八年级下月考数学试卷(含答案)

合集下载

山西省朔州市右玉县2023-2024学年八年级下学期月考数学试卷(含答案)

山西省朔州市右玉县2023-2024学年八年级下学期月考数学试卷(含答案)

姓名________ 准考证号________八年级数学(人教版)注意事项:1.本试卷共4页,满分120分,考试时间120分钟。

2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置上。

3.答卷全部在答题卡上完成,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是最符合题目要求的,请将正确选项的字母标号在答题卡相应位置涂黑.1.下列式子中一定是二次根式的是()A.B.C.D.2.下列各组数中是勾股数的为()A.1,2,3B.4,5,6C.13,84,85D.7,8,93.下列二次根式中,属于最简二次根式的是()A.B.C.D.4.下列二次根式,不能与合并的是()A.B.C.D.5.下列计算中,正确的是()A.B.C.D.6.三边分别为a,b,c,下列能说明是直角三角形的是()A.B.C.D.7.若与互为相反数,则的值是()A.B.C.D.8.《九章算术》是我国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈尺)A.3B.5C.4.2D.49.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点(小正方形的顶点)上.若BD是的高,则BD的长为()A.B.C.D.10.如图,在四边形ABCD中.,∠D=90°,,.分别以A,C为圆心,大于的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为()A.B.C.6D.8第II卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.若二次根式有意义,则x的取值范围是________.12.命题“全等三角形的对应角相等”的逆命题为________.13.如果表示实数a、b的点在数轴上的位置如图所示,那么化简的结果是________.14.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:________.15.如图,长方形ABCD中,,,点E是AB的中点,点F是BC边上的任意一点(不与B,C重合),沿EF翻折,点B落在点处,当的长度最小时,BF的长度为________.三、解答题(本大题共8个小题,共75分)解答应写出文字说明、证明过程或演算步骤.16.(每小题5分,共10分)计算:(1);(2).17.(本题8分)先化简再求值:,其中,.18.(本题6分)如图,在的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形;(1)从点A出发的一条线段AB,使它的另一个端点落在格点上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C落在格点上,且另两边的长都是无理数.19.(本题10分)如图,在四边形ABCD中,,,,,.求四边形ABCD的面积.20.(本题10分)为庆祝2024年全国两会的召开,学校组织了“献礼两会”小制作展示活动.小彬计划制作一架飞机模型,如图的四边形材料是飞机垂直尾翼的雏形.小彬测量发现,,,.根据设计要求,还需保证.由于手头工具有限,小彬只能测得,根据以上数据,请你判断该材料是否符合设计要求,并说明理由.21.(本题8分)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我国领海驶来,便立即通知正在线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A,B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?22.(本题10分)阅读下列解题过程,回答问题.;;;……则:(1)________;________;(2)观察上面的解题过程,请直接写出式子________;(3)利用上面的规律:比较与的大小.23.(本题13分)综合与探究:已知:是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中.探究并解决下列问题:图1 图2(1)如图1,若点P在线段AB上,且,,则:①线段________,________;②猜想:,,三者之间的数量关系为________;(2)如图2,若点P在AB的延长线上,在(1)②中所猜想的结论仍然成立,请你利用图2给出证明过程.八年级数学(人教版)参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1-5:BCCDC6-10:AACDA10、解析:如图,连接FC,由题可得,点E和点O在AC的垂直平分线上.∴EO垂直平分AC,∴.∵,∴.在与中,,∴,∴.∴,.在中,∵,∴.即,解得.故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.12.如果两个三角形的对应角相等,那么这两个三角形全等13.14.11,60,6115.解析:如图,连接DE,∵.,,∴.∴当D,,E共线时,的值最小,不妨设此时点落在DE上的点处,设,∵,∴,解得.故填:.三、解答题(本大题共8个小题,共75分)16、(1)解:原式3分;5分(2)解:原式7分9分.10分17、解:原式2分4分,5分当,时,原式7分.8分18、解:(1)如图所示,AB即为所求;2分(2)如图,或即为所求.6分19、解:连接AC,如图所示:1分∵,,,∴4分∵,,.∴是直角三角形,.7分∴.10分20、解:该材料符合设计要求.1分理由如下:在中,,,,∴.3分∴.4分在中,,,,∴.6分∴.7分∴.8分∴.9分∴该材料符合设计要求.10分21.解:设MN与AC相交于点E,则.1分∵,∴是直角三角形,且.2分∵,∴走私艇C进入我国领海的最短距离是CE.3分由,即.4分得海里.5分由.得海里.6分∴(小时)时36分,9时30分时36分时6分.7分答:走私艇C最早在11时6分进入我国领海.8分22、解:(1)4分(2)由题意可知:.故填:.6分(3)由于,,8分∵,∴.9分∴.∴.10分23、(1)解:①22分(2)4分(2)证明:过点C作于点D.5分∵为等腰直角三角形,,∴.7分∴,,∴.9分在中,由勾股定理,得,∴,11分∵为等腰直角三角形.∴.∵.13分。

河南省济源市2023-2024学年八年级下学期5月月考数学试卷(含答案)

河南省济源市2023-2024学年八年级下学期5月月考数学试卷(含答案)

八年级数学(测试范围:16章到第19章注意事项:1.本试卷共6页,三大题,满分120分,测试时间100分钟。

2.请用蓝、黑色钢笔或圆珠笔写在试卷或答题卡上。

3.答卷前请将密封线内的项目填写清楚。

题号一二三总分分数一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是()A.B.C.D.2.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、133.直线与x轴的交点是(1,0),则k的值是()A.3 B.2 C.D.4.如图,在中,,若,则正方形ADEC和正方形BCFG的面积和为()A.225 B.200 C.150 D.无法计算5.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则的度数是()A.B.C.D.6.如图,在矩形ABCD中,,,则AC的长为()A.B.8 C.D.47.在中,,,,则()A.5 B.C.3 D.8.已知一次函数的函数值y随x的增大而减小,则该函数的图象大致是()A.B.C.D.9.如图,正方形ABCD的边长为,N为AD上一点,连接BN,于点M,连接CM,且,若,则的面积为()A.4 B.6 C.8 D.1610.如图1,在等腰中,,于点D.动点P从点A出发,沿着A→D→C 的路径以每秒1个单位长度的速度运动到点C停止,过点P作于点E,作于F.在此过程中四边形CEPF的面积y与运动时间x的函数关系图象如图2所示,则AB的长是()A.4 B.C.D.3二、填空题(每小题3分,共15分)11.若计算的结果为正整数,则无理数m的值可以是________(写出一个符合条件的即可).12.如图,在中,,点D是AB的中点,且,则________cm.13.如图,在□ABCD中,,点E、F分别是BD,CD的中点,则________cm.14.如图,直线与相交于点P,点P的横坐标为,则关于x的不等式的解集________.15.在平面直角坐标系中,点A的坐标为(12,8),过点A分别作轴于点B,轴于点C,已知经过点P(4,6)的直线将矩形OBAC分成的两部分面积比为时,则k的值为________.三、解答题(共8题,共75分)16.(10分)计算:(1);(2).17.(9分)已知函数(m是常数).(1)m为何值时,y随x的增大而增大?(2)m满足什么条件时,该函数是正比例函数?(3)当时,函数图象交y轴于点A,交x轴于点B,求的面积.18.(9分)如图,已知E,F是平行四边形ABCD对角线BD上的点,.(1)求证:;(2)求证:四边形AECF是平行四边形.19.(9分)如图,在中,,,,DE是的边AB上的高,E为垂足,且,.(1)试判断.的形状,并说明理由;(2)求DE的长.20.(9分)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.如图所示是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了________小时;开挖6小时时,甲队比乙队多挖了________米;(2)请你写出:①甲队在的时段内,y与x之间的函数关系式________;②乙队在的时段内,y与x之间的函数关系式________;(3)开挖6小时后,甲、乙两个工程队的挖掘效率不变,如果两段河渠长度都为80米时,请计算说明甲比乙早几小时完工?21.(9分)如图,在中,,,,动点P从点B出发,沿射线BC以的速度移动,设运动的时间为t(s).(1)求BC边的长.(2)当为直角三角形时,求t的值.22.(10分)如图,中,,,D是BC边上一动点,交AB于E,交AC于F.(1)若,判断四边形AEDF的形状并证明;(2)在(1)的条件下,若四边形AEDF是正方形,求BD的长;(3)若,四边形AEDF是菱形,则________.23.(10分)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),且满足,点D(,n)在直线AB上.(1)求直线AB表达式;(2)过点D作y轴平行线l,交x轴于点C,求;(3)点E是x轴上一动点,当是直角三角形时,求点E的坐标.八年级数学一、选择题(每小题3分,共30分)1.C 2.A 3.D 4.A 5.C 6.B 7.B 8.B 9.C 10.B 二、填空题(每小题3分,共15分)11.(答案不唯一)12.10 13.5 14.15.或三、解答题(共8题,共75分)16.解:(1)原式;(2)原式.17.解:(1)∵,y随x的增大而增大,∴,解得,即当时,y随x的增大而增大;(2)∵,该函数是正比例函数,∴且,解得,即当时,该函数是正比例函数;(3)当时,,∴当时,;当时,;∴点A的坐标为(0,),点B的坐标为(2,0),∴,,∴的面积为:.18.(1)证明:∵四边形ABCD是平行四边形,∴,,∴.∵,∴.在和中,∴(AAS),∴;(2)证明:∵,∴.∵,∴,∴四边形AECF是平行四边形.19.解:(1)是直角三角形,理由如下:∵,,,∴,∵,∴是直角三角形,(2)∵是直角三角形,,,∴的面积,∴.20.解:(1)2,10.(2)①.②.(3),解得,∴当河渠长度为80米时,甲需要8小时可以完工.设乙队在的时段内,y与x之间的函数关系式为(、b为常数,且).将,和,代入,得,解得,∴乙队在的时段内,y与x之间的函数关系式为.,解得,∴当河渠长度为80米时,乙需要12小时可以完工.(小时),∴如果两段河渠长度都为80米时,甲比乙早4小时完工.21.解:(1)在中,由勾股定理得(cm),∴.(2)由题意知.①当时,如图1,点P与点C重合,,∴.②当时,如图2,,.在中,,在中,,因此,解得.综上所述,当为直角三角形时,t的值为4或.22.解:(1)四边形AEDF是矩形,理由如下∵,由勾股定理得∵、,∴四边形AEDF是平行四边形,又∵,∴四边形AEDF是矩形;(2)由(1)得,当时,四边形AEDF是正方形.设,建立面积方程;即:,解得:,∴,,在中,由勾股定理得:;(3).【提示】依题意得,当AD是角平分线时,四边形AEDF是菱形.过点B作AC的垂线段交于点G,又∵,∴,,,由勾股定理得:,∵AD平分,∴,即.∴,故答案为:.23.解:(1)∵,∴,,解得,,A(,0),B(0,3),设直线AB表达式为,∴,解得,∴直线AB解析式;(2)当时,,∴D(,),∴轴,∴C(,0),∴;(3)设E(x,0),当时,轴,E的坐标为(,0);当时,,∴,解得,∴E的坐标为(,0);∴当E的坐标为(,0)或(,0)时,是直角三角形.。

2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)+答案解析

2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)+答案解析

2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.二次根式有意义的条件是()A. B. C. D.2.下列各组线段中,不能构成直角三角形的是()A. B.7,24,25 C.5,12,13 D.3.如图,下列的四个图象中,不表示y是x的函数图象的是()A. B. C. D.4.已知直线经过点,则a的值是()A.2B.3C.4D.55.若一次函数的函数值y随x的增大而增大,则m的取值范围是()A. B. C. D.6.菱形的对角线长分别为6和8,则此菱形的面积为()A.48B.40C.24D.207.在中,点D,E分别是AB,AC上的点,且,点F是DE延长线上一点,连接添加下列条件后,不能判断四边形BCFD是平行四边形的是()A.B.C.D.8.清明期间,甲、乙两人同时登云雾山,甲、乙两人距地面的高度米与登山时间分之间的函数图象如图所示,且乙提速后乙的速度是甲的3倍.则下列说法错误的是()A.乙提速后每分钟攀登30米B.乙攀登到300米时共用时11分钟C.从甲、乙相距100米到乙追上甲时,乙用时分钟D.从甲、乙相距100米到乙追上甲时,甲、乙两人共攀登了330米.9.一次函数和,与x的部分对应值如表,与x的部分对应值如表:则当时,x的取值范围是()x…01…x…01……35……0…A. B. C. D.10.如图所示,在四边形A中,,,,,E,F分别是AD,BC边的中点,则EF的长为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.25的平方根是______.12.如图所示,,,,则BC的长为______.13.已知一次函数的图象经过点,且与直线平行,则一次函数的表达式为______.14.如图,在四边形ABCD中,,,,E为BC的中点,连接DE,如果,则______15.如图,直线与的交点的横坐标为下列结论:①,;②直线一定经过点;③当时,;④m与n满足其中正确的有______只填序号16.如图,直线分别与x轴、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折.点O落在AB边上的点D处.则点D的坐标为______.三、解答题:本题共8小题,共72分。

2023-2024学年广东省惠州市大亚湾区金澳实验学校八年级(下)月考数学试卷(含答案)

2023-2024学年广东省惠州市大亚湾区金澳实验学校八年级(下)月考数学试卷(含答案)

2023-2024学年广东省惠州市大亚湾区金澳实验学校八年级(下)月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若二次根式x−1有意义,则x的取值范围是( )A. x>1B. x≥1C. x<1D. x≤12.下列计算正确的是( )A. 2+3=5B. 2×3=6C. 8=42D. 4−2=23.下列二次根式中,与6是同类二次根式的是( )A. 12B. 18C. 24D. 304.下列各组数是勾股数的是( )A. 3,4,5B. 1.5,2,2.5C. 32,42,52D. 3,4,55.计算8×2的结果是( )A. 10B. 4C. 8D. ±46.化简27+3−12的结果为( )A. 0B. 2C. −23D. 237.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a−b)=c2,则( )A. ∠A为直角B. ∠C为直角C. ∠B为直角D. 不是直角三角形8.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A. 5B. 25C. 7D. 5或79.若(a−3)2=3−a,则a与3的大小关系是( )A. a<3B. a≤3C. a>3D. a≥310.如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=1BG,则DF的长为( )2A. 2B. 5C. 3D. 22二、填空题:本题共5小题,每小题3分,共15分。

11.计算:12÷6=______.12.若实数a满足a−1=2,则a的值为______.13.若最简二次根式a+1与8是可以合并的二次根式,则a=______.14.已知x+y=3,xy=6,则x2y+xy2的值为______.15.观察下面几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;请你写出以上规律的第④组勾股数:______.三、解答题:本题共10小题,共75分。

2022-2023学年河北省石家庄市某校初二(下)月考数学试卷(含答案)101307

2022-2023学年河北省石家庄市某校初二(下)月考数学试卷(含答案)101307

2022-2023学年河北省石家庄市某校初二(下)月考数学试卷试卷考试总分:125 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1. 下列方程中,一元二次方程是( )A.B.C.D.2. 已知关于的方程的一个实数根是,并且它的两个实数根恰好是等腰的两边长,则的周长为( )A.B.C.或D.或3. 把方程化成一元二次方程的一般形式是( )A.B.C.D.4. 关于的分式方程解为,则常数的值为 ( )A.B.C.D.5. 下列图形是由在正六边形中连接两条对角线形成的,其中是中心对称图形的是( )A.+=0x 21x 2(2x−1)(x+2)=1a +bx =0x 23−2xy−5=0x 2y 2x −mx+2m=0x 23△ABC △ABC 121510121215(x+1)(x−1)=x−1=xx 2(x+1)(x−1)−x =0+x−1=0x 2−x−1=0x 2x +=02x 3x−ax =4a a =1a =2a =4a =10ABCDEFB. C. D.6. 一个三角形的两边长为和,第三边的边长是方程的根,则这个三角形的周长为( )A.B.C.或D.以上都不对7. 把方程的左边配成完全平方,正确的变形是( )A.B.C.D.8. 某车床加工厂,去年投资万元,预计今明两年累计投资万元,若今明两年的年平均增长率为,根据题意,列出的方程是( )A.B.C.D. 9. 如图,将一个含角的直角三角板绕点旋转,使得点,,在同一直线上,则三角板旋转的角度是A.B.C.46−7x+10=0x 212151215−6x+4=0x 2(x−3=9)2(x−3=13)2(x−3=5)2(x+3=5)2513.2x 5=13.2(1+x)25(1+x)+5=13.2(1+x)25=13.2(1+x)35+5(1+x)+5=13.2(1+x)230∘ABC A B A C ′ABC ()60∘90∘120∘D.10. 如图,在中,,,将绕点逆时针旋转角度得到,若,则的值为( )A.B.C.D.11. 一个数学兴趣小组的同学都将自己的照片向组内其他同学各送一张,共送出了张,如果全组共有名同学,根据题意,列出方程为( )A.B.C.D.12. 关于的方程 的根的情况( )A.有一个实数根B.有两个相等的实数根C.无实数根D.有两个不等的实数根13. 如图,矩形的顶点,分别在轴,轴上,,,将矩形绕点顺时针旋转,每次旋转,则第次旋转结束时,点的坐标为A.B.C.D.14. 已知函数的图象如图所示,则一元二次方程根的情况是( )A.没有实数根B.有两个相等的实数根150∘△ABC ∠BAC =45∘∠C =15∘△ABC A α(<α<)0∘180∘△ADE DE//AB α50∘55∘60∘65∘306x x(x+1)=3062x(x+1)=306x(x−1)=306×2x(x−1)=306x −2x−1=0x 2ABCD A B x y OA =OB =1AD =22–√ABCD O 45∘100C ( )(3,2)(2,−3)(−3,2)(−2,3)y =kx+b +x+k −1=0x 2C.有两个不相等的实数根D.不确定15. 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排场比赛,比赛组织者应邀请参赛队的个数是( )A.B.C.D.16. 如图,矩形的顶点,分别在轴,轴上,,,将矩形绕点顺时针旋转,每次旋转,则第次旋转结束时,点的坐标为( )A.B.C.D.二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17. 请写出一个没有实数根的一元二次方程:________.18. 如图,在中,,, ,将绕点逆时针旋转得到,连接,则的长为________19. 一元二次方程的两根为,则的值为________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )20. 解下列方程:(1)=(2)= 21. 如图所示,边长为的正,直线于,在边上运动,设线段,直线分成两部分,设左边部分的面积为.28781428ABCD A B x y OA =OB =1AD =22–√ABCD O 45∘100C (2,−3)(3,2)(−3,2)(−2,3)△ABC AB =4AC =3∠BAC =30∘△ABC A 60∘△AB 1C 1BC 1BC 1−4x+2=0x 2,x 1x 2−4+2x 21x 1x 1x 23x(x+3)2(x+3)2−6x−3x 202△ABC l ⊥AB P P AB AP =x l △ABC y将面积用表示;当,求. 22. 商场某种商品平均每天可销售件,每件盈利元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价元,商场平均每天可多售出件.若某天该商品每件降价元,当天可获利________元;设每件商品降价元,则商场日销售量增加________件,每件商品盈利________元(用含的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到元?23. 如图,在平面直角坐标系中,,,,且.求,的值;在轴上是否存在一点,使的面积为面积的一半,求出点的坐标.24. 如图所示,已知在中,,,,点从点开始沿 边向点以的速度移动,点从点开始沿边向点以的速度移动.如果,分别从,两点出发,那么几秒后,的面积等于?在中,的面积能否等于?试说明理由.25. 如图,已知的直角边在轴上,=,=,将绕点逆时针旋转得到,反比例函数经过点.(1)求反比例函数解析式;(2)连接,若点 是反比例函数图象上的一点,且将的周长分成相等的两部分,求点的坐标.(1)y x (2)y =710S △ABC x 305012(1)3(2)x x (3)2000A(a,0)B(b,0)C(−1,2)|2a +b +1|+(a +2b −4=0)2(1)a b (2)y M △COM △ABC M △ABC ∠B =90∘AB =6cm BC =12cm Q A AB B 1cm/s P B BC C 2cm/s (1)Q P A B △PBQ 8cm 2(2)(1)△PBQ 10cm 2Rt △AOB OA x OA 2AB 1Rt △AOB O 90∘Rt △COD y =k xB BD P OP △OBD P参考答案与试题解析2022-2023学年河北省石家庄市某校初二(下)月考数学试卷试卷一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1.【答案】B【考点】一元二次方程的定义【解析】根据一元二次方程的定义逐一判断即可.【解答】解:、是分式方程;、,即是一元二次方程;、中时,不是一元二次方程;、是二元二次方程;故选:.2.【答案】B【考点】根与系数的关系【解析】此题暂无解析【解答】解:把代入,得,解得,原方程化为,解得,,而,所以等腰三角形的三边为、、,所以它的周长为,故选.3.【答案】D【考点】A +=0x 21x 2B (2x−1)(x+2)=12+3x−3=0x 2C a +bx =0x 2a =0D 3−2xy−5=0x 2y 2B x =3−mx+2m=0x 29−3m+2m=0m=9−9m+18=0x 2=3x 1=6x 23+3=66636+6+3=15B一元二次方程的一般形式【解析】方程利用平方差公式化简,移项即可得到结果.【解答】解:方程整理得:,故选4.【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:根据分式方程的解的定义把代入原方程式中,得,解得.故选.5.【答案】A【考点】中心对称图形【解析】此题暂无解析【解答】解:根据中心对称图形的定义,中心对称图形旋转后,仍为原来的图形,只有选项符合定义,故选.6.【答案】B【考点】三角形三边关系解一元二次方程-因式分解法【解析】先利用因式分解法解方程得到,,再根据三角形三边的关系得到,然后计算三角形的周长.−x−1=0x 2D x =4+1234−a a =10D 180∘A A =2x 1=5x 2x =5解:,因式分解得,所以或,所以,.因为,所以第三边长为,所以三角形的周长为.故选.7.【答案】C【考点】解一元二次方程-配方法【解析】利用完全平方公式变形得到.【解答】解:两边同时加上得:,配方得:.故选.8.【答案】B【考点】一元二次方程的应用——增长率问题【解析】一般增长后的量增长前的量(增长率),本题可先求出今年的投资,再根据今年的投资列出明年的投资的式子,相加等于即可得出答案.【解答】解:由题意可得今年的投资为:,明年的投资为:.∵今明两年累计投资万元,∴.故选.9.【答案】D【考点】旋转的性质【解析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.−7x+10=0x 2(x−2)(x−5)=0x−2=0x−5=0=2x 1=5x 22+4=654+6+5=15B (x−3=5)25−6x+9=5x 2(x−3=5)2C =×1+13.25(1+x)5(1+x)(1+x)=5(1+x)213.25(1+x)+5(1+x =13.2)2B解:旋转角是.故选.10.【答案】C【考点】旋转的性质平行线的性质三角形内角和定理【解析】根据三角形内角和定理求出,根据旋转得出,根据平行线的性质求出即可.【解答】解:在中, ,,,将绕点逆时针旋转角度得到,,,,,旋转角的度数是.故选.11.【答案】D【考点】一元二次方程的应用——其他问题【解析】设全组共有名同学,则每名同学送出张照片,根据全班共送出了张照片,即可得出关于的一元二次方程,此题得解.【解答】解:设全组共有名同学,则每名同学送出张照片,依题意,得:.故选.12.【答案】D【考点】根的判别式【解析】∠CA =−=C ′180∘30∘150∘D ∠ABC ∠EDA =∠ABC =120∘∠DAB ∵△ABC ∠BAC =45∘∠C =15∘∴∠ABC =−∠BAC −∠C180∘=−−=180∘45∘15∘120∘∵△ABC A α(0<α<)180∘△ADE ∴∠ADE =∠ABC =120∘∵DE//AB ∴∠ADE+∠DAB =180∘∴∠DAB =−∠ADE =180∘60∘∴α60∘C x (x−1)306x x (x−1)x(x−1)=306D此题暂无解析【解答】解:由题知:,∴方程有两个不等的实数根.故选.13.【答案】B【考点】坐标与图形性质旋转的性质【解析】过点作轴于点,连接,根据已知条件求出点的坐标,再根据旋转的性质求出前次旋转后点的坐标,发现规律,进而求出第次旋转结束时,点的坐标.【解答】解:如图,过点作轴于点,连接.,∴.,∴.,∴,∴,∴.∵矩形绕点顺时针旋转,每次旋转,旋转次一个循环,∴,第次旋转结束时,点的坐标为,第次旋转结束时,点的坐标为,则第次旋转结束时,点的坐标为.故选.14.【答案】C【考点】根的判别式一次函数的图象【解析】利用一次函数的性质得,再计算判别式的值得到,然后判断的符合,从而得到方程根的情况.Δ=+4=8>022D C CE ⊥y E OC C 8C 100C C CE ⊥y E OC ∵OA =OB =1∠ABO =∠BAO =45∘∵∠ABC =90∘∠CBE =45∘∵BC =AD =22–√CE =BE =2OE =OB+BE =3C(−2,3)ABCD O 45∘8100=12×8+42C (3,2)4C (2,−3)100C (2,−3)B k <0△=−4k +3△【解答】解:由图象可得,∵,而,∴,∴方程有两个不相等的实数根故选.15.【答案】B【考点】一元二次方程的应用——其他问题【解析】此题暂无解析【解答】解:设比赛组织者应邀请队参赛,根据题意得:,解得: (舍去),∴比赛组织者应邀请个队参赛.故选.16.【答案】A【考点】坐标与图形性质旋转的性质【解析】过点作轴于点,连接,根据已知条件求出点的坐标,再根据旋转的性质求出前次旋转后点的坐标,发现规律,进而求出第次旋转结束时,点的坐标.【解答】解:如图,过点作轴于点,连接.,∴.,∴.,∴,∴,k <0△=−4(k −1)=−4k +312−4k >0△>0C x =28x(x−1)2=8,=−7x 1x 28B C CE ⊥y E OC C 8C 100C C CE ⊥y E OC ∵OA =OB =1∠ABO =∠BAO =45∘∵∠ABC =90∘∠CBE =45∘∵BC =AD =22–√CE =BE =2OE =OB+BE =3∴.∵矩形绕点顺时针旋转,每次旋转,旋转次一个循环,∴,第次旋转结束时,点的坐标为,第次旋转结束时,点的坐标为,则第次旋转结束时,点的坐标为.故选.二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17.【答案】(答案不唯一)【考点】根的判别式【解析】写出一个元二次方程,然后确定根的判别式的值小于即可.【解答】解:对于方程,∵,∴没有实数根.故答案为:(答案不唯一).18.【答案】【考点】旋转的性质勾股定理【解析】由旋转的性质可得,由勾股定理可求解.【解答】解:∵将绕点逆时针旋转得到,∴,,∵,∴,∵,∴.故答案为:.19.【答案】【考点】根与系数的关系C(−2,3)ABCD O 45∘8100=12×8+42C (3,2)4C (2,−3)100C (2,−3)A −x+3=0x 20−x+3=0x 2Δ=−4×1×3=−11<012−x+3=0x 2−x+3=0x 25AC =A =3,∠CA =C 1C 160∘△ABC A 60∘△AB 1C 1A =AC =3C 1∠CA =C 160∘∠BAC =30∘∠BA =∠BAC +∠CA =C 1C 190∘AB =4B ==5C 1A +A B 2C 21−−−−−−−−−−√52【解析】【解答】解:一元二次方程的两根为,∴,∴.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )20.【答案】∵=,∴=,∴=或.∵=,∴=,=,=,∴==,∴.【考点】解一元二次方程-配方法解一元二次方程-因式分解法【解析】(1)根据因式分解法即可求出答案.(2)根据公式法即可求出答案.【解答】∵=,∴=,∴=或.∵=,∴=,=,=,∴==,∴.21.【答案】解:设与交于点,在正中,,,那么,,当时,点经过中点,,−4x+2=0x 2、x 1x 2−4=−2,=2x 21x 1x 1x 2−4+2=−2+2×2=2x 21x 1x 1x 223x(x+3)2(x+3)(x+3)(3x−2)0x −3x =232−6x−3x 20a 2b −6c −3△36+2460x ==6±60−−√43±215−−√23x(x+3)2(x+3)(x+3)(3x−2)0x −3x =232−6x−3x 20a 2b −6c −3△36+2460x ==6±60−−√43±215−−√2(1)l AC Q △ABC ∠A =60∘∠APQ =90∘AQ =2x PQ =x 3–√<x <2P AB =−S △APQ S ABC S BPQ = 0<x ≤1,3–√于是∵,∴,那么,∴,即,解得,,而,那么为所求.【考点】一元二次方程的应用——几何图形面积问题【解析】此题暂无解析【解答】解:设与交于点,在正中,,,那么,,当时,点经过中点,,于是∵,∴,那么,∴,即,解得,,而,y = ,0<x ≤1,3–√2x 2−(2−x =−+2x−,1<x ≤2.3–√3–√2)23–√3–√3–√2x 2(2)y ==710S △ABC 7103–√x >1−+2x−=3–√3–√3–√2x 27103–√−1+2x−=12x 27105−20x+17=0x 2x =10±15−−√51<x ≤2x =10−15−−√5(1)l AC Q △ABC ∠A =60∘∠APQ =90∘AQ =2x PQ =x 3–√<x <2P AB =−S △APQ S ABC S BPQ y = ,0<x ≤1,3–√2x 2−(2−x =−+2x−,1<x ≤2.3–√3–√2)23–√3–√3–√2x 2(2)y ==710S △ABC 7103–√x >1−+2x−=3–√3–√3–√2x 27103–√−1+2x−=12x 27105−20x+17=0x 2x =10±15−−√51<x ≤2=10−−−√那么为所求.22.【答案】,根据题意,得:,整理,得:,解得:,,∵商城要尽快减少库存,∴.答:每件商品降价元时,商场日盈利可达到元.【考点】一元二次方程的应用——利润问题【解析】根据“盈利单件利润销售数量”即可得出结论;根据“每件商品每降价元,商场平均每天可多售出件”结合每件商品降价元,即可找出日销售量增加的件数,再根据原来没见盈利元,即可得出降价后的每件盈利额;根据“盈利单件利润销售数量”即可列出关于的一元二次方程,解之即可得出的值,再根据尽快减少库存即可确定的值.【解答】解:当天盈利:(元).故答案为:.∵每件商品每降价元,商场平均每天可多售出件,∴设每件商品降价元,则商场日销售量增加件,每件商品,盈利元.故答案为:;.根据题意,得:,整理,得:,解得:,,∵商城要尽快减少库存,∴.答:每件商品降价元时,商场日盈利可达到元.23.【答案】解:∵,又∵,,∴且,∴,解得,即,;(2)过点作轴,轴,垂足分别为,,如图所示.∵,,∴,∵,x =10−15−−√516922x 50−x (3)(50−x)×(30+2x)=2000−35x+250=0x 2=10x 1=25x 2x =25252000(1)=×(2)12x 50(3)=×x x x (1)(50−3)×(30+2×3)=16921692(2)12x 2x (50−x)2x 50−x (3)(50−x)×(30+2x)=2000−35x+250=0x 2=10x 1=25x 2x =25252000(1)|2a +b +1|+(a +2b −4=0)2|2a +b +1|≥0(a +2b −4≥0)2|2a +b +1|=0(a +2b −4=0)2{2a +b +1=0,a +2b −4=0,{a =−2b =3a =−2b =3C CT ⊥x CS ⊥y T S A(−2,0)B(3,0)AB =5C(−1,2)∴,,∵的面积,∴要使的面积的面积,则的面积,即,∴,所以的坐标为,.【考点】三角形的面积非负数的性质:偶次方非负数的性质:绝对值代入消元法解二元一次方程组坐标与图形性质【解析】(1)根据非负数的性质列出关于、的二元一次方程组,然后解方程组即可;(2)过点作轴,轴,垂足分别为、,根据点、的坐标求出,再根据点的坐标求出、,然后根据三角形的面积求出,再写出点的坐标即可.【解答】解:∵,又∵,,∴且,∴,解得,即,;(2)过点作轴,轴,垂足分别为,,如图所示.∵,,∴,∵,∴,,∵的面积,∴要使的面积的面积,则的面积,即,∴,所以的坐标为,.24.【答案】解:设秒后,的面积等于,CT =2CS =1△ABC =AB ⋅CT =512△COM =△ABC 12△COM =52OM ⋅CS =1252OM =5M (0,5)(0,−5)a b C CT ⊥x CS ⊥y T S A B AB C CT CS OM M (1)|2a +b +1|+(a +2b −4=0)2|2a +b +1|≥0(a +2b −4≥0)2|2a +b +1|=0(a +2b −4=0)2{2a +b +1=0,a +2b −4=0,{a =−2,b =3,a =−2b =3C CT ⊥x CS ⊥y T S A(−2,0)B(3,0)AB =5C(−1,2)CT =2CS =1△ABC =AB ⋅CT =512△COM =△ABC 12△COM =52OM ⋅CS =1252OM =5M (0,5)(0,−5)(1)t △PBQ 8cm 22t(6−t)=81根据题意得:,解得:或.答:秒或秒后,的面积等于.由题意得,,整理得:,∵,∴此方程无解,所以的面积不能等于.【考点】动点问题三角形的面积一元二次方程的应用根的判别式【解析】(1)分别表示出线段和线段的长,然后根据面积为列出方程求得时间即可;(2)根据面积为列出方程,判定方程是否有解即可.【解答】解:设秒后,的面积等于,根据题意得:,解得:或.答:秒或秒后,的面积等于.由题意得,,整理得:,∵,∴此方程无解,所以的面积不能等于.25.【答案】∵=,=,∴,把代入中,得=,∴;设与交于点,∵将的周长分成相等的两部分,又=,=,∴=,即为的中点,∴.设直线的解析式为=,把代入=,得,∴=.∴直线的解析式为=.由,得,,∴,.×2t(6−t)=812t =2424△PBQ 8cm 2(2)×2t(6−t)=1012−6t+10=0t 2Δ=−4ac =36−40=−4<0b 2△PBQ 10cm 2PB BQ 88(1)t △PBQ 8cm 2×2t(6−t)=812t =2424△PBQ 8cm 2(2)×2t(6−t)=1012−6t+10=0t 2Δ=−4ac =36−40=−4<0b 2△PBQ 10cm 2OA 2AB 1B(2,1)B(2,1)y =k xk 2y =2x OP BD Q OP △OBD OB OD OQ OQ BQ DQ Q BD Q(,)1232OP y kx Q(,)1232y kx =k 3212k 3BD y 3x y =3xy =2x =x 16–√3=y 16–√ =−x 26–√3=−y 26–√(,)P 16–√36–√(−,−)P 26–√36–√【考点】反比例函数图象上点的坐标特征待定系数法求反比例函数解析式坐标与图形变化-旋转【解析】(1)根据线段、的长度易得点的坐标,把点的坐标代入函数解析式求得的值即可;(2)由直线把的周长分成相等的两部分且=,知=,即点为的中点,从而得出点坐标,求得直线解析式,代入反比例函数解析式可得点坐标.【解答】∵=,=,∴,把代入中,得=,∴;设与交于点,∵将的周长分成相等的两部分,又=,=,∴=,即为的中点,∴.设直线的解析式为=,把代入=,得,∴=.∴直线的解析式为=.由,得,,∴,.OA AB B B k OP △OBD OB OD DQ BQ Q BD Q OP P OA 2AB 1B(2,1)B(2,1)y =k x k 2y =2x OP BD Q OP △OBD OB OD OQ OQ BQ DQ Q BD Q(,)1232OP y kx Q(,)1232y kx =k 3212k 3BD y 3x y =3xy =2x =x 16–√3=y 16–√ =−x 26–√3=−y 26–√(,)P 16–√36–√(−,−)P 26–√36–√。

人教版八年级下学期第一次月考数学试卷含答案解析

人教版八年级下学期第一次月考数学试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。

八年级下月考试题--数学【解析版】

八年级下月考试题--数学【解析版】

八年级(下)第一次月考数学试卷一、选择题:每题3分,共30分.1.下列式子一定是二次根式的是()A.B.C.D.2.下列二次根式中属于最简二次根式的是()A. B. C.D.3.已知直角三角形的两条边长分别是3和4,则第三边为()A.5 B.C.5或D.不能确定4.是整数,正整数n的最小值是()A.0 B.2 C.3 D.45.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,同时另一轮船以12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里6.下列各组3个整数是勾股数的是()A.4,5,6 B.6,8,9 C.13,14,15 D.8,15,177.下列计算正确的是()A. B.2C.D.38.如图,a、b、c分别表示直角三角形的三边向外作的正方形的面积,下列关系正确的是()A.a+b=c B.a2+b2=c2C.ab=c D.a+b=c29.化简结果正确的是()A.3B.3C.17D.17﹣1210.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°二、填空题:每题3分,共24分.11.比较大小:5.12.二次根式在实数范围内有意义,则x的范围是.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是.15.已知最简二次根式能够合并,则a的值为.16.等边三角形的边长为4,则其面积为.17.将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是.18.当x=2+时,式子x2﹣4x+2017=.三、解答题:共66分.19.计算:(1);(2)0+|3﹣|﹣;(3)9.20.已知:线段a、b、c且满足|a﹣|+(b﹣4)2+=0.求:(1)a、b、c的值;(2)以线段a、b、c能否围成直角三角形.21.先化简,再求值:(5x﹣7+2x2)﹣(x2+2x)﹣(x﹣5),其中x=.22.已知:如图Rt△ABC中,∠C=90°,AC=+1,BC=﹣1.求:(1)Rt△ABC的面积;(2)斜边AB的长.23.已知:在△ABC中,∠B=45°,∠C=30°,AC=2.求:(1)AB、BC的长;(2)△ABC的面积.24.如图,长方形ABCD中,AB=8,BC=10,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长.(2)求CF的长.25.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:每题3分,共30分.1.下列式子一定是二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数小于零二次根式无意义,故A错误;B、被开方数大于零,故B正确;C、x小于零时无意义,故C错误;D、被开方数不小于零,故D错误;故选:B.2.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故A正确;B、被开方数含开的尽的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数含分母,故D错误;故选:A.3.已知直角三角形的两条边长分别是3和4,则第三边为()A.5 B.C.5或D.不能确定【考点】勾股定理.【分析】此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.【解答】解:当第三边是斜边时,则第三边===5;当第三边是直角边时,则第三边===.故选C.4.是整数,正整数n的最小值是()A.0 B.2 C.3 D.4【考点】二次根式的定义.【分析】根据为整数,n为正整数,确定出n的最小值即可.【解答】解:∵是整数,∴正整数n的最小值为2,故选B5.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,同时另一轮船以12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里【考点】勾股定理的应用.【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.6.下列各组3个整数是勾股数的是()A.4,5,6 B.6,8,9 C.13,14,15 D.8,15,17【考点】勾股数.【分析】满足a2+b2=c2的三个正整数,称为勾股数.依此判断即可.【解答】解:A、42+52=41≠62,故不是勾股数;B、62+82=100≠92,故不是勾股数;C、132+142=365≠152,故不是勾股数;D、82+152=289=172,故是勾股数;故选D.7.下列计算正确的是()A. B.2C.D.3【考点】二次根式的混合运算.【分析】求出每个式子的值,再判断即可.【解答】解:A、﹣=2﹣,故此选项错误;B、2+≠2,故此选项错误;C、(+1)=,故此选项错误;D、3﹣2=,故此选项正确;故选:D.8.如图,a、b、c分别表示直角三角形的三边向外作的正方形的面积,下列关系正确的是()A.a+b=c B.a2+b2=c2C.ab=c D.a+b=c2【考点】勾股定理.【分析】根据正方形的面积=边长×边长可表示出三个正方形的边长,结合勾股定理即可得出结论.【解答】解:由正方形的面积公式可知:左边正方形的边长=,右边正方形的边长=,下边正方形的边长=,由勾股定理可知:,即a+b=c.故选A.9.化简结果正确的是()A.3B.3C.17D.17﹣12【考点】分母有理化.【分析】原式分子分母乘以有理化因式,计算即可得到结果.【解答】解:原式==3+2.故选A.10.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°【考点】等腰直角三角形;勾股定理.【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=a,AB=a,∵(a)2+(a)2=(a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.二、填空题:每题3分,共24分.11.比较大小:<5.【考点】实数大小比较.【分析】先变形2=,5=,再比较即可.【解答】解:∵2=<,∴2<5,故答案为:<.12.二次根式在实数范围内有意义,则x的范围是x≤2,且x≠1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义可得2﹣x≥0,根据分式有意义可得x﹣1≠0,再解即可.【解答】解:由题意得:2﹣x≥0,且x﹣1≠0,解得:x≤2,且x≠1,故答案为:x≤2,且x≠1.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【考点】勾股定理.【分析】首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.14.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是直角三角形.【考点】勾股定理的逆定理.【分析】先对已知进行化简,再根据勾股定理的逆定理进行判定.【解答】解:∵(a+b)2﹣c2=2ab,∴a2+b2=c2,∴三角形是直角三角形.15.已知最简二次根式能够合并,则a的值为1.【考点】同类二次根式.【分析】由于最简二次根式能够合并,则它们是同类二次根式,于是有1+a=4﹣2a,然后解一次方程即可.【解答】解:∵最简二次根式能够合并,∴1+a=4﹣2a,∴a=1.故答案为1.16.等边三角形的边长为4,则其面积为4.【考点】等边三角形的性质;三角形的面积;勾股定理.【分析】根据三线合一的性质根据勾股定理可以求出AD,根据AD、BC可以计算等边△ABC的面积,即可解题.【解答】解:∵等边三角形中中线与高线重合,∴D为BC的中点,故BD=BC=2,在Rt△ABD中,AB=4,BD=2,则AD==2,∴等边△ABC的面积为BC•AD=4×=4.故答案为4.17.将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是2cm≤h≤3cm.【考点】勾股定理的应用.【分析】根据杯子内筷子的长度取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2cm≤h≤3cm.故答案为:2cm≤h≤3cm.18.当x=2+时,式子x2﹣4x+2017=2016.【考点】二次根式的化简求值.【分析】将原式配成完全平方式后将x的值代入计算可得.【解答】解:当x=2+时,原式=x2﹣4x+4+2013=(x﹣2)2+2013=()2+2013=3+2013=2016,故答案为:2016.三、解答题:共66分.19.计算:(1);(2)0+|3﹣|﹣;(3)9.【考点】二次根式的混合运算;零指数幂.【分析】(1)化简二次根式,然后合并二次根式即可;(2)第一项利用零指数幂法则计算,第二项根据绝对值的性质进行化简,然后据实数的运算法则求得计算结果;(2)化简二次根式,然后根据二次根式的运算法则进行计算.【解答】解:(1)=2﹣2+3+2=5;(2)0+|3﹣|﹣=1+2﹣3﹣2=﹣2;(3)9=﹣×=﹣.20.已知:线段a、b、c且满足|a﹣|+(b﹣4)2+=0.求:(1)a、b、c的值;(2)以线段a、b、c能否围成直角三角形.【考点】二次根式的应用.【分析】(1)根据非负数性质可得a、b、c的值;(2)根据勾股定理逆定理可判断.【解答】解:(1)∵|a﹣|+(b﹣4)2+=0,∴a﹣=0,b﹣4=0,c﹣=0,即a=3,b=4,c=5;(2)∵a2+b2=(3)2+(4)2=50,c2=(5)2=50,∴a2+b2=c2,∴线段a、b、c能围成直角三角形.21.先化简,再求值:(5x﹣7+2x2)﹣(x2+2x)﹣(x﹣5),其中x=.【考点】整式的加减—化简求值;二次根式的化简求值.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=5x﹣7+2x2﹣x2﹣2x﹣x+5=x2+2x﹣2=(x+1)2﹣3,当x=﹣1时,原式=2﹣3=﹣1.22.已知:如图Rt△ABC中,∠C=90°,AC=+1,BC=﹣1.求:(1)Rt△ABC的面积;(2)斜边AB的长.【考点】勾股定理.【分析】(1)由三角形的面积公式直接计算即可;(2)根据勾股定理来求AB的长度即可.【解答】解:(1)S△=AC•BC=×(+1)(﹣1)=3;(2)由勾股定理得:AB2=AC2+BC2=(+1)2+(﹣1)2=16,即AB=4.23.已知:在△ABC中,∠B=45°,∠C=30°,AC=2.求:(1)AB、BC的长;(2)△ABC的面积.【考点】勾股定理.【分析】(1)先过点A作AD⊥BC于D,在Rt△ABD中,由于∠B=30°,AC=2,可知∠BAD=60°,且AD=1,利用等腰直角三角形的性质、勾股定理可求BD,在Rt△ACD中,由于AD=1,∠C=45°,易求CD,从而可求BC;(2)由三角形的面积公式进行解答即可.【解答】解:(1)过点A作AD⊥BC于D,∵在Rt△ACD中,∠C=30°,AC=2,∴AD=AC=1,CD=.∵在Rt△ABD,∠B=45°,∴AD=BD=1,∴由勾股定理求得:AB=,∴BC=BD+CD=1+;(2)S△=AD•BC=×1×(1+)=.24.如图,长方形ABCD中,AB=8,BC=10,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长.(2)求CF的长.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质得到AD=BC=10,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD=BC=10,根据勾股定理即可得到结果;(2)由(1)知BE=6,于是得到CE=BC﹣BE=4,根据折叠的性质得到EF=DF=8﹣CF,根据勾股定理即可得到结论.【解答】解:(1)长方形ABCD中,∵AD=BC=5,∠D=∠B=∠C=90°,∵△AEF是△ADF沿折痕AF折叠得到的,∴AE=AD=BC=10,∴BE=;(2)由(1)知BE=6,∴CE=BC﹣BE=4,∵△AEF是△ADF沿折痕AF折叠得到的,∴EF=DF=8﹣CF,∵EF2=CE2+CF2,∴(8﹣CF)2=42+CF2,解得:CF=3.25.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【考点】勾股定理的应用;垂径定理的应用.【分析】(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.【解答】解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BC时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BC时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.。

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。

八年级月考数学试卷及答案

八年级月考数学试卷及答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. πC. √9D. √02. 下列函数中,定义域为全体实数的是()A. y = √xB. y = |x|C. y = 1/xD. y = √(x^2 - 1)3. 已知二次方程 x^2 - 4x + 3 = 0 的两个实数根为 a 和 b,则 a + b 的值为()A. 2B. 3C. 4D. 54. 在直角坐标系中,点 A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)5. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1二、填空题(每题5分,共25分)6. 若 a 和 b 是方程 x^2 - 5x + 6 = 0 的两个根,则 a^2 + b^2 的值为________。

7. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为 ________。

8. 在等腰三角形 ABC 中,AB = AC,若∠B = 50°,则∠A 的度数为 ________。

9. 下列式子中,正确的有(用序号表示)________。

(1)(a + b)^2 = a^2 + 2ab + b^2(2)(a - b)^2 = a^2 - 2ab + b^2(3)a^2 - b^2 = (a + b)(a - b)(4)(a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^410. 若 a、b、c 成等差数列,且 a + b + c = 12,a^2 + b^2 + c^2 = 42,则 b 的值为 ________。

三、解答题(每题10分,共30分)11. (1)已知二次函数 y = -2x^2 + 4x + 3,求该函数的顶点坐标。

(2)已知函数 y = 3x^2 - 2x - 1,求该函数的最大值。

12. (1)已知三角形 ABC 中,AB = 5,AC = 7,BC = 8,求三角形 ABC 的面积。

山西省大同市煤矿第一中学校2023-2024学年八年级下学期第一次月考数学试卷(含答案)

山西省大同市煤矿第一中学校2023-2024学年八年级下学期第一次月考数学试卷(含答案)

2023—2024学年第二学期第一次月考八年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 下列二次根式能与合并的是()A. B. C. D.答案:B2. 下列各组数中,以它们为边长能构成直角三角形的是()A. 2,3,4B. 1,2,C. 2,2,D. ,,答案:C3. 下列二次根式中,不是最简二次根式是()A. B. C. D.答案:D4. 已知,则x的值是()A. B. 2 C. D.答案:C5. 一艘轮船以16海里时速度从港口出发向东北方向航行,另一艘轮船以12海里/时的速度同时从港口出发向东南方向航行,离开港口1.5小时后,两船相距()A. 10海里B. 20海里C. 30海里D. 40海里答案:C6. 已知a=,b=,用含a、b的代数式表示,这个代数式是()A. a+bB. abC. 2aD. 2b答案:B7. 已知a <0,那么可化简为( )A.B. C. D.答案:D8. 如图,长方形中,,,在数轴上,若以点A 为圆心,AC 的长为半径画弧交数轴于点M ,则点M 表示的数为( ).A. B. C. D.答案:D 9. 下列计算中,正确的是( )A. B.C. D. 答案:A10. 下列命题的逆命题是真命题的是( )A. 若,,则B. 全等三角形的对应角相等C. 对顶角相等D. 若,则答案:D11. 估计的值应该在( )A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间答案:B12. 如图,在中,平分交于点,则点到的距离是( )A. 3B. 4C. 5D. 6答案:A13. 如图中字母A所代表的正方形的面积为()A. 4B. 8C. 16D. 64答案:D14. 如图,从一个大正方形中裁去面积为27和48的两个小正方形,则剩下阴影部分的面积为()A. 36B.C. 72D.答案:C15. 如图所示,在长方形中,,若将长方形沿折叠,使点C落在边上的点F处,则线段的长为()A. B. C. D. 10答案:C二、填空题(本大题共4小题,每小题2分,共8分)16. 若式子在实数范围内有意义,则的取值范围是________.答案:17. 如图,有一个长方体盒子,其长、宽、高分别是、、,则该长方体盒子内可放入的木棒(木棒的粗细忽略不计)的长度最长是______.答案:18. 如果,其中、为有理数,那么等于___________.答案:319. 如图,在中,,以点A为圆心,长为半径画弧,交于点D,.则________°.答案:90三、解答题(本大题共8小题,共62分)20. 计算:.答案:21. 如图,在中,,垂足为,且.求证:是直角三角形.答案:见解析证明:∵,∴,∵,,.∴,,∴,∵,,∴,∴是直角三角形.22. 先化简,再代入求值:,其中.答案:,.解:原式,,,,,把代入得,原式.23. 小明家装修,电视背景墙长为,宽为,中间要镶一个长为,宽为的大理石图案(图中阴影部分).(1)长方形周长是多少?(结果化为最简二次根式)(2)除去大理石图案部分,其他部分贴壁布,若壁布造价为6元,大理石的造价为200元,则整个电视墙需要花费多少元?(结果化为最简二次根式)答案:(1)(2)元【小问2详解】解:长方形的面积:,大理石的面积:,壁布的面积:,整个电视墙的总费用:(元).24. 如图,在中,,,点为内一点,且,,.(1)求的长;(2)求图中阴影部分的面积.答案:(1)(2)【小问1详解】解:∵,,,,;【小问2详解】解:∵,,,且,即,∴是直角三角形,,25. 求代数式的值.(1),,;(2),,.答案:(1)(2)【小问1详解】解:∵,,,∴;【小问2详解】解:∵,,,∴.26. 如图,在中,的垂直平分线分别交,及的延长线于点D,E,F,且.(1)求证:;(2)若,求的长.答案:(1)证明见解析(2)【小问1详解】证明:如图,连接,∵垂直平分,∴,∵,∴,∴,∴是直角三角形,∴;【小问2详解】解:设,则,在中,由勾股定理得,即,解得,∴的长为.27. 阅读下面的材料,解决问题:;;;……(1)求与的值;(2)已知是正整数,求的值;(3)计算.答案:(1);(2)(3)【小问1详解】解:==,==;【小问2详解】==,【小问3详解】.。

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列汽车标志中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.为了解我县初中2012级8300名学生的体育成绩,抽查了其中1700名学生的体育成绩进行统计分析.下面叙述正确的是()A.8300名学生是总体B.每名学生是总体的一个个体C.1700名学生的体育成绩是总体的一个样本D.以上调查是普查3.关于矩形的性质,下面说法错误的是()A.矩形的中点四边形是菱形B.两条对角线相等的平行四边形是矩形C.菱形的两条对角线互相垂直平分D.两组对角分别相等且一组邻边也相等的四边形是正方形4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是()A.两枚骰子向上一面的点数和大于1B.两枚骰子向上一面的点数和等于3C.两枚骰子向上一面的点数和等于7D.两枚骰子向上一面的点数和大于125.如图,四边形ABCD是菱形,顺次连接菱形各边的中点E、F、G、,则说法正确的是()A.EFGH是菱形B.EFGH是正方形C.EFGH是矩形D.EFGH是平行四边形6.如图,在正方形OABC中,点B的坐标是,点E、分别在边、上,,若EO 平分则E点的横坐标是()A.2B.3C.D.二、填空题:本题共10小题,每小题3分,共30分。

7.下面调查中,最适合采用普查的是__________填序号①对全国中学生心理健康现状的调查②对菏泽市中学生视力情况的调查③对《新闻联播》节目收视率的调查④对某校七年班同学身高情况的调查8.如图,一张圆桌共有3个座位,甲、乙、丙3人随机坐到这3个座位上,则甲和乙相邻而坐为__________事件填“确定”或“随机”9.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出__________球的可能性最大.10.如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为__________米.11.如图,四边形ABCD中,,要使四边形ABCD为平行四边形,则需添加一个条件,这个条件可以是:__________.12.如图,菱形ABCD的对角线、相交于点O,过点A作于点H,连接若,,则OH的长为__________.13.如图,在四边形ABCD中,,垂足为点若四边形ABCD 的面积为13,则__________.14.如图,在中,,D为AB上不与点A,B重合的一个动点,过点D 分别作于点E,于点F,则线段EF的最小值为__________.15.如图,在矩形ABCD中,,,点E、F分别为AD、CD边上的点,且EF的长为4,点G为EF的中点,点P为BC上一动点,则的最小值为_________________.16.如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,的周长为__________.三、解答题:本题共10小题,共80分。

人教版数学八年级(下)第一次月考数学试卷(含答案)

人教版数学八年级(下)第一次月考数学试卷(含答案)

八年级(下)第一次月考数学试卷一、选择题(每小题3分,12小题共36分1.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.2.(3分)如图,在▱ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于()A.10B.8C.6D.43.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB于D,CD=2,则AB长为()A.6B.C.+2D.+24.(3分)如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是()A.24B.18C.16D.125.(3分)下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角6.(3分)平行四边形的边长为5,则它的对角线长可能是()A.4和6B.2和12C.4和8D.4和37.(3分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.8.(3分)下列结论中,错误的有()②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个9.(3分)如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169B.25C.19D.1310.(3分)如图,东西方向上有A,C两地相距10千米,甲以16千米/时的速度从A地出发向正东方向前进,乙以12千米/时的速度从C地出发向正南方向前进,那么最快经过()小时,甲、乙两人相距6千米?A.B.C.1.5D.11.(3分)如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为()A.24B.25C.D.2612.(3分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四=;④S△AEF=.其中正确的有()边形BDEF是平行四边形;③S四边形BDEFA.1个B.2个C.3个D.4个二、填空题(每小题3分,6小题共18分13.(3分)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=cm 时,四边形ABCD是平行四边形.14.(3分)如图,在△ABC中,AB=6,D、E分别是AB、AC的中点,点F在DE上,且DF=3FE,当AF⊥BF时,BC的长是.15.(3分)如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2=.16.(3分)如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.17.(3分)如图,在四边形ABCD中,AB⊥BC,对角线AC、BD相交于点E,E为BD中点,且AD=BD,AB=2,∠BAC=30°,则DC=.18.(3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为.19.(3分)如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4),B点坐标为(﹣4,2);(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是;(3)求△ABC中BC边上的高长.20.(3分)如图,在四边形ABCD中,AB=AD,∠A=90°,∠CBD=30°,∠C=45°,如果AB=,求CD的长.21.(3分)如图,平行四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,连结AF、CE.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AD=2,∠ABD=30°,求四边形AECF的面积.22.(3分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?23.(3分)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD 的长.24.(3分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG.②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.参考答案一、选择题(每小题3分,12小题共36分1.B;2.B;3.D;4.C;5.C;6.C;7.C;8.C;9.B;10.A;11.B;12.C;二、填空题(每小题3分,6小题共18分13.7;14.8;15.36;16.;17.;18.4.8;19.(﹣1,1);。

2023-2024学年广东省惠州市小金茂峰学校八年级(下)月考数学试卷(含答案)

2023-2024学年广东省惠州市小金茂峰学校八年级(下)月考数学试卷(含答案)

2023-2024学年广东省惠州市小金茂峰学校八年级(下)月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各式是最简二次根式的是( )A. aB. 12C. 13D. 532.若二次根式x−1有意义,则x的取值范围在数轴上表示正确的是( )A. B. C. D.3.下面能作为直角三角形三边长的一组数是( )A. 8,15,17B. 7,12,15C. 12,15,20D. 12,18,224.下列计算正确的是( )A. 2×3=6B. (−7)2=−7C. 18=36D. 5−3=25.实数在数轴上对应的点的位置如图所示,计算|a−π|+|2−a|的结果为( )A. π+2B. π−2C. 2−πD. π−2)的值应在( )6.估计5×(2−15A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间7.如图,在数轴上,以单位长度为边长画正方形,以正方形对角线长为半径画弧,与数轴交于点A,则点A 表示的数为( )A. 2B. 1+2C. 2+2D. 3−28.用a,b,c作为三角形的三边,其中不能构成的直角三角形的是( )A. b2=(a+c)(a−c)B. a:b:c=3:2:7C. a=9,b=16,c=25D. a=6,b=8,c=109.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5m,则小巷的宽为( )A. 2.4mB. 2mC. 2.5mD. 2.7m10.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是( )A. 46B. 6C. 42D. 26二、填空题:本题共6小题,每小题3分,共18分。

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。

2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷(含答案)

2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷(含答案)

2023-2024学年河北省邢台市信都区八年级(下)月考数学试卷一、选择题:本题共14小题,共38分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示,四边形ABCD是平行四边形,可以记作( )A. ▱ABDCB. ▱ABCDC. ▱ACBDD. ▱ADBC2.为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问题中样本容量为( )A. 被抽取的200名学生的身高B. 200C. 200名D. 初三年级学生的身高3.现有长为5、5、7的三根木棍,要想钉一个平行四边形的木框,则选用的第四根木棍的长度应该为( )A. 5B. 7C. 2D. 124.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是( )A. 0B. −1C. −1.5D. −25.已知平行四边形ABCD中,∠B=4∠A,则∠C=( )A. 18°B. 36°C. 72°D. 144°6.如图表示光从空气进入水中前、后的光路图,若按如图建立平面直角坐标系,并设入水前与入水后光线所在直线的表达式分别为y1=k1x,y2=k2x,则关于k1与k2的关系,正确的是( )A. k2<0<k1B. k1<0<k2C. k1<k2<0D. k2<k1<07.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x(升)之间的函数关系是( )A. y=7.6x(0≤x≤20)B. y=7.6x+76(0≤x≤20)C. y=7.6x+10(0≤x≤20)D. y=7.6x+76(10≤x≤30)8.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集是( )A. x≤2B. x>2C. x≥2D. x<29.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,330°)的目标是( )A. 目标AB. 目标CC. 目标ED. 目标F10.温室效应导致地球异常增温,人类正在积极探讨直接从大气中分离二氧化碳的碳捕集与封存技术,有效应对气候变化.气象部门数据显示某地2024年2月气温比常年同期偏高,如图反映该地某日的温度变化情况.下列说法错误的是( )A. 3时的温度最低B. 这一天的温差是12℃C. 从15时到24时温度整体呈下降趋势D. 这一天有两个时刻的温度为0℃11.如图,在大水杯中放了一个小水杯,两个水杯内均没有水.现向小水杯中匀速注水,小水杯注满后,以同样的速度继续注水,则大水杯的液面高度ℎ(cm)与注水时间t(s)的大致图象是( )A. B. C. D.12.在证明命题“平行四边形对边相等”时,嘉淇给出如下证明过程:已知:四边形ABCD是平行四边形,求证:AB=CD,AD=BC.证明:连结AC,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠DAC=∠BCA,∠DCA=∠BAC,∵⋯,∴△ADC≌△CBA,∴DA=BC,DC=BA.其中省略的内容,可以表示为( )A. AC=CAB. ∠B=∠DC. ∠CAB=∠BD. AD=AC13.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )A. B.C. D.14.对于题目:“甲、乙两人登山过程中,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示.乙提速后,乙的登山速度是甲登山速度的3倍,并先到达山顶等待甲.根据图象所提供的信息,求甲、乙两人距地面的高度差为50米的登山时间”,甲答:4分钟;乙答:9分钟;丙答:15分钟.对于以上说法,正确的是( )A. 甲对B. 甲、乙合在一起对C. 甲、乙、丙合在一起对D. 甲、乙、丙合在一起也不对二、填空题:本题共3小题,共10分。

2023-2024学年浙江省温州市八年级下学期月考数学试卷(3月份)(含解析)

2023-2024学年浙江省温州市八年级下学期月考数学试卷(3月份)(含解析)

2024学年温州市八年级(下)(3月份)月考数学试卷测试范围:第1-3章;满分100分一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项最符合题目要求。

9.三国时期的数学家赵爽在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法,以方程即为例说明,记载的方法是:构造如下图,大正方形的面积是.同时它又等于四个矩形的面积加上中间小正方形的面积,即,因此.则在下面四个构图中(网格中每个小正方形边长为1个单位),能正确说明方程:解法的构图是( )A.B .C .D .10.一元二次方程的两个根为,则的值为( )A .2B .C .4D .二、填空题:本大题有8个小题,每小题3分,共24分。

在数轴上的位置如图所示,化简:如图放置,已知正方形①、②的边长分别是22350x x +-=(2)35x x +=()22x x ++24352⨯+5x =260x x --=2310x x ++=12,x x 21124x x x ++2-4-22(1)|1|()a b a b ++--+=第17题第18题.如图,在平面直角坐标系中,点,点,若动点从坐标原点出发,沿轴正方向匀速运动,运动速度为个单位长度每秒,设点运动时间为秒,当是等腰三角形时,的值为三、解答题:本题有6小题,共46分.解答应写出文字说明、证明过程或演算步骤.(2)解方程:.为了解八年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关()8,8A -P y 1P ABP V t ()233x x x +=+b .平均每天阅读时长在的具体数据如下:根据以上信息,回答下列问题:(1)_______,图中_______;_______;6090x ≤<6060666869697070727373738485n =m =的面积分别是6和12,求四边形2024学年温州市八年级(下)(3月份)月考数学试卷答案解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项最符合题目要求。

八年级(下)学期 第二次月考数学试卷含答案

八年级(下)学期 第二次月考数学试卷含答案

一、选择题1.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .632.如图,已知直线l //AB ,l 与AB 之间的距离为2.C 、D 是直线l 上两个动点(点C 在D 点的左侧),且AB =CD =5.连接AC 、BC 、BD ,将△ABC 沿BC 折叠得到△A ′BC .下列说法:①四边形ABDC 的面积始终为10;②当A ′与D 重合时,四边形ABDC 是菱形;③当A ′与D 不重合时,连接A ′、D ,则∠CA ′D +∠BC A′=180°;④若以A ′、C 、B 、D 为顶点的四边形为矩形,则此矩形相邻两边之和为35或7.其中正确的是( )A .①②③④B .①③④C .①②④D .①②③3.如图,矩形ABCD 中,AB =23,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .43+3B .221C .23+6D .454.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A 3B .1C .32D .235.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P分别作PE ⊥AC 于点E ,PF ⊥BD 于点F.若AB =3,BC =4,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.46.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 7. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP ;⑤PD=2EC .其中正确结论的番号是( )A .①②④⑤B .①②③④⑤C .①②④D .①④8.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .6D .89.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个10.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.12.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).13.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.15.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,18.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=2CD;其中正确的是_____(填序号)19.如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=5,则BC的长为_______.20.如图所示,已知AB=6,点C,D在线段AB上,AC =DB =1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.三、解答题=,对角线AC,BD交于点O,21.如图,在四边形ABCD中,AB∥DC,AB ADAC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.23.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD =,试探索线段DF 与FC 的数量关系.24.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.25.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.26.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.27.如图平行四边形ABCD,E,F分别是AD,BC上的点,且AE=CF,EF与AC交于点O.(1)如图①.求证:OE=OF;(2)如图②,将平行四边形ABCD(纸片沿直线EF折叠,点A落在A1处,点B落在点B1处,设FB交CD于点G.A1B分别交CD,DE于点H,P.请在折叠后的图形中找一条线段,使它与EP相等,并加以证明;(3)如图③,若△ABO是等边三角形,AB=4,点F在BC边上,且BF=4.则CF OF=(直接填结果).28.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH的面积(用含t的代数式表示).(2)当点M落在BC边上时,求t的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).29.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.30.已知:如图,在ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,CF BA交PQ于点F,连接AF.过点C作//(1)求证:四边形AECF是菱形;AC ,AE=5,则求菱形AECF的面积.(2)若8【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线'EA,'AC与线段CE重合时,线段'AC长度最短,可以求出最小值.【详解】如图,连接EC,过点E 作EM ⊥CD 交CD 的延长线于点M.四边形ABCD 是平行四边形,6AD BC AD BC ∴==,,E 为AD 的中点,30BCD ∠=︒,330DE EA MDE BCD ∴==∠=∠=︒,,又 EM CD ⊥,133322ME DE DM ∴===, 3315363CM CD DM ∴=+== 根据勾股定理得: 22223153319.22CE ME CM ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭根据翻折的性质,可得'3EA EA ==,当折线'EA ,'AC 与线段CE 重合时,线段'AC 长度最短,此时'AC = 3193. 【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.2.A解析:A【解析】【分析】①根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;②根据折叠的性质得到AC=CD ,然后根据菱形的判定方法可判断四边形ABDC 是菱形; ③连结A′D ,根据折叠性质和平行四边形的性质得到CA′=CA=BD ,AB=CD=A′B ,∠1=∠CBA=∠2,可证明△A′CD ≌△A′BD ,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A′D ∥BC ;④讨论:当∠CBD=90°,则∠BCA=90°,由于S △A1CB =S △ABC =5,则S 矩形A′CBD =10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,于是得到结论.【详解】①∵AB=CD=5,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积=2×5=10;故①正确;②∵四边形ABDC 是平行四边形,∵A′与D 重合时,∴AC=CD ,∵四边形ABDC 是平行四边形,∴四边形ABDC 是菱形;故②正确;③连结A′D ,如图,∵△ABC 沿BC 折叠得到△A′BC ,∴CA′=CA=BD ,AB=CD=A′B ,在△A′CD 和△A′BD 中CA BD CD BA A D A D ==='⎧⎪'⎨⎪''⎩,∴△A′CD ≌△A′BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A′D ∥BC ,∴∠CA′D+∠BCA′=180°;故③正确;④设矩形的边长分别为a ,b ,当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A′CB =S △ABC =12×2×5=5, ∴S 矩形A′CBD =10,即ab=10,而BA′=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45,∴5当∠BCD=90°时,∵四边形ABDC是平行四边形,∴∠CBA=90°,∴BC=3,而CD=5,∴(a+b)2=(2+5)2=49,∴a+b=7,∴此矩形相邻两边之和为35或7.故④正确.故选A.【点睛】本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.3.B解析:B【解析】【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【详解】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB=ABBC3,∴∠ACB=30°,AC=2AB=43∵∠BCE=60°,∴∠ACE=90°,∴AE=22(43)6=221.故选B.【点睛】本题考查轴对称—最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.4.D解析:D【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt△ABF中,∠BAF=30°,∴BF=12AB=1,AF=3,∴此时△ABE的最大面积为:12×4×3=23;②当E在CD上时,如图2,此时,△ABE的面积=12S▱ABCD=12×4×3=23;③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,此时,△ABE 的面积=23, 综上,△ABE 的面积的最大值是23;故选:D .【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.5.D解析:D【分析】连接OP ,由矩形ABCD 的可求OA=OD=52 ,最后由S △AOD =S △AOP +S △DOP 即可解答. 【详解】解:如图:连接OP∵矩形ABCD ,AB =3,BC =4∴S 矩形ABCD =AB×BC=12, OA=OC,OB=OD,AC=BD,225AC =AB +BC = ∴S △AOD =14S 矩形ABCD =3,OA=OD=52∴S △AOD =S △AOP +S △DOP =()111532222OA PE OD PF PE PF +=⨯+= ∴PE+PF=2.4故答案为D .【点睛】本题考查了矩形的性质,正确的做出辅助线和运用数形结合思想是解答本题的关键..6.D解析:D【分析】由题意得出条件证明△ABC ≌△DAF,根据对应角相等可推出②正确;由F 是AB 中点根据边长转换可以推出④正确;先推出△ECF ≌△DFA 得出对应边相等推出ADFE 为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.【详解】∵△ABD 是等边三角形,∴∠BAD=60°,AB=AD ,∵∠BAC=30°,知∴∠FAD=∠ABC=90°,AC=2BC,∵F为AC的中点道,∴AC=2AF,∴BC=AF,∴△ABC≌△DAF,∴FD=AC,∴∠ADF=∠BAC=30°,∴DF⊥AB,故②正确,∵EF⊥AC,∠ACB=90°,∴FG∥BC,∵F是AB的中点,∴GF=12 BC,∵BC=12AC,AC=CE,∴GF=14CE,故④说法正确;∵AE=CE,CF=AF,∴∠EFC=90°,∠CEF=30°,∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,∵DF⊥AB,∴∠ADF=30°,∴∠CEF=∠ADF,∴△ECF≌△DFA(AAS),∴AD=EF,∵FD=AC,∴四边形属ADFE为平行四边形,∵AD≠DF,∴四边形ADFE不是菱形;故①说法不正确;∴AO=12 AF,∴AO=12 AC,∵AE=AC,则AE=4AO,故③说法正确,故选D.【点睛】本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.7.A解析:A【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=2EC.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,①∴AP=EF;∠PFE=∠GAP∴④∠PFE=∠BAP,②延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴EC.∴其中正确结论的序号是①②④⑤.故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.8.D解析:D【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×h CF的值即可.【详解】连接DE、EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是12×CF×h CF,∵△ABC的面积是24,BC=3CF∴12BC×h BC=12×3CF×h CF=24,∴CF×h CF=16,∴阴影部分的面积是12×16=8,故选:D.【点睛】此题考查平行四边形的判定及性质,同底等高三角形面积的关系,解题中注意阴影部分面积的求法,根据图形的特点选择正确的求法是解题的关键.9.A解析:A【分析】根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC == ∴22AB 222=+=∴A B 45∠=∠=︒∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 22====∴DCB 45∠=︒∴A DCF ∠∠=,在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS∴DE DF =,ADE CDF ∠∠=∵CD AB ⊥∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等∵D 为AB 中点∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小根据勾股定理得:222EF DE DF =+此时四边形CEDF 是正方形即EF CD ==∴22EF 2==∴正确的个数是4个故选:A .【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.10.C解析:C【分析】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算总结规律,根据规律解答.【详解】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算结果总结规律,根据规律解答. 解:∵A 1、C 1分别为AB 、AC 的中点,∴A 1C 1=BC =13,同理,A 1B 1=12AC =7,B 1C 1=12AB =12, ∴△A 1B 1C 1的周长=7+12+13=32, ∴△A 1B 1C 1的周长=△ABC 的周长×12, 则△A 2B 2C 2的周长=△A 1B 1C 1的周长×12=△ABC 的周长×(12)2, …… ∴△A 8B 8C 8的周长=△ABC 的周长×(12)8=64×1256=14, 故选:C .【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题11.102-【分析】连结AC,取OC中点M,连结 MB,MG,则MB,MG为定长,利用两点之间线段最短解决问题即可.【详解】连接AC,交EF于O,∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵AE=CF,∴△AEO≌△CFO(ASA),∴OA=OC,∴O是正方形的中心,∵AB=BC=4,∴AC=2OC=2,取OC中点M,连结 MB,MG,过点M作MH⊥BC于H,∵MC=12OC2,∴MH=CH=1,∴BH=4−1=3,由勾股定理可得MB2231+10在Rt△GOC中,M是OC的中点,则MG=12OC2∵BG≥BM−MG102,当B,M,G三点共线时,BG102,102.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E,F运动到AD,BC的中点时,MG最小是解决本题的关键.12.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=1 2EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DMF中,A FDMAF DFAFE DFM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF≌△DMF(ASA),∴EF=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=12EM=EF,∴∠FEC=∠ECF,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB∥CD,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°,∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF≌△DMF是解题关键.13.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG ≌△AEC ,∴∠ACE =∠AGB ,∵∠AKG =∠NKC ,∴∠CNG =∠CAG =90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.14.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA,∠ABF=∠BFC,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∵BAD∠的平分线交CD于点E,∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.15.83或4433【分析】连接AC交BD于O,由菱形的性质可得AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,可证四边形BEGF是菱形,可得∠ABG=30°,可得点B,点G,点D三点共线,由直角三角形性质可求3AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC交BD于O,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,22224223AB AO --= ∴BD=3AC=4,同理可求3BE ,即3, 若AD=DG'=4时,∴BG'=BD-DG'=434,∴BE'4344343-==; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''33=,DG''=2HG''433=, ∴BG''=BD-DG''=438343-= ∴BE''=83, 综上所述:BE 为83或434- 【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.16.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.17.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠ 22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.18.①②③⑤【分析】根据三角形中位线定理得到EF =12AB ,EF ∥AB ,根据直角三角形的性质得到DF =12AC ,根据三角形内角和定理、勾股定理计算即可判断.【详解】 ∵E ,F 分别是BC ,AC 的中点,∴EF =12AB ,EF ∥AB , ∵∠ADC =90°,∠CAD =45°,∴∠ACD =45°,∴∠BAC =∠ACD ,∴AB ∥CD ,∴EF ∥CD ,故①正确;∵∠ADC =90°,F 是AC 的中点,∴DF =CF=12AC , ∵AB=AC ,EF =12AB , ∴EF =DF ,故②正确;∵∠CAD=∠ACD=45°,点F 是AC 中点,∴△ACD 是等腰直角三角形,DF ⊥AC ,∠FDC=45°,∴∠DFC=90°,∵EF//AB ,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED =∠FDE =22.5°,∵∠FDC =45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE ,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD,∵AB=AC,∴AB CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.19.4【分析】过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=12AD=12BC,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF为等腰直角三角形,可得BF=EF=FC=12BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=12FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.【详解】过点E作EM∥AD,交BD于M,设EM=x,∵AB=OB,BE平分∠ABO,∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,∴EM是△AOD的中位线,又∵ABCD是平行四边形,∴BC=AD=2EM=2x,∵EF⊥BC,∠CAD=45°,AD∥BC,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC为等腰直角三角形,∴EF=FC,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF为等腰直角三角形,∴BF=EF=FC=12BC=x,∵EM∥BF,∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 20.2【分析】分别延长AE ,BF 交于点H ,易证四边形EPFH 为平行四边形,得出点G 为PH 的中点,则G 的运动轨迹为△HCD 的中位线MN ,再求出CD 的长度,运用中位线的性质求出MN 的长度即可.【详解】解:如图,分别延长AE ,BF 交于点H ,∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分,∵点G 为EF 的中点,∴点G 为PH 的中点,即在P 运动的过程中,G 始终为PH 的中点,∴G 的运动轨迹为△HCD 的中位线MN ,∵CD=6-1-1=4,∴MN=12CD =2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题21.(1)见解析;(2)11【分析】(1)根据题意先证明四边形ABCD是平行四边形,再由AB=AD可得平行四边形ABCD是菱形;(2)根据菱形的性质得出OA的长,根据直角三角形斜边中线定理得出OE=12AC,在Rt ACE∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD∥,∴OAB DCA∠=∠,∵AC为DAB∠的平分线,∴OAB DAC∠=∠,∴DCA DAC∠=∠,∴CD AD AB==,∵AB CD∥,∴四边形ABCD是平行四边形,∵AD AB=,∴ABCD是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,CE故答案为(2.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)34;(2)y =4t +2;(3)存在,点M 的坐标为(1,0)或(2,0). 【分析】(1)因为BN ∥MP ,故当BN=MP 时,四边形BNMP 为平行四边形,此时点M 在点P 的左侧,求解即可;(2)y =12(BN +PA )•OC ,即可求解; (3)①当∠MQA 为直角时,则△MAQ 为等腰直角三角形,则PA =PM ,即可求解;②当∠QMA 为直角时,则NB +OM =BC =3,即可求解.【详解】(1)∵BN ∥MP ,故当BN =MP 时,四边形BNMP 为平行四边形.此时点M 在点P 的左侧时,即0≤t <1时,MP =OP ﹣OM =3﹣t ﹣2t =3﹣3t ,BN =t ,即3﹣3t =t ,解得:t =34; (2)由题意得:由点C 的坐标知,OC =4,BN =t ,NC =PO =3﹣t ,PA =4﹣OP =4﹣(3﹣t )=t +1,则y =12(BN +PA )•OC =12(t +t +1)×4=4t +2; (3)由点A 、C 的坐标知,OA =OC =4,则△COA 为等腰直角三角形,故∠OCA =∠OAC =45°,①当∠MQA 为直角时,∵∠OAC =45°,故△MAQ 为等腰直角三角形,则PA =PM ,而PA =4﹣(3﹣t )=t +1,PM =OP ﹣OM =(3﹣t )﹣2t =3﹣3t ,故t +1=3﹣3t ,解得:t =12,则OM =2t =1, 故点M (1,0);②当∠QMA 为直角时,则点M 、P 重合,则NB +OM =BC =3,即2t +t =3,解得:t =1,故OM =OP =2t =2,故点M (2,0);综上,点M 的坐标为(1,0)或(2,0).【点睛】本题是四边形综合题,涉及坐标与图形、平行四边形的性质、等腰直角三角形的判定和性质、图形的面积计算等,复杂度较高,难度较大,其中(3)要分类求解,避免遗漏.23.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,。

河南省2023-2024学年八年级下学期5月月考数学试卷(含答案)

河南省2023-2024学年八年级下学期5月月考数学试卷(含答案)

八年级数学(人教版)·16~19章·注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.答卷前请将装订线内的项目填写清楚。

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.下列是正比例函数的是()A.B.C.D.2.下列各组数中,勾股数是()A.3,4,5B.,2,C.,,D.0.3,0.4,0.5 3.已知与满足关系式,当时,的值是()A.3B.5C.D.4.下列运算正确的是()A.B.C.D.5.下列图形中,对称轴条数最多的是()A.等边三角形B.平行四边形C.菱形D.正方形6.已知一次函数且随的增大而减小,那么它的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,菱形的对角线,交于点,若,则的度数为()A.B.C.D.8.一次函数的图象向下平移2个单位长度后,与轴的交点坐标为()A.B.C.D.9.如图,直线,垂足为,线段,,以点为圆心,的长为半径画弧,交直线于点.则的长为()A.8B.6C.4D.210.如图,在矩形中,点,分别是边,的中点,连接,,点,分别是,的中点,连接,若,,则的长度为()A.B.C.D.二、填空题(每小题3分,共15分)11.函数中自变量的取值范围是_________.12.计算:的结果为_________.13.已知一次函数的图象如图所示,则不等式的解集是_________.14.如图,,,,则_________.15.已知矩形的对角线、相交于点,,,点是对角线上一点,,连接,则的长为_________.三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1);(2).17.(9分)如图,正方形网格的每个小方格边长均为1,的顶点在格点上.(1)判断的形状并说明理由;(2)求的面积.18.(9分)已知一次函数.(1)自变量的取值范围是_________;(2)将下面列表表示的部分数值补充完整;……012…………3 1.5……(3)在下图中画出该函数的图象;(4)该图象与轴的交点坐标是_________.19.(9分)洛阳龙门石窟是中国石刻艺术的宝库,不仅是世界文化遗产,也是中国四大石窟之一.五一期间张明从家出发开车去龙门石窟旅游,行驶的路程与时间的函数关系如下图所示.(1)本次车程全长_________,全程所需时间为_________;(2)在中途停留_________;(3)分别求开车在前和内的平均速度.20.(9分)我国古典数学著作中有一道计算秋千绳索长度的题目.翻译成现代文为:如图,秋千静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺,于),此时踏板升高离地五尺(尺),求秋千绳索(或)的长度.21.(9分)如图,菱形中,过顶点作于点,延长至点,使,连接.(1)求证:四边形是矩形;(2)填空:四边形_________为正方形.(填“可能”或“不可能”)22.(10分)信阳毛尖又称豫毛峰,属绿茶类,是中国十大名茶之一,也是河南省著名特产之一.某毛尖茶叶经销商销售每千克级茶、级茶的利润分别为100元、150元.若该经销商决定购进、两种茶叶共200千克用于出口,设购进级茶千克,销售总利润为元.(1)求与之间的函数关系式;(2)若其中级茶叶的进货量不超过级茶叶的4倍,请你帮该经销商设计一种进货方案使销售总利润最大.23.(10分)安阳某初中数学兴趣小组学完“中位线定理”后进行了探究.试题:如图,在中,,分别是边,上的点.回顾:若、分别是、的中点,则与的位置关系是_________,数量关系是_________;变式:若是的中点,,点是否为的中点?请从下面两个思路中任选一个进行判断求解;思路一延长至点,使,连接.思路二过点作的平行线,与的延长线交于点.应用:如图,在中,是边的中点,请用无刻度的直尺和圆规在边上确定点,使得点为边的中点.(保留作图痕迹,不写作法)(提示:作一个角等于已知角)八年级数学(A)(人教版)参考答案1-5 BACAD6-10 AABDC11.12.13.14.15.或16.解:(1)原式;(2)原式.17.解:(1)是直角三角形;理由:根据勾股定理可知:,,,,是直角三角形;(2)由(1)知是直角三角形,且,.18.解:(1)全体实数;(2)2.5 2 1;(3)(4).19.(1)30;25;(2)7;(3)前9min内的平均速度是:;内的平均速度是20.解:设尺,尺,尺,(尺),尺,在中,尺,尺,尺,根据勾股定理得:,解得:,则秋千绳索的长度为14.5尺.21.解:(1)菱形,,,,,,四边形是平行四边形,,,平行四边形为矩形;(2)不可能22.解:(1)由题意可得,,即与的函数关系式为;(2)其中级茶叶的进货量不超过级茶叶的4倍,,解得,,,当时,取得最大值,此时,即当进货方案是级茶叶40千克,级茶叶160千克时,销售总利润最大.23.解:回顾:;;变式:选择思路一:是边的中点,.又,,,,,,,四边形是平行四边形,,,是的中点.(选择思路二,解答合理,亦可得分)应用:。

2023-2024学年江苏省南通市重点中学八年级(下)月考数学试卷(5月份)(含答案)

2023-2024学年江苏省南通市重点中学八年级(下)月考数学试卷(5月份)(含答案)

2023-2024学年八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.学校甲、乙两支国旗护卫队队员的平均身高均为1.7米,要想知道哪支国旗护卫队队员的身高更为整齐,通常需要比较他们身高的( )A. 平均数B. 中位数C. 众数D. 方差2.一次函数y=43x+2的图象经过点(a,2),则a的值为( )A. ―1B. 0C. 1D. 23.数据2,1,1,5,1,4,3的众数和中位数分别是( )A. 2,1B. 1,4C. 1,3D. 1,24.若a―b+c=0,a≠0,则方程ax2+bx+c=0必有一个根是( )A. 1B. 0C. ―1D. 不能确定5.关于x的一元二次方程(a―1)x2+3x―2=0有实数根,则a的取值范围是( )A. a>―18B. a≥―18C. a>―18且a≠1 D. a≥―18且a≠16.已知关于x的一次函数为y=mx+4m―2,下列说法中正确的个数为( )①若函数图象经过原点,则m=12;②若m=13,则函数图象经过第一、二、四象限;③函数图象与y轴交于点(0,―2);④无论m为何实数,函数的图象总经过(―4,―2).A. 1个B. 2个C. 3个D. 4个7.如图,在平面直角坐标系中,直线y=x―2与y=kx+b(k<0)相交于点M,点M的纵坐标为1,则关于x的不等式x―2≤kx+b的解集是( )A. x≤1B. x<3C. x≤3D. x<18.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A. x 2+130x ―1400=0B. x 2+65x ―350=0C. x 2―130x ―1400=0D. x 2―65x ―350=09.O 是等边△ABC 内的一点,OB =1,OA =2,∠AOB =150°,则OC 的长为( )A. 3B. 5C. 7D. 310.如图,直线y =2x ―6与x 轴、y 轴分别交于A ,B 两点,C 在y 轴的正半轴上,D 在直线AB 上,且CB =10,CD =OD.若点P 为线段AB 上的一个动点,且P 关于x 轴的对称点Q 总在△OCD 内(不包括边界),则点P 的横坐标m 的取值范围为( )A. 13<m <23B. 23<m <45C. 23<m <125D. 43<m <125二、填空题:本题共8小题,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下学期月考数学试卷(3月份)一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.下列调查中,适宜采用普查方式的是( ) A.调查市场上酸奶的质量情况B.调查乘坐飞机的旅客是否携带了危禁物品C.调查某品牌日光灯管的使用寿命D.调查《阿福聊斋》节目的收视率情况3.不改变分式的值,将变形,可得( ) A.﹣B.C.﹣D.4.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍5.下列根式中,与是同类二次根式的是( ) A.B.C.D.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AB∥CD,AD=BC;④AO=CO,BO=DO.其中一定能判定这个四边形是平行四边形的条件有( )A.4组B.3组C.2组D.1组7.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法:①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1000名考生是总体的一个样本;④样本容量是1000.其中说法正确的有( )A.4个B.3个C.2个D.1个8.平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是( )A.8和14 B.10和14 C.18和20 D.10和349.关于x的方程:的解是x1=c,,解是x1=c,,则的解是( )A.x1=c,B.x1=c﹣1,C.x1=c,D.x1=c,10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是( )A.①②③⑤B.①②③④C.①②③④⑤D.①②③二、填空题(每空2分,共20分)11.要使在实数范围内有意义,x应满足的条件是__________.12.下列各式:,,,,(x﹣y)中,是分式的共有__________个.13.如图是2014-2015学年七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是__________人.14.若方程有增根,则m的值是__________.15.▱ABCD中,∠C=∠B+∠D,则∠A=__________.16.已知,则代数式的值为__________.17.已知在分式中,当x≠3时分式有意义,当x=2时分式值为0,则b a=__________.18.关于分式的值是正数,则x的取值范围是__________.19.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是__________.20.已知:▱ABCD的周长为52cm,DE⊥直线BC,DF⊥直线AB,垂足分别为E、F,且DE=5cm,DF=8cm,则BE+BF的值为__________.三、解答题(共70分)21.计算:(1);(2);(3).(4)先化简再求值:,请选择一对你喜欢的a、b值代入化简后的式子并求值.22.解分式方程:(1)(2).23.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):时速数据段频数频率30﹣40 10 0.0540﹣50 36 __________50﹣60 __________ 0.3960﹣70 __________ __________70﹣80 20 0.10总计200 1(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速超过60千米即为违章,则这次检测到的违章车辆共有__________辆.24.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点顺时针旋90°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为__________.25.已知:如图,在▱ABCD中,∠BAD和∠BCD的平分线AE、CF分别与对角线BD相交于点E,F.证明:四边形AECF是平行四边形.26.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1.∴==+=x2+2+.这样,分式被拆分成了一个整式(x2+2)与一个分式的和.请你仿照上述过程将分式拆分成一个整式与一个分式(分子为整数)的和的形式.27.为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?28.如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B ﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t (秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ 的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D﹣A运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.八年级下学期月考数学试卷(3月份)一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中既是轴对称图形又是中心对称图形的是( )A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列调查中,适宜采用普查方式的是( )A.调查市场上酸奶的质量情况B.调查乘坐飞机的旅客是否携带了危禁物品C.调查某品牌日光灯管的使用寿命D.调查《阿福聊斋》节目的收视率情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查市场上酸奶的质量情况,调查适合抽样调查,故A不符合题意;B、调查乘坐飞机的旅客是否携带了危禁物品,要求精确度高,适合普查,故B符合题意;C、调查某品牌日光灯管的使用寿命,调查具有破坏性,适合抽样调查,故C不符合题意;D、调查《阿福聊斋》节目的收视率情况,调查范围广,适合抽样调查,故D不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所,要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.不改变分式的值,将变形,可得( )A.﹣B.C.﹣D.考点:分式的基本性质.分析:根据分式的分子、分母、分式改变其中任意中的两个的符号,结果不变.解答:解:=﹣,故选:C.点评:本题考查了分式基本性质,分式的分子、分母、分式改变其中任意中的两个的符号,结果不变.4.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍考点:分式的基本性质.分析:根据分式的性质,可得答案.解答:解:把分式中的m和n都扩大3倍,得=×.故选:C.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变.5.下列根式中,与是同类二次根式的是( )A.B.C.D.考点:同类二次根式.专题:计算题.分析:先把化简为最简二次根式,然后将各选项的根式化为最简,根据同类二次根式的被开方数相同即可作出判断.解答:解:=3,A、=2,与是同类二次根式,故本选项正确;B、,与不是同类二次根式,故本选项错误;C、=,与不是同类二次根式,故本选项错误;D、=3,与不是同类二次根式,故本选项错误;故选A.点评:此题考查了同类二次根式的知识,解答本题的关键是掌握同类二次根式的被开方数相同,另外还要掌握二次根式的化简.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AB∥CD,AD=BC;④AO=CO,BO=DO.其中一定能判定这个四边形是平行四边形的条件有( )A.4组B.3组C.2组D.1组考点:平行四边形的判定.分析:根据平行四边形的5个判断定理:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,即可作出判断.解答:解:①AB∥CD,AD∥BC,能判定这个四边形是平行四边形,故此选项正确;②AB=CD,AD=BC,能判定这个四边形是平行四边形,故此选项正确;③AB∥CD,AD=BC,不能判定这个四边形是平行四边形,故此选项错误;④AO=CO,BO=DO,能判定这个四边形是平行四边形,故此选项正确;故选:B.点评:此题主要考查了平行四边形的判定定理,解题关键是准确无误的掌握平行四边形的判定定理,难度一般.7.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法:①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1000名考生是总体的一个样本;④样本容量是1000.其中说法正确的有( )A.4个B.3个C.2个D.1个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:①这50000名学生的数学考试成绩的全体是总体,说法正确;②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;③1000名考生是总体的一个样本,说法错误,应是1000名考生的数学成绩是总体的一个样本;④样本容量是1000,说法正确;正确的说法共2个,故选:C.点评:此题主要考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是( )A.8和14 B.10和14 C.18和20 D.10和34考点:平行四边形的性质;三角形三边关系.分析:如图:因为平行四边形的对角线互相平分,所OB=,OC=,在△OBC中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.即x+y>24,y﹣x<24.解答:解:A、=4+7=11<12,所以不可能;B、=5+7=12=12,所以不可能;D、34﹣10=24,所以不可能;故选C.点评:本题考查平行四边形的性质以及三角形的三边关系定理.9.关于x的方程:的解是x1=c,,解是x1=c,,则的解是( )A.x1=c,B.x1=c﹣1,C.x1=c,D.x1=c,考点:分式方程的解.分析:先根据给出的材料,可得出方程的解,再将原方程化简为x﹣1+=c﹣1+,从而得出方程中x﹣1的解为c﹣1和,再求得x的值即可.解答:解:由题意得:变形为x﹣1+=c﹣1+,∴x﹣1=c﹣1或x﹣1=,解得x1=c,x2=故选C.点评:本题考查了分式方程的解,要注意整体思想在数学中的应用.10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是( )A.①②③⑤B.①②③④C.①②③④⑤D.①②③考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.专题:压轴题.分析:证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;=S △AOO′+S△OBO′=6+4,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.解答:解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;=S △AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.点评:本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.二、填空题(每空2分,共20分)11.要使在实数范围内有意义,x应满足的条件是x≥2.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,列不等式求解.解答:解:要使在实数范围内有意义,x应满足的条件x﹣2≥0,即x≥2.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.下列各式:,,,,(x﹣y)中,是分式的共有3个.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:不是分式,是分式,不是分式,是分式,(x﹣y)是分式,故答案为:3点评:本题主要考查分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.13.如图是2014-2015学年七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是5人.考点:扇形统计图.专题:计算题.分析:根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答.解答:解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组人数的人数共有:12÷24%=50(人),∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人).故答案为:5.点评:本题考查了扇形统计图,从图中找到相关信息是解此类题目的关键.14.若方程有增根,则m的值是3.考点:分式方程的增根.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣4=0,得到x=4,然后代入化为整式方程的方程算出m的值.解答:解:去分母,得m﹣(x﹣1)=0,∵原方程有增根,∴最简公分母x﹣4=0,解得x=4,当x=4时,m=3,故答案为:3.点评:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.▱ABCD中,∠C=∠B+∠D,则∠A=120°.考点:平行四边形的性质.专题:计算题.分析:根据平行四边形的对边平行,对角相等,可得AD∥BC,∠B=∠D,∠A=∠C,易得∠C=2∠D,∠C+∠D=180°,解方程组即可求得.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∠A=∠C,∵∠C=∠B+∠D,∴∠C=2∠D,∠C+∠D=180°,∴∠A=∠C=120°,∠D=60°.故答案为120°.点评:此题考查了平行四边形的性质:平行四边形的对边平行;平行四边形的对角相等.解题的关键是数形结合思想的应用.16.已知,则代数式的值为﹣.考点:分式的化简求值.分析:先根据﹣=4得出y﹣x=4xy,再代入代数式进行计算即可.解答:解:∵﹣=4,∴y﹣x=4xy,∴原式====﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.已知在分式中,当x≠3时分式有意义,当x=2时分式值为0,则b a=﹣8.考点:分式的值为零的条件;分式有意义的条件.分析:根据分式有意义的条件是分母不等于零,求出a的值;根据分式的值为零的条件求出b的值,再求代数式即可.解答:解:当x﹣a≠0即x≠a时分式有意义,所以a=3,当x+b=0,x﹣a≠0时分式值为0,可得﹣b=2,b=﹣2,所以b a=﹣8,故答案为:﹣8点评:本题考查了分式有意义的条件和分式的值为零的条件.分式有意义的条件是分母不等于零.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.18.关于分式的值是正数,则x的取值范围是x>﹣.考点:分式的值.分析:根据x2≥0,可得出2x+3>0,再解不等式即可得出x的取值范围.解答:解:∵分式的值是正数,∴x2>0,∴2x+3>0,∴x>﹣,点评:本题考查了分式的值,注意:一个数的平方是非负数,同号两数相除的正.19.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.考点:平行四边形的判定与性质;含30度角的直角三角形;勾股定理.分析:根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.解答:解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.点评:本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.20.已知:▱ABCD的周长为52cm,DE⊥直线BC,DF⊥直线AB,垂足分别为E、F,且DE=5cm,DF=8cm,则BE+BF的值为(26+13)cm或(6+3)cm.考点:平行四边形的性质;勾股定理.专题:分类讨论.分析:根据∠A为锐角或∠D为锐角分情况进行讨论,由▱ABCD的周长为52cm,DE⊥直线BC,DF⊥直线AB,垂足分别为E、F,且DE=5cm,DF=8cm,构造方程求解即可求得答案.解答:解:对于平行四边形ABCD有两种情况:(1)当∠A为锐角时,如图1,设BC=acm,AB=bcm,∵平行四边形ABCD,DE⊥AB,DF⊥BC,∴AB×DE=BC×DF,AB=CD,BC=DA,又∵DE=5cm,DF=8cm,∴5a=8b,∵平行四边形ABCD的周长为52,∴2(a+b)=52,∴a+b=26,解方程组,∴由②得:a=26﹣b ③,∴把③代入①得:b=10,∴a=16,∴BC=16cm,AB=10cm,∴AB=CD=10cm,AD=BC=16cm,∴在Rt△ADE中,CE=5cm,∴BE=BC﹣CE=16﹣5(cm),∴在Rt△ADF中,AF=8cm,∵F点在AB的延长线上,∴BF=AF﹣AB=8﹣10(cm),∴BE+BF=(16﹣5)+(8﹣10)=6+3(cm),(2)当∠D为锐角时,如图2,设BC=acm,AB=bcm,∵平行四边形ABCD,DE⊥AB,DF⊥BC,∴AB×DE=BC×DF,AB=CD,BC=DA,又∵DE=5cm,DF=8cm,∴5a=8b,∵平行四边形ABCD的周长为52,∴2(a+b)=52,∴a+b=26,解方程组,∴由②得:a=26﹣b ③,∴把③代入①得:b=10,∴a=16,∴BC=16cm,AB=10cm,∴AB=CD=10cm,AD=BC=16cm,∴在Rt△ADE中,CE=5cm,∴BE=BC+CE=16+5(cm),∴在Rt△ADF中,AF=8cm,∵F点在AB的延长线上,∴BF=AF+AB=8+10(cm),∴BE+BF=(16+5)+(8+10)=26+13(cm),故答案为:(26+13)cm或(6+3)cm.点评:本题主要考查平行四边形的性质,勾股定理,合并同类二次根式等知识点,关键在于根据∠A为锐角或∠D为锐角分情况进行讨论,根据平行四边形的面积公式和周长定理正确的列出方程组,并认真的求解,推出AB和BC的长度,熟练运用数形结合的思想进行求解.三、解答题(共70分)21.计算:(1);(2);(3).(4)先化简再求值:,请选择一对你喜欢的a、b值代入化简后的式子并求值.考点:分式的化简求值;分式的混合运算;零指数幂;负整数指数幂.分析:(1)根据负整数指数幂、零指数幂的二次根式计算即可;(2)根据分式的加减进行计算;(3)根据分式的加减进行计算;(4)先化简,再代入数值解答即可.解答:解:(1))=4﹣2﹣1=3﹣2;(2)====;(3)===;(4)===;把a=2,b=1代入原式=1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.解分式方程:(1)(2).考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:x2+2x﹣2=x2﹣x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3=2x﹣6+x,解得:x=3,经检验x=3是增根,分式方程无解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):时速数据段频数频率30﹣40 10 0.0540﹣50 36 0.1850﹣60 78 0.3960﹣70 56 0.2870﹣80 20 0.10总计200 1(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速超过60千米即为违章,则这次检测到的违章车辆共有76辆.考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据频率=频数÷数据总数,频数=数据总数×频率进行计算即可;(2)结合(1)中的数据补全图形即可;(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.解答:解:(1)36÷200=0.18,200×0.39=78,200﹣10﹣36﹣78﹣20=56,56÷200=0.28;填表如下:时速数据段频数频率30﹣40 10 0.0540﹣50 36 0.1850﹣60 78 0.3960﹣70 56 0.2870﹣80 20 0.10总计200 1(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.故答案为0.18,78,56,0.28;76.点评:此题主要考查了读频数分布直方图的能力和看频数分布表的能力;利用频数分布表获取信息时,必须认真仔细,才能作出正确的判断和解决问题.24.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点顺时针旋90°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为(1,0).考点:作图-旋转变换;作图-平移变换.分析:(1)首先将A、B、C三点分别向右平移3个单位,再向上平移1个单位,得A1、B1、C1三点,顺次连接这些点,即可得到所求作的三角形;(2)找出点B、C绕点A顺时针旋转90°的位置,然后顺次连接即可;(3)△A′B′C′与△ABC是中心对称图形,连接对应点即可得出答案.解答:解:(1)将A,B,C,分别右平移3个单位长度,再向上平移1个单位长度,可得出平移后的△A1B1C1;(2)将△A1B1C1三顶点A1,B1,C1,绕原点旋转90°,即可得出△A2B2C2;(3)∵△A′B′C′与△ABC是中心对称图形,连接AA′,BB′CC′可得出交点:(1,0),故答案为:(1,0).点评:本题考查了利用旋转变换作图,利用平移变换作图,以及三角形的面积,熟练掌握网格结构,准确找出对应点的位置是解题的关键.25.已知:如图,在▱ABCD中,∠BAD和∠BCD的平分线AE、CF分别与对角线BD相交于点E,F.证明:四边形AECF是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:由在▱ABCD中,可证得AB=CD,AD∥BC,∠BAD=∠BCD,又由∠BAD和∠BCD 的平分线AE、CF分别与对角线BD相交于点E,F,可证得∠BAE=∠DCF,继而可证得△ABE≌△CDF(ASA),则可证得AE=CF,AE∥CF,判定四边形AECF是平行四边形.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠BAD=∠BCD,∴∠ABE=∠CDF,∵∠BAD和∠BCD的平分线AE、CF分别与对角线BD相交于点E,F,∴∠BAE=∠BAD,∠DCF=∠BCD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF是平行四边形.点评:此题考查了平行四边形的判定与性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是解此题的关键.26.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1.∴==+=x2+2+.这样,分式被拆分成了一个整式(x2+2)与一个分式的和.请你仿照上述过程将分式拆分成一个整式与一个分式(分子为整数)的和的形式.考点:分式的混合运算.专题:阅读型.分析:只需仿照原材料中的解题过程就可解决问题.解答:解:由分母为﹣x2+1,可设﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b,则﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4+(﹣a+1)x2+(a+b).∵对应任意x,上述等式均成立,∴,∴a=7,b=1.∴==+=x2+7 +.这样,分式被拆分成了一个整式(x2+7)与一个分式的和.点评:本题主要考查的是阅读理解能力、运用已有经验解决问题的能力.27.为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240 160。

相关文档
最新文档