行展示活动,则第1小组和第2小组被抽到的概率是_________.16.如图,ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若90C ∠=︒,6AC =,8BC =,则⊙O 的半径等于________.17.如图,在边长为2的正六边形ABCDEF 中,P 是ED 的中点,则AP =_______.18.如图,把ABC 绕点C 顺时针旋转某个角度α得到A B C ''',30A ∠=︒,170∠=︒,则旋转角α的度数为______.三、解答题19.用指定方法解方程:(1)2250--=(公式法);x x(2)2-=(配方法).22x x20.(1)画图:图⊙为正方形网格,画出ABC绕点O顺时针...旋转90︒后的图形.(2)尺规作图:在图⊙中作出四边形ABCD关于点O对称的图形(不写作法,保留作图痕迹,用黑色笔将作图痕迹涂黑).21.已知y是关于x的二次函数,x,y满足下表观察上表(不用求解析式),直接写出该函数如下性质:(1)图象函数名称________,开口方向_______;(2)对称轴表达式_________;(3)顶点坐标_________;(4)y随x的变化情况___________,___________.22.如图1,点P 表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O 为圆心,5m 为半径的圆.若O 被水面截得的弦AB 长为8m ,求水车工作时,盛水筒在水面以下的最大深度.23.如图是一张长24cm ,宽12cm 的矩形铁皮,将其剪去一个小正方形和两个矩形,剩余部分(阴影部分)恰好可制成一个有盖的长方体铁盒.(1)a = ;(2)若铁盒底面积是80cm 2,求剪去的小正方形边长.24.某电脑销售店电脑原价为每台5000元,元旦期间开展了促销活动,将原价经过两次下调后,促销价为每台4050元.(1)求平均每次下调的百分率;(2)某校计划以促销价购买100台电脑.该店还给予以下两种优惠方案以供选择:⊙打9.8折销售;⊙不打折,送12个月的免费保修费,免费保修费为每台每月10元.请问哪种方案更优惠?25.如图,ABC 中,90C ∠=︒,BD 平分ABC ∠,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作O ,O 恰好经过点D .(1)求证:直线AC 是O 的切线;(2)若30A ∠=︒,2OB =,求线段CD 的长.26.如图,在平面直角坐标系中,已知点B的坐标为(﹣2,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊙AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.参考答案1.D【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 2.C【分析】根据一元一次方程的定义依次判断即可.【详解】解:A、该方程是一元一次方程,故本选项不符合题意;B、该方程是二元二次方程,故本选项不符合题意;C、该方程是一元二次方程,故本选项符合题意;D、该方程分式方程,故本选项不符合题意.故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(a,b,c为常数且a≠0).3.D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:20-=x m2=x m⊙关于x的方程20-=有实数根x m⊙0m≥故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.4.A【分析】根据顶点式直接写出答案即可.【详解】二次函数y =﹣3(x +1)2﹣7中,k =﹣3<0,⊙二次函数y =﹣3(x +1)2﹣7,当x =﹣1时有最大值﹣7,故选:A .【点睛】本题考查了二次函数的最值,解题的关键是了解二次函数的顶点式,难度不大.5.B【分析】根据二次函数图象的平移方法即可求解.【详解】解:将抛物线2y x 图象向右平移1个单位,再向上平移3个单位,所得图象解析式为2(1)3y x =-+故选择:B .【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的方法.6.A【分析】根据随机事件的定义,随机事件:是指在一定条件下可能发生也可能不发生的事件,进行一一排查即可.【详解】解:A. 购买一张福利彩票就中奖,是随机事件,故A 正确;B. 有一名运动员奔跑的速度是50米/秒,是确定事件中不可能事件,故B 不正确;C. 在一个标准大气压下,水加热到100C ︒会沸腾,是确定事件中必然事件,故C 不正确;D. 在一个仅装有白球和黑球的袋中摸球,摸出红球,是确定事件中不可能事件,故D 不正确;故选择:A .【点睛】本题考查随机事件,掌握随机事件的定义,随机事件与确定性事件相比,是不确定的,因为对这种事件不能确定它是发生,还是不发生,即对事件的结果无法确定.7.B【分析】先由AB 是⊙O 的直径得出⊙C=90°,再根据AC=BC ,得出⊙ABC 是等腰直角三角形,由此求出⊙A=45°.【详解】⊙AB 是⊙O 的直径,⊙⊙C=90°,⊙AC=BC,⊙⊙ACB为等腰直角三角形,⊙⊙A=45°.故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.同时考查了等腰直角三角形的性质.8.D【分析】根据概率计算公式,直接用黄色小球的个数除以总个数计算即可得结果.【详解】解:搅匀后任意摸出一个球,是黄球的概率为33 23510=++,故选:D.【点睛】本题考查了概率的计算,牢记概率的计算公式是解题的关键.9.B【分析】直接利用弧长公式计算即可得到答案.【详解】扇形圆心角为60︒,半径为30∴该扇形的弧长603010 180180n rlπππ⨯⨯===故选:B.【点睛】本题考查了扇形弧长的计算,熟练掌握弧长公式是解题关键.10.C【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:120180rπ=6π,⊙S 扇形=21209360π⨯=27π, 故选择:C .【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 11.A【分析】由直线y ax b =+经过一、二、三象限,可确定00a b >>,,由0a >,抛物线开口向上,可判断D 不正确,由00a b >>,抛物线的对称轴x≠0,可判断C 不正确,由x=02b a-<抛物线对称轴在y 轴左侧可判断D 不正确,A 正确. 【详解】解:⊙直线y ax b =+经过一、二、三象限,⊙00a b >>,,⊙0a >,抛物线开口向上,则D 不正确,⊙00a b >>,,⊙抛物线的对称轴x≠0,则C 不正确,由x=02b a -<, 抛物线对称轴在y 轴左侧,则D 不正确,A 正确,故选择:A .【点睛】本题考查一次函数经过象限确定抛物线的位置,掌握抛物线的性质,特别是抛物线的性质与系数a b ,的关系是解题关键.12.C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长= ,所以最短弦为8;所以符合题意的弦长为8到10,【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.13.123,2==x x【分析】利用因式分解法把方程化为x -3=0或x -2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14.(0,﹣5)【分析】要求抛物线与y 轴的交点,即令x =0,解方程.【详解】解:把x =0代入y =﹣x 2+2x ﹣5,求得y =﹣5,则抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与y 轴的交点坐标,正确掌握令0x =或令0y =是解题的关键.15.16【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:如图所示:由图可知,共有12种可能结果,其中第1小组和第2小组被抽的结果有2种,所以第1小组和第2小组被抽到的概率为21= 126.故答案为:16.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.16.2【分析】连接OE,OD,OF,由切线长定理可得AE=AD,BF=BD,证明四边形OECF是正方形,根据勾股定理求出AB的长,然后根据AD+BD=AB列方程求解即可.【详解】解:连接OE,OD,OF,设⊙O的半径为r,⊙⊙O分别与边AB、AC、BC相切于点D、E、F,⊙OE⊙AC,OD⊙AB,OF⊙BC,AE=AD,BF=BD,⊙⊙OEC=⊙OFC=90°,⊙⊙C=90°,⊙四边形OECF是矩形,⊙OE=OF,⊙四边形OECF是正方形,⊙EC=FC=r,⊙AE=AD=6-r,BF=BD=8-r,⊙⊙C=90°,6AC=,8BC=,⊙AB=10,⊙AD+BD=AB,⊙6-r+8-r=10,⊙r=2.故答案为:2.【点睛】此题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17【分析】连接AE,过点F作FH⊙AE,根据正六边形的内角和得出⊙AFE=⊙DEF=120°,再根据等腰三角形的性质可得⊙FAE =⊙FEA=30°,得出⊙AEP=90°,由直角三角形的性质和勾股定理求得FH,AE,再利用勾股定理即可得出AP.【详解】解:如图,连接AE,过点F作FH⊙AE,⊙六边形ABCDEF是正六边形,⊙AB=BC=CD=DE=EF=AF=2,⊙AFE=⊙DEF=120°,⊙⊙FAE=⊙FEA=30°,⊙⊙AEP=90°,⊙FH=1AF=1,2⊙AH,⊙AE=2AH=⊙P是ED的中点,DE=1,⊙EP=12⊙AP【点睛】本题考查了正多边形、勾股定理及等腰三角形的性质等知识,掌握相关图形的性质并作辅助线构造出直角三角形是解题的关键.18.40°【分析】根据旋转的性质可得30A A '∠=∠=︒,再根据外角的性质求得ACA '∠,从而得到结果.【详解】由旋转得,30A A '∠=∠=︒,又⊙170A ACA ''∠=∠+∠=︒,⊙1703040ACA A ''∠=∠-∠=︒-︒=︒,即40α∠=︒.故答案为:40°.【点睛】本题考查了旋转的性质及外角的性质,明确旋转角,熟练掌握旋转性质是解题的关键.19.(1)11x =21x =(2)1x =2x =【分析】(1)先确定原方程各项系数的值,再代入求根公式即可得到方程的解;(2)方程整理后,再移项,把二次项系数化为1,最后运用配方法求解即可.【详解】解:(1)2250x x --=⊙1a =,2b =-,5c =-,⊙441(5)240∆=-⨯⨯-=>,则1x ==⊙11x =21x =.(2)222x x -= 把原方程化为2112x x -=. 配方,得2221111244x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭, 即2117416x ⎛⎫-= ⎪⎝⎭.由此可得14x -=.1x =2x = 【点睛】此题主要考查了一元二次方程的解法,熟练地掌握一元二次方程的解法特别是因式分解法解一元二次方程,可以大大降低计算量.20.(1)见解析;(2)见解析.【分析】(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连接即可;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连接即可.【详解】解:(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连结DE ,EF ,FD ,如图⊙,则DEF 为所求;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连结A′B′、B′C′、C′D′、D′A ',如图⊙,四边形A B C D ''''为所求.【点睛】本题考查旋转作图,中心对称作图问题,掌握旋转作图与中心对称作图的方法与步骤是解题关键.21.(1)抛物线,向下;(2)1x =;(3)(1,1);(4)当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【分析】根据已知表格和二次函数的性质依次判断即可;【详解】(1)因为y 是关于x 的二次函数,⊙图像名称是抛物线,观察x ,y 的值可知抛物线开口方向向下;故答案是:抛物线,向下;(2)由表可知,图象与x 轴交于点()1,0-,()3,0,故对称轴1312x -+==; 故答案是1x =;(3)因为对称轴为1x =,所以顶点坐标为(1,1);故答案是(1,1);(4)因为对称轴为1x =且开口向下,所以当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.故答案是:当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【点睛】本题主要考查了二次函数的图像性质,准确分析判断是解题的关键.22.水车工作时,盛水桶在水面以下的最大深度为2m .【分析】如图:过O 点作半径⊥OD AB 于E ,则5OD =,由垂径定理得4AE BE ==,在利用勾股定理可求得3OE =,水深DE OD OE =-,即可求解.【详解】如图:过O 点作半径⊥OD AB 于E118422AE BE AB ∴===⨯=在Rt AEO △中,3OE ==532ED OD OE ∴=-=-=∴水车工作时,盛水桶在水面以下的最大深度为2m【点睛】本题考查了垂径定理的,解题关键在于作辅助线利用勾股定理计算.23.(1)12;(2)2cm【分析】(1)根据题意找到等量关系列出方程组,转化为一元二次方程求解即可;(2)根据题意,得mn =80,结合(1)转化为一元二次方程求解即可.【详解】解:(1)设底面长为mcm ,宽为ncm ,正方形的边长为xcm ,根据题意得:2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,由⊙⊙得2a =24,解得a =12(cm ),故答案为:12cm ;(2)根据题意,得mn =80,由2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,得由⊙得,n =12﹣2x ,把a =12代入⊙得m =12﹣x ,再把m 和n 代入mn =80中,得(12﹣x )(12﹣2x )=80,解得x =2或x =16(舍去).答:剪去的小正方形边长为2cm .【点睛】本题考查了矩形的性质,正方形的性质,方程组,一元二次方程的解法,准确理解剪图的意义,把问题转化为方程组和一元二次方程问题求解是解题的关键.24.(1)平均每次降价的百分率为10%;(2)方案⊙更优惠.【分析】(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= 解方程即可;(2)方案⊙的电脑款是:9.8405010010⨯⨯(元),方案⊙的电脑款是:40501001001012⨯-⨯⨯(元)计算结果比较即可. 【详解】解:(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= ,2(1)0.81x -=, 10.9x -=±,解得10.110%x ==,2 1.9x =(不合题意,舍去),答:平均每次降价的百分率为10% ;(2)方案⊙的电脑款是:9.8405010039690010⨯⨯=(元), 方案⊙的电脑款是:40501001001012393000⨯-⨯⨯=(元), 396900元393000>元,答:方案⊙更优惠.【点睛】本题考查降价率与方案设计问题应用题,掌握减价率一元二次方程应用题的解法,会根据方案列出数式并计算进行决策.25.(1)证明见解析;(2)CD =【分析】(1)连接OD 由BD 平分ABC ∠得DBC DBO ∠=∠ ,由圆的半径OD OB =得ODB DBA ∠=∠ ,利用传递性ODB DBC ∠=∠,利用内错角相等,得//OD BC 利用平行线性质90ODA C ∠=∠=︒即可;(2)在Rt ADO ∆中,30A ∠=︒可得24AO DO ==,可求426AB =+=,132BC AB ==,设DC x =,则2DB x = 由勾股定理222DC BC BD +=,即2294x x +=可,求CD =【详解】(1)证明:连接OD , BD 平分ABC ∠,DBC DBO ∴∠=∠ ,OD OB =,ODB DBA ∴∠=∠ ,ODB DBC ,//OD BC ∴ ,90ODA C ∴∠=∠=︒,∴直线AC 是O 的切线;(2)解:在Rt ADO ∆中,30A ∠=︒,24AO DO ∴== ,426AB ∴=+=,132BC AB ==, 在Rt BCD ∆中,903060ABC ∠=︒-︒=︒,30DBC DBA ∴∠=∠=︒,设DC x =,则2DB x = ,222DC BC BD +=,即2294x x +=,解得x =由x>0,即CD =【点睛】本题考查圆的切线,角平分线,等腰三角形,平行线的判定,含30°角直角三角形的性质,勾股定理,一元二次方程及其解法,本题难度不大,综合运用知识多,是基础知识复习的好题.26.(1)点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)y =12x 2﹣3x ﹣8;(3)最大值为P (4,﹣12)【分析】(1)根据B 点坐标及OA =OC =4OB 结合图象即可确定A 点,C 点的坐标;(2)由(1)可将抛物线的表达式写成交点式,然后代入C 点坐标即可求出解析式;(3)求出直线CA 的解析式,过点P 作y 轴的平行线交AC 于点H ,求出⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),写出PD 的表达式根据二次函数的性质求最值即可.【详解】解:(1)⊙B 的坐标为(﹣2,0),⊙OB =2,⊙OA =OC =4OB =8,故点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)由(1)知,抛物线的表达式可写为:y =a (x +2)(x ﹣8)=a (x 2﹣6x ﹣16),把C (0,﹣8)代入得:﹣16a =﹣8,解得:a =12,故抛物线的表达式为:y =12x 2﹣3x ﹣8;(3)⊙直线CA 过点C ,⊙设其函数表达式为:y =kx ﹣8,将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x ﹣8,过点P 作y 轴的平行线交AC 于点H ,⊙OA =OC =8,⊙⊙OAC =⊙OCA =45°,⊙PH ⊙y 轴,⊙⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),⊙PD =HP sin⊙PHD a ﹣8﹣12a 2+3a +8)=2+= 24)a -+⊙当a =4时,其最大值为P (4,﹣12).【点睛】本题主要考查二次函数的综合题,熟练掌握待定系数法求解析式及二次函数的性质结合三角函数是解题的关键.。

人教版九年级数学上册期末考试试卷(附带有答案)

人教版九年级数学上册期末考试试卷(附带有答案)

人教版九年级数学上册期末考试试卷(附带有答案)一、单选题1. 下列二次函数中,其图象的顶点坐标是(2,-1)的是( )A .()221y x =-+ B .()221y x =++ C .()221y x =--D .()221y x =+-2.下列事件属于必然事件的是( )A .明天我市最高气温为56℃B .下雨后有彩虹C .在1个标准大气压下,水加热到100℃沸腾D .中秋节晚上能看到月亮3.下列图形中,是中心对称图形的是( )A .B .C .D .4.不透明袋子中装有5个红球,3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,“摸出红球”的概率是( ) A .13B .15C .35D .585.如图,在O 中,弦AC 、BD 相交于点E ,23A ∠=︒和52BEC ∠=︒,则C ∠=( )A .23︒B .26︒C .29︒D .30︒6.如图,把ABC 绕点C 顺时针旋转某个角度a 得到△A ′B ′C ,∠A =30°,∠1=50°,则旋转角a 等于( )A .110︒B .70︒C .40︒D .20︒7.已知抛物线y =x 2+bx 的对称轴为直线x =3,则关于x 的不等式x 2+bx <﹣8的取值范围是( )A .1<x <5B .2<x <4C .0<x <6D .﹣1<x <78.如图,AB 是℃O 的直径,弦CD℃AB 于点E ,℃CDB=30°,℃O 的半径为3cm ,则弦CD 的长为( )A .32cmB .3cmC .3cmD .9cm9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M 、P 、H三点的圆弧与AH 交于R ,则图中阴影部分面积( )A .54π﹣52B .52π﹣5 C .2π﹣5 D .3π﹣210.如图,抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)关于直线1x =对称,与x 轴的其中一个交点坐标为(10)-,,下列结论中:①<0abc ;②关于x 的一元二次方程20ax bx c ++=的解是1213x x =-=,;③80a c +<;④2am bm a b +<+,其中正确的个数是( )A .1B .2C .3D .4二、填空题11.若点A (m ,5)与点B (-4,n )关于原点成中心对称,则m +n = . 12.已知方程 2510x x ++= 的两个实数根分别为 1x 和2x ,则1211x x += . 13.二次函数22y x =的图象经过点()11A y -,和()22B y ,,则1y 2y .(填“>”“<”或“=”)14.如图,正六边形ABCDEF 的边长是6+43,点O 1,O 2分别是℃ABF ,℃CDE 的内心,则O 1O 2= .15.如图,在平面直角坐标系中抛物线y=x 2-3x+2与x 轴交于A 、B 两点,与y 轴交于点C ,D 是对称轴右侧抛物线上一点,且tan℃DCB=3,则点D 的坐标为 。

人教版九年级上学期期末考试数学试卷及答案解析(共4套)

人教版九年级上学期期末考试数学试卷及答案解析(共4套)

人教版九年级上学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.2.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=03.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根4.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cm B.8cm C.10cm D.12cm5.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1 C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣2 6.学校要组织足球比赛.赛制为单循环形式如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径9.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)11.已知⊙O的半径为2,则其内接正三角形的面积为.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有件是次品.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.16.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是.17.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.18.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是.三、解答题(共8小题,满分66分)19.(8分)解方程:(1)x(x﹣2)+x﹣2=0(2)2x2﹣7x+6=0.20.(5分)已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.21.(8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A的坐标为;2(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.22.(6分)张师傅2014年1月份开了一家商店.2014年9月份开始盈利,10月份盈利2400元,12月份的盈利达到3456元,且从10月到12月,每月盈利的平均增长率都相同.(1)求2014年10月到12月,每月盈利的平均增长率;(2)按照这个平均增长率,预计2015年1月份这家商店的盈利将达到多少元?23.(8分)在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)24.(9分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?25.(10分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3(1)求抛物线的解析式并配成顶点式(要求写出过程);(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.2.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=0【考点】A8:解一元二次方程﹣因式分解法.【分析】先把方程变形为一般式,然后利用因式分解法解方程.【解答】解:x2﹣x=0,x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1.故选D.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算出△=(﹣2)2﹣4×1×1=0,然后根据△的意义进行判断方程根的情况.【解答】解:∵△=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cm B.8cm C.10cm D.12cm【考点】M3:垂径定理的应用;KQ:勾股定理.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2,即(r﹣2)2+42=r2,解得:r=5.∴该光盘的直径是10cm.故选:C.【点评】本题考查的是垂径定理的应用勾股定理;根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1 C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣2 【考点】H6:二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2+1向左平移3个单位所得直线解析式为:y=(x+3)2+1;再向下平移2个单位为:y=(x+3)2+1﹣2.即:y=(x+3)2﹣1.故选:C.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.学校要组织足球比赛.赛制为单循环形式如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°【考点】MC:切线的性质;K7:三角形内角和定理;K8:三角形的外角性质;KH:等腰三角形的性质;M5:圆周角定理.【分析】连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选B.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、有两边及一角对应相等的两三角形全等是随机事件,故A错误;B、若a2=b2则有a=b是随机事件,故B错误;C、方程x2﹣x+1=0有两个不等实根是不可能事件,故C错误;D、圆的切线垂直于过切点的半径是必然事件,故D正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个【考点】MB:直线与圆的位置关系.【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【解答】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选:D.【点评】本题主要考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a>0,b>0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=﹣=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=2,∴﹣=2,∴b=﹣4a>0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴﹣=2,∴b=﹣4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(﹣1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当﹣1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共8小题,每小题3分,满分24分)11.已知⊙O的半径为2,则其内接正三角形的面积为3.【考点】MM:正多边形和圆.【分析】连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,由含30°角的直角三角形的性质得出OD,由勾股定理求出BD,得出BC,根据△ABC 计算即可.的面积=3S△OBC【解答】解:如图所示,连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,∴OD=OB=1,∴BD==,∴BC=2BD=2,∴△ABC的面积=3S=3××BC×OD=3××2×1=3.△OBC【点评】本题考查了等边三角形的性质、垂径定理、勾股定理、三角形面积的计算;熟练掌握正三角形和圆的关系,并能进行推理计算是解决问题的关键.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有30 件是次品.【考点】X3:概率的意义.【分析】利用总数×出现次品的概率=次品的数量,进而得出答案.【解答】解:由题意可得:次品数量=600×0.05=30.故答案为:30.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是=3 .【考点】A3:一元二次方程的解.【分析】根据一元二次方程的解的定义得到n2+mn+3n=0,然后两边除以n即可得到m+n的值.【解答】解:把x=n代入x2+mx+3n=0得n2+mn+3n=0,∵n≠0,∴n+m+3=0,即m+n=﹣3.故答案是:﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= ﹣1 .【考点】R6:关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),则a=2,b=﹣3,a+b=﹣1,故答案为:﹣1.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是60π.【考点】MP:圆锥的计算.【分析】圆锥的侧面积是一个扇形,根据扇形公式计算即可.【解答】解:底面圆的直径为12,则半径为6,∵圆锥的高为8,根据勾股定理可知:圆锥的母线长为10.根据周长公式可知:圆锥的底面周长=12π,∴扇形面积=10×12π÷2=60π.故答案为60π.【点评】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.16.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是10或8 .【考点】MA:三角形的外接圆与外心.【分析】有两种情况:(1)当两直角边是6和8时,求出AB长即可得到答案;(2)当一个直角边是6,斜边是8时,即可得出答案.【解答】解:此题有两种情况:(1)当两直角边是6和8时,由勾股定理得:AB===10,此时外接圆的半径是5,直径是10;(2)当一个直角边是6,斜边是8时,此时外接圆的半径是4,直径是8.故答案为:10或8.【点评】本题主要考查了三角形的外接圆和外心,勾股定理等知识点,解此题的关键是知道直角三角形的外接圆的半径等于斜边的长,求出斜边长即可,用的数学思想是分类讨论思想.17.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是x<﹣1或x>3 .【考点】HC:二次函数与不等式(组).【分析】由抛物线与x轴的一个交点(3,0)和对称轴x=1可以确定另一交点坐标为(﹣1,0),又y=ax2+bx+c>0时,图象在x轴上方,由此可以求出x的取值范围.【解答】解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故答案为:x<﹣1或x>3.【点评】解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是第45行,第10列.【考点】37:规律型:数字的变化类.【分析】根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2016所在的位置.【解答】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2016在第45行,向右依次减小,故201所在的位置是第45行,第10列.故答案为:第45行,第10列.【点评】此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(共8小题,满分66分)19.解方程:(1)x(x﹣2)+x﹣2=0(2)2x2﹣7x+6=0.【考点】A8:解一元二次方程﹣因式分解法.【分析】(1)通过提取公因式(x﹣2)对等式的左边进行因式分解;(2)利用十字相乘法对等式的左边进行因式分解.【解答】解:(1)由原方程,得(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得x1=﹣1,x2=2;(2)2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x 1=,x2=2.【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.20.已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.【考点】H5:二次函数图象上点的坐标特征.【分析】把(3,0)代入y=﹣3x2+(k+3)x﹣k,求得k的值,然后根据二次函数的对称轴公式列式计算即可得解.【解答】解:把(3,0)代入y=﹣3x2+(k+3)x﹣k得,0=﹣27+(k+3)×3﹣k,解得,k=9,∴抛物线为y=﹣3x2+12x﹣9,∴对称轴为直线x=﹣=﹣=2,即直线x=2.【点评】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,熟记对称轴公式是解题的关键.21.如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为(1,0);(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为(﹣2,3);(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;Q3:坐标与图形变化﹣平移.【分析】(1)根据平移的性质,上下平移在在对应点的坐标上,纵坐标上上加下减就可以求出结论;(2)过点O作OA的垂线,在上面取一点A2使OA2=OA,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,就可以相应的结论;(3)根据条件就是求扇形A2OA的面积即可.【解答】解:(1)由题意,得B1(1,3﹣3),∴B1(1,0).故答案为:(1,0);(2)如图,①,过点O作OA的垂线,在上面取一点A2使OA2=OA,②,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,∴△A2OB2是所求作的图形.由作图得A2(﹣2,3).故答案为:(﹣2,3);(3)由勾股定理,得OA=,∴线段OA扫过的图形的面积为: =.故答案为:.【点评】本题考查了旋转作图的运用,勾股定理的运用,扇形的面积公式的运用,平移的运用,解答时根据图形变化的性质求解是关键.22.张师傅2014年1月份开了一家商店.2014年9月份开始盈利,10月份盈利2400元,12月份的盈利达到3456元,且从10月到12月,每月盈利的平均增长率都相同.(1)求2014年10月到12月,每月盈利的平均增长率;(2)按照这个平均增长率,预计2015年1月份这家商店的盈利将达到多少元?【考点】AD:一元二次方程的应用.【分析】(1)设该商店的月平均增长率为x,根据等量关系:10月份盈利额×(1+增长率)2=12月份的盈利额列出方程求解即可;(2)1月份盈利=12月份盈利×增长率列式计算即可.【解答】解:(1)设2014年10月到12月,每月盈利的平均增长率为x,由题意可得:2400(1+x)2=3456解得:x1=0.2=20%,x2=﹣2.2(舍去)答:2014年10月到12月,每月盈利的平均增长率为20%.(2)由题意:3456+3456×20%=4147.2(元)答:按照这个平均增长率,预计2015年1月份这家商店的盈利将达到4147.2元.【点评】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用﹣.23.在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)【考点】X6:列表法与树状图法.【分析】(1)根据概率的意义解答即可;(2)根据袋中还剩5只球,然后根据概率的意义解答即可;(3)列出图表,然后根据概率公式列式进行计算即可得解.【解答】解:(1)∵一共有6只球,黑球1只,∴取出的球是黑球的概率为;(2)∵取出1只红球,∴袋中还有5只球,还有1只黑球,∴取出的球还是黑球的概率是;(3)根据题意列表如下:白1 白2 白3 红1 红2 黑白1 白1白1 白1白2 白1白3 白1红1 白1红2 白1黑白2 白2白1 白2白2 白2白3 白2红1 白2红2 白2黑白3 白3白1 白3白2 白3白3 白3红1 白3红2 白3黑红1 红1白1 红1白2 红1白3 红1红1 红1红2 红1黑红2 红2白1 红2白2 红2白3 红2红1 红2红2 红2黑黑黑白1 黑白2 黑白3 黑红1 黑红2 黑黑一共有36种情况,两次取出的球都是白球的情况数有9种,所以,P(两次取出的球都是白球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【解答】解:(1)设每千克应涨价x元,由题意列方程得:(5+x)(200﹣)=1500解得:x=5或x=10,答:为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x元时总利润为y,则y=(5+x)(200﹣)=﹣10x2+150x+1000=﹣10(x2﹣15x)+1000=﹣10(x﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点评】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.25.(10分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【考点】MD:切线的判定.【分析】(1)连结OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=4,然后在Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=8.【解答】(1)证明:连结OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC=DC=4,在Rt△ABC中,∠B=30°,∴AB=2AC=8.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3(1)求抛物线的解析式并配成顶点式(要求写出过程);(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【考点】HF:二次函数综合题.【分析】(1)由矩形的性质可求得C、E的坐标,代入抛物线解析式可求得其解析式,再利用配方法化为顶点式即可;(2)由(1)可求得D点坐标,令y=0可求得A、B的坐标,则可求得AB的长,利用三角形的面积可求得△ABD的面积;(3)由旋转的性质可求得G点的坐标,再代入抛物线解析式进行验证即可.【解答】解:(1)∵四边形OCEF为矩形,∴OC=EF=3,∴C(0,3),∵OF=2,∴E(2,3),代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4;(2)由(1)可知D(1,4),在y=﹣x2+2x+3中,令y=0可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,=×4×4=8;∴S△ABD(3)点G不在抛物线上,理由如下:将△AOC绕点C逆时针旋转90°,点A对应点为点G,设O点对应点为H,如图,则CH=OC=3,HG=AO=1,∴G(3,2),。

人教版九年级数学上册期末考试试卷及答案()(含知识点)

人教版九年级数学上册期末考试试卷及答案()(含知识点)

初三上学期数学期末试题附参考答案(完卷时间:120分钟 满分:150分)一、选择题(每小题4分,共40分) 1.下列二次根式中,最简二次根式是A . 2B .8C .12D .182.一元二次方程x (x -1)=0的解是A .x =0B .x =1C .x =0或x =1D .x =0或x =-1 3.下列图形中,既是轴对称图形又是中心对称图形的是4.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,若∠A =15°,则∠BOC 的度数是 A .15° B .300° C .45° D .75° 5.下列事件中,必然发生的是A .某射击运动射击一次,命中靶心B .通常情况下,水加热到100℃时沸腾C .掷一次骰子,向上的一面是6点D .抛一枚硬币,落地后正面朝上 6.如图所示,△ABC 中,DE ∥BC ,AD =5,BD =10,DE =6,则BC 的值为 A .6 B .12 C .18 D .247.如图所示,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为 A .8cm 了 B .6cm C .5cm D .4cm8.若两圆的圆心距为5,两圆的半径分别是方程x 2-4x +3=0的两个根,则两圆的位置关系是A .相交B .外离C .内含D .外切9.将一副直角三角板(含45°角的直角三角板ABC 与含30°角的直角三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的面积之比等于 A .1∶ 2 B .1∶2 C .1∶ 3 D .1∶310.已知二次函数y =x 2-x +18,当自变量x 取m 时,对应的函数值小于0,当自变量x取m -1、m +1时,对应的函数值为y 1、y 2,则y 1、y 2满足A .y 1>0,y 2>0B .y 1<0,y 2>0C .y 1<0,y 2<0D .y 1>0,y 2<0 二、填空题(每小题4分,共20分)11.二次根式x 2-1 有意义,则x 的取值范围是__________________.12.将抛物线y =2x 2向上平移3单位,得到的抛物线的解析式是____________. 13.如图所示,某公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落点在黑色石子区域内概率是_____________.14.某小区2011年绿化面积为2000平方米,计划2013年底绿化面积要达到2880平方米.如果每年ABC D第7题图 ABO第9题图D 第13题图的增长率相同,那么这个增长率是__________________.15.如图所示,n +1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n +1D n C n 的面积为S n ,则S 1=________,S n =__________(用含n 的式子表示).三、解答题(共7小题,共90分) 16.计算:(每小题8分,共16分) (1) 27×50÷ 6 (2) 2 3 9x +6x 4 -2x 1x17.(12分)已知△ABC 在平面直角坐标系中的位置如图所示.(1) 分别写出图中点A 和点C 的坐标;(2) 画出△ABC 绕点A 按逆时针方向旋转90°后的△AB'C';(3) 在(2)的条件下,求点C 旋转到点C' 所经过的路线长(结果保留π).18.(11分)在一个不透明的纸箱里装有2个红球、1个白球,它们除颜色外完全相同.小明和小亮做摸球游戏,游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.19.(12分)如图所示,AB 是⊙O 的直径,∠B =30°,弦BC =6,∠ACB 的平分线交⊙O 于D ,连AD . (1) 求直径AB 的长;(2) 求阴影部分的面积(结果保留π).20.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y (件)与销售单价x (元)的关系符合一次函数y =-x +140. (1) 直接写出销售单价x 的取值范围.(2) 若销售该服装获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?(3) 若获得利润不低于1200元,试确定销售单价x 的范围.21.(13分)如图,在△ABC 中,AB =AC =5,BC =6,点D 为AB 边上的一动点(D 不与A 、B 重合),过D 作DE ∥BC ,交AC 于点E .把△ADE 沿直线DE 折叠,点A 落在点A'处.连结BA',设AD =x ,△ADE 的边DE 上的高为y . (1) 求出y 与x 的函数关系式;(2) 若以点A'、B 、D 为顶点的三角形与△ABC 相似,求x 的值; (3) 当x 取何值时,△A' DB 是直角三角形.A C 1 第15题图C 2 C 3 C 4 C 52 3 4 5 6 7 8 第17题图D第19题图 A BCDx A'第21题图E ABC第21题备用图22.(14分)已知抛物线y =ax 2+bx +c (a ≠0)经过A (-2,0)、B (0,1)两点,且对称轴是y 轴.经过点C (0,2)的直线l 与x 轴平行,O 为坐标原点,P 、Q 为抛物线y =ax 2+bx +c (a ≠0)上的两动点. (1) 求抛物线的解析式; (2) 以点P 为圆心,PO 为半径的圆记为⊙P ,判断直线l 与⊙P 的位置关系,并证明你的结论; (3) 设线段PQ =9,G 是PQ 的中点,求点G 到直线l 距离的最小值.数学试卷参考答案及评分标准一、选择题:1.A 2.C 3.D 4.B 5.B 6.C 7.A 8.B 9.D 10.A 二、填空题:11.x ≥1 12.y =2x 2+3 13.12 14.20% 15.14;n2(n +1)三、解答题:16.(1)原式=33×52÷6 ………………………………………………4分 =3×53×2÷6 ………………………………………………6分 =15 ……………………………………………………………8分(2)原式=2 3 ×3x +6×12x -2x ·1xx ………………3分=2x +3x -2x ……………………………6分 =3x …………………………………8分 17.解:(1)A (1,3)、C (5,1); …………………………………4分(2)图形正确; ……………………………………………8分(3)AC =25, ……………………………………………10分弧CC'的长=90π·25180=5π. …………………12分18.解: 或第2次 第1次红 红 白 红(红,红)(红,红)(红,白)A B COx y PQl第22题图红 (红,红) (红,红) (红,白) 白(白,红)(白,红)(白,白)列对表格或树状图正确, …………………………………………………6分 由上述树状图或表格知:P (小明赢)=59,P (小亮赢)=49. ……………………………………………10分∴此游戏对双方不公平,小明赢的可能性大. ………………………………11分 19.解:(1) ∵AB 为⊙O 的直径,∴∠ACB =90°, ……………………………………1分 ∵∠B =30,∴AB =2AC , ……………………………………3分 ∵AB 2=AC 2+BC 2,∴AB 2=14AB 2+62, …………………………………5分∴AB =43. ………………………………………6分 (2) 连接OD ,∵AB =43,∴OA =OD =23, …………………………………………………8分 ∵CD 平分∠ACB ,∠ACB =90°, ∴∠ACD =45°, ∴∠AOD =90°, …………………………………………………………………9分∴S △AOD =12OA ·OD =12·23·23=6, ……………………………………10分∴S 扇形△AOD =14·π·OD 2=14·π·(23)2=3π, ………………………………11分∴阴影部分的面积= S 扇形△AOD -S △AOD =3π-6. ……………………………12分20.解:(1) 60≤x ≤90; ……………………………………………………………………3分 (2) W =(x ―60)(―x +140), ……………………………………………………………4分 =-x 2+200x -8400,=―(x ―100)2+1600, ……………………………………………………………5分 抛物线的开口向下,∴当x <100时,W 随x 的增大而增大, …………………………6分 而60≤x ≤90,∴当x =90时,W =―(90―100)2+1600=1500. ………………………7分 ∴当销售单价定为90元时,可获得最大利润,最大利润是1500元. ……………………8分 (3) 由W =1200,得1200=-x 2+200x -8400,整理得,x 2-200x +9600=0,解得,x 1=80,x 2=120, ……………………………………11分 由图象可知,要使获得利润不低于1200元,销售单价应在80元到120元之间,而60≤x ≤90,所以,销售单价x 的范围是80≤x ≤90. ………………………………………………………12分21.解:(1) 过A 点作AM ⊥BC ,垂足为M ,交DE 于N 点,则BM =12BC =3,∵DE ∥BC ,∴AN ⊥DE ,即y =AN . 在Rt △ABM 中,AM =52-32 =4, …………………………………………………………2分 ∵DE ∥BC ,∴△ADE ∽△ABC , ……………………………………………………………………………3分∴AD AB = ANAM, ∴x 5 =y 4, ∴y =4x5(0<x <5). ………………………………………………………………………4分(2) ∵△A'DE 由△ADE 折叠得到,∴AD =A'D ,AE =A'E ,∵由(1)可得△ADE 是等腰三角形, ∴AD =A'D ,AE =A'E ,∴四边形ADA'E 是菱形, ………………………………5分 ∴AC ∥D A',∴∠BDA'=∠BAC ,又∵∠BAC ≠∠ABC ,∠BAC ≠∠C , ∴∠BDA'≠∠ABC ,∠BDA'≠∠C ,∴有且只有当BD =A'D 时,△BDA'∽△BAC , …………………………………………7分 ∴当BD =A'D ,即5-x =x 时,∴x =52. ………………………………………………………………………………8分(3) 第一种情况:∠BDA'=90°,∵∠BDA'=∠BAC ,而∠BAC ≠90°, ∴∠BDA'≠90°. ………………………………………………………………………9分 第二种情况:∠BA'D =90°,∵四边形ADA'E 是菱形,∴点A'必在DE 垂直平分线上,即直线AM 上,∵AN =A'N = y =4x5,AM =4,∴A'M =|4-85x |,在Rt △BA'M 中, A'B 2=BM 2+A'M 2=32+(4-85x )2,在Rt △BA'D 中,A'B 2=BD 2+A'D 2=(5-x )2-x 2,∴ (5-x )2-x 2=32+(4-85x )2,解得 x =3532,x =0(舍去). ……………………………………………………11分第三种情况:∠A'BD =90°, 解法一:∵∠A'BD =90°,∠AMB =90°, ∴△BA'M ∽△ABM , 即BA' AB =BM AM ,∴BA'=154, ……………………………12分 在Rt △D BA'中,DB 2+A'B 2=A'D 2,(5-x )2+22516=x 2,解得:x =12532. ……………………………………………13分解法二:∵AN =A'N = y =4x5,AM =4, ∴A'M =|85x -4|,在Rt △BA'M 中, A'B 2=BM 2+A'M 2=32+(85x -4)2,在Rt △BA'D 中,A'B 2= A'D 2-BD 2=x 2-(5-x )2,∴ x 2-(5-x )2=32+(85x -4)2,解得x =5(舍去),x =12532. ………………………………………………………13分综上可知当x =3532、x =12532时, △A'DB 是直角三角形.22.解:(1) ∵抛物线y =ax 2+bx +c 的对称轴是y 轴,∴b =0. …………………………1分∵抛物线y =ax 2+bx +c 经过点A (-2,0)、B (0,1)两点,∴c =1,a =-14, ……………………………………3分∴所求抛物线的解析式为y =-14x 2+1. ……………4分(2) 设点P 坐标为(p ,-14p 2+1),如图,过点P 作PH ⊥l ,垂足为H ,∵PH =2-(-14p 2+1)=14p 2+1, …………………6分OP =p 2+(-14p 2+1)2 =-14p 2+1, ………………8分∴OP =PH ,∴直线l 与以点P 为圆心,PO 长为半径的圆相切. …………………………………9分(3) 如图,分别过点P 、Q 、G 作l 的垂线,垂足分别是D 、E 、F . 连接EG 并延长交DP 的延长线于点K ,∵G 是PQ 的中点,∴易证得△EQG ≌△KPG ,∴EQ =PK , ………………………………………11分由(2)知抛物线y =-14x 2+1上任意一点到原点O 的距离等于该点到直线l :y =2的距离,即EQ =OQ ,DP =OP , …………………………………12分∴ FG =12DK =12(DP +PK )=12(DP +EQ )=12(OP +OQ ), ……13分∴只有当点P 、Q 、O 三点共线时,线段PQ 的中点G 到直线l 的距离GF 最小, ∵PQ =9,∴G F ≥4.5,即点G 到直线l 距离的最小值是4.5. …………………………………14分 (若用梯形中位线定理求解扣1分)以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版数学九年级上册期末考试试题含答案详解

人教版数学九年级上册期末考试试题含答案详解

人教版数学九年级上册期末考试试题一、选择题。

(每小题只有一个正确答案)1.把一个小球以30米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒)的函数关系为2305h t t =-,当小球达到最高点时,小球的运动时间为( )A .2秒B .3秒C .6秒D .45秒 2.如图,AB 是O 的直径,弦CD AB ⊥于点M ,下列结论不一定成立的是( )A .CM DM =B .BC BD = C .2BOD A ∠=∠ D .OM MB = 3.若一元二次方程ax 2+bx+c=0有一根为0,则下列结论正确的是A .a=0B .b=0C .c="0"D .c≠0 4.一元二次方程20x px q ++=的两根为3、4,那么二次三项式2x px q ++可分解为() A .()()34x x +- B .()()34x x -+ C .()()34x x -- D .()()34x x ++ 5.如右图,O 内两弦AB 、CD 交点于P ,OP 平分APC ∠,下列结论中:()1AB CD =;(2)BC AD =;()3PB PO =;()4AP PB =,有( )个正确的.A .1个B .2个C .3个D .4个6.若关于x 的一元二次方程2ax 3x 10++=有实数根,则a 的取值范围( ) A .9a 4< B .9a 4≤ C .9a 4≥ D .9a 4≤且a 0≠ 7.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A=40°,则∠B 的度数为( )A .20°B .40°C .50°D .60°8.方程2270x ax-+=,有一根是12,则另一根为()A.7 B.7.5 C.-7 D.159.已知O的直径为10cm,点P不在O外,则OP的长()A.小于5cm B.不大于5cmC.小于10cm D.不大于10cm10.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是()A.45°B.90°C.135°D.180°二、填空题11.为迎接元旦活跃校园气氛,我校组织班际三人篮球赛,比赛采用双循环赛制(即参加球赛的每两队之间都进行两次比赛),共要比赛56场,则有____个班级参加比赛.12.如图,在平面直角坐标系中,将△ABC绕A点逆时针旋转90°后,B点对应点的坐标为_____13.已知O的直径为13cm,如果圆心O到直线l的距离为5.5cm,那么直线l与O有________个公共点.14.联结成中心对称的两个图形上两点的线段的中心点是对称中心.________.15.如图,抛物线与两坐标轴的交点坐标分别为(-1,0),(2,0),(0,2),则抛物线的对称轴是__________ ;若y2>,则自变量x的取值范围是_______ .16.在等边三角形、正方形、菱形、等腰梯形中,是中心对称图形的有________. 17.已知扇形的面积是23cm π,扇形的圆心角是120.则它的半径是________.扇形的弧长是________cm (结果保留π).18.已知抛物线2y ax =经过点()2,1,这个抛物线上的一点P 的坐标满足方程15x y +=,则点P 的坐标为________.19.已知圆锥的底面积为29cm π,其母线长为4cm ,则它的侧面积等于________2cm . 20.一个口袋中装有8个黑球和若干个白球,现从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,若共摸了200次,其中有50次摸到黑球,因此可估计口袋中大约有白球________个.三、解答题21.解方程:(1)(x ﹣3)2=25 (2)x 2﹣4x +3=022.如图,已知ABC 的三个顶点的坐标分别为()2,3A -、()6,0B -、()1,0C -.()1请直接写出与点B 关于坐标原点O 的对称点1B 的坐标;()2将ABC 绕坐标原点O 逆时针旋转90,画出对应的'''A B C 图形;()3请直接写出点'A、'B、'C的坐标.23.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已.知从箱子中随机摸出一张标有数字1卡片的概率是15(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?25.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).(1) 求该二次函数的解析式并写出其对称轴;(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M 的坐标(不写求解过程).26.如图,抛物线y1=﹣12x2+bx+c经过点A(4,0)和B(1,0),与y轴交于点C.(1)求出抛物线的解析式;(2)求点C的坐标及抛物线的顶点坐标;(3)设直线AC的解析式为y2=mx+n,请直接写出当y1<y2时,x的取值范围.27.在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.28.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D 点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证12DEF CEF ABCS S S+=.当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,DEF S ,CEF S ,ABC S 又有怎样的数量关系?请写出你的猜想,不需证明.参考答案1.B【详解】将一般式化为顶点式即可求解.解:()()222305565345h t t t t t =-=--=--+,故当t=3秒时,小球达到最高点, 故选择B.【点睛】本题考查了二次函数的应用.2.D【解析】由垂径定理和圆周角定理即可判断.【详解】解:AB 是直径且AB ⊥CD ,则由垂径定理可知CM=DM ,BC BD =,再由圆周角定理可知∠=∠,只有当∠BOD=60°时,才有OM=MB.BOD A2故选择D.【点睛】本题考查了垂径定理和圆周角定理.3.C【详解】试题分析:根据题意可知,x=0是一元二次方程2++=0的一根,把x=0代入方程可ax bx c得c=0.故选C.考点:一元二次方程的解.A4.C【分析】++分解为(x-x1)(x-x2),它的根才可能是x1,x2.只有把等号左边的二次三项式2x px q【详解】若一元二次方程x2+px+q=0的两根为3、4,那么有:(x-3)(x-4)=0,∴x2+px+q=(x-3)(x-4).故选C.【点睛】本题考查了因式分解法解一元二次方程:若一元二次方程的两根为x1,x2,那么一元二次方程可整理为(x-x1)(x-x2)=0.5.B【解析】作OF⊥CD,OE⊥AB,证明△OFP≌△OEP,可得OF=OE,再由垂径定理可判定(1)和(2). 【详解】解:作OF⊥CD,OE⊥AB,则∠OFP=∠OEP=90°,∵OP平分APC∠,OP=OP,∴△OFP≌△OEP,∴OF=OE,∴AB=CD,∴AB CD=,∴BC AD=,故可判断(1)和(2)正确,无法判定PB=PO,故(3)错误,由垂径定理可知AE=BE,故AP≠BP,故(4)不正确,正确的是(1)(2),故选择B.【点睛】本题考查了垂径定理.6.D【详解】试题分析:根据题意得:9-4a≥0,且a≠0 解得:a≤94且a≠0.考点:根的判别式.7.C【解析】试题分析:根据圆周角定理:直径所对的圆周角为直角,可以得到△ABC是直角三角形,根据直角三角形的两锐角互余即可求解.解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=40°,∴∠B=50°,故选C.考点:圆周角定理;直角三角形的性质.8.A【解析】由韦达定理即可求解.【详解】解:令另一根为x ,由韦达定理可知1722x =,解得x=7,故选择A. 【点睛】本题考查了一元二次方程的韦达定理.9.B【解析】由O 的直径为10cm 可知半径为5cm ,再由点P 不在O 外可知点P 在圆内或圆上.【详解】解:由题意可知,当P 点在O 外时,OP <5cm ,当点P 在O 上时,OP=5cm ,则OP 的长不大于5cm ,故选择B.【点睛】本题考查了点与圆的位置关系.10.B【解析】由图即可判断.【详解】解:由图可知,图形最少旋转90°即可与原图形重合,故选择B.【点睛】本题考查了旋转的知识.11.8.【详解】试题分析:设有x 队参加比赛.则(1)56x x -=,∴(8)(7)0x x -+=,解得x=8,x=﹣7(不合题意,舍去).故答案为8.考点:1.一元二次方程的应用;2.比赛问题.12.(0,2)【分析】根据旋转中心为C ,旋转方向逆时针,旋转角度90°画出对应图形,即可得到点B 相应坐标【详解】解:由图中可得点B′的坐标为(0,2).故答案为(0,2)13.2【分析】欲求圆与直线的交点个数,即确定直线与圆的位置关系,关键是把圆心距5.5cm与半径6.5cm 进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.(d 为圆心距,r为圆的半径)【详解】解:已知圆的直径为13cm,则半径为6.5cm,又圆心距为5.5cm,小于半径,所以,直线与圆相交,有两个交点.故答案为2.【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.14.错误【解析】利用中心对称图形的性质即可解答.【详解】解:关于某点成中心对称的两点连线的中点刚好是对称中心,本题中是连接中心对称的两个图形上的任意两点,故错误.【点睛】本题考查了中心对称的概念.15.12x 0<x<1【解析】解:∵抛物线与x轴的交点坐标分别为(-1,0)、(2,0),∴其对称轴方程为:x= -1+21=22,∵抛物线与y轴的交点为(0,2),∴此点关于对称轴的对称点横坐标为:2×12=1,∵0<x<1时函数的图象的纵坐标大于2,∴当y >2时,自变量x 的取值范围是0<x <116.正方形、菱形【分析】根据在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,即可解答.【详解】解:根据中心对称图形的概念,知正方形、菱形都是中心对称图形;等边三角形和等腰梯形只是轴对称图形.故答案为正方形、菱形.【点睛】本题考查中心对称图形的知识,属于基础题,注意基本概念的掌握.17.3cm 2π【解析】利用扇形的面积公式及弧长公式即可求解.【详解】解:令扇形的半径为rcm ,则21203360r ππ=,解得r=3cm ;扇形的弧长为1201202232360360r πππ⨯=⨯⨯=;故扇形的半径为3cm ,弧长为2πcm.【点睛】本题考查了扇形的面积及弧长公式.18.()6,9或()10,25-【解析】【分析】代入点()2,1求解抛物线解析式,再联立方程15x y +=即可求解P 点坐标.【详解】解:由题意得1=4a ,解得a=14,则抛物线解析式为214y x =,联立方程15x y +=得,21415y x x y ⎧=⎪⎨⎪+=⎩,解得69x y =⎧⎨=⎩或1025x y =-⎧⎨=⎩,故P 点坐标为:()6,9或()10,25-.【点睛】本题考查了二次函数的性质.19.12π【解析】【分析】由圆锥的侧面积公式即可求解.【详解】解:由圆锥的底面积为29cmπ可知圆锥底面半径为3cm,圆锥的侧面积为πrl=π×3×4=12π,故圆锥的侧面积等于12πcm2.【点睛】本题考查了圆锥的侧面积公式.20.24【解析】【分析】设有x个白球,则摸到黑球的概率为88x+,此概率与摸了200次,其中有50次摸到黑球的概率相同. 【详解】解:由题意得8508200x=+,解得x=24.故白球有24个.【点睛】本题考查了概率公式的应用. 21.(1)x1=8,x2=-2;(2)x1=1,x2=3 【分析】(1)利用直接开平方法求解即可;(2)利用因式分解法求解即可.【详解】解:(1)∵(x-3)2=25,∴x-3=±5,∴x1=8,x2=-2;(2)∵x 2-4x +3=0,∴(x -1)(x -3)=0,则x -1=0或x -3=0,解得x 1=1,x 2=3.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.(1)()1 6,0B ;(2)见解析;(3)()'3,2A --,()'0,6B -,()'0,1C -【解析】【分析】(1)根据点关于原点对称的性质可知B’坐标;(2)分别画出A 、B 、C 三点绕坐标原点O 逆时针旋转90°后的对应点A’、B’、C’即可;(3)利用图像写出坐标即可.【详解】解:()1由图象可知,()16,0B .(2)ABC 绕坐标原点O 逆时针旋转90,对应的'''A B C 如图所示,'''A B C 即为所求.()3由图象可知()'3,2A --,()'0,6B -,()'0,1C -.【点睛】本题考查了平面直角坐标系中图形旋转的概念.23.(1)10(2)625【解析】试题分析:(1)根据数字1卡片的概率可直接用总数乘即可;(2)可设3的卡片为x 张,则2的卡片为3x-8,再根据它们共40张可求出x ,然后求出概率即可.试题解析:解:(1)根据题意得:50×15=10, 答:箱中装有标1的卡片10张.(2)设装有标3的卡片x 张,则标2的卡片3x-8张根据题意得x+3x ﹣8=40解得x=12.所以摸出一张有标3的卡片的概率P=1250=625; 考点:概率24.(1)y 与x 之间的函数关系式为y =﹣80x +560;(2)如果每天获得160元的利润,销售单价为4元;(3)当销售单价定为5元时,每天的利润最大,最大利润是240元.【分析】(1)设y 与x 的函数关系式为y =kx +b ,将x =3.5,y =280;x =5.5,y =120分别代入求出k 、b 的值即可得;(2)根据利润=(售价-成本)×销售量-其他费用列出方程进行求解即可得;(3)根据利润=(售价-成本)×销售量-其他费用列出函数关系式,然后利用二次函数的性质进行解答即可得.【详解】解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,得 3.52805.5120k b k b +=⎧⎨+=⎩,解得80560k b =-⎧⎨=⎩, 则y 与x 之间的函数关系式为y =﹣80x +560;(2)由题意,得(x ﹣3)(﹣80x +560)﹣80=160,整理,得x 2﹣10x +24=0,解得x 1=4,x 2=6,∵3.5≤x ≤5.5,∴x =4,答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w =(x ﹣3)(﹣80x +560)﹣80=﹣80x 2+800x ﹣1760=﹣80(x ﹣5)2+240,∵3.5≤x ≤5.5,∴当x =5时,w 有最大值为240,故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点睛】本题考查了一次函数的应用、二次函数的应用、一元二次方程的应用等,读懂题意,找准数量关系列出函数关系式、找准等量关系列出方程是解题的关键.25.(1) y=x 2-4x-5,x=2;(2)M 1(4,0);M 2(0)M 3(0);M 4(2,0).【详解】试题分析:(1)把(-1,0)和点(2,-9)代入y=ax2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,进一步得到其对称轴;(2)根据等腰三角形的判定分OP=PM ,OP=OM ,PM=OM 三种情况即可求出x 轴上所有点M 的坐标.试题解析:(1)根据题意,得40{489a c a c ++-+-==, 解得1{5a c ==-, ∴二次函数的表达式为y=x 2-4x-5,∵y=x 2-4x-5=(x-2)2-9,∴对称轴是x=2;(2)当OP=PM 时,符合条件的坐标M 1(4,0);当OP=OM 时,符合条件的坐标M 2(0)M 3(0);当PM=OM 时,符合条件的坐标M 4(2,0).考点: 二次函数综合题.26.(1)抛物线的解析式是y=﹣12x 2+52x ﹣2;(2)顶点坐标是(52,98);(3) x <0或x >4. 【解析】【分析】(1)代入A 和B 点并联立方程求解即可;(2)令x=0求解c 点坐标,再运用配方法将一般式化为顶点式即可;(3)由图像可知,C 点左侧以及A 点右侧部分均符合问题要求.【详解】(1)根据题意得:{−12×16+4b +c =0−12+b +c =0 ,解得{b =52c =−2 则抛物线的解析式是y=﹣12x 2+52x ﹣2;(2)在y=−12x 2+52x ﹣2中令x=0,则y=﹣2,则C 的坐标是(0,﹣2). y=﹣12x 2+52x ﹣2=﹣12(x ﹣52)2+98,则抛物线的顶点坐标是(52,98); (3) 由图像可知,C 点左侧以及A 点右侧部分均符合问题要求,故当x <0或x >4时均满足y 1<y 2.27.(1)∠P =36°;(2)∠P=30°.【分析】(1)连接OC ,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(2)根据E 为AC 的中点得到OD ⊥AC ,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=12∠AOD=40°,最后利用三角形的外角的性质求解即可.【详解】解:(1)如图,连接OC ,∵⊙O 与PC 相切于点C ,∴OC ⊥PC ,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt △AOE 中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E 为AC 的中点,∴OD ⊥AC ,即∠AEO=90°,在Rt △AOE 中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°,∵∠ACD 是△ACP 的一个外角,∴∠P=∠ACD ﹣∠A=40°﹣10°=30°.【点睛】本题考查切线的性质.28.见解析【详解】解:图2成立;图3不成立2分证明图2:过点D作DM⊥AC,DN⊥BC则∠DME=∠DNF=∠MDN=90°再证∠MDE=∠NDF,DM=DN有△DME≌△DNF∴S△DME= S△DNF∴S四边形DMCN =S四边形DECF=S△DEF+ S△CEF由信息可知S四边形DMCN=S△ABC∴S△DEF+ S△CEF=S△ABC···························· 4分图3不成立,S△DEF、S△CEF、S△ABC的关系是:S△DEF S△CEF=S△ABC 2分。

九年级上册数学期末考试试题及答案人教版

九年级上册数学期末考试试题及答案人教版

九年级上册数学期末考试试题及答案人教版九年级上册数学期末考试试题及答案人教版本文将为大家详细介绍九年级上册数学期末考试试题及答案人教版,帮助大家更好地备战期末考试。

一、填空题1、若等腰三角形的一个角是70°,则另外两个角的度数分别为_________。

2、在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB边上的中线长为_________。

3、已知抛物线y=x2-4x+1的对称轴为直线x=a,则a的值为_________。

二、选择题1、已知点A(1,2)在函数y=x+b的图象上,则b的值为()。

A. -3B. -2C. 2D. 32、等腰三角形一腰上的高与底边所夹锐角的度数为α,则这个等腰三角形的顶角的度数为()。

A. 90°-2α B. 90°+2α C. 90°-α D. 90°+α三、解答题1、计算:cos60°-sin45°+tan60°。

2、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的各项系数之和为h,则此方程的两个根之和为_________。

3、已知一个二次函数的图象开口向上,其对称轴在y轴的左侧,则该二次函数的解析式可以是_________。

(只需写出一个符合题意的解析式)四、应用题1、某商店用8000元购进一批货物,其中一部分以每件10元的价格出售,另一部分以每件20元的价格出售,最终获利1500元。

问该商店购进的两种货物各多少件?2、已知直线y=2x+4与x轴、y轴分别交于A、B两点,求AB线段的中点的坐标。

五、综合题1、在直角坐标系中,O为原点,点A(x,y)在第二象限内,且到x 轴、y轴的距离分别为4和8,则点A的坐标为_________。

2、已知抛物线y=x2-4x+c的顶点在x轴上,求c的值。

六、附加题1、已知:如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高。

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列方程是一元二次方程的是( )A .ax 2+bx+c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣4=0D .(x ﹣1)2﹣1=0 2.已知⊙O 的直径为5,若PO =5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断 3.二次函数y=x 2+2的顶点坐标是( )A .(1,﹣2)B .(1,2)C .(0,﹣2)D .(0,2) 4.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB BC =,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30° 5.若,则23(2)6(1)(1)x x x --+-的值为( ) A .﹣6 B .6 C .18 D .30 6.正十二边形的每一个内角的度数为( )A .120°B .135°C .150°D .108° 7.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( ) A .3 B .-3 C .-1 D .18.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为( )A .40cmB .60cmC .80cmD .100cm 9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10πB C D.π10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.B.C.D.二、填空题11.一元二次方程x ( x +3)=0的根是__________________.12.将二次函数的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为_________.13.如图,已知等边ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E 两点,则劣弧DE的长为_________ .14.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=_________°.三、解答题16.用公式法解方程:x2﹣x﹣2=0.17.如图为桥洞的形状,其正视图是由CD和矩形ABCD构成.O点为CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求CD所在⊙O的半径DO.18.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (0,2),将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,并写出A1,B1的坐标.19.某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B 表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b 表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人来自不同班级的概率.20.已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根.21.如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,(1)求证:△AMN是等边三角形.(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.22.用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S 最大?最大面积是多少?23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD 的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.24.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.参考答案1.D【详解】试题分析:根据一元二次方程的定义对各选项进行逐一分析即可.解:A、当a=0时,方程ax2+bx+c=0是一元一次方程,故本选项错误;B、方程3x2﹣2x=3(x2﹣2)是一元一次方程,故本选项错误;C、方程x3﹣2x﹣4=0是一元三次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选D.考点:一元二次方程的定义.2.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解: 2.52d r ==, ∵d =5>2.5,点P 在⊙O 外,故选C .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.3.D【分析】已知二次函数y=x 2+2为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】试题分析::∵y=x 2+2=(x-0)2+2,∴顶点坐标为(0,2).故选D .4.D【解析】试题分析:直接根据圆周角定理求解.连结OC ,如图,∵AB =BC ,∴∠BDC=12∠BOC=12∠AOB=12×60°=30°. 故选D .考点:圆周角定理.5.B【详解】试题分析:∵,即244x x +=,∴原式=223(44)6(1)x x x -+--=223121266x x x -+-+=231218x x --+=23(4)18x x -++=﹣12+18=6.故选B .考点:整式的混合运算—化简求值;整体思想;条件求值.6.C【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角得出每个内角的度数.【详解】正十二边形的每个外角的度数是:36012︒=30°, 则每一个内角的度数是:180°−30°=150°. 故选项为:C .【点睛】本题考查了正多边形的性质,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.7.B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a 、b 的值即可.【详解】∵点A (1,a )、点B (b ,2)关于原点对称,∴a =﹣2,b =﹣1,∴a +b =﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.8.A【分析】连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,由垂径定理求出AM 的长,再根据勾股定理求出OM 的长,进而可得出ME 的长.【详解】解:连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,交圆O 于点E ,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,60cmOM∴=,∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.9.C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为=.故选C.10.C【详解】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误. 故选C .考点:动点问题的函数图象.11.12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.12.244y x x =++.【详解】试题分析:平移后二次函数解析式为:22(2)44y x x x =+=++,故答案为244y x x =++. 考点:二次函数图象与几何变换.13.【详解】试题分析:考点: 圆周角与圆心角的关系,弧长公式.14.(2,10)或(﹣2,0)【详解】∵点D (5,3)在边AB 上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x 轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x 轴的距离为10,到y 轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).15.215.【详解】解:连接CE∵五边形ABCDE 为内接五边形∴四边形ABCE 为内接四边形∴∠B+∠AEC=180°又∵∠CAD =35∴∠CED =35°(同弧所对的圆周角相等)∴∠B+∠E=∠B+∠AEC+∠CED=180°+35°=215°故答案为:215.【点睛】本题考查正多边形和圆.16.122,1x x ==-【解析】试题分析:先求出b 2﹣4ac 的值,再代入公式求出即可.试题解析:解:∵a =1,b =-1,c =-2, ∴△=b 2-4ac =(-1)2-4×1×(-2)=9 >0,∴x =132±,解得:12x =,21x =-. 17.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴ DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴ CD 所在⊙O 的半径DO 为5米.18.见解析,11(3,2),(0,0)A B【解析】试题分析:根据旋转的性质作出A 、B 、C 绕点C 旋转180°后对应的点,连接即可. 试题解析:解:如图:由图可得:A1 (3,2),B1 (0,0).19.见解析,3 5【解析】试题分析:首先根据题意列表,由表格求得所有等可能的结果,由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得.试题解析:解:列表可得:共有20种等可能的结果.∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:1220=35.点睛:此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(1)见解析;(2)-2【解析】试题分析:(1)根据抛物线的对称轴方程进行证明即可;(2)根据抛物线与x 轴的交点问题可判断抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),然后利用抛物线的对称性可得到抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),从而得到方程ax 2+bx ﹣8=0另一个根.试题解析:解:(1)∵抛物线的对称轴是x =1,∴ 2b a=1,∴2a +b =0; (2)∵关于x 的方程ax 2+bx ﹣8=0有一个根为4,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),∵抛物线的对称轴是x =1,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),∴关于x 的方程ax 2+bx ﹣8=0,有一个根为﹣2.点睛:本题考查了抛物线与x 轴的交点.把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标转化为解关于x 的一元二次方程;通过二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a ≠0)可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).21.(1)证明见解析;(2)CD=BE.理由见解析【解析】试题分析:(1)由等边三角形的性质得到AB =AC ,AE =AD , ∠BAC =∠EAD =60°,从而得到BE =CD , 再由中点的定义得到EN =DN , 即有AN =AM , 从而可以得到结论; (2)可以利用SAS 判定△ABE ≌△ACD ,全等三角形的对应边相等,所以CD =BE .试题解析:解:(1)∵△ABC 和△ADE 是等边三角形,∴AB =AC ,AE =AD , ∠BAC =∠EAD =60°,∴AB -AE =AC -AD ,即BE =CD , ∴M ,N 分别是BE ,CD 的中点,∴EM =12BE ,DN =12CD , ∴EN =DN , ∴EM +AE =DN +AD ,即AN =AM , ∵∠BAC =60°, ∴△AMN 是等边三角形; (2)CD =BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AE =AD ,∠BAC =∠EAD =60°.∵∠BAE =∠BAC −∠EAC =60°−∠EAC ,∠DAC =∠DAE −∠EAC =60°−∠EAC ,∠BAE =∠DAC ,∴△ABE ≌△ACD ,∴CD =BE .22.(1)1米或3米;(2)32,3平方米. 【解析】试题分析:(1)先用含x 的代数式(12﹣3x )÷3=4﹣x 表示横档AD 的长,然后根据矩形的面积公式列方程,求出x 的值.(2)用含x 的代数式(12﹣4x )÷3=4﹣43x 表示横档AD 的长,然后根据矩形面积公式得到二次函数,利用二次函数的性质,求出矩形的最大面积以及对应的x 的值.解:(1)由题意,BC 的长为(4−x )米,依题意,得:x (4−x )=3,即x ²−4x +3=0,解得 x 1=1,x 2=3.答:当AB 的长度为1米或3米时,矩形框架ABCD 的面积为3平方米.(2)根据题意,由图2得,AD =(12−4x )÷3=4−43x ,∴S =AB•AD =x (4−43x )=−43x ²+4x 配方得S =243()332x --+,∴当x =32时,S 取最大值3. 答:当x =32时,矩形框架ABCD 的面积最大,最大面积是3平方米. 点睛:本题考查的是二次函数的应用.(1)根据面积公式列方程,求出x 的值.(2)根据面积公式得二次函数,利用二次函数的性质求最值.23.(1)直线DE 与⊙O 相切;(2)4.75.【分析】(1)连接OD ,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB +∠ODA =90°,进而得出OD ⊥DE ,根据切线的判定即可得出结论;(2)连接OE ,作OH ⊥AD 于H .则AH =DH ,由△AOH ∽△ABC ,可得AH OA AC AB=,推出AH =65,AD =125,设DE =BE =x ,CE =8-x ,根据OE 2=DE 2+OD 2=EC 2+OC 2,列出方程即可解决问题;【详解】(1)连接OD ,∵EF 垂直平分BD ,∴EB =ED ,∴∠B =∠EDB ,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接OE,作OH⊥AD于H.则AH=DH,∵△AOH∽△ABC,∴AH OA AC AB=,∴2 610 AH=,∴AH=65,AD=125,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.75,∴DE=4.75.【点睛】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.24.(1)y2=﹣x2+2x+3.(2)214;(3)(1,2)或(1,5)【解析】试题分析:(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,-a2+2a+3).则OQ=x,AQ=-a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.试题解析:(1)∵y 1=﹣2x 2+4x+2=﹣﹣2(x ﹣1)2+4,∴抛物线C 1的顶点坐标为(1,4).∵抛物线C 1:与C 2顶点相同, ∴12m--⨯ =1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C 2的解析式为u 2=﹣x 2+2x+3.(2)如图1所示:设点A 的坐标为(a ,﹣a 2+2a+3).∵AQ=﹣a 2+2a+3,OQ=a ,∴AQ+OQ=﹣a 2+2a+3+a=﹣a 2+3a+3=﹣(a ﹣32)2+214 .∴当a=32时,AQ+OQ 有最大值,最大值为214.(3)如图2所示;连接BC ,过点B′作B′D ⊥CM ,垂足为D .∵B (﹣1,4),C (1,4),抛物线的对称轴为x=1,∴BC ⊥CM ,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D ⊥MC ,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC .在△BCM 和△MDB′中,MB D BMC BCM MDB BM MB ∠'∠⎧⎪∠∠'⎨⎪'⎩=== , ∴△BCM ≌△MDB′∴BC=MD ,CM=B′D .设点M 的坐标为(1,a ).则B′D=CM=4﹣a ,MD=CB=2.∴点B′的坐标为(a ﹣3,a ﹣2).∴﹣(a ﹣3)2+2(a ﹣3)+3=a ﹣2.整理得:a 2﹣7a ﹣10=0.解得a=2,或a=5.当a=2时,M 的坐标为(1,2),当a=5时,M 的坐标为(1,5).综上所述当点M 的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C 2上.【点睛】解答本题主要应用了二次函数的顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a 的式子表示点B′的坐标是解题的关键.。

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上3.若反比例函数y=﹣1x的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣13D.134.如图,直线y=kx与双曲线y=﹣2x交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6B.﹣12C.6D.125.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1B.0C.1D.-19.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对10.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A.40°B.35°C.30°D.25°11.如图,一个大正方形中有2个小正方形,如果它们的面积分别是S1,S2,则()A.S2>S1B.S1=S2C.S1>S2D.S1≥S212.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题13.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;14.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.15.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为_cm.16.关于x的一元二次方程2210ax x++=有实数解,那么实数a的取值范围是__________. 17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为____________.18.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.三、解答题19.解方程:x2+3x﹣2=0.20.如图为桥洞的形状,其正视图是由 CD和矩形ABCD构成.O点为 CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求 CD所在⊙O的半径DO.21.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.22.如图,抛物线2=-++与x轴交于A、B两点(点A在点B的左侧),点A的y x bx c坐标为()-,,与y轴交于点()10C,,作直线BC.动点P在x轴上运动,过点P作03PM x⊥轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.23.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.25.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.26.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).27.已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN;(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;:S四边形ABQP=1:4.若存在,求出t的值;若不存在,(3)是否存在某一时刻t,使S△QMC请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ.若存在,求出t的值;若不存在,请说明理由.参考答案1.D【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.2.B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.3.C【解析】试题分析:把点A代入解析式可知:m=﹣1 3.故选C.考点:反比例函数图象上点的坐标特征.4.B【解析】【分析】(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.【详解】(解法一)将y=kx代入到y=-2x中得:kx=-2x,即kx2=-2,解得:x1,x2∴y1=kx1y2=kx2,∴2x1y2-8x2y1=2×(×()=-12.(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2,∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1.∵x1y1=-2,∴2x1y2-8x2y1=6x1y1=-12.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及一元二次方程的解,解题的关键是:(解法一)求出点A、B的坐标;(解法二)根据对称性结合反比例函数图象上点的坐标特征求值.5.B【详解】试题分析:根据圆周角定理的推论可得:∠ACB=∠AOB=90°,故选B.考点:圆周角定理的推论6.A【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【详解】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴===,60cmOM∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.7.A【解析】试题解析:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.8.D【分析】根据二次函数图象上点的坐标特征得到-m2+1=0,解得m1=1,m2=-1,然后根据二次函数的定义确定m的值.【详解】把(0,0)代入y=(m-1)x2-mx-m2+1得-m2+1=0,解得m1=1,m2=-1,而m-1≠0,所以m=-1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.9.C【详解】根据二次函数的定义,易得S是R的二次函数,故选C.10.B【解析】∵PC与⊙O相切,∴∠OCP=90°.∵∠P=20°,∴∠POC=90°-20°=70°,∴∠A=70°÷2=35°.故选B.11.C【解析】【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【详解】如图,设大正方形的边长为x ,根据等腰直角三角形的性质知,BC ,,∴AC=2CD ,CD=3x ,∴S 2x ,S 2的面积为29x 2,S 1的边长为2x ,S 1的面积为14x 2,∴S 1>S 2.故选:C .【点睛】本题考查了正方形的性质和等腰直角三角形的性质,掌握勾股定理及正方形的性质是解题的关键.12.B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a =1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.3x 2-10x-4=0.【解析】先把一元二次方程3x (x ﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.14.4 9【详解】试题分析:观察这个图形可知:黑色区域(4块)的面积占总面积(9块)的4 9,则它最终停留在黑色方砖上的概率是4 9;故答案为4 9.考点:几何概率.15.4【解析】【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【详解】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴,∴侧面积S侧22,解得r=4,,∴圆锥的高h=4cm,故答案为:4.【点睛】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式.16.10a a≤≠且【解析】∵关于x的一元二次方程ax2+2x+1=0有实数根,∴△=4−4a≥0且a≠0,∴a≤1且a≠0.故答案是:10a a且≤≠.17.1:4.【详解】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.考点:位似变换.18..【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴,∴点P到边AB距离的最小值是.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.19.∴x 1=2-,x 2=32-【解析】首先找出公式中的a ,b ,c 的值,再代入求根公式求解即可.本题解析:∵a=1,b=3,c=﹣2,∴△=b 2﹣4ac=32﹣4×1×(﹣2)=17,∴x=32-±,∴x 1x 220.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴CD 所在⊙O 的半径DO 为5米.21.(1)图形见解析;(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线长是52π.【详解】试题分析:(1)题目已给出了旋转中心、旋转角度和旋转方向,可连接DA 、DB 、DC,然后根据要求旋转得到对应的顶点A 1、B 1、C 1,再顺次连接三点即可.(2)由(1)得到的图形,可根据A 1、C 1的位置来确定它们的坐标.(3)点A 旋转到A 1所经过的路线长是以D 为圆心、90°为圆心角、DA 为半径的弧长,先求出DA 的长,然后根据弧长公式计算即可.试题解析:(1)(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线是弧AA 1,∵AD=5,∠ADA 1=90°,∴弧AA 1的长=;∴点A 旋转到A 1所经过的路线长是.考点:1.旋转变换,2.弧长的计算.22.(1)y=﹣x 2+2x+3,y=﹣x+3;(2)当m=32时,MN 有最大值,MN 的最大值为94;(3)32+或32.【解析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值本题解析:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得10{3b c c --+==,解得2{3b c ==,∴抛物线解析式为y=﹣x 2+2x+3,令y=0可得,﹣x 2+2x+3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y=kx+s ,把B 、C 坐标代入可得30{3k s s +==,解得1{3k s =-=,∴直线BC 解析式为y=﹣x+3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m+3),N (m ,-m+3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m=﹣(m ﹣32)2+94,∴当m=32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC=MN ,当点P 在线段OB 上时,则有MN=﹣m 2+3m ,∴﹣m 2+3m=3,此方程无实数根,当点P 不在线段OB 上时,则有MN=﹣m+3﹣(﹣m 2+2m+3)=m 2﹣3m ,∴m 2﹣3m=3,解得或,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32或32.23.(1)12;(2)公平,理由见解析.【解析】【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【详解】(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,∴P (甲胜)=612=12(2)公平.∵P (乙胜)=612=12,∴P (甲胜)=P (乙胜),∴这个游戏规则对甲、乙双方公平【点睛】本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)a=4,m=﹣4;(2)双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).【解析】试题分析:(1)将A 坐标代入一次函数解析式中即可求得a 的值,将A (﹣1,4)坐标代入反比例解析式中即可求得m 的值;(2)解方程组=−2+2=−4,即可解答.试题解析:(1)∵点A 的坐标是(﹣1,a ),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数=,∴m=﹣4.(2)解方程组:=−2+2=−4,解得:=−1=4或=2=−2,∴该双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)12;(3【分析】(1)要证明△ABD ∽△AEB ,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB :BC=4:3,可设AB=4,BC=3,求出AC 的值,再利用(1)中结论可得2AB AD AE =⋅,进而求出AE 的值,所以tanE=ED AB BE AE=;(3)设AB=4x ,BC=3x ,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【详解】(1)证明:∵∠ABC=90°,∴90ABD DBC ∠=︒-∠,由题意知:DE 是直径,∴∠DBE=90°,∴90E BDE ∠=︒-∠,∵BC=CD ,∴∠DBC=∠BDE ,∴∠ABD=∠E ,∵∠A=∠A ,∴△ABD ∽△AEB ;(2)解:∵AB :BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC -CD=5-3=2,由(1)可知:△ABD ∽△AEB ,∴ABADBDAE AB BE ==,∴2AB AD AE =⋅,∴242AE =,∴AE=8,在Rt △DBE 中,41tan ==82BD ABE BE AE ==;(3)过点F 作FM ⊥AE 于点M ,∵:4:3AB BC =,∴设AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC ,∴BFABEF AE =,∴4182BF xEF x ==,∵1tan 2E =,∴cos E =5,sin E =∴BD BE =∴5BE x =,∴23EF =,5BE =,∴sin 5MFE EF ==,∴85MF x =,∵1tan 2E =,∴1625ME MF x ==,∴245AM AE ME x =-=,∵222AF AM MF =+,∴22248455x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,∴8x =,∴⊙C的半径为:3x =【点睛】本题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解题的关键是熟练掌握有关性质.26.(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE ≌△ACD ;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC ﹣∠EAC=60°﹣∠EAC ,∠DAC=∠DAE ﹣∠EAC=60°﹣∠EAC ,∴∠BAE=∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE=∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC ,∠ABE=∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM=AN ,∠MAB=∠NAC .∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.27.(1)t=209;(2)y=-236105t t +;(3)1:4;(4)t=32【分析】(1)当PQ ∥MN 时,可得:CP CQ PA QB =,从而得到:45t t t t -=-,解方程求出t 的值;(2)作PD BC ⊥于点D ,则可以得到CPD CBA ∽,根据相似三角形的性质可以求出3(4)5PD t =-,CQ t =,利用三角形的面积公式求出S 与t 的关系式;(3)根据S △QMC :1:4ABQP S =四边形可以得到关于t 的方程,解方程求出t 的值;(4)作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,利用相似三角形的性质可以得到:2123()55t -16999()()5555t t =-+,解方程求出t 的值.【详解】解:(1)如图所示,若PQ ∥MN ,则有CP CQ PA QB =,∵CQ PA t ==,4CP t =-,5QB t =-,∴45t t t t-=-,即22209t t t -+=,解得209t =(2)如图所示,作PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCB BA =,∵3BA =,4CP t =-,5BC =,∴453tPD-=,∴3(4)5PD t =-又∵CQ t =,∴△QMC 的面积为:()21336425105y t t t t=⨯-=-+(3)存在2t =时,使得S △QMC :1:4ABQP S =四边形理由如下:∵PM ∥BC ∴236105PQC QMC S S t t∆∆==-+∵S △QMC :1:4ABQP S =四边形,∴S △PQC :S △ABC =1:5,∵3462ABC S ⨯== .∴236:61:5105t t ⎛⎫-+= ⎪⎝⎭∴2440t t -+=∴122t t ==∴存在当2t =时,S △QMC :1:4ABQP S =四边形;(4)存在某一时刻32t =,使PQ MQ⊥理由如下:如图所示,作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCDCB BA CA==∵3BA =,4CP t =-,5BC =,4CA =,∴4534tPD CD-==,∴3(4)5PD t =-,4(4)5CD t =-∵PQ ⊥MQ ,∴△PDQ ∽△QEM ,∴PD DQQE EM =,即··PD EM QE DQ=∵3123(4)555EM PD t t ==-=-,4169(4)555DQ CD CQ t t t =-=--=-,4995[(4)]555QE DE DQ t t t =-=---=+,∴2123()55t -16999()()5555t t =-+,即2230t t -=,∴32t =,0t =(舍去)∴当32t =时,使PQ ⊥MQ .【点睛】本题考查相似三角形的综合运用;一元二次方程的应用.。

九年级上册数学期末考试试题及答案,人教版

九年级上册数学期末考试试题及答案,人教版

九年级(上)期末数学复习题及答案一、选择题(每小题3分,共24分) 1.(3分)(2012•大连)下列几何体中,主视图是三角形的几何体的是( )A .B .C .D .2.(3分)下列说法正确的是( )A . 对角线相等且垂直的四边形是正方形B .菱形对角线相等 C .同位角相等 D . 等腰三角形两腰上的高相等3.(3分)(2005•常州)如图,等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( )A . 44°B . 68°C . 46°D .22°4.(3分)(2009•庆阳)如图,晚上小亮在路灯下散步,在小亮由A 处走到B 处这一过程中,他在地上的影子( )A . 逐渐变短B . 逐渐变长C . 先变短后变长D . 先变长后变短5.(3分)(2012•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A .B .C .D .6.(3分)(2012•阜新)如图,反比例函数y 1=的图象与正比例函数y 2=k 2x 的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( ) A . 0<x <2 B . x >2 C . x >2或﹣2<x <0 D . x<﹣2或0<x <27.(3分)(2009•伊春)如图,在平行四边形ABCD 中,E 为AD 的中点,△DEF 的面积为1,则△BCF 的面积为( )A .1 B .2 C .3 D .4 8.(3分)(2012•辽阳)如图,反比例函数y=(k≠0)与一次函数y=kx+k (k≠0)在同一平面直角坐标系内的图象可能是( )A .B .C .D .二、填空题:(每小题3分,共24分)9.(3分)若关于x 的方程3x 2+mx+m ﹣6=0有一根是0,则m= _________ .10.(3分)如图△ABC 中,∠C=90°,∠A=30°,BD 平分∠ABC 交AC 于D ,若CD=2cm ,则AC= _________ .11.(3分)下列命题中,正确的是_________.①矩形的对角线互相平分且相等;②对角线互相垂直的四边形是菱形;③平行四边形的两条对角线相等;④等腰三角形底边上的中点到两腰的距离相等.12.(3分)如图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则AE=_________,∠AEC=_________°,AC=_________.13.(3分)(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=_________度.14.(3分)如图①是一个正三棱柱毛坯,将其截去一部分,得到一个工件如图②.对于这个工件.俯视图、主视图依次是_________.15.(3分)如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠A4=_________度.16.(3分)仔细观察,思考下面一列数有哪些规律:﹣1,2,﹣4,8,﹣16,32,…,然后填空:(1)第7个数是_________;(2)第2013个数是_________;(3)第n个数是_________.三、(17、18题分别为10分、8分)17.(10分)解方程:①(x﹣8)(x﹣1)=﹣12(公式法);②3(x﹣5)2=2(5﹣x).18.(8分)(2003•黄冈)已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,求证:EB=EC.四、(19、20题分别为10分、10分)19.(10分)李叔叔家房子前面有一块长方形荒地,准备把它建成一座花.但中央修两条互相垂直的等宽小路,正好将荒地分成四个面积相等的小长方形.如图,已知原长方形的长为30米,宽20米,要使每个小长方形面积不少于126m2.则每条小路宽至多为多少米?20.(10分)某企业2010年盈利1500万元,2012年克服全球金融危机的不利影响,仍实现盈利2160万元.从2010年到2012年,如果该企业每年盈利的年增长率相同,求:(1)该企业2011年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2013年盈利多少万元?五、(21、22题分别为10分、10分)21.(10分)如图中,是木杆和旗杆竖在操场上,其中木杆在阳光下的影子已画出.(1)用线段表示这一时刻旗杆在阳光下的影子.(2)比较旗杆与木杆影子的长短.(3)图中是否出现了相似三角形?(4)为了出现这样的相似三角形,木杆不可以放在图中的哪些位置?22.(10分)(2012•沈阳)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)六、(10分)23.(10分)(2012•大连)如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.七、证明题:(24、25题分别为10分、12分)24.(10分)(2011•鞍山二模)如图,在平行四边形ABCD中,点E,F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH 是平行四边形.25.(12分)(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?八、(12分)26.(12分)如图,已知反比例函数和一次函数y=2x﹣1图象交于A(1,b)点,且一次函数的图象经过(2,b+k)点.(1)求A点坐标及反比例函数的解析式;(2)请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2012•大连)下列几何体中,主视图是三角形的几何体的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.解答:解:A、三棱柱的主视图是长方形,中间还有一条竖线,故此选项错误;B、正方体的主视图是正方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、圆柱的主视图是长方形,故此选项错误;故选:C.点评:此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.2.(3分)下列说法正确的是()A.对角线相等且垂直的四边形是正方形B.菱形对角线相等C.同位角相等D.等腰三角形两腰上的高相等考点:正方形的判定;同位角、内错角、同旁内角;等腰三角形的性质;菱形的性质.分析:根据正方形的判定方法对A进行判断;根据菱形的性质对B进行判断;根据同位角的定义对C进行判断;根据等腰三角形的性质对D进行判断.解答:解:A、对角线相等且互相垂直平分的四边形是正方形,故本选项错误;B、菱形的对角线互相垂直平分,矩形的对角线相等且互相平分,故本选项错误;C、当两条被截线不平行时,同位角不相等,故本选项错误;D、由于等腰三角形的两腰相等,所以根据面积不变,得出等腰三角形的两腰上的高相等,故本选项正确.故选D.点评:本题考查了命题:判断一件事情的语句叫命题;正确的命题叫真命题,错误的命题叫假命题.熟记书本上的性质及定理是解题的关键.3.(3分)(2005•常州)如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB 等于()A.44°B.68°C.46°D.22°考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:计算题.分析:本可先根据等腰三角形的性质和三角形内角和定理求出∠B的度数,进而在Rt△DCB 中,求得∠DCB的度数.解答:解:∵∠A=44°,AB=AC∴∠B=∠C=68°∵∠BDC=90°∴∠DCB=22°.故本题选D.点评:本题主要考查等腰三角形的性质,及三角形内角和定理.4.(3分)(2009•庆阳)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短考点:中心投影.分析:根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.进行判断即可.解答:解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选C.点评:本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.5.(3分)(2012•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.考点:列表法与树状图法.专题:压轴题.分析:由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案.解答:解:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得:∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是:.故选D.点评:此题考查的是用列表法或树状图法求概率的知识.注意所选每种情况必须均等,注意概率=所求情况数与总情况数之比.6.(3分)(2012•阜新)如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x的取值范围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<2考点:反比例函数与一次函数的交点问题.专题:压轴题;探究型.分析:先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.解答:解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A(2,1),∴B(﹣2,﹣1),∵由函数图象可知,当0<x<2或x<﹣2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<﹣2或0<x<2.故选D.点评:本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x 的取值范围是解答此题的关键.7.(3分)(2009•伊春)如图,在平行四边形ABCD中,E为AD的中点,△DEF的面积为1,则△BCF 的面积为()A.1B.2C.3D.4考点:相似三角形的判定与性质;平行四边形的性质.专题:压轴题.分析:充分运用平行四边形对边平行且相等的性质可得,AD∥BC,BC=2DE;证明相似,得出相似比,根据面积比对应相似比的平方,求面积.解答:解:由平行四边形的性质可知:AD∥BC,BC=2DE,∴△DEF∽△BCF,且相似比为1:2,∴面积比为1:4,则△BCF的面积为4.故选D.点评:此题主要考查了平行四边形、相似三角形的性质.8.(3分)(2012•辽阳)如图,反比例函数y=(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:计算题;压轴题.分析:分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k <0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.解答:解:①当k>0时,y=kx+k过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+k过二、三、四象象限;y=过二、四象限.观察图形可知只有D符合②.故选D.点评:本题考查了反比例函数的图象和一次函数的图象,熟悉两函数的性质是解题的关键.二、填空题:(每小题3分,共24分)9.(3分)若关于x的方程3x2+mx+m﹣6=0有一根是0,则m=6.考点:一元二次方程的解.分析:本题根据一元二次方程的根的定义求解.把x=0代入方程求出m的值.解答:解:∵x=0是方程的根,由一元二次方程的根的定义,可得m﹣6=0,解此方程得到m=6.点评:本题逆用一元二次方程解的定义易得出m的值.10.(3分)如图△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于D,若CD=2cm,则AC= 6cm.考点:角平分线的性质;含30度角的直角三角形.分析:根据∠C=90°,∠A=30°,易求∠ABC=60°,而BD是角平分线,易得∠ABD=∠DBC=30°,那么易证△ABD是等腰三角形,且△BCD是含有30°角的直角三角形,易求BD,从而可求CD.解答:解:∵∠C=90°,∠A=30°,∴∠ABC=60°,又∵BD是角平分线,∴∠ABD=∠DBC=30°,在Rt△BCD中,BD=2CD=4cm,又∵∠A=∠ABD=30°,∴AD=BD=4cm,∴AC=6cm.故答案为6cm.点评:本题考查了角平分线定义、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD,难度适中.11.(3分)下列命题中,正确的是①④.①矩形的对角线互相平分且相等;②对角线互相垂直的四边形是菱形;③平行四边形的两条对角线相等;④等腰三角形底边上的中点到两腰的距离相等.考点:命题与定理.分析:根据矩形的性质,菱形的判定,平行四边形的性质以及等腰三角形的性质对各小题分析判断即可得解.解答:解:①矩形的对角线互相平分且相等,正确;②应为对角线互相垂直平分的四边形是菱形,故本小题错误;③平行四边形的两条对角线互相平分,但不一定相等,故本小题错误;④等腰三角形底边上的中点到两腰的距离相等,正确;综上所述,正确的是①④.故答案为:①④.点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)如图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则AE=5,∠AEC=30°,AC= 2.5.考点:线段垂直平分线的性质;含30度角的直角三角形.分析:先根据线段垂直平分线的性质得出AE的长,再由等腰三角形的性质得出∠DAE的度数,由三角形外角的性质可求出∠AEC的度数;根据直角三角形的性质可得出AC的长.解答:解:∵DE是AB的中垂线,BE=5,∴AE=BE=5;∴△ABE是等腰三角形,∴∠BAE=∠B=15°,∴∠AEC=∠B+∠BAE=15°+15°=30°;∵∠C=90°,∴AC=AE=×5=2.5.故答案为:5;30;2.5.点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=120度.考点:菱形的性质.专题:应用题.分析:由题意可得AB与菱形的两邻边组成等边三角形,从而不难求得∠1的度数.解答:解:由题意可得AB与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.点评:此题主要考查菱形的性质和等边三角形的判定.14.(3分)如图①是一个正三棱柱毛坯,将其截去一部分,得到一个工件如图②.对于这个工件.俯视图、主视图依次是b、a.考点:简单几何体的三视图;截一个几何体.分析:俯视图、主视图是分别从物体上面、正面看,所得到的图形.解答:解:从上面看可得到一个等边三角形,从正面看可得到一个直角梯形,所以俯视图、主视图依次是b、a.故答案为:b、a.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,主视图是从物体的正面看得到的视图.15.(3分)如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠A4=10度.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.分析:由∠B=20°根据三角形内角和公式可求得∠BA1A的度数,再根据等腰三角形的性质及三角形外角的性质找∠BA1A与∠A4的关系即可解答.解答:解:∵AB=A1B,∠B=20°,∴∠A=∠BA1A=(180°﹣∠B)=(180°﹣20°)=80°∵A1C=A1A2,A2D=A2A3,A3E=A3A4∴∠A1CD=∠A1A2C,∵∠BA1A是△A1A2C的外角,∴∠BA1A=2∠CA2A1=4∠DA3A2=8A4∴∠A4=10°.故填10.点评:本题考查了三角形内角和定理,三角形外角与内角的关系及等腰三角形的性质的综合运用.充分利用外角找着∠BA1A与∠A4的关系是正确解答本题的关键.16.(3分)仔细观察,思考下面一列数有哪些规律:﹣1,2,﹣4,8,﹣16,32,…,然后填空:(1)第7个数是﹣64;(2)第2013个数是﹣22012;(3)第n个数是(﹣1)n×2n﹣1.考点:规律型:数字的变化类.专题:规律型.分析:(1)根据后一个数是前一个数的﹣2倍计算即可得解;(2)根据2的指数次幂,指数比相应的序数小1,且第奇数个数是负数解答;(3)利用(2)的规律写出即可.解答:解:第7个数是:32×(﹣2)=﹣64;(2)第2013个数是:﹣22012;(3)第n个数是:(﹣1)n×2n﹣1.故答案为:﹣64;﹣22012;(﹣1)n×2n﹣1.点评:本题是对数字变化规律的考查,观察出后一个数是前一个数的﹣2倍是解题的关键.三、(17、18题分别为10分、8分)17.(10分)解方程:①(x﹣8)(x﹣1)=﹣12(公式法);②3(x﹣5)2=2(5﹣x).考点:解一元二次方程-因式分解法;解一元二次方程-公式法.专题:计算题.分析:①方程整理为一般形式,找出a,b,c的值,计算出根的判别式大于0,代入求根公式即可求出解;②方程变形后提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:①(x﹣8)(x﹣1)=﹣12,方程整理得:x2﹣9x+20=0,这里a=1,b=﹣9,c=20,∵△=81﹣80=1,∴x=,则x1=5,x2=4;②方程变形得:3(x﹣5)2+2(x﹣5)=0,分解因式得:(x﹣5)(3x﹣13)=0,解得:x1=5,x2=.点评:此题考查了解一元二次方程﹣因式分解法以及公式法,熟练掌握各种解法是解本题的关键.18.(8分)(2003•黄冈)已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,求证:EB=EC.考点:等腰梯形的性质;全等三角形的判定与性质.专题:证明题.分析:由等腰梯形的性质知,AB=CD,∠BAD=∠CDA,由等边对等角得到∠EAD=∠EDA 证得∠EAB=∠EDC,再由SAS证得△ABE≌△DCE⇒EB=EC解答:证明:在等腰梯形ABCD中AB=CD,∴∠BAD=∠CDA.∵EA=ED,∴∠EAD=∠EDA.∴∠EAB=∠EDC.(2分)在△ABE和△DCE中∵,∴△ABE≌△DCE.(5分)∴EB=EC.(6分)点评:本题主要考查了等腰梯形的性质及全等三角形的判定的理解及运用.四、(19、20题分别为10分、10分)19.(10分)李叔叔家房子前面有一块长方形荒地,准备把它建成一座花.但中央修两条互相垂直的等宽小路,正好将荒地分成四个面积相等的小长方形.如图,已知原长方形的长为30米,宽20米,要使每个小长方形面积不少于126m2.则每条小路宽至多为多少米?考点:一元二次方程的应用.专题:几何图形问题.分析:设每条小路的宽为x米,则修路后剩下的面积为(20﹣x)(30﹣x),根据剩下的面积=每块面积的4倍建立方程求出其解即可.解答:解:设每条小路的宽为x米,由题意,得(20﹣x)(30﹣x)=126×4,解得:x1=2,x2=48.∵48>30,∴x=48舍去.答:每条小路宽至多为2米.点评:本题考查了长方形的面积公式的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由矩形变化前后的面积关系建立方程是关键.20.(10分)某企业2010年盈利1500万元,2012年克服全球金融危机的不利影响,仍实现盈利2160万元.从2010年到2012年,如果该企业每年盈利的年增长率相同,求:(1)该企业2011年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2013年盈利多少万元?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设每年盈利的年增长率为x,就可以表示出2012年的盈利,根据2012年的盈利为2160万元建立方程求出x的值就可以求出2011年的盈利;(2)根据(1)求出的年增长率就可以求出结论.解答:(1)设每年盈利的年增长率为x,根据意,得1500(1+x)2=2160解得:x1=0.2,x2=﹣2.2(不合题意,舍去)∴该企业2011年盈利为:1500(1+0.2)=1800万元.答:2011年该企业盈利1800万元;(2)由题意,得2160(1+0.2)=2592万元答:预计2013年该企业盈利2592万元.点评:本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.五、(21、22题分别为10分、10分)21.(10分)如图中,是木杆和旗杆竖在操场上,其中木杆在阳光下的影子已画出.(1)用线段表示这一时刻旗杆在阳光下的影子.(2)比较旗杆与木杆影子的长短.(3)图中是否出现了相似三角形?(4)为了出现这样的相似三角形,木杆不可以放在图中的哪些位置?考点:平行投影.专题:作图题.分析:分别作出平行于光线的线,即可得到平行投影,然后根据图形可回答下面的提问.解答:解:(1)线段MN即是影长,(2)根据图形可观察出旗杆的影子长.(3)有相似三角形,分别由旗杆及其影子和木杆及其影子以及太阳光线构成.(4)木杆不可以立在旗杆的影子上.点评:本题考查平行投影的知识,有一定难度,注意掌握平行投影的作法.22.(10分)(2012•沈阳)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)考点:列表法与树状图法;概率公式.专题:压轴题;图表型.分析:(1)根据抽取一次,每一所学校都有的几率被抽到的可能解答;(2)列出表格或画出树状图,然后根据概率公式列式求解.解答:解:(1);(2)列表得:画树状图:由表格或树状图可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有4种:(A,B),(B,A),(B,C),(C,B),所以,P(两次抽取的卡片上的图片一个是国内大学一个是国外大学)=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.六、(10分)23.(10分)(2012•大连)如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.专题:计算题.分析:(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B 的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标,分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)根据一次函数与反比例函数的图象即可得出答案.解答:解:(1)∵把A(﹣2,6)代入y=得:m=﹣12,∴y=﹣,∵把(4,n)代入y=﹣得:n=﹣3,∴B(4,﹣3),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=3,即y=﹣x+3,答:反比例函数的解析式是y=﹣,一次函数的解析式是y=﹣x+3.(2)不等式kx+b≤的解集是﹣2≤x<0或x≥4.点评:本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.七、证明题:(24、25题分别为10分、12分)24.(10分)(2011•鞍山二模)如图,在平行四边形ABCD中,点E,F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH 是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC 那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).解答:(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF,∴∠AED=∠CFB.∵∠FEG=∠AED=∠CFB=∠EFH,∴AG‖HC,而且,AH‖GC,∴四边形AGCH是平行四边形点评:本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.25.(12分)(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题;动点型.分析:(1)可先证△BCE≌△DCE得到∠EBC=∠EDC,再根据AB∥DC即可得到结论.(2)当P点运动到AB边的中点时,S△ADP=S菱形ABCD,证明S△ADP=×AB•DP=S即可.菱形ABCD解答:(1)证明:∵四边形ABCD是菱形∴BC=CD,AC平分∠BCD(2分)∵CE=CE∴△BCE≌△DCE(4分)∴∠EBC=∠EDC又∵AB∥DC∴∠APD=∠CDP(5分)∴∠EBC=∠APD(6分)(2)解:当P点运动到AB边的中点时,S△ADP=S菱形ABCD.(8分)理由:连接DB∵∠DAB=60°,AD=AB∴△ABD等边三角形(9分)∵P是AB边的中点∴DP⊥AB(10分)∴S△ADP=AP•DP,S菱形ABCD=AB•DP(11分)∵AP=AB∴S△ADP=×AB•DP=S菱形ABCD即△ADP的面积等于菱形ABCD面积的.(12分)点评:此题主要考查菱形的性质和等边三角形的判定,判断当P点运动到AB边的中点时,S△ADP=S菱形ABCD是难点.八、(12分)26.(12分)如图,已知反比例函数和一次函数y=2x﹣1图象交于A(1,b)点,且一次函数的图象经过(2,b+k)点.(1)求A点坐标及反比例函数的解析式;(2)请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.。

人教版九年级上册数学期末考试试题带答案

人教版九年级上册数学期末考试试题带答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.如图,DC 是⊙O 的直径,弦AB ⊥CD 于F ,连结BC ,DB ,则下列结论错误的是()A .弧AD=弧BDB .AF=BFC .OF=CFD .∠DBC=90°3.圆内接四边形ABCD ,∠A ,∠B ,∠C 的度数之比为3∶4∶6,则∠D 的度数为A .60°B .80°C .100°D .120°4.下列一元二次方程中,有两个不相等实数根的方程是()A .0132=+-x x B .012=+x C .0122=+-x x D .0322=++x x 5.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A .B .C .D .6.已知一元二次方程062=+-m x x 有一个根为2,则另一根为()A .2B .3C .4D .87.下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是0.5;③相等的圆心角所对的弧相等;④某种彩票的中奖率为101,佳佳买10张彩票一定能中奖.其中,正确的命题是()A .①②B .①②③C .①②④D .①②③④8.将抛物线y =3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x-2)2-1B.y=3(x-2)2+1C.y=3(x+2)2-1D.y=3(x+2)2+19.若关于x的方程(a+1)x2﹣2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠﹣1B.a>1C.a<1D.a≠010.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°二、填空题11.在平面直角坐标系中,点P(2,-3)关于原点对称点P′的坐标是.12.已知x=-1是关于x的方程2+-=的一个根,则a=____.x ax25013.如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在圆周上(与点A、B不重合),则∠ACB的度数为.14.小明第一次抛一枚质地均匀的硬币时,正面向上,他第二次再抛这枚硬币时,正面向上的概率是15.如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为__.16.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是_____.三、解答题17.解方程:.18.解方程19.如图,在⊙O中,CD为直径,AB为弦,且CD平分AB于E,OE=3cm,AB=8cm求:⊙O 的半径.20.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.21.在一个口袋中有5个小球,其中有两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到小球的条件下,从袋中随机地取出一个小球.(1)求取出的小球是红球的概率;(2)把这5个小球中的两个都标号为1,其余分布标号为2、3、4,随机地取出一个小球后不放回,再随机地取出一个小球.利用树状图或列表的方法,求第二次取出小球标号大于第一次取出小球标号的概率.22.某商场今年二月份的营业额为400万元,三月份由于经营不善,其营业额比二月份下降10%.后来通过加强管理,五月份的营业额达到518.4万元.求三月份到五月份营业额的月平均增长率.23.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.(1)、求这两个函数的解析式;(2)、求△MON的面积;(3)、根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.24.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,,求⊙O的半径r.25.在平面直角坐标系中,Rt△AOB的位置如图所示,已知∠AOB=90°,AO=BO90AOB∠=,点A的坐标为(-3,1).(1)、求点B的坐标;(2)、求过A、O、B三点的抛物线的解析式;(3)、设点P为抛物线上到X轴的距离为1的点,点B关于抛物线的对称轴l的对称点为1B,的面积.求点P的坐标和1B PB参考答案1.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【解析】试题分析:本题根据垂径定理可得:弧AD=弧BD,AF=BF,根据直径所对的圆周角为直角可得∠DBC=90°.考点:垂径定理3.C【分析】根据圆内接四边形的对角互补的性质列式计算即可.【详解】解:根据圆内接四边形的性质可得:∠A+∠C=∠B+∠D=180°,设∠A=3x,则∠B=4x,∠C=6x,则3x+6x=180°,解得:x=20°,则∠B=80°,∠D=180°-80°=100°.故选:C考点:圆内接四边形的性质.4.A【解析】试题分析:A、△=9-4=5>0,有两个不相等的实数根;B、△=0-4=-4<0,无实数解;C、△=4-4=0,有两个相等的实数根;D、△=4-12=-8<0,无实数解.考点:根的判别式.5.C【解析】试题分析:在十张数字卡片中,恰好能被4整除的有4,8,共2个,故随机抽取一张恰好能被4整除的概率是210=15.故选C.考点:概率公式.6.C【解析】试题分析:根据韦达定理可得两根之和=-ba,即2+另一个根=6,则另一个根为4.考点:韦达定理的应用.7.A【解析】试题分析:①②正确,③缺少前提条件,即同圆或等圆中;④可能性问题,对于买任意x 张,都是有可能中奖.考点:概率的性质、圆的基本性质.8.C【解析】试题分析:函数图象的平移法则为:左加右减,上加下减;根据这个平移法则就可以进行计算.考点:二次函数图象的平移法则.9.A【分析】根据一元二次方程的定义可知a的取值范围.【详解】解:由题意可知:a+1≠0,∴a≠﹣1故选A.【点睛】本题考查一元二次方程的定义,本题属于基础题型,解题的关键是正确理解一元二次方程的定义.10.B【分析】通过圆周角定理计算即可;【详解】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.【点睛】本题主要考查了圆周角定理的应用,准确计算是解题的关键.11.(-2,3)【解析】试题分析:若两点关于原点对称,则两点的横做坐标分别互为相反数.考点:原点对称的性质.12.-3【详解】试题分析:将x=-1代入方程,列出关于a的一元一次方程,然后进行求解.将x=-1代入得:2-a-5=0,解得:a=-3.考点:解一元一次方程.13.45°或135°【解析】试题分析:当点C在优弧上时,∠ACB=90°÷2=45°,当点C在劣弧上时,∠ACB=(360-90°)÷2=135°.考点:圆周角的计算.14.1 2【解析】试题分析:对于抛硬币的问题,无论前面的情况是什么,每次正面向上的概率都是1 2.考点:概率的计算.15.y=(x>0)【解析】设该反比例函数的解析式是y=(x>0).∵点A(1,3)在此曲线上,∴3=k,即k=3,∴该反比例函数的解析式为y=(x>0).故答案为y=(x >0).16.x 1=﹣3,x 2=1【分析】根据二次函数的对称性即可求出抛物线与x 轴的另一个交点横坐标,即求出方程ax 2+bx +c =0的另一个根.【详解】∵由图可知,抛物线与x 轴的一个交点坐标为(-3,0),对称轴为直线x =-1,∴设抛物线与x 轴的另一交点为(x ,0),则312x-+=-,解得x =1,∴方程ax 2+bx +c =0的两根是x 1=-3,x 2=1.【点睛】本题考察了二次函数的图像和性质,对于二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),其对称轴是直线:2bx a=-;若抛物线与x 轴的两个交点是A (x 1,0),B (x 2,0),则抛物线的对称轴是:122x x x +=.17.1x =2x =【详解】试题分析:利用公式法进行求解.试题解析:a="1"b=1c=-1则△=2b -4ac=1+4=5则∴112x -=;212x -=.考点:解一元二次方程.18.1x =-1;2x =3.【详解】试题分析:利用提取公因式法进行解方程.试题解析:x(x+1)-3(x+1)=0(x+1)(x -3)=0解得:1x =-1;2x =3.考点:解一元二次方程.19.5cm 【解析】试题分析:首先连接OA ,根据垂径定理可得CD ⊥AB ,AE=4,根据勾股定理求出OA 的长度.试题解析:连结OA ,CD 为直径,且CD 平分AB 于E ,∴CD ⊥AB ,AE=12AB=4cm在Rt △OAE 中,5OA cm ==∴⊙O 的半径为5cm .考点:垂径定理的应用.20..(1)见解析(2)π【分析】(1)根据网格结构找出点B 、C 旋转后的对应点B′、C′的位置,然后顺次连接即可.(2)先求出AC 的长,再根据扇形的面积公式列式进行计算即可得解.【详解】解:(1)△AB′C′如图所示:(2)由图可知,AC=2,∴线段AC 旋转过程中扫过的扇形的面积2902360ππ⋅⋅==.21.(1)、35;(2)、920.【解析】试题分析:(1)由在一个口袋中有5个球,其中2个是白球,其余为红球,这些球的形状、大小、质地等完全相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.试题解析:(1)∵在一个口袋中有5个球,其中2个是白球,其余为红球,∴取出一个球是红的概率为:5−25=35;(2)画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.考点:1.列表法与树状图法;2.概率公式.22.20%【详解】试题分析:设三月份到五月份营业额的月平均增长率为x,则四月份的营业额400×(1-10%)(1+x),五月份的营业额为400×(1-10%)(1+x)2,列出方程求解即可.试题解析:设三月份到五月份营业额的月平均增长率为x,根据题意得,400×(1-10%)(1+x)2=518.4,解得,x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:三月份到五月份营业额的月平均增长率为20%.考点:一元二次方程的应用.23.(1)y=4x;y=2x-2;(2)3;(3)x<-1或0<x<2【分析】(1)首先根据点N的坐标求出反比例函数解析式,然后将点M的坐标代入反比例函数解析式求出点M的坐标,最后将点M和点N的坐标代入一次函数解析式求出解析式;(2)首先求出点A的坐标,然后利用△MOA和△NOA的面积和求出△MON的面积;(3)根据图象进行回答.【详解】(1)由已知,得-4=,k=4,∴y=.又∵图象过M(2,m)点,∴m=2,∵y=ax+b图象经过M、N两点,∴解之得∴y=2x-2.(2)如图,对于y=2x-2,y=0时,x=1,∴A(1,0),OA=1,=S△MOA+S△NOA=OA·MC+OA·ND=×1×2+×1×4=3.∴S△MON(3)由图象可知,当x<-1或0<x<2时,反比例函数的值大于一次函数的值.∴x<-1或0<x<224.(1)见解析;(2)⊙O的半径r为6.【分析】(1)连接OA、OD,求出∠D+∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求∠OAD+∠CAF=90°,根据切线的判定推出即可.(2)OD=r,OF=8﹣r,在Rt△DOF中根据勾股定理得出方程r2+(8﹣r)2=2,求出即可.【详解】(1)连接OA、OD,∵D为弧BE的中点,∴OD⊥BC.∴∠DOF=90°.∴∠D+∠OFD=90°.∵AC=FC,OA=OD,∴∠CAF=∠CFA ,∠OAD=∠D.∵∠CFA=∠OFD ,∴∠OAD+∠CAF=90°.∴OA ⊥AC.∵OA 为半径,∴AC 是⊙O 切线.(2)∵⊙O 半径是r ,∴OD=r ,OF=8﹣r.在Rt △DOF 中,r 2+(8﹣r )2=)2,解得r=2(舍去)或r=6,∴⊙O 的半径r 为6.25.(1)、B(1,3);(2)、y=256x +136x ;(3)、1P (31)-,、2P 2(1)5,、3P (21)--,、1P 3(1)5--,234655或【详解】试题分析:(1)、分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,证明△ACO 和△BOD 全等从而求出点B 的坐标;(2)、利用待定系数法求出函数解析式;(3)、首先求出对称轴方程,然后根据对称的性质求出点1B 的坐标,设出点P 的坐标为(k ,1)和(k ,-1),将P 点坐标代入函数解析式求出k 的值,然后计算三角形的面积.试题解析:(1)、作AC ⊥x 轴于C ,作BD ⊥x 轴于D .则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD又∵AO=BO ∴△ACO ≌△ODB ∴OD=AC=1DB=OC=3∴点B 的坐标为(1,3).(2)、因为抛物线过原点,故可设所求抛物线的解析式为:2y ax bx =+.将(31)(13)A B -,,,两点代入,得3{93 1.a b a b ,+=-=解得.故所求抛物线的解析式为251366y x x =+.(3)、在抛物线251366y x x =+中,对称轴l 的方程是13210b x a =-=-.1B 是B 关于抛物线的对称轴l 的对称点,故1B 坐标1835⎛⎫- ⎪⎝⎭,,∴118231()=55B B =--由题意,设抛物线上到x 轴的距离为1的点为(,1)P k 或(,1)P k -,则2513166k k +=或2513166k k +=-即:251360k k +-=或251360k k ++=解得1234233,,2,.55k k k k =-==-=-即抛物线上到x 轴的距离为1的点为:1P (31)-,、2P 2(1)5,、3P (21)--,、1P 3(1)5--.在11B PB 中,底边1235B B =,高的长为2,故11B P B S 123232255=⨯⨯=,同理12235B P B S = ,1314465B P B B P B S S == 考点:二次函数的性质.。

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列电视台的台标,是中心对称图形的是()A.B.C.D.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣23.直径分别为8和6的两圆相切,则这两圆的圆心距等于()A.14B.2C.14或2D.7或14.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠05.若两圆的半径分别为5和2,圆心距是4,则这两圆的位置关系是()A.外离B.外切C.相交D.内含6.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.7.当x0>时,函数5yx=-的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A.12B.13C.14D.159.方程(x+1)(x-3)=5的解是A.x1=1,x2=-3B.x1=4,x2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=210.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是()A .(2﹣3x )(1﹣2x )=1B .12(2﹣3x )(1﹣2x )=1C .12(2﹣3x )(1﹣2x )=1D .12(2﹣3x )(1﹣2x )=2二、填空题11.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.12.已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx(m <0)图象上的两点,则y 1____y 2(填“>”“=”或“<”).13.如图,在Rt AOB 中,OA=OB=O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为_____.14.如图,在平面直角坐标系中,抛物线()22y a x k =-+(a 、k 为常数且0a ≠)与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作//CD x 轴与抛物线交于点D .若点A 的坐标为()4,0-,则OBCD的值为____.15.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.161x-x的取值范围是_______.173x-x的取值范围是_______.18.边长为1的正三角形的内切圆半径为________三、解答题19.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:D为BC的中点;(2)过点O作OF⊥AC,于F,若AF=74,BC=2,求⊙O的直径.20.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.21.如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2)AN AM CN CM=.22.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.23.如图,已知直线PT与⊙O相交于点T,直线PO与⊙O相交于A、B两点,已知PTA B∠=∠.(1)求证:PT是⊙O的切线;(2)若PT BT==24.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上是否有一点D (x ,y )使S △ABD =S △ABC ,求点D 的坐标.25.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C ,(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为,求BC 的长.26.如图,直线y =﹣13x +m 与x 轴,y 轴分别交于点B 、A 两点,与双曲线相交于C 、D 两点,过C 作CE ⊥x 轴于点E ,已知OB =3,OE =1.(1)求直线AB 和双曲线的表达式;(2)设点F 是x 轴上一点,使得2CEF COB S S △△=,求点F 的坐标.参考答案1.D 【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2.A 【解析】∵x 2+2x=0,∴x (x+2)=0,∴x=0或x+2=0,∴x 1=0或x 2=﹣2,故选A .3.D 【解析】当两圆外切时,则圆心距等于8÷2+6÷2=7;当两圆内切时,则圆心距等于8÷2-6÷2=1.故选D .4.A 【分析】分两种情况讨论:(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根.【详解】(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根:()4410k ∆=--≥,解得1k ≥-,综上所述,1k ≥-.故选:A .【点睛】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.5.C 【解析】∵两圆的半径分别为5和2,圆心距为4.则5-2=3<4<5+2=7,∴两圆相交.故选C 6.C 【详解】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM=DN=4,由垂径定理,勾股定理得:,∵AB ,CD 是互相垂直的两条弦,∴∠DPB=90°∵OM AB ⊥,ON CD ⊥,∴∠OMP=∠ONP=90°∴四边形MONP 是正方形,∴=选C 7.A 【分析】根据反比例函数()ky k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.【详解】∵反比例函数5yx=-的系数50-<,∴图象两个分支分别位于第二、四象限.∴当x0>时,图象位于第四象限.故选A.8.C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:1 4,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.9.B【解析】(x+1)(x-3)=5,x²-3x+x-3-5=0,x²-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,故选B.10.A【解析】人行通道的宽度为x千米,则矩形绿地的长为:12(2﹣3x)千米,宽为(1﹣2x)千米,由题意可列方程:2×12(2﹣3x)(1﹣2x)=12×2×1,即:(2﹣3x)(1﹣2x)=1,故选A.【点睛】本题考查了一元二次方程的应用,正确分析,根据题意找到等量关系列出方程是解题的关键.11.29【详解】根据题意,画出树形图如下:∵从树形图可以看出,摸出两球出现的所有等可能结果共有9种,两个球号码之和为5的结果有2种,∴两次摸取的小球标号之和为5的概率是2 9.12.>【解析】分析:m<0,在每一个象限内,y随x的增大而增大.详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,所以y2<y1,即y1>y2.故答案为>.点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.13.【详解】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.14.2【分析】由抛物线解析式可知抛物线对称轴直线x=2,由A、C的横坐标可知B、D的横坐标,进而求出OB=8,CD=4,即可解答OB.【详解】解:∵抛物线的解析式为y=a(x-2)2+k,∴抛物线的对称轴为直线x=2.∵点A的横坐标为-4,点C的横坐标为0,∴点B的横坐标为8,点D的横坐标为4,∴OB=8,CD=4,∴824OBCD==.故答案为2.【点睛】本题考查了抛物线与x轴的交点,根据抛物线的对称轴找出点B、D的横坐标是解题的关键.15.4【分析】要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.【详解】解:由题意知:展开图扇形的弧长是2×3π=6π,设母线长为L,则有12×6πL=15π,解得:L=5,∵由于母线,高,底面半径正好组成直角三角形,∴在直角△AOC中高AO4.故填:4.【点睛】此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般.x≥16.1【详解】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.x≥3【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x﹣3≥0,解得:x≥3,故答案为x≥3.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.18【解析】如图,∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=12,∴tan∠OBD=O O=∴内切圆半径12=,【点睛】本题主要考查了三角形的内切圆,根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形是解决本题的关键.19.(1)证明见解析;(2)⊙O的直径为4.【解析】试题分析:(1)连接AD,根据直径所对的圆周角是直角,以及三线合一定理即可证得;(2)先根据垂径定理,求得AE=2AF=72;再运用圆周角定理的推论得∠ADB=∠ADC=∠BEA=∠BEC=90°,从而可证得∴△BEC∽△ADC,即CD:CE=AC:BC,根据此关系列方程求解即可得⊙O的直径.试题解析:(1)连接AD∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴点D是BC的中点;(2)∵OF⊥AC于F,AF=7 4,∴AE=2AF=7 2,连接BE,∵AB为直径D、E在圆上,∴∠ADB=∠ADC=∠BEA=∠BEC=90°,∴在△BEC、△ADC中,∠BEC=∠ADC,∠C=∠C,∴△BEC∽△ADC,即CD:CE=AC:BC,∵D为BC中点,∴CD=12 BC,又∵AC=AB,∴12BC2=CE•AB,设AB=x,可得x(x﹣72)=2,解得x1=﹣12(舍去),x2=4,∴⊙O的直径为4.20.(1)证明见解析;(2)a的值为﹣或﹣2【解析】【试题分析】(1)欲证明方程总有两个不相等的实数根,只需证明根的判别式大于0即可.△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4>0,从而得证;(2)根据韦达定理,将x12+x22=10转化为两根之和与两根之积的形式,代入得到关于a的方程,从而求出a即可.x12+x22=(x1+x2)2﹣2x1x2=10,即(a+3)2﹣2(a+1)=10,解得a1=﹣2+,a2=﹣2﹣.【试题解析】(1)证明:△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4,∵(a+1)2≥0,∴(a+1)2+4>0,即△>0,∴方程总有两个不相等的实数根;(2)根据题意得x1+x2=﹣(a+3),x1x2=a+1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=10,∴(a+3)2﹣2(a+1)=10,整理得a2+4a﹣3=0,解得a1=﹣2+,a2=﹣2﹣,即a的值为﹣2+或﹣2﹣.【方法点睛】本题目是一道一元二次方程的题目,涉及到根的判别式与韦达定理.在证明一元二次方程根的情况时,通常通过证明根的判别式与0的大小关系解决问题.在涉及到两根的等量关系时,通常转化为两根之和与两根之积的形式,从而求出参数.21.(1)证明见解析;(2)证明见解析.【详解】试题分析:(1)要证M为BD的中点,即证BM=DM,由∠BAM=∠DAN,∠BCM=∠DCN,及圆周角的性质易证明△BAM∽△CBM,△DAM∽△CDM得出比例的乘积形式,可证明BM=DM;(2)欲证AN AMCN CM=,可以通过平行线的性质证明,需要延长AM交圆于点P,连接CP,证明PC∥BD,得出比例式,相应解决MP=CM的问题即可.试题解析:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA,又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM,∴△BAM∽△CBM,∴BM AMCM BM=,即BM2=AM•CM,①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则DM AMCM DM=,即DM2=AM•CM,②由式①、②得:BM=DM,即M为BD的中点;(2)如图,延长AM交圆于点P,连接CP,∴∠BCP=∠PAB=∠DAC=∠DBC,∵PC∥BD,∴AN AM NC PM=,③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP,而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM,④由式③、④得:AN AM CN CM=.22.不公平.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.试题解析:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P(姐姐参加)=416=14,P(弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(1)证明见解析;(2)6π【分析】(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT与⊙O 相切;(2)利用TP=TB得到∠P=∠B,而∠OAT=2∠P,所以∠OAT=2∠B,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12 AB,△AOT为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S扇形OA T-S△AOT进行计算.【详解】(1)证明:连接OT,∵AB是⊙O的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT,∴∠OAT=∠2,∵∠PTA=∠B,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT与⊙O相切;(2)∵PT BT==∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt△ABT中,设AT=a,则AB=2AT=2a,∴a 22=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形,11224AOT S ∴=⨯⨯= .∴阴影部分的面积2Δ 601360464AOT AOT S S ππ⨯=-=-=-扇形.【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.(1)1;(2)B (﹣12,0);(3)D 的坐标是(12,1)或(14,﹣1)或(14,﹣1)【分析】(1)把点A 的坐标代入函数解析式,利用方程来求m 的值;(2)令y =0,则通过解方程来求点B 的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A (1,0)代入y =﹣2x 2+x+m ,得﹣2×12+1+m =0,解得m =1;(2)由(1)知,抛物线的解析式为y =﹣2x 2+x+1.令y =0,则﹣2x 2+x+1=0,故x 134-±-,解得x 1=﹣12,x 2=1.故该抛物线与x 轴的交点是(﹣12,0)和(1,0).∵点为A (1,0),∴另一个交点为B 是(﹣12,0);(3)∵抛物线解析式为y =﹣2x 2+x+1,∴C (0,1),∴OC =1.∵S △ABD =S △ABC ,∴点D 与点C 的纵坐标的绝对值相等,∴当y =1时,﹣2x 2+x+1=1,即x (﹣2x+1)=0解得x =0或x =12.即(0,1)(与点C 重合,舍去)和D (12,1)符合题意.当y =﹣1时,﹣2x 2+x+1=﹣1,即2x 2﹣x ﹣2=0解得x =14.即点(14,﹣1)和(14,﹣1)符合题意.综上所述,满足条件的点D 的坐标是(12,111).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D 还可以在x 轴的下方是解题关键.25.(1)证明见解析;(2)BC=2.【详解】试题分析:(1)连接OB ,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB ,得出∠BAC=∠OBA ,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC ∽△PBO ,得出对应边成比例,即可求出BC 的长.试题解析:(1)证明:连接OB ,如图所示:∵AC 是⊙O 的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为,∴,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC OB OP=,8=,∴BC=2.考点:切线的判定26.(1)y=﹣13x+1,y=﹣43x;(2)F(﹣7,0)或(5,0);【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)根据三角形面积公式求得EF的长,即可求得点F的坐标;【详解】解:(1)∵OB =3,OE =1,∴B (3,0),C 点的横坐标为﹣1,∵直线y =﹣13x +m 经过点B ,∴0=﹣13×3+m ,解得m =1,∴直线为:y =﹣13x +1,把x =﹣1代入y =﹣13x +1得,y =﹣13×(﹣1)+1=43,∴C (﹣1,43),∵点C 在双曲线y =kx (k ≠0)上,∴k =﹣1×43=﹣43,∴双曲线的表达式为:y =﹣43x ;(2)∵OB =3,CE =43,∴S △COB =12×3×43=2,∵S △CEF =2S △COB ,∴S △CEF =12×EF ×43=4,∴EF =6,∵E (﹣1,0),∴F (﹣7,0)或(5,0).【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的运用.。

人教版九年级数学上册期末综合复习测试题(含答案)

人教版九年级数学上册期末综合复习测试题(含答案)

人教版九年级数学上册期末综合复习测试题(含答案)时间:100分钟 总分:120分一、 选择题(每题3分,共24分)1.已知关于x 的方程()222310---=m m x x +是一元二次方程,则m 的值为( ) A .2m =B .4m =C .2m =±D .2m =-2.如图,将AOB ∆绕点O 按逆时针方向旋转40°后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是 ( )A .25°B .30°C .35°D .40°3.顶点(2,1),且开口方向、形状与函数22y x =的图像相同的抛物线是 ( ) A .221y x =+ B .22(2)1y x =-+ C .22(2)1y x =++D .22(2)1y x =+-4.把方程2630x x +-=化成2)x m n (的形式,则m n += ( ) A .15-B .9C .15D .65.如图,ABC ∆内接于O ,直径8cm AD =,=60B ∠︒,则AC 的长度为 ( )A .5cmB .42C .43D .6cm6.在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有( ) A .15个B .20个C .21个D .24个7.在同一坐标系中,一次函数y ax k =+与二次函数2y kx a =+的图象可能是 ( )A .B .C .D .8.二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >;②30a c +>;③a c b +<-;④520a b c -+<.其中结论正确的个数为 ( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)9.若n 是方程2210x x --=的一个根,则代数式232n n -+-的值是________. 10.如图,AB 是半圆的直径,C 、D 是半圆上的两点,且20BAC =︒∠,点D 是AC 的中点,则BAD ∠=______.11.点()()1122,,,A x y B x y 在二次函数232y x x =-++的图像上,若122x x <<-,则1y 与2y 的大小关系是1y _______________2y .(用“>”、“<”、“=”填空)12.已知关于x 的一元二次方程2()0(,,a x h k a h k -+=都是常数,且0)a ≠的解为1213x x =-=,,则方程2(1)0(,,a x h k a h k --+=都是常数,且0)a ≠的解为___________.13.如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是______.14.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为_________.15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n ++<的解集是__________.16.如图,以(0,3)G 为圆心,半径为6的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE ⊥于F ,点E 在G 的运动过程中,线段FG 的长度的最小值为______.三、解答题(每题8分,共72分) 17.解方程: (1)(2)(3)12x x --= (2)23410x x -+=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个根都是符号相同的整数,直接写出它的根.19.已知二次函数图像与x 轴两个交点之间的距离是4个单位,且顶点M 为()14-,,求二次函数的解析式.20.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(-10)A ,,(4)B m ,两点,且抛物线经过点(50)C ,(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A .点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.当PE =2ED 时,求P 点坐标;(3)点P 是直线上方的抛物线上的一个动点,求ABP ∆的面积最大时的P 点坐标.21.一个不透明的口袋中有四个完全相同的小球.把它们分别标记为1,2,3,4.(1)随机摸取一个小球的标号是偶数,该事件的概率为______;(2)小雨和小佳玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜.小雨先从口袋中摸出一个小球,不放回,小佳再从口袋中摸出一个小球.用画树状图(或列表)的方法,分别求出小雨和小佳获胜的概率.22.如图,已知女排球场的长度OD 为20米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系.(1)写出C 点坐标___________;B 点坐标___________.(2)若排球运行的最大高度为3米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(3)在(2)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.23.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线.(2)若9OC =,4AC =,8AE =,则BC =______,BE =______.24.如图,已知等边ABC ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形吋,直接写出BEC ∠为______度.25.抛物线2y ax 2x c =++与x 轴交于(1,0)A -、B 两点.与y 轴交于点(0,3)C 、点(,3)D m 在抛物线上.(1)求抛物线的解析式.(2)如图1,连接BC 、BD ,点P 在对称轴左侧的抛物线上,若PBC DBC ∠=∠,求点P 的坐标.(3)如图2,过点A 的直线∥m BC ,点Q 是直线BC 上方抛物线上一动点,过点Q 作QE m ⊥,垂足为点E ,连接BE ,CE ,CQ ,QB .当四边形BECQ 的面积最大时,求点Q 的坐标及四边形BDCQ 面积的最大值。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

人教版九年级数学上册期末考试试题及答案精选6套

人教版九年级数学上册期末考试试题及答案精选6套

人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。

4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。

5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。

9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。

人教版九年级数学上册期末基础复习测试题(含答案)

人教版九年级数学上册期末基础复习测试题(含答案)

人教版九年级数学上册期末基础复习测试题(含答案)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.下列图形中,是轴对称图形而不是中心对称图形的有 ( )A .B .C .D .2.下列一元二次方程中,没有实数解的是 ( ) A .220x x -= B .()()130x x --= C .220x -=D .210x x ++=3.下列事件中,属于必然事件的是 ( ) A .明天下雨B .篮球队员在罚球线投篮一次,未投中C .掷一枚硬币,正面朝上D .任意画一个三角形,其内角和是180°4.若⊙A 半径为5,圆心A 的坐标是()12,,点P 的坐标是()52,,那么点P 与A 的位置关系为( ) A .点P 在⊙A 内B .点P 在⊙A 上C .点P 在⊙A 外D .无法确定5.如果抛物线2+=+y ax bx c 经过点()2,3--和()5,3-,那么抛物线的对称轴为 ( ) A .3x =B .3x =-C .32x =D .32x =-6.如图,C 、D 是O 上直径AB 两侧的点,若20ABC ∠=︒,则D ∠等于 ( )A .60︒B .65︒C .70︒D .75︒7.将两块斜边长度相等的等腰直角三角形板如图①摆放,如果把图①中的BCN△绕点C 逆时针旋转90︒得ACF △,连接MF ,如图②.下列结论错误的是 ( )A .ABC CED △≌△B .BCN ACF △≌△C .AMC BCN △≌△D .MFC MNC △≌△ 8.如图,在平面直角坐标系中,点A 在抛物线222y x x -=+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值 ( )A .0.5B .1C .1.5D .2二、填空题(每题3分,共24分)9.若关于x 的一元二次方程()2100mx nx m --=≠的一个解是1x =,则m n -的值是______.10.已知平面直角坐标系中,15A a B b (,)、(,)关于原点对称,则a b +=_____.11.如果二次函数()2224y a x x a =+++-的图像经过原点,那么=a ______.12.一个不透明的袋中装有若干个红球和10个白球, 摇匀后每次随机从袋中摸出一个球, 记下颜色后放回袋中, 通过大量重复摸球试验后发现,摸到白球的频率是0.4,则袋中红球约为_________个.13.如图,正方形ABCD 四个顶点都在⊙O 上,点P 是在弧BC 上的一点(P 点与C 点不重合),则CPD ∠的度数是_____.14.已知2222a b a b++-=,则22()(1)20+的值为___________.a b15.抛物线2=++上部分点的横坐标与纵坐标的对应值如表:y ax bx cx …4-2-0 2 4 …y …m n m 1 0 …由表可知,抛物线与x轴的一个交点的坐标是(4,0),则抛物线与x轴的另一个交点的坐标是_____.16.如图,在平面直角坐标系中,正方形ABCD的边BC与x轴重合,顶点A、D 在抛物线2=-+上.若抛物线的顶点到x轴的距离比BC长4,则c的值为4y x c_____.三、解答题(每题8分,共72分)17.解方程(1)()2(30-=+;3)x x x+(2)2250x x+-=.18.如图,网格中每个小正方形的边长都是单位1.(1)画出将ABC 绕点O 顺时针方向旋转90︒后得到的A B C '''; (2)请直接写出A ',B ',C '三点的坐标.19.已知抛物线2y x bx c =-+经过(1,0)A -、(3,0)B 两点. (1)求抛物线的解析式和顶点坐标; (2)点P 为抛物线上一点、若10PABS =,求出此时点P 的坐标.20.5张背面相同的卡片,正面分别写有不同1,2,3,4,7中的一个正整数.现将卡片背面朝上.(1)求从中任意抽出一张,正面的数是偶数的概率.(2)连续摸出4张卡片(不放回),已知前2张正面的数分别为1,7.求摸出的4张卡片的数的总和为奇数的概率(要求画树状图或列表).21.直播购物已经逐渐走进了人们的生活,某电商直播销售一款水杯,每个水杯的成本为30元,当每个水杯的售价为40元时,平均每月售出600个,通过市场调查发现,若售价每上涨1元,其月销售量就减少10个.为了尽快减少库存,当某月月销售利润恰好为10000元时,求每个水杯的售价.22.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度(m)y 与水平距离(m)x 之间的关系式是252(0)4y x x x =-++>.(1)喷头A 离地面O 的高度是多少? (2)水流喷出的最大高度是多少?(3)若不计其他因素,水池的半径OB 至少为多少,才能使喷出的水流不落在池外?23.如图,在Rt △ABC 中,∠C =90°,BC =8,AC =6,动点P 从点A 开始,沿边AC 向点C 以每秒1个单位长度的速度运动,动点D 从点A 开始,沿边AB 向点B 以每秒 53个单位长度的速度运动,且恰好能始终保持连接两动点的直线PD ⊥AC ,动点Q 从点C 开始,沿边CB 向点B 以每秒2个单位长度的速度运动,连接PQ .点P ,D ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t 秒(t ≥0).(1)当t =3时,求PD 的长?(2)当t 为何值时,四边形BQPD 的面积为△ABC 面积的一半?(3)是否存在t 的值,使四边形PDBQ 为平行四边形?若存在,求出t 的值;若不存在,说明理由.24.如图,ABC ∆中,AC BC =,D 为AB 上一点,⊙O 经过点A ,C ,D ,交BC 于点E ,过点D 作DF BC ∥,交O 于点F .求证: (1)AB ∥CF (2)AF EF =.25.如图1,直线22y x =-+交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线212y x bx c =-++与x 轴的另一交点为B .(1)请直接写出该抛物线的函数解析式;(2)点D 是第二象限抛物线上一点,设D 点横坐标为m . ①如图2,连接BD ,CD ,BC ,求BDC 面积的最大值;②如图3,连接OD ,将线段OD 绕O 点顺时针旋转90︒,得到线段OE ,过点E 作EF x ∥轴交直线AC 于F .求线段EF 的最大值及此时点D 的坐标。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014九年级(上)期末数学考试试题及答案一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个2.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=53.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF 的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3C.﹣3 D.都不对6.(3分)下列方程中,有实数根的是()A.x2+4=0 B.x2+x+3=0 C.D.5x2+1=2x7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+28.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=10359.(3分)(2012•淄博)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC 的长为()A.B.C.D.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.内切C.相交D.相离11.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2012•临沂)计算:4﹣=_________.14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n=_________.15.(4分)(2012•苏州二模)方程x(x﹣1)=x的根是_________.16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m=_________.17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为_________;若∠P=40°,则∠DOE=_________.18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为_________.三、解答题(本题共7个小题,满分60分)19.(5分)计算:.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.23.(8分)(2008•山西)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.24.(12分)(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为_________,周长为_________.(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_________,周长为_________.(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为_________.(4)在图3情况下,若AD=1,求出重叠部分图形的周长.参考答案与试题解析一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:因为=,=2,=,所以符合条件的最简二次根式为,,共2个.故选:B.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=5考点:二次根式的混合运算.分析:按照二次根式的运算法则进行计算即可.解答:解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误;故选C.点评:此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选C.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF 的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形考点:旋转的性质;正方形的性质.分析:根据旋转的性质知,△ABE≌△CBF,则BE=BF,所以△BEF为等腰直角三角形.解答:解:∵把△ABE绕点B旋转到△CBF,∴△ABE≌△CBF,∴BE=BF,∵∠ABC=90°,∴△BEF为等腰直角三角形.故选:D.点评:此题主要考查了旋转的性,根据已知得出旋转角以及对应边是解题关键.5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3C.﹣3 D.都不对考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.解答:解:由一元二次方程的定义可知,解得m=﹣3.故选C.点评:要特别注意二次项系数m﹣3≠0这一条件,当m﹣3=0时,上面的方程就是一元一次方程了.6.(3分)下列方程中,有实数根的是()A.x2+4=0 B.x2+x+3=0 C.D.5x2+1=2x考点:根的判别式.专题:计算题.分析:先把D中的方程化为一般式,再计算四个方程的判别式的值,然后根据判别式的意义判断.解答:解:A、△=0﹣4×4<0,方程没有实数根,所以A选项错误;B、△=1﹣4×3<0,方程没有实数根,所以B选项错误;C、△=(﹣)2﹣4×2×(﹣1)>0,方程有两个不相等的实数根,所以C选项正确;D、5x2﹣2x+1=0,△=4﹣4×5×1<0,方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+2考点:二次函数的三种形式.专题:计算题;配方法.分析:由于二次项系数是1,利用配方法直接加上一次项系数一半的平方来凑完全平方式,可把一般式转化为顶点式.解答:解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选D.点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).8.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035考点:由实际问题抽象出一元二次方程.专题:其他问题.分析:如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解答:解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.点评:本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.9.(3分)(2012•淄博)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC 的长为()A.B.C.D.考点:垂径定理;勾股定理.分析:首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.解答:解:过点O作OD⊥AB于点D,∵弦AB=2,∴AD=BD=AB=,AC=AB=,∴CD=AD﹣AC=,∵⊙O的半径为2,即OB=2,∴在Rt△OBD中,OD==1,在Rt△OCD中,OC==.故选D.点评:此题考查了垂径定理与勾股定理的应用.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.内切C.相交D.相离考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别为2、5,且圆心距O1O2=7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为2和5,且圆心距O1O2=7,又∵2+5=7,∴两圆的位置关系是外切.故选A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系是解此题的关键.11.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π考点:相切两圆的性质.分析:由图可知,四个小圆的直径和等于大圆直径,4个小圆大小相等,故小圆直径为12÷4=3,根据周长公式求解.解答:解:大圆周长为12π,四个小圆周长和为4×(12÷4)π=12π,5个圆的周长的和为12π+12π=24π.故选B.点评:本题主要考查相切两圆的性质,解题的关键是熟记圆周长的计算公式:直径×π.12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°考点:切线的性质.分析:画出图形,连接OA、OB,则OA⊥AP,OB⊥PB,求出∠AOB,继而分类讨论,可得出∠AC'B及∠ACB的度数.解答:解:连接OA、OB,∵PA、PB分别切⊙O于A、B两点,∴OA⊥AP,OB⊥PB,①当点C在优弧AB上时,∠AOB=180°﹣∠APB=130°,∴∠AC'B=65°;②当点C在劣弧AB上时,∠ACB=180°﹣∠AC'B=135°.综上可得:∠ACB=65°或115°.故选C.点评:本题考查了切线的性质,需要用到的知识点为:①圆的切线垂直于经过切点的半径,②圆周角定理,③圆内接四边形的对角互补.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2012•临沂)计算:4﹣=0.考点:二次根式的加减法.专题:计算题.分析:先将二次根式化为最简,然后合并同类二次根式即可.解答:解:原式=4×﹣2=0.故答案为:0.点评:此题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n=﹣2.考点:关于原点对称的点的坐标.分析:根据两点关于原点的对称,横纵坐标符号相反,即可得出n的值.解答:解:∵A(3,n)关于原点对称的点的坐标为(﹣3,2),∴n=﹣2,故答案为:﹣2.点评:本题主要考查了平面直角坐标系内关于原点对称的点的特点,关键是把握坐标变化规律.15.(4分)(2012•苏州二模)方程x(x﹣1)=x的根是x1=0,x2=2.考点:解一元二次方程-因式分解法.分析:先将原方程整理为一般形式,然后利用因式分解法解方程.解答:解:由原方程,得x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得x1=2,x2=0.故答案为:x1=2,x2=0.点评:本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m=2.考点:一元二次方程的解;一元二次方程的定义.分析:根据条件,把x=0代入原方程可求m的值,注意二次项系数m+2≠0.解答:解:依题意,当x=0时,原方程为m2﹣4=0,解得m1=﹣2,m2=2,∵二次项系数m+2≠0,即m≠﹣2,∴m=2.故本题答案为:2.点评:本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值.17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为16cm;若∠P=40°,则∠DOE=70°.考点:切线长定理.分析:根据切线长定理,可得DC=DA,EC=EB,继而可将△PCD的周长转化为PA+PB,连接OA、OB、OD、OE、OC,则可求出∠AOB的度数,从而可得∠DOE的度数.解答:解:∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.连接OA、OB、OD、OE、OC,则∠AOB=180°﹣∠P=140°,∴∠DOE=∠COD+∠COE=(∠BOC+∠AOC)=∠BOC=70°.故答案为:16cm、70°.点评:此题考查了切线长定理及切线的性质,难度适中,注意掌握数形结合思想的应用.18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为20πcm.考点:弧长的计算;旋转的性质.分析:顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径,旋转的角度是180﹣60=120°,所以根据弧长公式可得.解答:解:=20πcm.故答案为20πcm.点评:本题考查了弧长的计算以及旋转的性质,解本题的关键是弄准弧长的半径和圆心角的度数.三、解答题(本题共7个小题,满分60分)19.(5分)计算:.考点:二次根式的混合运算.专题:计算题.分析:先根据二次根式的乘除法法则得到原式=﹣+2,然后利用二次根式的性质化简后合并即可.解答:解:原式=﹣+2=4﹣+2=4+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.考点:解一元二次方程-因式分解法.分析:(1)分解因式,即可得出两个一元一次方程,求出方程的解即可.(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:(1)分解因式得:(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(2)移项得:x(2x+3)﹣2(2x+3)=0,(2x+3)(x﹣2)=0,2x+3=0,x﹣2=0,x1=﹣,x2=2.点评:本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.考点:作图-旋转变换.专题:作图题.分析:根据网格结构找出点A、B、C绕点C顺时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标.解答:解:△A2B2C2如图所示;点A2(8,3).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.考点:切线的性质;含30度角的直角三角形;勾股定理;菱形的性质.专题:几何综合题.分析:(1)连接OC,根据切线的性质得出OC⊥AB,再由勾股定理求得OA即可;(2)根据菱形的性质,求得OD=CD,则△ODC为等边三角形,可得出∠A=30°,即可求得的值.解答:解:(1)如图①,连接OC,则OC=4,∵AB与⊙O相切于点C,∴OC⊥AB,∴在△OAB中,由AO=OB,AB=10,得AC=AB=5.在Rt△AOC中,由勾股定理得OA===;(2)如图②,连接OC,则OC=OD,∵四边形ODCE为菱形,∴OD=CD,∴△ODC为等边三角形,有∠AOC=60°.由(1)知,∠OCA=90°,∴∠A=30°,∴OC=OA,∴=.点评:本题考查了切线的性质和勾股定理以及直角三角形、菱形的性质,是一道综合题,要熟练掌握.23.(8分)(2008•山西)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.考点:切线的判定;圆周角定理.专题:证明题.分析:要证GE是⊙O的切线,只要证明∠OEG=90°即可.解答:证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OEG=∠ODG=90°,故GE是⊙O的切线;(证法二)连接OE,OG,∵AG=GD,CO=OD,∴OG∥AC,∴∠1=∠2,∠3=∠4.∵OC=OE,∴∠2=∠4,∴∠1=∠3.又OE=OD,OG=OG,∴△OEG≌△ODG,∴∠OEG=∠ODG=90°,∴GE是⊙O的切线.点评:本题考查切线的判定方法及圆周角定理运用.24.(12分)(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.解答:解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.点评:本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为4,周长为4+4.(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为4,周长为8.(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为4.(4)在图3情况下,若AD=1,求出重叠部分图形的周长.考点:旋转的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;三角形中位线定理.分析:(1)根据AC=BC=4,∠ACB=90°,得出AB的值,再根据M是AB的中点,得出AM=MC,求出重叠部分的面积,再根据AM,MC,AC的值即可求出周长;(2)易得重叠部分是正方形,边长为AC,面积为AC2,周长为2AC.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E.求得Rt△MHD≌Rt△MEG,则阴影部分的面积等于正方形CEMH的面积.(4)先过点M作ME⊥BC于点E,MH⊥AC于点H,根据∠DMH=∠EMH,MH=ME,得出Rt△DHM≌Rt△EMG,从而得出HD=GE,CE=AD,最后根据AD和DF的值,算出DM=,即可得出答案.解答:解:(1)∵AC=BC=4,∠ACB=90°,∴AB===4,∵M是AB的中点,∴AM=2,∵∠ACM=45°,∴AM=MC,∴重叠部分的面积是=4,∴周长为:AM+MC+AC=2+2+4=4+4;故答案为:4,4+4;(2)∵叠部分是正方形,∴边长为×4=2,面积为×4×4=4,周长为2×4=8.故答案为:4,8.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E,∵M是△ABC斜边AB的中点,AC=BC=4,∴MH=BC,ME=AC,∴MH=ME,又∵∠NMK=∠HME=90°,∴∠NMH+∠HMK=90°,∠EMG+∠HMK=90°,∴∠HMD=∠EMG,在△MHD和△MEG中,∵,∴△MHD≌△MEG(ASA),∴阴影部分的面积等于正方形CEMH的面积,∵正方形CEMH的面积是ME•MH=×4××4=4;∴阴影部分的面积是4;故答案为:4.(4)如图所示:过点M作ME⊥BC于点E,MH⊥AC于点H,∴四边形MECH是矩形,∴MH=CE,∵∠A=45°,∴∠AMH=45°,∴AH=MH,∴AH=CE,在Rt△DHM和Rt△GEM中,,∴Rt△DHM≌Rt△GEM.∴GE=DH,∴AH﹣DH=CE﹣GE,∴CG=AD,∵AD=1,∴DH=1.∴DM==∴四边形DMGC的周长为:CE+CD+DM+ME=AD+CD+2DM=4+2.点评:此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.。

相关文档
最新文档